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Abstract
The Joux–Vitse Crossbred algorithm’s aim is to efficiently solve a system of semi-regular multivariate

polynomials. For random polynomials, this is thought to be at least hard for a classical computer to
solve [9, p.194]. In this work, the algorithm is described in detail, a bivariate generating series to test the
admissibility of parameters in F2 is investigated and from this, a new series for Fq, q > 2 is presented.
In addition, a complexity estimate is given for both F2 and Fq, q > 2, which is compared to an estimate
presented by Samardijska et al. [18]. Their estimate is shown to be an upper bound for the Crossbred
algorithm. By obtaining optimal parameters using the previous results, the cost of theoretically applying
Crossbred, FES and Hybrid-F5 to polynomial systems of various sizes of various numbers of variables
and q was plotted. Overall, it was determined that for larger fields, the Crossbred algorithm provides an
improved asymptotic complexity over FES. However, it does not provide any improvement over Hybrid-
F5.

Keywords— Post-Quantum Cryptography, Multivariate Polynomial Systems, Gröbner Basis, Crossbred Algo-
rithm, Complexity

1 Introduction
Currently, public key cryptosystems such as RSA rely on the difficulty of factoring a large number into two prime
factors. However, as technology and algorithms become more sophisticated, key sizes must increase to harden
security. Furthermore, with the development of Shor’s Algorithm for quantum computers, the integer factorisation
and discrete logarithm problems will be solvable in polynomial time, rather than exponential time with classical
algorithms. Henceforth, when quantum computers become a feasible tool for computation, cryptosystems that rely
on these aforementioned problems will be considered insecure.

Research into post-quantum cryptosystems has developed ideas which include lattice-based cryptography, hash-
based cryptography and multivariate cryptography, all of which, at the time of writing, are considered secure against
an attack by a quantum computer [19]. The multivariate approach uses simple mathematics, comparatively to
the other post-quantum systems. Due to its simplicity, it can be used on low power devices such as smart cards.
Furthermore, encryption and decryption are efficient and these systems often also have fast signature generation and
verification [21].

Generally it is at least hard for classical computers to solve a set of random multivariate polynomials [9, p.194].
In addition, there are no known polynomial time algorithms that solve such a problem for quantum computers.
There exist many classical algorithms that attempt to solve multivariate polynomial equations, such as F5 and XL.
However, since these algorithms have an exponential complexity, it is believed that there may exist more efficient
algorithms for the task. This is why it is important to thoroughly study and understand new algorithms, such as
the Joux–Vitse algorithm, as a better performance may the difference between breaking a cryptographic algorithm
or not.

1.1 Introduction to the Joux–Vitse Crossbred Algorithm
The Crossbred algorithm was created by Joux and Vitse [15] in 2017. Their purpose was to produce a scalable
algorithm that solves random systems of multivariate polynomial equations in F2 by combining ideas from the
BooleanSolve algorithm [3] and the Kipnis-Patarin-Goubin algorithm [16], hence it being called ‘Crossbred’. Specif-
ically, given a multivariate system, it will produce an equivalent smaller system which is more easily solved. This
algorithm was able to solve all Fukuoka Type I MQ challenges up to its last system of 148 quadratic equations in 74
variables, which beats the previous record which was held by an algorithm called Fast Exhaustive Search (FES).

However, some issues were found with the Joux–Vitse Crossbred algorithm, namely that, just like many of its
contemporaries, despite its practical speed, upon performing some asymptotic analysis, Joux and Vitse determined
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that it ultimately does not provide an improved asymptotic bound in relation to BooleanSolve and FXL. Due to
this disappointing result and restrictive page limits, they did not fully expand on this analysis. The extent of the
asymptotic analysis in the original paper was limited to presenting a bivariate generating series which determines if
the parameters provided to the algorithm are admissible. However, due to the same issues, the series itself and its
derivation are not explained. Hence, there is room to explain its derivation and why it works. Lastly, Joux and Vitse
only worked with systems in F2, and stated that this algorithm should also work for small finite fields Fq, where
q > 2. Thus, there is room to investigate their algorithm’s complexity for larger fields and investigate if it provides
any asymptotic improvement for various ratios of m (the number of equations) and n (the number of variables) in
relation to FES and Hybrid-F5.

