
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Optimized GPU Framework for Block Cipher
Differential Search

Wei-Zhu Yeoh, Je Sen Teh*, Jiageng Chen,

Abstract—Differential cryptanalysis of block ciphers require
the identification of differential characteristics (trails) that occur
with high probabilities. The effort required to search for these
characteristics increases exponentially as the number of rounds
and block size increases. Differentials, which are clusters of
differential characteristics sharing the same input and output
differences, can be constructed to improve the overall distinguish-
ing probability, thus improving the efficiency of a key recovery
attack. Matsui’s branch-and-bound algorithm that automates the
seach for differential characteristics is commonly used to con-
struct these differentials. However, the algorithm is still inefficient
when enumerating a large number of characteristics, especially
for block ciphers with large block sizes or number of rounds. In
this paper, we improve upon the differential search by proposing
a GPU-accelerated branch-and-bound framework that is more
efficient and cost-effective as compared to its CPU counterpart.
Efficiency is optimized by parallelizing all operations involved
in a typical branch-and-bound algorithm by completing the
entire search without transferring intermediate results back
to the CPU. The meet-in-the-middle (MITM) approach is also
adopted for further performance gains. We analyze the proposed
framework in terms of both financial and computational costs
based on simulations on the Google Cloud VM environment.
When optimizing for performance, the proposed framework can
achieve up to 90x speedup while saving up to 47% of the
running cost as compared to a single CPU core. If cost-saving
is the goal, the proposed framework can save up to 83% of
the running cost while retaining a speedup of up to 40x as
compared to single CPU core. The proposed framework is then
applied to 128-bit TRIFLE-BC, 64-bit PRESENT and 64-bit
GIFT, leading to the discovery of improved differentials. Notably,
we identified the best differentials for PRESENT and 64-bit GIFT
to date, with probabilities of 2−61.7964 and 2−60.66 for 16 and
13 rounds respectively. Although the differential probability for
43 rounds of TRIFLE-BC was not significantly improved, we
were able to construct larger differentials with approximately
5.8x more characteristics than existing ones. Thus, the proposed
GPU framework is currently the most efficient approach for
enumerating 128-bit block cipher differentials, especially for a
large number of rounds. 1

Index Terms—Automatic search, block cipher, branch-and-
bound, cryptanalysis, differential, differential cryptanalysis, GPU

I. INTRODUCTION

*Corresponding Author
Wei-Zhu Yeoh and Je Sen Teh are both with the School of Computer

Sciences, Universiti Sains Malaysia.
Jiageng Chen is with the School of Computer, Central China Normal

University
1This work has been submitted to the IEEE for possible publication.

Copyright may be transferred without notice, after which this version may
no longer be accessible.

BLOCK ciphers are important cryptographic primitives
that are used in various cryptographic applications such

as Transport Layer Security (TLS) [1], OpenPGP [2], and
SSH Transport Layer Protocol [3]. As such, there exists
a multitude of cryptanalysis methods available for analyz-
ing block cipher security, a notable one being differential
cryptanalysis. Differential cryptanalysis [4] is a powerful tool
that exploits the propagation of input (XOR) differences to
construct statistical distinguishers that can be used to extract
encryption keys. The resistance to differential cryptanalysis
has become a de-facto requirement for any modern block
cipher [5][6][7]. The success of differential cryptanalysis relies
on the identification of differential characteristics (trails) that
occur with sufficiently high probabilities.

A differential characteristic denoted by ∆X
r−→ ∆Y is

constructed by propagating an input XOR difference, ∆X =
M1⊕M2 through r rounds of a block cipher to obtain the final
output difference, ∆Y = C1 ⊕ C2, where (Mi, Ci) represent
distinct plaintext-ciphertext pairs. If a characteristic has a high
differential probability, Pr(∆X r−→ ∆Y), it can be used
as a statistical distinguisher for key recovery attacks. These
key recovery attacks can be made more efficient by taking
into consideration the notion of differentials. Differentials
are clusters of differential characteristics that share the same
input and output differences but differ in their intermediary
differences, δi. For example, ∆X → δ1 → δ2 → ∆Y
and ∆X → δ3 → δ4 → ∆Y can be clustered to form
a differential that occurs with a probability of Pr(∆X →
δ1 → δ2 → ∆Y) + Pr(∆X → δ3 → δ4 → ∆Y). Every
differential characteristic added to a differential improves
upon the differential’s probability of occurrence. The search
for these characteristics is a non-trivial process because the
computational effort scales exponentially with respect to a
cipher’s block size and number of rounds.

GPUs is an integral part of the high-performance computing
(HPC) cluster, as evidenced by their appearance in computing
clusters that make it into the Top 500 Supercomputer rankings
[8] based on computing power. As such, tapping into readily
available GPU computational power for efficiency gains would
greatly benefit cryptanalysts, especially for computationally
intensive applications such as the identification of differen-
tials. Although GPUs have already been utilized for other
cryptography-related efforts such as hash collision attacks [9],
accelerating asymmetric cryptography [10] and symmetric-key
cryptography [11], it is yet to be utilized efficiently for the
differential search problem. Even though a GPU approach
has been attempted in [12], the differential search for a large
number of rounds sees a dramatic drop in performance due to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

memory limitations.

A. Related Work

Matsui first proposed a searching strategy based on the
branch-and-bound method (B&B) for differential and linear
trails which was applied on the Data Encryption Standard
(DES) [13]. Various enhancements were later made to the Mat-
sui B&B algorithm, adapting it to various block ciphers and
using different pruning criteria. In [14], the B&B searching
algorithm was adapted for ARX block ciphers by taking into
account the differential property of addition operations. The
differential search for ARX block ciphers was subsequently
improved by [15] with the introduction of a sorted partial
differential distribution table. The meet-in-the-middle (MITM)
approach described in [16] trades off data complexity for
improvements in terms of time complexity. It splits the search
into two halves, storing intermediary round information for
the first half which is later matched with the outputs of the
second half of the search. However, this approach does not
scale well beyond a general 32-bit block cipher or a 64-bit
Feistel block cipher due to memory limitations. The searching
strategy detailed in [17] primarily uses the number of active
s-boxes to guide the pruning process of the B&B algorithm.

Alternatively, the mixed-integer linear programming (MILP)
method proposed in [18] can be used to automate the search for
differential characteristics. The proposed MILP method iden-
tifies the minimum number of active s-boxes for a particular
block cipher by solving relevant linear inequalities using an
MILP solver. The MILP method was later extended by [19] to
enable the enumeration of differential or linear characteristics
satisfying certain properties, which can then be used to form
a differential or linear hull. However, the MILP method is
inefficient when dealing with large block sizes or number
of rounds. Similarly, SAT/SMT solvers have also been used
to automate the construction of differentials. For now, this
approach has been limited to 64-bit block ciphers [20].

General-purpose graphical processing unit (GPGPU) tech-
nology allows the use of GPU hardware to accelerate processes
unrelated to graphic manipulation tasks. There exists various
research work attempting to accelerate the B&B algorithm us-
ing GPUs [21], [22], [23]. In general, the GPU parallelization
of the B&B algorithm is complex due to its irregular nature
in terms of workload, control flow, and memory access [24],
[25]. Previous work such as [21] and [22] only attempted
to partially parallelize the operation of B&B. Parallelizing
all four operations of the B&B algorithm as described in
[25] and [26] alleviate branch irregularity using an integer-
vector-matrix (IVM) structure. However, the IVM approach
requires the intermediary solution to be coded in a square-
like regular matrix structure for which the differential cluster
search problem does not have an efficient representation for.

In [12], a GPU-based B&B search for differential clusters
was proposed. However, the framework has several shortcom-
ings which include generalizability issues due to the specific
choices of fixed parameters rather than variables for work
assignments and the parallelization of only three out of four
operations of the B&B process. There also exists a bottleneck

due to memory bandwidth, leading to a noticeable drop in
performance when carrying out the search for a larger number
of rounds. More recently, [27] used a GPU-based branch-and-
bound search to compute the full differential distribution for
block size-reduced variants of PRESENT that range from 8
to 28 bits. A straightforward implementation is used whereby
each thread is assigned an input difference to compute. Each
thread computes the difference propagation for one round and
stores the result in an array whose size is equivalent to the
number of differences (2b for a b-bit block cipher). Thus, the
proposed method is still infeasible for large block sizes due to
memory limitations. In addition, the distribution of different
branch sizes for different input differences reduces the GPU
efficiency due to branch divergence.