Furthermore, the method of testing the admissibility series was only defined for F2. Hence, there is space to
analyse this series and fully explain what it means and why it works.

However, in the supporting documentation of a NIST Post-Quantum Cryptography Round 2 candidate, MQDSS,
Samardijska et al. [18] provided a rough complexity estimate for the Crossbred algorithm for Fq, q > 2, but they did
not provide a clear explanation on how the estimate was obtained. This allows us to see if their complexity estimate
matches with the one derived in this work and compare any differences.

2 Mathematical Recap
2.1 Regular and Semi-Regular Systems
Let Fq be a finite field of size q such that Fq[X = x1 . . . xn] is a polynomial ring over n variables.

Definition 1. (Regular Systems) A regular system is a sequence of homogeneous polynomials, f1, . . . , fm ∈ Fq[X],
such that if i ∈ {1, . . . , m} and g ∈ Fq[X]:

gfi ∈ 〈f1, . . . , fi−1〉 (1)
then, g is also in the ideal generated by f1, . . . , fi−1.

Regular systems, are at most, determined, meaning that they have, at most, n = m, whereby n is the number of
variables in the system of polynomials and m is the number of equations [1].

Definition 2. (Semi-Regular Systems) A semi-regular system is a homogenous overdetermined system (m > n) in
Fq[X] such that if i ∈ {1, . . . , m} and g ∈ Fq[X]:

gfi ∈ 〈f1, . . . , fi−1〉 and deg(gfi) < dreg (2)

then, g is also in the ideal generated by f1, . . . , fi−1 [1].

The term dreg is the degree of regularity and will be discussed later.

2.2 Field Equations
In the original paper detailing the Crossbred Joux–Vitse algorithm [15], Joux and Vitse work with systems in F2, so
they include field equations of the form x2

i + xi. For F2, this does not affect computational cost and hence we remove
squares as x2

i = xi.
This means that every equation of the form f2 will result in f (called the Frobenius Criterion i.e.. f2 = f), which

means that if gi = f , then gif = f [1]. Hence, one may initially assume that no system in F2 is semi-regular. Thus,
let us only consider polynomials that are homogenous and we keep only the highest degree part of our field equations.
This means that we are working over the quotient field F2/〈x2

1, . . . , x2
n〉, which will result in f2 = 0. Hence, if gi = f ,

then gif = 0. This means that in F2, we must work with homogenous polynomials so that we can obtain semi-regular
systems.

2.3 Degree of Regularity
Given that q is a power of a prime, let I be an ideal in Fq[X = x1 . . . xn] generated by a homogeneous finite system
of polynomials with n variables and m equations. Denote the set of all possible polynomials in a polynomial ring
Fq[X] with a degree less or equal to an integer s as Fq[X]≤s. We also denote an ideal of this polynomial ring, I, with
a degree less or equal to an integer s as I≤s.

We now define the Hilbert Function of an ideal I as
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Definition 3. (Hilbert Function)
HFI(s) = dim(Fq[X]≤s)− dim(I≤s) (3)

[7, p.487]

This shows that the Hilbert Function is the dimension of polynomials in the polynomial ring that are not in the
ideal. This means that when the dimension of the set of polynomials with degree less or equal to s in ideal is equal
to the dimension of the set of polynomials with degree less or equal to s in the polynomial ring, the Hilbert Function
will output 0. The smallest s such that the Hilbert Function results in a non-negative number is defined as the index
of regularity and if the ideal is homogeneous and zero-dimensional (i.e has a finite number of solutions), it will be
equal to the degree of regularity.

Let us now define the Hilbert Series for an ideal I with n variables as:

Definition 4. (Hilbert Series)

HSI(t) =
∞∑

i=0

HFI(i)ti (4)

whereby HSI is a formal power series in variable t.
As we can see, this power series is simply a Taylor Series of the Hilbert Function. The Hilbert Series of a

semi-regular system with m equations and n variables is [2]:

Sm,n =
∏m

i=1(1− tdi )
(1− t)n

(5)

For the rest of the paper, we define the degree of regularity of a non-boolean (i.e in Fq, q > 2) semi-regular system
as the power of the first non-negative coefficient of the series in Equation 5. According to [14], despite experimental
evidence that such sequences are common, the problem lies on assessing the existence of such sequences.

Bardet [2, p.68] stated that the Hilbert Series of a semi-regular system in F2 is:

Sm,n = (1 + t)n∏m

i=1(1 + tdi )
(6)

For the rest of the paper, we define the degree of regularity of a boolean semi-regular system (i.e in F2), as the
power of the first non-negative coefficient of the series in Equation 6.

2.4 Macaulay Matrix
Consider an ideal I = 〈f1, . . . , fm〉 ∈ Fq[X]. Let F ∈ Fq[X] be a polynomial system whereby the degree of each
fi ∈ F is denoted as di.

Definition 5 (Macaulay Matrix of degree D). We define a Macaulay Matrix, MacD, of degree D as a coefficient
matrix of the set {u · fi | deg(u) ≤ D − di} whereby i ∈ {1, . . . , m} and u is a monomial in Fq[X] and fi ∈ F .

Another way of putting it is that a Macaulay Matrix of degree D is a coefficient matrix whose columns lists all
monomials with degrees equal or less than D from largest till smallest, as per some fixed ordering. We then multiply
each fi by all monomials of degree equal or less than D−di, whereby di is the degree of fi. Each row of the Macaulay
Matrix is indexed by the result of these multiplications.

Lazard [17] proved that there exists a positive integer D whereby the rows of a row reduced Macaulay Matrix
of degree D are a Gröbner Basis for the ideal 〈f1, . . . , fm〉. Hence, we can use Macaulay Matrices to aid us to solve
polynomial systems.

2.4.1 Relationship with the Degree of Regularity
According to Bardet [2, p.65-66], we can make a 1-to-1 correspondence between the Hilbert Function and a Macaulay
Matrix for homogeneous semi-regular systems. This is done by setting dim(Fq[X]≤s) as the number of columns of the
Macaulay Matrix and dim(I≤s) as the number of linearly independent rows (rank) of the matrix. Hence, a definition
for the degree of regularity of a polynomial system with n variables and m equations is the smallest degree whereby
its Macaulay Matrix of this degree has as many (or more) linearly independent rows as columns.

Hence, it is possible to obtain linear equations (or low degree equations) from computing this Macaulay Matrix’s
row echelon form. Lastly, it was firstly noted by Lazard [17] that Gaussian Elimination of a degree D = dreg Macaulay
Matrix is equivalent to performing the Buchberger Algorithm.

3



Lastly, there exists a very close relationship between the corank of a Macaulay Matrix and the Hilbert Function
for homogeneous semi-regular systems. If we recall, we define the Hilbert Function as:

HFI(s) = dim(Fq[X]≤s)− dim(I≤s)

which is the number of columns of the Macaulay Matrix minus its linearly independent rows (its rank). This is, by
definition, the corank of a Macaulay Matrix.

3 State of the Art for Solving Multivariate Polynomials
3.1 Exhaustive Search
This is the most basic way of solving a system of polynomials. If q is a power of a prime and n is the number of
variables, we iterate over Fn

q and test if they produce a valid solution for our polynomials. Since there are qn values
to test, the complexity of this algorithm is O(mqn) for m polynomials.

In F2[X], Fast Exhaustive Search (FES) was proposed by Boulliaguet et al. [6] and it efficiently enumerates over
the search space of 2n such that the complexity of exhaustive search is (hopefully) less than O(mqn). In F2, the
complexity of FES is O(log2(n) · 2n) and is independent of the number of polynomials, m [6]. We can expand FES
for larger fields using q−ary Gray codes codes with a complexity of logq(n)qn.

3.2 Under and Overdetermined Systems
We say that an underdetermined system has n variables in m polynomials whereby n > m [20]. Kipnis et al. [16]
managed to formulate an algorithm that solves underdetermined systems whereby n ≥ m(m + 1) in polynomial time.
Another more naïve way of solving these equations is merely a case of specialising n−m variables to obtain n = m.
Manipulating and choosing these specialisations wisely are the basis of the algorithm conceived by Thomae and Wolf
[20]. This algorithm generalises the one presented by Kipnis et al. [16] to allow for other kinds of underdetermined
systems to be solved in complexities ranging from polynomial to exponential.