B. Contribution

In this paper, we propose an optimized B&B GPU frame-
work2 for the automated search for block cipher differen-
tials that overcomes prior performance bottlenecks. The GPU
framework can be applied to various block ciphers without sac-
rificing efficiency. When configured for optimal performance,
the proposed framework can achieve a speedup of up to 90x
while saving up to 47% of the running cost as compared to
a single CPU core. If cost-saving is the goal, the proposed
framework can be configured to save up to 83% of the running
cost while retaining a speedup of up to 40x as compared
to single CPU core. When comparing the GPU-accelerated
MITM approach to the traditional single-core CPU non-MITM
approach, a speedup of 2292x is achieved, which significantly
improves upon the results described in [12] where a speedup
of only 58x the original throughput was achieved due to the
reliance on the active s-boxes count for an input difference,
∆X .

Efficiency is optimized through new work distribution
and acquisition strategies, implicit partitioning via num-
bered branches indexing, and minimal communication among
threads. Moreover, the framework utilizes a kernel grid-level
synchronization mechanism to achieve efficient communica-
tion among threads and efficient GPU-based recursion. The
proposed GPU framework only requires the initial input dif-
ferences, ∆X and ∆Y , and can perform the search entirely
in the GPU kernel. This leads to an additional advantage
whereby the CPU and GPU can independently solve for
different pairs of ∆X and ∆Y with minimal communication
apart from generating the required difference pairs. Therefore,
proposed GPU framework also opens up the possibility of
performing differential cluster search in heterogeneous CPU-
GPU computing clusters which are quite prevalent.

As a proof-of-concept, the proposed framework is used to
search for improved differentials for multiple block ciphers
which include 128-bit TRIFLE-BC [28], 64-bit PRESENT
[5], and 64-bit GIFT [7]. These block ciphers were selected
to highlight the capability of the framework to generalize
across multiple block ciphers with different block sizes and

2The source code of the framework is made publicly available
for use at the following URL: https://github.com/yeohweizhu/
gpu-differential-search-framework

https://github.com/yeohweizhu/gpu-differential-search-framework
https://github.com/yeohweizhu/gpu-differential-search-framework

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

designs. We improve upon the best-known differential proba-
bility for 16-round PRESENT from 2−62.13 to 2−61.7964. We
also improved upon the best-known differential probability
for 13-round GIFT from 2−61.3135 to 2−60.66 by constructing
a differential with approximately one million characteristics.
Although no significant improvement to the differential prob-
ability for TRIFLE-BC was obtained, we showed that the
proposed framework can efficiently enumerate a large number
of characteristics even for a block size of 128 bits. Differentials
with over 3 × 106 characteristics can be constructed for 43-
round TRIFLE-BC, which is approximately 5.8x more than
in [12]. However, we wish to note that these cryptanalytic
findings are not the main focus of the work, but serve to
demonstrate the generalizability and efficiency of the proposed
framework.

C. Outline

The remainder of this paper is structured as follows: Section
II provides details on GPU architecture and NVIDIA GPGPU
technology, CUDA. In Section III, a baseline serialized B&B
algorithm for differential search is introduced. The GPU-
accelerated framework and its performance evaluation are
detailed in Section IV. In Section V, new differential results
for selected block ciphers are provided. Section VI concludes
the paper.

II. PRELIMINARIES

A. GPU

Graphics processing units (GPUs) are computing hardware
designed for efficient graphical or image data processing in a
parallelized and multithreaded environment. It is based on the
single instruction, multiple threads (SIMT) execution model
where multiple threads that reside within each processing unit
execute common instructions in lock-step. In 2006, NVIDIA
introduced the Compute Unified Device Architecture (CUDA)
programming interface which enables the use of GPUs for
general-purpose computation unrelated to that of the graphical
manipulation tasks. Over the years, GPU has gained traction as
a hardware accelerator for specialized computation tasks such
as machine learning [29], protein sequence alignment [30],
and molecular dynamics simulation of thermal conductivities
[31].

A host program residing in the CPU will assign tasks to
CUDA threads that run on a separate physical device (GPU).
We will be using the host and device terminology throughout
the remainder of this paper. The relationship between the host
and device code is illustrated in Fig.1. From the figure, we can
see that the serial host code executes on the CPU whereas the
parallel device code executes on the GPU. In CUDA, a kernel
is a unit function that will be executed by different CUDA
threads in parallel. A kernel launch is composed of a single
grid that holds up to 231 − 1 blocks, whereas each block can
contain up to 210 threads.

Once a kernel is loaded into the GPU and launched, idle
streaming multiprocessors (SM) will be assigned a block to
execute. A group of 32 block threads known as a warp is then
executed simultaneously. Warp threads can only execute one

Fig. 1. Heterogeneous programming architecture of a typical GPU-accelerated
algorithm.

common instruction at a particular time. If threads within the
warp were to diverge in their instruction code due to the nature
of conditional branching, each branch will then be executed
in different warp cycles because of the distinct instruction
code. Therefore, we need to minimize the use of conditional
branches to maximize GPU performance. Also, the number of
threads per block should be a multiple of 32 due to the warp’s
group size.

Various types of memory are accessible by CUDA threads
during kernel execution. The GPU memory hierarchy is as
shown in Fig.2. Each thread has its own local memory that
is inaccessible by other threads. Meanwhile, a shared memory
space is available for each thread within the same block. A
simple barrier synchronization primitive for shared memory,

syncthreads() is provided for achieving synchronization
among thread blocks. Global memory, read-only constant
memory, and read-only texture memory are accessible by
all threads within the grid. Global memory has the slowest
access speed and is accessed via 32-, 64-, or 128-byte memory
transactions. Constant memory is best suited for broadcasting
whereby all threads of the same warp need access to the
same memory address. Texture memory is optimized for
2D spatial locality [32], yielding maximum throughput when
threads of the same warp read or write to memory addresses
that are adjacent to each other. The global, constant, and
texture memory spaces are persistent across kernel launches by
the same application. Therefore, the re-initialization of these
memory spaces may need to be carried out as required by the
program logic. As different memory types are better suited for
different tasks, the memory access pattern of a CUDA program
should be designed to take advantage of the different memory
types in an effort to maximize memory throughput. This in
turn improves upon the overall program efficiency.

Host and device memory spaces are physically distinct and
are, by default, not synchronized by CUDA. As such, device
memory allocation and transfer have to be managed explicitly
by the users during runtime. However, there exists a unified

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2. GPU memory hierarchy.

managed memory that provides a single coherent memory
space that alleviates the complexity of manual memory man-
agement. However, the proposed framework opts for manual
memory management for greater flexibility in memory usage.

The CUDA dynamic parallelism feature enables a parent
grid to launch its kernels (known as child grids) during its
execution which allows a CUDA-specific recursive solution
to be programmed. These nested kernel launches allows a
CUDA program to complete a series of tasks without relying
on the CPU to launch additional kernels. Through appropriate
utilization of dynamic parallelism, it is possible to reduce the
frequency and magnitude of memory transfers required by a
CUDA program, potentially overcoming memory bottlenecks.
There is however a hard limit on the recursion depth that may
render some recursive solutions infeasible.

In parallel computation, threads communicate with one
another either implicitly or explicitly to protect data integrity.
This thread collaboration requires some form of synchroniza-
tion. Historically, CUDA provides block-level thread synchro-
nization to allow communication between threads within the
same block. Other ways to achieve synchronization include
implicit device synchronization by partitioning kernel launches
or by utilizing built-in atomic functions to protect data in-
tegrity. In CUDA 9, NVIDIA introduced cooperative groups
whereby partial or complete threads that reside within the
same block or across multiple blocks could synchronize with
one another to facilitate cooperation. Cooperative groups also
have the ability to dictate grid or kernel level synchronization
while a CUDA program is running. This feature allows a GPU
kernel to compute B&B recursively, overcoming the recursion
depth limitation imposed by dynamic parallelism. Hence, it
is possible to model a slightly more complex data-parallel
program to be executed by a GPU entirely but its performance
will be difficult to optimize due to memory access patterns and
thread divergence issues. The proposed framework opts for a
grid-wise cooperative group to model the recursive nature of
the B&B algorithm because of its flexibility to enforce grid-
level, barrier-based synchronization.

III. SERIALIZED DIFFERENTIAL SEARCH

This section introduces the base algorithm that will be
parallelized by the proposed GPU framework. It is a sequential
algorithm based on an enhanced version of Matsui’s B&B
algorithm. This algorithm will be used as the baseline algo-
rithm to analyze performance gains and cost reduction of the
proposed GPU-based framework. Matsui’s algorithm uses the
best differential characteristic probability found so far, Bn for
a particular round n to prune branches and reduce the search
space. Bn is updated throughout the search. As Bn approaches
the best actual probability of the trail, Bn, the algorithm will
approach its most efficient state.

The B&B algorithm consists of four operations: selection,
branching, bounding, and pruning. Selection picks the next
available node from a list of pending nodes to perform branch-
ing. Branching proceeds to decompose a parent node into child
nodes whose costs are evaluated by the bounding operation.
Pruning then eliminates nodes that fail the bounding operation,
essentially filtering nodes that are not expected to produce
desirable results. Thus, the search space can be reduced to
a manageable size for large problem instances depending on
how strict the bounding operation is.