An overdetermined system is one whereby m > n. According to Thomae and Wolf [20], the complexity of solving
overdetermined systems via Gröbner Basis algorithms decreases as m approaches n(n − 1)/2. When m ≥ n(n − 1),
these systems can be broken in polynomial time [16].

3.3 Hybrid-F5

F4 was created by Faugère [10] and it outputs a Gröbner basis for a given set of polynomials. An improved version
called F5 was later developed by Faugère [12]. The details of these algorithms will not be discussed in this paper.

Hybrid-F5 [4] combines exhaustive search and F5 by specialising k variables and running the F5 algorithm over
the remaining n− k variables. The most costly part in the complexity of F5 is the row reduction of a matrix of size(

n+dreg

dreg

)
for q > 2 and n, dreg hence once can simplify its complexity estimate to:

CF5 = O
((

n + dreg

dreg

)ω)
(7)

whereby 2 ≤ ω ≤ 3 is the exponent of matrix multiplication. We set ω = 2. By combining the above complexity
estimate and exhaustive search, we obtain the complexity estimate for Hybrid-F5 [5]:

CHybrid = qk · O

((
n− k + dreg(n− k)

dreg(n− k)

)2
)

(8)

whereby dreg(n − k) is the degree of regularity of the system after evaluating k variables and hence, having n − k
variables left.

3.4 FXL/BooleanSolve
The BooleanSolve algorithm was developed by Bardet et al. [3] before the Crossbred algorithm. This algorithm
specialises the last n − k variables in the polynomials by iterating it through Fn−k

2 . It then tests the consistency
of the system via Macaulay Matrices of dreg(k), whereby dreg(k) is the degree of regularity of the system after
specialisation. If this system is not consistent, iterate to the next value. Otherwise, exhaustive search is conducted
over the first k variables [11]. The complexity of this algorithm is O(20.841n) and a probabilistic variant called the
Las Vegas variant has a conditional complexity of only O(20.792n).
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4 Joux–Vitse Crossbred Algorithm
Essentially, this algorithm involves the specialisation of variables and then solving the remaining ones via linearisation
(a special case of F5 where we treat each term as an individual variable). The advantage of this technique is that we
can avoid solving the initial or the specialised system via, for example, the general version of F5.

The main differentiating factor between this algorithm and BooleanSolve/FXL is that the manipulation of the
Macaulay Matrix is done before specialising any variables. This is an advantage since linear algebra in a Macaulay
Matrix is the most costly step of the BooleanSolve algorithm since it is performed 2n−k times [15]. The Crossbred
algorithm attempts to limit the size of the Macaulay Matrix to speed up the computation of a polynomial system’s
Gröbner Basis. Note that this algorithm assumes semi-regularity.

The algorithm accepts four arguments:
1. F , a system of m equations over n variables in Fq.
2. D, the degree of the Macaulay Matrix of F . D ≥ 2 and must be at least the degree of regularity of a system

with k variables over m equations in Fq.
3. d, the desired degree of the system after we specialise the last n− k variables. 1 ≤ d < D.
4. k, the number of variables we want our specialised system to have. 1 ≤ k ≤ n.

The total degree in the first k variables of a polynomial p is labelled as degkp.
If we wish for our system to reduce down to a linear system, then we set d = 1. However, to extend this to larger

values of d, we must construct new equations with degkp ≤ d, which is equivalent of saying that the total degree in
the first k variables of our new equations must be at most d. According to Joux and Vitse [15], this allows us to
select smaller values of D since we do not need to produce a Macaulay Matrix with a lot of polynomials in order to
‘break them down’ to a system of degree d. This is desirable since D must be large enough for any reduced equations
to exist but also small enough to make the Macaulay Matrix manageable.

The main difficulty of this algorithm is selecting D, d and k.

4.1 Description of the Algorithm
To better understand the algorithm, let us divide it into two main steps, the pre-processing and then the actual
algorithm. The pre-processing goes as following:

1. Construct the Macaulay Matrix of degree D of polynomial system F with its columns sorted in reverse graded
lex.

2. Let Mack
D,d(F ) be a submatrix of MacD whereby each row uijfi represents a polynomial with the property

that degkuij ≥ d− 1.
3. Let Mk

D,d(F ) be a submatrix of Mack
D,d, whereby each column i represents the monomial Mi whereby degkMi >

d.
The actual algorithm does the following:

1. Construct the left kernel of Mk
D,d and multiply this left kernel by Mack

D,d(F ). This forms a system of polyno-
mials, P , whereby they have a total degree at most D and at most d in x1, . . . , xk.

2. For all a = {ak+1, . . . , an} ∈ Fn−k
2 :

(a) Partially evaluate the last n− k variables of F at a. Let F ∗ represent this new system.
(b) Construct a new Macaulay Matrix of degree d of F ∗. Now, let Macd(F ∗) represent this new matrix.
(c) Partially evaluate the last n−k variables of polynomial system P at a. Let P ∗ represent this new system

as a coefficient matrix.
(d) Append Macd(F ∗) to P ∗. Let P M∗ represent this new system of polynomials.
(e) Check if this system is consistent using dense linear algebra. If it is, extract variables x1 . . . xk and test

the solution

By constructing Mack
D,d(F ), we obtain polynomials of the form ui.j · fi whereby the total degree of ui.j in the

first k variables is at least d − 1. For example, for F2, consider n = 5, D = 4, d = 2 and k = 3. That means that
the first k variables are x1, x2, x3 and the last n− k are x4 and x5. Let f = x1x2 + 1. Consider the following row in
MacD:

x4x5 · f = x1x2x4x5 + x4x5
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Clearly, since Mack
D,d only contains rows whereby the multiplier has at least total degree d − 1 = 1 in the first k

variables, we would not include this row. This is because upon specialisation, such as x4 = x3 = 1, we would obtain:

1 · f = x1x2 + 1

which is simply f . If we set x4 = x3 = 0 or any variation whereby at least one of the variables is 0, we would obtain:

0 · f = 0

Hence, if we include these rows, we would simply obtain 0 or our initial f . None of these add any new information
to our system because if we obtain f , it will result in a linearly dependent row and thus, produce the trivial solution
0 = 0. If we obtain 0, it produces a row of zeroes, which also leads to the trivial solution 0 = 0.

Furthermore, since multiplying a matrix by its kernel is equal to 0, multiplying the kernel of Mk
D,d(F ) by

Mack
D,d(F ), we simply ‘remove’ all monomials in Mack

D,d(F ) that do not have a degree at most d in the first k
variables as we remove columns whereby their total degree in the first k variables is greater than d. This will allow
us to achieve a system of degree at most d after specialising the last n− k variables.

All of this boils down to the fact that we want to obtain an equivalent system of F that has a degree at most D
and a degree of at most d in the first k variables. As mentioned before, we want this because after we specialise the
last n− k variables, we obtain a smaller system with a total degree of at most d.

5 Finding Parameters
For d = 1, Mack

D,d(F ) = MacD(F ), hence, we have selected all of the equations to be used when constructing P .
The reason we create Macd(F ∗) is to include more equations since it reduces the amount of consistent systems that
are obtained and therefore, you have less systems to test whether they are also consistent with F . This may seem
like a disadvantage but the consistent systems we have avoided would also not be consistent with F and hence, we
evaluate less systems that are bound to be incorrect Clearly, when d = 1, we are not producing any new information
since all its rows would be linearly dependent with P . Henceforth, we consider Macd(F ∗) to be empty when d = 1.

According to Joux and Vitse [15], the number of equations of P must be at least the number of monomials in
k variables of degree d, which is

(
k+d−1

d

)
for Fq and

∑d

d′=0

(
k
d′

)
for F2. Thus, for d = 1 we need to simply check

whether |P | > k. This is to ensure enough independent relations to finally solve the system via linearisation.
Note how we are using field equations for polynomial systems in F2. As mentioned before, they do not affect com-

putational costs and remove squares. This is equivalent of working within a quotient ring of the form F2/〈x2
1, . . . , x2

n〉
[1]. However, multiplication in quotient rings involves reducing the polynomials by the field equations to ensure that
they are in the quotient ring. This means that including field equations for large fields may not be computationally
feasible.