A combination of the number of active s-boxes, ASBOUND
[16] and the differential probability threshold, PBOUND [14]
are used as the pruning rules in the proposed work. This spe-
cific combination facilitates greater pruning flexibility during
the search while also effectively filters branches if configured
correctly. In short, the serialized differential search algorithm
is based on Matsui’s B&B algorithm with the Bn pruning cri-
teria replaced with ASBOUND and PBOUND. This algorithm
is described in Algorithm 1.

To construct differentials, the serialized searching algorithm
first identifies a set of individual differential characteristics.
For each of these differential characteristics, the new GPU-
based framework described in the following section is used to
identify additional characteristics that correspond to the same
input and output differences, thus forming differentials with
improved probability. We refer to this process as the clustering
process.

IV. GPU-ACCELERATED FRAMEWORK FOR
DIFFERENTIAL SEARCH

This section provides a general framework for the differ-
ential search of block ciphers that leverages upon the parallel
processing power of GPUs. The MITM technique is incorpo-
rated into the framework to further enhance search efficiency.
We also take other factors into consideration when designing
the framework such as the s-box dependency of differential
distribution tables (DDT) and CUDA hardware resources of
different GPU architectures. These considerations ensure that
the proposed framework is applicable to a wide range of block
ciphers and GPUs. In the following descriptions, ∆Un and
∆Vn denote the nth nibble of ∆X and ∆Y respectively. The
size of each nibble is equivalent to the size of the s-box being
used by the targeted cipher.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 1 Serialized differential cluster searching algorithm
with constraints on the probability and number of active s-
boxes.

1: Input: Input difference ∆X and output difference ∆Y .
2: Output: Probability Prc of ∆X → ∆Y cluster.
3: Adjustable Parameters:

1) ASBOUND : Maximum of number of active sboxes
for ∆Y .

2) PBOUND : Minimum probability of ∆X → ∆Y .
3) PAS : Estimated probability of a nibble ∆U → ∆V .

4: procedure CLUSTER SEARCH ROUND i (1 ≤ i < n)
5: for each candidate ∆Yi do
6: pi ← Pr(∆Xi,∆Yi)
7: ASi+1 ←Wnibble(∆Yi)
8: if ASi+1 ≤ ASBOUND then
9: pi+1 ← (PAS)ASi+1

10: pr ← (PAS)n−i−1

11: if [p1, ..., pi, pi+1, pr] ≥ PBOUND then
12: call CLUSTER SEARCH ROUND (i+1)
13: end if
14: end if
15: end for
16: end procedure
17:
18: procedure CLUSTER SEARCH ROUND n
19: for each candidate ∆Yn do
20: if ∆Yn == ∆Y then
21: pn ← Pr(∆Xn,∆Yn)
22: Pc ← Pc + [p1, ..., pn]
23: end if
24: end for
25: end procedure

A. Framework Description

1) Parallelization Model: All four operations (selection,
branching, bounding, and pruning) involved in the B&B
algorithm are fully parallelized in the proposed model. Paral-
lelization of both bounding and pruning operations is achieved
by processing the partial differential results obtained from
the selection and branching operations within the same work
thread. The parallelization of the selection operation and
its subsequent branching operation can be modeled to span
across multiple input differences rather than just one difference
(which was previously performed in [12]). Let NB∆X be
the number of differential trail branches for a particular input
difference, ∆X . The bundling of multiple ∆X enables the
parallelized selection and branching operations to leverage
upon the aggregated problem space constituted by individual
NB∆X . This in turn maximizes the data-parallel processing
capability of the GPU.

Let B(∆Xr
k), where r is the round-number and k is the

index position, denote the function that comprises of the
branching, bounding, and pruning operations of B&B that
produces the following round’s branched partial differential

characteristics,

{∆Xr+1

(
∑k−1
l=1 NB∆Xr

l
)
,∆Xr+1

(
∑k−1
l=1 NB∆Xr

l
)+1

,

. . . ,

∆Xr+1
(
∑k
l=1 NB∆Xr

l
)−1

,∆Xr+1
(
∑k
l=1 NB∆Xr

l
)
}.

(1)

Let Dn represent a set of differential characteristics after
n rounds and B(Dn) represents the branching operation
performed on the set. The complete set of branched differential
characteristics, D is defined as

D = {D0, D1, D2, . . . , Dn},
D0 = {∆X0},
D1 = B(D0),

=
⋃

∀∆Xrk∈D0

B(∆Xr
k),

D2 = B(D1),

=
⋃

∀∆Xrk∈D1

B(∆Xr
k),

...
Dn = B(Dn−1).

(2)

Both work acquisition and distribution strategies factor in
the selection of appropriate differential characteristics, ∆Xr

k

where k is the kth differential characteristic in D after r
rounds. Next,

Ti((I1, I2, . . . , IAS), k, r) =(

k−1∑
l=1

NB∆Xrl
)

+

AS∑
j=1

(Ij ×
j−1∏
n=0

NB∆Un [∆Xr
k]),

(3)

In =
Ti − (

∑k−1
l=1 NB∆Xrl

)∏n−1
j=0 NB∆Uj [∆X

r
k]

(mod NB∆Un [∆Xr
k]), (4)

where NB∆U0
= 1 and the index sequence (I1, I2, . . . , IAS),

are used to ensure that a thread, Ti is working on the correct
branches of ∆Xr

k , whereas NB∆Un [∆Xr
k] denotes the number

of possible partial branches, #∆Vn for ∆Un of the nth active
s-box of ∆Xr

k .
Assuming that a GPU model has an infinite number of

threads, parallelization of the B&B algorithm is achieved by
first distributing tasks by computing Eq. 3. Meanwhile, threads
acquire their tasks by computing the Eq. 4. Branching, bound-
ing, and pruning are then executed sequentially, and the full
parallelization of the algorithm is complete. The parallelization
model described here resembles a typical breadth-first search.
In practice however, these threads are essentially virtual,
whereby GPU threads are mapped to one or multiple virtual
worker threads. The mapping of these threads is discussed in
the following subsection.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

2) Meet-in-the-Middle Approach: The MITM approach de-
scribed in [16] is an effective method for improving the
efficiency of the differential search. As the search space
grows exponentially when the number of rounds increases,
the search can be made more efficient by dividing it into two
connecting halves, each with α and β rounds. Searching α
and β separately has a lower computational cost as compared
to searching the entire (α + β) rounds. The MITM approach
caches partial differential characteristics from one half, and
matches them to partial differential characteristics obtained
from the other (which is computed in reverse/decryption).
Thus, the MITM approach trades memory space for perfor-
mance gain by partially eliminating redundant computation.

For a block size of 32 bits (or equivalently, half the block of
a 64-bit Feistel cipher), it is possible to store all 232 possible
differences that can be represented as a 32-bit data block.
This amounts to ≈ 4GB worth of differential characteristic
information in 32-bit floating-point format which takes up to
4× 8 = 32GB of memory space. For every additional bit of
information that needs to be stored, the memory requirement is
doubled. This memory requirement can exceed the capacity of
RAM storage and require that the MITM intermediary results
be written to secondary memory, i.e. hard disk drives. Never-
theless, storing 64 bits of information is infeasible for current
memory storage solutions as a permutation of 64 bits requires
approximately 18 exabytes. The latency for manipulating such
a tremendous amount of memory further exacerbates the issue.

In order to practically implement the MITM approach
beyond 32 bits, we must reduce the storage requirement
for differential characteristics. To achieve this, intermediary
characteristics can be encoded as

[Pos∆AVi ,∆AVi,

Pos∆AVi+1
,∆AVi+1,

. . . ,

Pos∆AVi+n ,∆AVi+n],

(5)

where ∆AVi is the ith active non-zero (s-box) nibble, and
Pos∆AVi represents the position of the aforementioned nibble.
The encoding method will capture all possible permutations
of an intermediate difference, ∆Yα where 0 ≤ AS∆Yα ≤
ν, where ν is the limit to the number of active s-boxes for
differences being stored in memory. . The primary objective
of this encoding method is to maximize ν with respect to
memory size. A visual memory space reference is provided
in Fig.3 which depicts the number of active s-boxes and their
corresponding number of permutations. Table I summarizes
the recommended number of active s-boxes with respect to
memory feasibility.

MITM starts by diving the search process into two, namely
a forward (encryption) α-round search and a backward (de-
cryption) β-round search. The α-round search is basically a
standard differential characteristic search. However, the origi-
nal evaluation of ∆Yα during the αth (final) round is replaced
with the cache accumulation of ∆Yα and its corresponding
probability. The cache is written to RAM using the encoding
method described in Eq. 5 and stored for matching purposes.

Fig. 3. MITM encoding reference based on Eq. 5.

TABLE I
RECOMMENDED AS∆Yα CONFIGURATION BASED ON EQ. 5.

Block Cipher Size (bit) S-box Size (bit) AS∆Yα

32 4 FULL
64 4 3/4
128 4 3
256 4 3

32 8 3
64 8 3
128 8 2
256 8 2

Meanwhile, the β-round backward search starts from the
output difference, ∆Y and works its way to the middle (meet-
ing point). In other words, if ∆X = ∆X0 and ∆Y = ∆Xn,
then ∆Xα = ∆X0, ∆Xβ = ∆Xn, ∆X1

α = ∆X1 and
∆X1

β = ∆Xn−1. The reverse search phase requires the use
of an inverted DDT and permutation based on the targeted
block cipher’s design. During the βth (final) round, ∆Yβ
is encoded using the aforementioned encoding method, then
matched with intermediary characteristics stored in the cache.
All matched trails improves the overall differential (cluster)
probability, Pc. As the search is divided into two halves, the
PBOUND specified for MITM approach represents both the
forward search probability bound, PBOUNDα and backward
search probability bound, PBOUNDβ .

3) Proposed GPU Framework: .
The proposed parallelization model assumes that there is an

infinite number of computing threads, Ts available to process
B(Dr) for a particular round of differential characteristics,
where |Ts| = |B(Dr)|. In practice, GPU hardware can only
accommodate a finite number of threads in a kernel grid. The
number of kernel grid threads can be defined as |GTgrid| =
#{GTi : GTi ∈ kernel grid}, which can be computed as
|GTgrid| = thread block×block num. In the situation where
|GTgrid| < |Ts|, GTgrid has to partition the round differential
branching operation, B(Dr) into equally divided sections
known as µ-sections where µ = {µ1, µ2, . . . , µm} such that
|GTgrid|×|µ| ≥ |Ts| and |µ| is minimized. In the event where
|GTgrid| > |Ts|, the unused threads will remain idle and wait
for the rest of the grid to reach the same state. Only then will

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

the next set of operations continue. Let τ(GTi) be a function
that allocates a subset of virtual threads, Tr to each GTi. The
thread emulation of GTgrid = {GT1, GT2, . . . , GTn} and its
corresponding µ distribution can be defined as

τ(GTi) = {T(i−1)|µ|+1, T(i−1)|µ|+2, . . . , T(i−1)|µ|+|µ|},

µj =

n⋃
i=1

{T(i−1)|µ|+j},

(6)

τ(GTi) = {Ti, Ti+n, Ti+2n, . . . , Ti+(|µ|−1)n},

µj =

n⋃
i=1

{T(j−1)n+i}.
(7)

where n = |GTgrid|. Eq. 6 exploits the spatial locality of
∆Xr

k required by individual threads to drastically reduce the
number of steps required to find ∆Xr

k for the remaining |µ|−1
steps. Therefore, Eq. 6 is more preferable than Eq. 7 in this
framework.

Storing all computational results of B(Dr) for a large
number of |B(Dr)| in GPU memory is infeasible. To address
this issue, we first partition the work units into µ subsections,
{µi, µi+1, . . . , µi+l} of B(Dr). These subsections are ex-
ecuted in groups, Mk where Mk = {µi, µi+1, . . . , µi+l}
and M = {M1,M2, . . . ,Mq}, where q is the number of
recursion cycle needed by GTgrid to completely emulate Ti
in a particular round and l is obtained by computing |Ts|

|GTgrid| .
This partitioning strategy allows the framework to execute
a specified number of µ subsections as a group to reduce
the overhead of recursion using the GPU’s cooperative group
feature. The search continues to operate recursively whereby
the process of B(Dr) → (Dr+1) is repeated until B(Ds),
where s is the target round. The search then moves on to
process the next M group from the previous rounds. The
relationship between µ and M is illustrated in Fig.4.

The aforementioned approach can be viewed as a hybridiza-
tion of breadth-first and depth-first search. The algorithm starts
off in a breadth-first search state which ends after processing
an |Mk| number of µ subsections. Then, the algorithm ad-
vances one level (depth-first state transition) and continues its
breadth-first search strategy to process the first |Mk| number
of µ subsections of the current round. The process is repeated
until the sth round, where entire µ subsections are computed
back-to-back before returning to the (s − 1)th-round. The
entire process is repeated in a recursive manner. The choice
of |Mk| depends on GPU memory availability. In general,
maximizing |Mk| (and consequently minimizing |M |) will
maximize efficiency. Fig. 5 illustrates the entire process.

Eq. 6 requires knowledge of |µ| in advance which can be
calculated from |B(Dr+1)|. For all ∆Xr+1

k , it is necessary
to accumulate NB∆Xr+1

k
during round r in order to calculate

the relevant |B(Dr+1)| for round r + 1. Since the recursive
branching for the next round is carried out for the Mr+1

k group
of subsections, only the |B(Mr+1

k)| group of subsections is
required to be processed before advancing each level. For
this purpose, all threads within the same block utilize block-
level shared memory to accumulate the branching number
of ∆Xr+1

k using the built-in block synchronization function

Fig. 4. Relationship between µ subsections and their corresponding groups
M based on Eq. 6.

Fig. 5. Hybridized breadth and depth-first search example, where |Mk| = 2
and GTi = 2.

atomic add(target, value). Then, results accumulated from
the block are assembled to form |B(Dr+1)|.

Identification of ∆Xr
k and its branches (I1, I2, . . . , IAS)

during B(Dr) is performed using a linear search strategy. The
search is further divided into three discrete levels, grid-level,
block-level and thread level. The linear search is first executed
at the grid-level to locate the targeted block, followed by the
targeted thread within the identified block, and finally ∆Xr

k at
the thread level. The GPU thread will omit pruned paths and
keep a valid ∆Xr+1

k counter to facilitate the linear search
process. We have also experimented with binary search as
an alternative to linear search but did not obtain significant
performance improvements.

The cooperative group feature is utilized for its ability
to enforce grid-wise synchronization as required by the ker-
nel. Specifically, a grid synchronization barrier is placed
immediately after accumulating |B(∆Xblock)| to ensure that
it is ready to be referenced in the following round. The
synchronization point also ensures the global has operation
is properly loaded with the correct value, which is used to
determine whether to proceed to the next or return to the
previous round.

When designing the proposed framework, the limitations of
GPU resources in terms of its shared memory capacity, max
register count, and max thread count have been taken into

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 2 Generalized GPU-accelerated B&B differential
search (CPU)

1: Input: Input difference ∆X and output difference ∆Y .
2: Output: Probability Pc of ∆X → ∆Y cluster.
3: procedure CLUSTER SEARCH(∆X)
4: allocate device memory
5: setup device memory for round 1
6: call kernel CLUSTER SEARCH GPU α
7: reset device memory for round 1 and round 2
8: setup device memory for round 1
9: call kernel CLUSTER SEARCH GPU β

10: copy Pi from device to host
11: Pc ← (

∑Ttotal
i=1 Pi)

12: end procedure

Algorithm 3 Simplified GPU-accelerated B&B differential
search (kernel)

1: Input: Input Difference ∆X .
2: Output: Probabilities of ∆Y that satisfy the searching

constrained is accumulated in thread num amount of Pi.
3: procedure CLUSTER SEARCH GPU (α/β)
4: while r >= 0 do
5: for 1 to |Mk| do
6: //Selection, find the correct ∆Xr

k

7: Select(thread id, iter count)
8: Branch, Bound, Prune (thread id, ∆Xr

k)
9: if r == last round then

10: if forward then
11: Save to MITM cache array
12: else
13: Match from MITM cache array
14: Save to final result array
15: end if
16: end if
17: end for
18: Update the state information
19: Decide : r ← r + 1, r ← r − 1 or r ← r
20: end while
21: end procedure

consideration. High GPU utilization requires efficient planning
on resource utilization to maximize occupancy. Max register
count is reduced by optimizing the computation pattern or
by forcefully spilling register memory onto local memory
using launch bounds as provided by CUDA. Frequently
accessed data is stored in shared memory or constant memory
to improve the latency when accessing the data. However, this
cannot be done for larger datasets and needs to be addressed
on a case-by-case basis. The simplified version of the complete
GPU framework algorithm along with the incorporation of
the MITM technique is given in Algorithms 2 and 3. A
more detailed algorithm for the GPU kernel can be found in
Appendix A.

B. Performance evaluation

As a proof-of-concept, we apply the proposed framework
described in Section IV-A on three block ciphers, the 128-bit
TRIFLE-BC, 64-bit PRESENT and 64-bit GIFT. Efficiency
and cost comparisons between the GPU framework and its
CPU counterpart are performed based on the Google Cloud
VM computing environment.