5.1 Admissibility of Parameters
For d > 1, to determine the admissibility of the parameters, Joux and Vitse [15] derived a bivariate generating
function. Firstly, let us define:

Sk
D,d = (1 + X)n−k

(1−X)(1− Y )

(
(1 + XY )k

(1 + X2Y 2)m
− (1 + X)k

(1 + X2)m

)
(9)

The coefficient of XDY d of Sk
D,d represents the number of new independent polynomials after the reduction of Mack

D,d,
which is equivalent to corank of Mk

D,d. The reason for this will be explained in the next section.
However, to test admissibility, if the coefficient of XDY d is non-negative in the following subtraction, then the

parameters (D, d, k) for the algorithm are admissible:

Ak
D,d = Sk

D,d −
(1 + Y )k

(1−X)(1− Y )(1 + Y 2)m
(10)

The reason why will be explained further down this section.

5.2 Analysing the Generating Function
Let us now break down the various parts of the bivariate generating function. By expanding out the multiplication
that occurs in Sk

D,d and ignoring the 1
1−X

and 1
1−Y

parts as they will be explained later, we obtain:

(1 + XY )k(1 + X)n−k

(1 + X2Y 2)m
− (1 + X)n

(1 + X2)m
(11)
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The leftmost term represents the formal power series of the corank of Mk
D,d and the rightmost term represents the

formal power series of the corank of MacD. This allows for us to obtain the corank of these matrices for various
values of parameters.

Proof. Let us prove that the rightmost term represents the formal power series of the corank of MacD.
As stated before, Bardet proved that there is a 1-to-1 correspondence between the corank of a Macaulay Matrix

and the Hilbert Function for homogeneous semi-regular systems with n variables. Let us label one of these systems
as F . Let F have an arbitrary degree. Specifically, for a Macaulay Matrix with degree D, we can write:

corank(MacD(F )) = HFI(D) = dim(Fq[X]≤D)− dim(I≤D) (12)

Hence, the formal power series in variable t can be expressed as:

HSI(t) =
∞∑

i=0

HFI(i)ti =
∞∑

i=0

corank(Maci(F ))ti (13)

Therefore, the degree of regularity can be interpreted as the first non-negative coefficient of the above series, which
is when the Macaulay Matrix has as many (or more) linearly independent rows as columns.

For F2, as mentioned before, Bardet proved that the above equation can be written as

HSI(t) = (1 + X)n

(1 + X2)m

This means that the degree of regularity is the first non-negative coefficient of the above series. Hence, given that F
only contains quadratic polynomials:

HSI(t) = (1 + X)n

(1 + X2)m
=
∞∑

i=0

corank(Maci(F ))ti (14)

Hence, the rightmost term of of Equation 11 represents the formal power series of the corank of MacD(F ).

Proof. Let us prove that the leftmost term represents the formal power series of the corank of Mk
D,d. Let X measure

the total degree of the polynomials involved in the Gröbner computation and Y focus on the first k variables, such
that after guessing the first n− k variables, the formal power series of the corank of the resulting system’s Macaulay
Matrix would be:

HSI(t) = (1 + Y )k

(1 + Y 2)m
(15)

This clearly holds as Y focuses on the first k variables, which are the only ones remaining after specialising the last
n− k variables. Hence, we can omit X.

Since we are multiplying Mack
D,d by the left kernel of Mk

D,d to obtain P , P will have the same number of rows
of the left kernel due to the rules of matrix multiplication. Hence, if we find the degree of regularity of P , we will
obtain the corank of Mk

D,d. If we use the aforementioned X and Y , we can represent the Hilbert Series of P as:

HSI(t) = (1 + XY )k(1 + X)n−k

(1 + X2Y 2)m
(16)

and since this will also give us the formal power series of the corank of Mk
D,d, the following equality is satisfied:

HSI(t, r) = (1 + XY )k(1 + X)n−k

(1 + X2Y 2)m
=
∞∑

i=0

D−1∑
j=0

corank(Mk
i,j(F ))tirj (17)

This holds due to Equation 14. Hence, the leftmost term of Equation 11 is represents the formal power series of the
corank of Mk

D,d. This proof holds for any Fq, given that the appropriate Hilbert Series is used.

As stated before, finding the dimension of the left kernel of Mk
D,d will tell us the number of polynomials produced

in P . Furthermore, we need to know how many of these polynomials are new in relation to our initial system, F ,
as we are going to be including our initial equations alongside P since d > 1 . This is why we subtract the Hilbert
Series of our initial Macaulay Matrix of degree D, which is the rightmost term of Equation 11.