We configure the proposed GPU framework to utilize 1-
dimensional blocks for the kernel. Since each block within a
grid contains its own block threads, each thread is assigned
a unique thread id based on its position in a given grid. This
thread id assignment facilitates the process of work distribution
and reduction. The number of threads per block (thread block)
is fixed at 128, SPACE THREAD, |Mk| is fixed at 64 and
the number of blocks is maximized. This configuration allows
the non-MITM variant of the GPU-accelerated algorithm to
achieve 100% occupancy rate on the Tesla T4 GPU with 64
registers. Meanwhile, the MITM variant requires additional
register spilling to achieve 100% occupancy. The permutation
table is not loaded into shared memory as its size leads to
occupancy reduction.

For the experiments to analyze the financial feasibility of the
proposed GPU framework, we select the following parameters:
• ASBOUND = 4
• PBOUNDoffset = −21/− 35

For all characteristics that form a differential, the minimum
probability bound used for the differential search can be
calculated as

minPchar = 2log(Pcharbest)+PBOUNDoffset , (8)

where Pcharbest represents the best probability of a differential
characteristic found so far by the serialized B&B algorithm for
a given ∆X

r−→ ∆Y . The time taken for each device to finish
computing r rounds is recorded. The cost percentage is then
calculated as

Cost =
Costdevice

Core Equivalence× Costref
× 100%, (9)

Core Equivalence, CE = d Timeref

Timedevice
e (10)

where Costref refers to the cost of running the search using
a reference (benchmark) device, a 3.1 GHz Intel Xeon Cas-
cadeLake processor core. The benchmark experiments involve
constructing a differential for a given block cipher, for a
specific iterative differential characteristic where AS∆X = 1,
AS∆X = 2, and AS∆X = 2. The same experiment is repeated
for TRIFLE-BC, PRESENT and GIFT.

Note that the Google VM price structure is based on the us-
central1 (Iowa) region’s on-demand pricing excluding any sus-
tained use discounts. The CascadeLake processors (provided
by the C2 machine type) are only available in sets of 4 cores
and 16-GB memory. Thus, the cost is divided by 4 to obtain
the equivalent price of a single CascadeLake processor and
4-GB memory. Experimental results for the GPU-accelerated
differential search without MITM are provided in Table II,
specifically for TRIFLE-BC. Experimental results for the
complete GPU-accelerated differential search with MITM are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

provided in Tables III, IV, and V for TRIFLE-BC, PRESENT
and GIFT respectively. Note that RX in the tables refers to
X rounds of the block cipher.

TABLE II
COST COMPARISON OF THE NON-MITM SEARCH ON TRIFLE-BC
CONSTRAINED BY ASBOUND = 4 AND PBOUNDoffset = −21.

Device Time(s) Cost/Month CE Cost%
XEON CascadeLake 3.1GHz
- R5 0.266 38.09 1 100
- R10 19.271 38.09 1 100
- R15 151.117 38.09 1 100
- R20 916.963 38.09 1 100
Tesla T4
- R5 0.020 255.50 14 48
- R10 0.683 255.50 29 23
- R15 5.157 255.50 30 22
- R20 29.896 255.50 31 22
Tesla V100
- R5 0.005 1810.40 54 88
- R10 0.265 1810.40 73 65
- R15 2.084 1810.40 73 65
- R20 12.706 1810.40 73 65

TABLE III
COST COMPARISON OF THE MITM SEARCH ON TRIFLE-BC

CONSTRAINED BY ASBound = 4 AND PBOUNDoffset = −21.

Device Time(s) Cost/Month CE Cost%
XEON CascadeLake 3.1GHz
- R10 1.61 38.09 1 100
- R20 30.588 38.09 1 100
- R30 197.938 38.09 1 100
- R40 1176.995 38.09 1 100
Tesla T4
- R10 0.045 255.50 36 19
- R20 0.948 255.50 33 20
- R30 6.400 255.50 31 22
- R40 37.912 255.50 31 22
Tesla V100
- R10 0.015 1810.40 107 44
- R20 0.400 1810.40 76 63
- R30 2.973 1810.40 67 71
- R40 18.295 1810.40 65 73

TABLE IV
COST COMPARISON OF THE MITM SEARCH ON PRESENT CONSTRAINED

BY ASBound = 4 AND PBOUNDoffset = −35.

Device Time(s) Cost/Month CE Cost%
XEON CascadeLake 3.1GHz
- R4 0.001 38.09 1 100
- R8 0.195 38.09 1 100
- R16 242.964 38.09 1 100
Tesla T4
- R4 0.006 255.50 1 671
- R8 0.014 255.50 14 48
- R16 6.161 255.50 40 17
Tesla V100
- R4 0.003 1810.40 1 4753
- R8 0.005 1810.40 39 122
- R16 3.140 1810.40 78 61

In terms of cost, we observe that both the MITM and non-
MITM approaches have consistent results. A runtime cost
reduction of up to 83% is observed for the GPU-accelerated
B&B algorithm with MITM when using a Tesla T4 GPU unit.
On the other hand, the cost reduction when using the more

TABLE V
COST COMPARISON OF THE MITM SEARCH ON GIFT CONSTRAINED BY

ASBound = 4 AND PBOUNDoffset = −35.

Device Time(s) Cost/Month CE Cost%
XEON CascadeLake 3.1GHz
- R4 0.003 38.09 1 100
- R8 0.349 38.09 1 100
- R16 5898.510 38.09 1 100
Tesla T4
- R4 0.007 255.50 1 671
- R8 0.020 255.50 18 37
- R16 156.113 255.50 38 18
Tesla V100
- R4 0.003 1810.40 1 4753
- R8 0.007 1810.40 50 95
- R16 65.994 1810.40 90 53

powerful (albeit less cost-effective) Tesla V100 GPU achieves
a cost reduction of up to 47%. The cost analysis suggests that
the GPU framework is more financially feasible for cloud-
based implementations as compared to a regular CPU search.
The costs saved from using the proposed GPU framework can
be channeled towards more computing resources to conduct a
larger scale differential search under a fixed budget.

In terms of performance, a speedup of 2292 is achieved for
20 rounds of TRIFLE-BC using the MITM GPU-accelerated
method as compared to the non-MITM CPU method. This
is a significant improvement over the previously proposed
GPU approach described in [12] which achieved a speedup
of approximately 58 times under similar settings. When com-
paring the CPU and GPU implementations of the proposed
framework with MITM, the GPU kernel can achieve a speedup
of 90x on a high-performance Tesla V100 GPU while still
delivering up to 40x on a lower-end Tesla T4 GPU. A
similar performance boost can be observed in the non-MITM
variant of the GPU framework as well. The performance boost
obtained by using the proposed GPU framework leads to a
more efficient construction of larger differentials, leading to
improved differential probability.

The results indicate that the proposed framework can
achieve high throughput while being cost-effective, making it
useful for cryptanalysts who wish to construct large differen-
tials for statistical attacks. However, the proposed framework
is ineffective when used to analyze fewer rounds (such as 4
rounds) because there are too few branches to fully leverage
upon the parallel processing power of the GPU. With that said,
differential cryptanalysis is typically performed for a large
number of rounds, for which the proposed GPU framework
is useful. The GPU-accelerated MITM approach is also more
computationally feasible for 128-bit or larger block ciphers
with a large number of rounds as compared to existing
approaches such as MILP or SAT solvers.

V. NEW DIFFERENTIAL RESULTS FOR EXISTING BLOCK
CIPHERS

We use the proposed framework to search for improved
differentials for TRIFLE-BC, PRESENT and GIFT, which are
summarized in Tables VI, VII, and VIII respectively.
ASBOUND is set to 4 for all experiments to ensure that

the search can complete within a practical amount of time.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE VI
DIFFERENTIAL FOR 43-ROUND TRIFLE-BC BOUNDED BY

ASBOUND = 4, PBOUNDα = −150 AND PBOUNDβ = −150.

∆X ∆Y Pc # of Trails
000000000000b000
0000000000000000

0000000000100000
0010000000000000

2−126.931 3.381× 106

0000000000000000
b000000000000000

0000000200000002
0000000000000000

2−126.931 3.325× 106

0000000000000000
0007000000000000

0020000000200000
0000000000000000

2−126.931 3.346× 106

0000000000000000
00000b0000000000

0000000000000000
0000040000000400

2−126.995 2.501× 106

TABLE VII
DIFFERENTIAL FOR 16-ROUND PRESENT BOUNDED BY

ASBOUND = 4, PBOUNDα = −62 AND PBOUNDβ = −62.

∆X ∆Y Pc # of Trails
000f00000000000f 0000050000000500 2−61.7964 4.00× 1010

0000000000001001 0404040400000000 2−62.1757 4.98× 1010

0007000000000007 0000050000000500 2−62.2031 4.62× 1010

0f00000000000f00 0000050000000500 2−62.5550 3.50× 1010

TABLE VIII
DIFFERENTIAL FOR 13-ROUND GIFT BOUNDED BY ASBOUND = 4,

PBOUNDα = −75 AND PBOUNDβ = −75.

∆X ∆Y Pc # of Trails
0f0000000c000000 1010808040402020 2−60.6600 1.26× 105

0c000000e0000000 2020101080805050 2−60.9556 2.31× 105

0e0000000e000000 0202010108080404 2−61.0341 2.32× 105

0e00000060000000 4040202010108080 2−61.2720 4.27× 105

PBOUNDα and PBOUNDβ is varied for different block ciphers
to account for their distinct differential characteristic distribu-
tions. Values for PBOUNDoffset fall in the range of [2, 27].

Fig. 6. Differential characteristics distribution of the best differential found
for 43-Round TRIFLE.

A differential for 13-round GIFT with a probability of
2−60.66 has been identified, which is an improvement over the
2−61.3135 found in [33]. For 16-round PRESENT, the search
has identified a differential with the probability of 2−61.7964

which is also an improvement over the 2−62.13 differential in
[34] and the 2−62.27 differential in [17]. Thus, the proposed ap-
proach has identified the best differentials to date for 13-round
GIFT and 16-round PRESENT. However, differentials for 43-
round TRIFLE-BC could not be improved upon despite using

Fig. 7. Differential characteristics distribution of the best differential found
for 16-Round PRESENT.

Fig. 8. Differential characteristics distribution of the best differential found
for 13-Round GIFT.

more lenient searching bounds as compared to the 2−126.931

obtained in [12]. Note that the differentials constructed using
the proposed framework consists of hundreds of thousands
(GIFT) to billions (PRESENT) of individual characteristics.

Unfortunately, due to the inherent structure of MITM, it
is infeasible to keep track of the exact partial characteristic
probabilities and consequently the final characteristic proba-
bilities which are required to assemble a complete differential
characteristic distribution. In other words, the full differential
distribution cannot be generated due to how the partial α
characteristics are condensed into an intermediary array. On
the other hand, collecting data about the differential distribu-
tion via the non-MITM method cannot be completed within
a reasonable amount of time. Instead, a partial differential
distribution can be constructed based solely on differential
characteristics that have been matched during the reverse
MITM matching phase. By adopting this approach, we gener-
ate the differential distributions of the best differentials for
all three ciphers in Figs. 6, 7, and 8. Based on the Fig.6
and Fig.7, we can observe that the best differentials for
both TRIFLE and PRESENT have an approximately normal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

distribution of differential characteristics. However, the peak
of the distribution for TRIFLE is skewed towards the right,
implying that most of the individual differential characteristics
have smaller probabilities. This explains why the proposed
framework was unable to significantly improve upon existing
differential probabilities. Meanwhile, the best differential for
GIFT seems to follow a more erratic distribution. This implies
that the differential characteristics for GIFT are not as evenly
distributed as PRESENT, leading to a bigger improvement in
terms of differential probability when a larger differential is
constructed.

VI. CONCLUSION

In this paper, we proposed a new GPU-accelerated B&B
framework for the differential search of block ciphers. The
proposed framework was optimized for GPU parallel pro-
cessing to achieve a substantial speedup when constructing
large differentials (differentials that consist of large number
of individual characteristics). Compared to an existing GPU
approaches, the proposed framework is more practical adapt-
able to different GPUs and block ciphers. When compared
to the original CPU-based non-MITM search, the proposed
framework achieves a speedup of approximately 2292x. We
demonstrate its practicality by applying the proposed frame-
work on three different block ciphers, 128-bit TRIFLE-BC, 64-
bit PRESENT and 64-bit GIFT. Experimental results indicate
that the proposed GPU-accelerated algorithm can achieve up
to a 90x speedup as compared to an equivalent single-core
CPU algorithm. In terms of financial cost evaluated using
Google Cloud VM, the proposed framework achieves savings
of up to 83% when compared to a CPU setup with equivalent
throughput. Therefore, the proposed GPU framework is both
faster and cheaper than its CPU counterpart. The proposed
framework can be used to effectively identify large differen-
tials with higher differential probabilities, which can then be
used in statistical-based attacks against existing block ciphers.
In theory, the proposed framework also allows the utilization
of existing CPU-GPU heterogeneous computing clusters as
the entire search can be performed entirely on the GPU. Thus
an separate differential search can be conducted on the CPU
without interference. As additional contributions, we have also
identified the best differentials to date for 16-round PRESENT
and 13-round GIFT, with differential probabilities of 2−61.7964

and 2−60.66 respectively. We also show that the proposed
GPU search is practical for 128-bit block ciphers with a large
number of rounds by constructing large differentials for 43
rounds of 128-bit TRIFLE-BC.

ACKNOWLEDGMENT

This work is supported in part by the Ministry of Education
Malaysia under the Fundamental Research Grant Scheme
(FRGS), project number FRGS/1/2019/ICT05/USM/02/1, the
National Natural Science Foundation of China under Grant
No. 61702212 and the Fundamental Research Funds for the
Central Universities under Grant No. CCNU19TS017.

REFERENCES

[1] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC Editor, Tech. Rep. RFC8446, Aug. 2018. [Online]. Available:
https://www.rfc-editor.org/info/rfc8446

[2] D. Shaw, “The Camellia Cipher in OpenPGP,” RFC Editor, Tech. Rep.
RFC5581, Jun. 2009. [Online]. Available: https://www.rfc-editor.org/
info/rfc5581

[3] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Transport Layer
Protocol,” RFC Editor, Tech. Rep. RFC4253, Jan. 2006. [Online].
Available: https://www.rfc-editor.org/info/rfc4253

[4] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like
cryptosystems,” Journal of Cryptology, vol. 4, no. 1, pp. 3–72, 1991.
[Online]. Available: http://link.springer.com/10.1007/BF00630563

[5] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An
Ultra-Lightweight Block Cipher,” in Cryptographic Hardware and
Embedded Systems - CHES 2007, P. Paillier and I. Verbauwhede,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, vol.
4727, pp. 450–466. [Online]. Available: http://link.springer.com/10.
1007/978-3-540-74735-2 31

[6] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED Block
Cipher,” Cryptographic Hardware and Embedded Systems – CHES 2011,
pp. 326–341, 2011.

[7] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“GIFT: A Small Present,” in Cryptographic Hardware and Embedded
Systems – CHES 2017, W. Fischer and N. Homma, Eds. Cham: Springer
International Publishing, 2017, vol. 10529, pp. 321–345. [Online].
Available: http://link.springer.com/10.1007/978-3-319-66787-4 16

[8] S. Erich, D. Jack, S. Horst, and M. Martin, “November 19 |
Top 500 Supercomputer,” Nov. 2019. [Online]. Available: https:
//www.top500.org/lists/2019/11/

[9] M. Stevens, P. Karpman, and T. Peyrin, “Freestart Collision for
Full SHA-1,” in Advances in Cryptology – EUROCRYPT 2016,
M. Fischlin and J.-S. Coron, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, vol. 9665, pp. 459–483. [Online]. Available:
http://link.springer.com/10.1007/978-3-662-49890-3 18

[10] R. Szerwinski and T. Güneysu, “Exploiting the Power of GPUs
for Asymmetric Cryptography,” in Cryptographic Hardware and
Embedded Systems – CHES 2008, E. Oswald and P. Rohatgi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol.
5154, pp. 79–99. [Online]. Available: http://link.springer.com/10.1007/
978-3-540-85053-3 6

[11] S. A. Manavski, “CUDA Compatible GPU as an Efficient Hardware
Accelerator for AES Cryptography,” in 2007 IEEE International
Conference on Signal Processing and Communications. Dubai,
United Arab Emirates: IEEE, 2007, pp. 65–68. [Online]. Available:
http://ieeexplore.ieee.org/document/4728256/

[12] W.-Z. Yeoh, J. S. Teh, and J. Chen, “Automated Search for
Block Cipher Differentials: A GPU-Accelerated Branch-and-Bound
Algorithm,” in Information Security and Privacy, J. K. Liu and
H. Cui, Eds. Cham: Springer International Publishing, 2020, vol.
12248, pp. 160–179. [Online]. Available: http://link.springer.com/10.
1007/978-3-030-55304-3 9

[13] M. Matsui, “On correlation between the order of S-boxes and the
strength of DES,” in Advances in Cryptology — EUROCRYPT’94,
G. Goos, J. Hartmanis, J. van Leeuwen, and A. De Santis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, vol. 950, pp. 366–375.
[Online]. Available: http://link.springer.com/10.1007/BFb0053451

[14] A. Biryukov and V. Velichkov, “Automatic Search for Differential
Trails in ARX Ciphers,” in Topics in Cryptology – CT-RSA
2014, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, and J. Benaloh, Eds. Cham: Springer International
Publishing, 2014, vol. 8366, pp. 227–250. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-04852-9 12

[15] K. Chen, X. Tang, P. Xu, M. Guo, W. Qiu, and Z. Gong, “An Improved
Automatic Search Method for Diffierential Trails in TEA Cipher,”
International Journal of Network Security, vol. 18, no. 4, pp. 644–649,
Jul. 2016.

[16] J. Chen, A. Miyaji, C. Su, and J. Teh, “Improved Differential
Characteristic Searching Methods,” in 2015 IEEE 2nd International
Conference on Cyber Security and Cloud Computing. New York,
NY, USA: IEEE, Nov. 2015, pp. 500–508. [Online]. Available:
http://ieeexplore.ieee.org/document/7371529/

https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc5581
https://www.rfc-editor.org/info/rfc5581
https://www.rfc-editor.org/info/rfc4253
http://link.springer.com/10.1007/BF00630563
http://link.springer.com/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-319-66787-4_16
https://www.top500.org/lists/2019/11/
https://www.top500.org/lists/2019/11/
http://link.springer.com/10.1007/978-3-662-49890-3_18
http://link.springer.com/10.1007/978-3-540-85053-3_6
http://link.springer.com/10.1007/978-3-540-85053-3_6
http://ieeexplore.ieee.org/document/4728256/
http://link.springer.com/10.1007/978-3-030-55304-3_9
http://link.springer.com/10.1007/978-3-030-55304-3_9
http://link.springer.com/10.1007/BFb0053451
http://link.springer.com/10.1007/978-3-319-04852-9_12
http://ieeexplore.ieee.org/document/7371529/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[17] J. Chen, J. Teh, Z. Liu, C. Su, A. Samsudin, and Y. Xiang, “Towards
Accurate Statistical Analysis of Security Margins: New Searching
Strategies for Differential Attacks,” IEEE Transactions on Computers,
vol. 66, no. 10, pp. 1763–1777, Oct. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7914659/

[18] N. Mouha, Q. Wang, D. Gu, and B. Preneel, “Differential and
Linear Cryptanalysis Using Mixed-Integer Linear Programming,” in
Information Security and Cryptology, C.-K. Wu, M. Yung, and D. Lin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol.
7537, pp. 57–76. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-34704-7 5

[19] S. Siwei, H. Lei, W. Meiqin, W. Peng, Q. Kexin, M. Xiaoshuang, S. Dan-
ping, S. Ling, and F. Kai, “Towards Finding the Best Characteristics
of Some Bit-oriented Block Ciphers and Automatic Enumeration of
(Related-key) Differential and Linear Characteristics with Predefined
Properties,” 2014.

[20] R. Ankele and S. Kölbl, “Mind the gap - a closer look at the security
of block ciphers against differential cryptanalysis,” in Selected Areas in
Cryptography – SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 163–190.

[21] A. Borisenko, M. Haidl, and S. Gorlatch, “A GPU parallelization
of branch-and-bound for multiproduct batch plants optimization,” The
Journal of Supercomputing, vol. 73, no. 2, pp. 639–651, Feb. 2017. [On-
line]. Available: http://link.springer.com/10.1007/s11227-016-1784-x

[22] N. Melab, I. Chakroun, M. Mezmaz, and D. Tuyttens, “A GPU-
accelerated Branch-and-Bound Algorithm for the Flow-Shop Scheduling
Problem,” in 2012 IEEE International Conference on Cluster
Computing. Beijing, China: IEEE, Sep. 2012, pp. 10–17. [Online].
Available: http://ieeexplore.ieee.org/document/6337851/

[23] M. E. Lalami and D. El-Baz, “GPU Implementation of the Branch
and Bound Method for Knapsack Problems,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum. Shanghai, China: IEEE, May 2012, pp. 1769–1777.
[Online]. Available: http://ieeexplore.ieee.org/document/6270853/

[24] B. Gendron and T. G. Crainic, “Parallel Branch-and-Branch Algorithms:
Survey and Synthesis,” Operations Research, vol. 42, no. 6, pp. 1042–
1066, Dec. 1994. [Online]. Available: http://pubsonline.informs.org/doi/
abs/10.1287/opre.42.6.1042

[25] J. Gmys, M. Mezmaz, N. Melab, and D. Tuyttens, “A GPU-
based Branch-and-Bound algorithm using Integer–Vector–Matrix
data structure,” Parallel Computing, vol. 59, pp. 119–139, Nov.
2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0167819116000387

[26] ——, “IVM-Based Work Stealing for Parallel Branch-and-Bound
on GPU,” in Parallel Processing and Applied Mathematics,
R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski,
J. Kitowski, and K. Wiatr, Eds. Cham: Springer International
Publishing, 2016, vol. 9573, pp. 548–558. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-32149-3 51

[27] Z. Chen, J. Chen, W. Meng, J. S. Teh, P. Li, and B. Ren, “Analysis
of differential distribution of lightweight block cipher based on parallel
processing on GPU,” Journal of Information Security and Applications,
vol. 55, p. 102565, Dec. 2020.

[28] D. Nilanjan, G. Ashrujit, M. Debdeep, P. Sikhar,
P. Stjepan, and S. Rajat, “TRIFLE,” Mar. 2019.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf

[29] D. Steinkraus, I. Buck, and P. Simard, “Using GPUs for machine
learning algorithms,” in Eighth International Conference on Document
Analysis and Recognition (ICDAR’05). Seoul, South Korea: IEEE,
2005, pp. 1115–1120 Vol. 2. [Online]. Available: http://ieeexplore.ieee.
org/document/1575717/

[30] P. D. Vouzis and N. V. Sahinidis, “GPU-BLAST: using
graphics processors to accelerate protein sequence alignment,”
Bioinformatics, vol. 27, no. 2, pp. 182–188, Jan. 2011. [Online].
Available: https://academic.oup.com/bioinformatics/article-lookup/doi/
10.1093/bioinformatics/btq644

[31] J. Yang, Y. Wang, and Y. Chen, “GPU accelerated molecular dynamics
simulation of thermal conductivities,” Journal of Computational
Physics, vol. 221, no. 2, pp. 799–804, Feb. 2007. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0021999106003172

[32] D. Padua, Ed., Encyclopedia of Parallel Computing. Boston, MA:
Springer US, 2011. [Online]. Available: http://link.springer.com/10.
1007/978-0-387-09766-4

[33] H. Chen, R. Zong, and X. Dong, “Improved Differential Attacks
on GIFT-64,” in Information and Communications Security, J. Zhou,
X. Luo, Q. Shen, and Z. Xu, Eds. Cham: Springer International

Publishing, 2020, vol. 11999, pp. 447–462. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-41579-2 26

[34] M. Wang, Y. Sun, E. Tischhauser, and B. Preneel, “A Model for
Structure Attacks, with Applications to PRESENT and Serpent,” in Fast
Software Encryption, A. Canteaut, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, vol. 7549, pp. 49–68. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-34047-5 4

Wei-Zhu Yeoh received the B.Sc. (Hons) degree in
Computer Science from Coventry University (a joint
programme at INTI International College Penang).
Upon completion of his B. Sc. degree, he is cur-
rently pursuing his M.Sc. in Computer Science from
Universiti Sains Malaysia (USM) and is expected to
graduate at the end of 2020. His research interests
include symmetric cryptography, machine learning
application in cryptography, parallel computing, and
mobile computing.

Je Sen Teh received the B.Eng. degree (Hons.)
majoring in Electronics from Multimedia University,
Malaysia in 2011, then received his M.Sc. and Ph.D.
in Computer Science from Universiti Sains Malaysia
in 2013 and 2017 respectively. He is currently work-
ing as a Senior Lecturer in Universiti Sains Malaysia
under the School of Computer Sciences. His research
interests include symmetric cryptography, cryptanal-
ysis and chaos theory.

Jiageng Chen received the B.S. degree from
the School of Compuer Science and Technology,
Huazhong University of Science and Technology
(HUST) in 2004 and recieved his M.S. and PhD of
computer science from the School of Information
Science, Japan Advanced Institute of Science and
Technology (JAIST) in 2007 and 2012, respectively.
He was working as an Assistant Professor in School
of Information Science, Japan Advanced Institute
of Science and Technology from 2012 to 2015.
And currently, he is an Associate Professor at the

Computer School of Central China Normal University. His research areas
include cryptography, especially in the areas of algorithms, cryptanalysis and
secure designs.

http://ieeexplore.ieee.org/document/7914659/
http://link.springer.com/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/s11227-016-1784-x
http://ieeexplore.ieee.org/document/6337851/
http://ieeexplore.ieee.org/document/6270853/
http://pubsonline.informs.org/doi/abs/10.1287/opre.42.6.1042
http://pubsonline.informs.org/doi/abs/10.1287/opre.42.6.1042
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000387
http://link.springer.com/10.1007/978-3-319-32149-3_51
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
http://ieeexplore.ieee.org/document/1575717/
http://ieeexplore.ieee.org/document/1575717/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq644
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq644
https://linkinghub.elsevier.com/retrieve/pii/S0021999106003172
http://link.springer.com/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-3-030-41579-2_26
http://link.springer.com/10.1007/978-3-642-34047-5_4

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

APPENDIX A
GPU KERNEL ALGORITHM

Algorithm 4 GPU Kernel.
1: Input: Input Difference ∆X .
2: Output: Probabilities of ∆Y that satisfy the searching

constrained is accumulated in thread num amount of Pi.
3: Adjustable Parameters:

1) ASBOUND : Maximum of number of active s-boxes
for ∆Y .

2) PBOUND : Maximum probability of ∆X → ∆Y .
3) PAS : Estimated probability of a nibble ∆U → ∆V .

4: Assumption:
1) Non-active nibble (s-boxes) will have a difference

value of zero. Thus, an attempt to differentially
substitute it will yield 0 → 0 with a probability of
1.

5: procedure CLUSTER SEARCH GPU (α/β)
6: global memory: init α/β permutation table
7: shared memory: init α/β DDT, branch size table
8: thread id default ← (GTi − 1) . GTgrid − 1
9: r ← 0

10: dx ptr ← 0
11: cur iter ← −1
12: MAX PATH ROUND ← |GTgrid| × |Mk|
13: while r ≥ 0 do
14: if cur iter == -1 then
15: cur iter ← d |B(Dr)|

|GTgrid|e . |µ|
16: //Ti pointer
17: cur thread id ← thread id default × cur iter
18: end if
19: has operation ← False
20: //Valid ∆Xr+1 is saved at the front
21: thread dx num ← 0
22: thread ptr ← b dx ptr

|Mk| c
23: block ptr ← grid thread ptr

THREAD BLOCK
24: loop limit ← (cur iter < |Mk| ? cur iter : |Mk|)
25: for cur loop ← 1 to loop limit do
26: //Selection, find the correct ∆Xr

dx ptr+1

27: if dx ptr < MAX PATH ROUND then
28: nb temp ← (

∑dx ptr
v=0 |B(∆Xv)|)

29: if cur thread id < nb temp then
30: //Skip if dx ptr does not need to change
31: goto Branch Bound Pruning
32: end if
33: //Find the correct block
34: bsum ←

∑block ptr−1
v=0 |B(∆Xblockv)|

35: init block ptr ← block ptr
36: v ← block ptr
37: for v < BLOCK NUM do
38: bsum += |B(∆Xblockv)|
39: cond1 ← cur thread id < bsum

40: cond2 ← |B(∆Xblockv)| 6= 0
41: if cond1 ∧ cond2 then
42: bsum -= |B(∆Xblockv)|
43: break
44: end if
45: v ← v+1
46: end for
47: block ptr ← v
48: bsum t ←

∑thread ptr−1
v=0 |B(∆Xthreadv)|

49: t temp← block ptr × THREAD BLOCK
50: if block ptr == BLOCK NUM then
51: dx ptr ← MAX PATH ROUND
52: else
53: //Find the correct thread
54: if init block ptr == block ptr then
55: bsum ← bsum t
56: else
57: //bsum remained unchanged
58: thread ptr ← t temp
59: end if
60: init thread ptr ← thread ptr
61: v ← thread ptr
62: while True do . Guaranteed to find
63: bsum += |B(∆Xthreadv)|
64: cond1 ← cur thread id < bsum)
65: cond2 ← |B(∆Xthreadv)| 6= 0
66: if cond1 ∧ cond2 then
67: bsum -= |B(∆Xblockv)|
68: break
69: end if
70: v ← v + 1
71: end while
72: thread ptr ← v
73: //Find ∆Xr

k

74: if init thread ptr == thread ptr then
75: bsum ←

∑dx ptr−1
v=0 |B(∆Xv)|

76: else
77: //bsum remained unchanged
78: dx ptr ← thread ptr × |Mk|
79: end if
80: v ← dx ptr
81: while True do . Guaranteed to find
82: bsum += |B(∆Xv)|
83: if (cur thread id< bsum) then
84: bsum -= |B(∆Xblockv)|
85: break
86: end if
87: v ← v + 1
88: end while
89: dx ptr ← v
90: end if
91: end if
92: //Selection of B&B done

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

93: //Branch, Bound and Pruning
94: if dx ptr < MAX PATH ROUND then
95: has operation ← True
96: pi ← Pr(∆X0 → ∆Xr

dx ptr)

97: vl← cur thread id -
∑dx ptr−1
v=0 |B(∆Xv)|

98: div vl ← 1
99: //Branch to predetermined child node
100: for each ∆AUi from ∆Xr

dx ptr do
101: Ii ← bvl/div vlc mod NBi
102: ∆AVi ← sorted DDT[∆AUi][Ii]
103: update pi
104: div vl← div vl×NBi
105: end for
106: not last round ← r 6= LAST ROUND - 1
107: if α SEARCH ∨ not last round then
108: Permutate ∆Xr

dx ptr into ∆Xr+1

109: end if
110: if r 6= LAST ROUND - 1 then
111: //Bounding and pruning
112: AS∆Xr+1 ←Wnibble(∆X

r+1)
113: if AS∆Xr+1 ≤ ASBOUND then
114: //Est. Pr(∆Xr+1)
115: p∆Xr+1 ← (PAS)AS∆Xr+1

116: //Est. Remaining Pr(∆X)
117: pr ← (PAS)LAST ROUND−r−2

118: pest ← [p∆Xr , p∆Xr+1 , pr]
119: if pest ≥ PBOUND then
120: temp ← thread ptr× |Mk|
121: loc ← temp + thread dx num
122: ∆Xr+1

loc ← Xr+1

123: inc(thread dx num)
124: end if
125: end if
126: //Invalid ∆Xr+1 is ignored
127: else
128: if AS∆Xr+1 ≤ ASMITM then
129: if α SEARCH then
130: atomic add pi to PMITM

131: else
132: //BACKWARD SEARCH
133: Pi ← Pi + PMITM × pi
134: end if
135: end if
136: end if
137: end if
138: cur thread id ← cur thread id + 1
139: end for
140: cur thread id ← cur thread id - 1
141: cur iter ← cur iter - loop limit
142: //Prepare relevant information
143: if thread id default == 0 then
144: global has operation ← has operation
145: end if

146: if r 6= LAST ROUND -1 then
147: sum up thread’s branch as thread bsum
148: |B(∆XthreadblockIdx.xtheadIdx.x

)|r ← thread bsum
149: //atomic add the following
150: |B(∆XblockblockIdx.x)|r ← thread bsum
151: syncthreads()
152: if threadIdx.x == 0 then
153: //atomic add the following
154: |B(∆Xblock)|r ← |B(∆XblockblockIdx.x)|
155: end if
156: end if
157: //Prepare to advance,return, or terminate the round
158: is last r ← r == LAST ROUND-1
159: cond1 ← is last r ∧ cur iter == 0
160: cond2 ← ¬ global has operation
161: if ¬ is last r ∧ global has operation then
162: //Advance a round
163: iter storer ← cur iter
164: dx ptr storer ← dx ptr
165: thread id storer ← cur thread id
166: r ← r + 1
167: dx ptr ← 0
168: cur iter ← −1 . Indicate need initialization
169: //Reset atomic add value ”Next” round
170: |B(∆XthreadblockIdx.xtheadIdx.x

)|r ← 0
171: |B(∆XblockblockIdx.x)|r ← 0
172: |B(∆Xblock)|r ← 0
173: else if cond1 ∨ cond2 then
174: //Return to previous round
175: while cur iter == 0 do
176: r ← r − 1
177: if r < 0 then
178: break
179: end if
180: cur iter ← iter storer
181: dx ptr ← dx ptr storer
182: cur thread id ← thread id storer
183: //Reset atomic add value ”Next” round
184: |B(∆XthreadblockIdx.xtheadIdx.x

)|r ← 0
185: |B(∆XblockblockIdx.x)|r ← 0
186: |B(∆Xblock)|r ← 0
187: end while
188: else
189: //Repeat last round if cur iter 6= 0
190: cur thread id ← cur thread id + 1
191: end if
192: end while
193: end procedure

	Introduction
	Related Work
	Contribution
	Outline

	Preliminaries
	GPU

	Serialized Differential Search
	GPU-Accelerated Framework for Differential Search
	Framework Description
	Parallelization Model
	Meet-in-the-Middle Approach
	Proposed GPU Framework

	Performance evaluation

	New differential results for existing block ciphers
	Conclusion
	References
	Biographies
	Wei-Zhu Yeoh
	Je Sen Teh
	Jiageng Chen

	Appendix A: GPU Kernel Algorithm