Consider the subtraction that occurs on the left hand side of the admissibility series:

Ak
D,d = Sk

D,d −
(1 + Y )k

(1−X)(1− Y )(1 + Y 2)m
(18)
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This subtracts the corank of the new polynomials after evaluation, which removes the number of polynomials that
reduce to 0 after evaluation (recall Equation 15). Let us refer to this term of pure Y as Sk

0 .
Let S

′k
D,d and S

′k
0 refer to Sk

D,d and Sk
0 without the 1

1−X
and 1

1−Y
parts, respectively. Hence:

S
′k
D,d = (1 + X)n−k

(
(1 + XY )k

(1 + X2Y 2)m
− (1 + X)k

(1 + X2)m

)
S

′k
0 = (1 + Y )k

(1 + Y 2)m

The use of 1
1−X

and 1
1−Y

is to copy S
′k
D,d and S

′k
0 to all degrees of X and Y . What this means is that since the

expansion of 1
1−X

= 1 + X + X2 + . . ., we obtain:

(Sk
D,d − Sk

0 )
(1−X)(1− Y ) = (Sk

D,d − Sk
0 ) + XY (Sk

D,d − Sk
0 ) + X2Y 2(Sk

D,d − Sk
0 ) . . .

Hence, all possible combinations of XDY d are included in the series.

5.2.1 Example for d = 2
Now, consider the following polynomial system in F2 with n = 3:

F =


x1x3 + x2x3 + x1 + x3

x1x2 + x1
x1x3 + x2x3 + x3
x1x3 + x2x3 + x3

The admissibility series presented in Equation 10 with k = 2 produces the following power series:

Ak
D,d=2 = −1− . . . + 2X3Y 2 + . . .

Hence, we choose D = 3 and after evaluation, the expected number of independent polynomials in our finalised
system is 2. S2

D,d=2 produces the following admissibility series:

S2
D,d=2 = −2X − . . . + 4X3Y 2 + . . .

Thus, we expect our finalised system to contain 4 independent polynomials before evaluation. By appending P and
Mac2(F ∗) and extracting only the independent polynomials, we get:

P M∗ =


x1x2x3

x1x2
x1x3 + x2x3 + x3

x1

Note how we have exactly 4 polynomials, which is what the admissibility series predicted.
By evaluating the last n − k variables (i.e. x3) to 0 and extracting the independent polynomials, we obtain 2

polynomials. However, if we set x3 = 1, we obtain:

P M∗
x3=1 =

{
x1x2

x1 + x2 + 1
x1

This contradicts the expected result. Let us consider the columns of Mk
D,d, whose columns contain monomials

whereby their total degree in the first k variables is larger than d. In this case, we have k = 2, meaning that the first
k variables are x1 and x2. In F2, the maximum degree obtainable with 2 variables is with the monomial x1x2 as we
cannot have squares. Henceforth, Mk

D,d is empty as it is impossible for any monomials in the first k variables to be
larger than 2. Since it is an empty matrix, it does not have a cokernel. Thus, the whole admissibility series does not
correctly predict the size of the finalised system as it assumes that Mk

D,d is not empty. However, some programming
languages, such as SageMath, return an identity matrix for the left kernel of an empty matrix, which is why the
above example ‘worked’. Hence, for F2, it can be concluded that the admissibility series only correctly predicts the
size of the finalised system if

∑d

d′=0

(
k
d′

)
> d.
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5.3 Rewriting the Admissibility Test
Recall the definition of the Hilbert Series for a semi-regular system in Fq for a q > 2:

Sm,n =
∏m

i=1(1− tdi )
(1− t)n

If we assume a homogeneous system of degree dF (all polynomials in the system have degree dF ), we obtain:

Sm,n = (1− tdF )m

(1− t)n

Therefore, since the admissibility series is just a collection of Hilbert Series in F2, we can use this to rewrite the
admissibility series. All that needs to be done is to rewrite the Hilbert Series that are present in the admissibility
series in terms of the Hilbert Series for Fq, q > 2 instead of F2. For example, consider:

(1 + X)n

(1 + X2)m

which is just the Hilbert Series for a quadratic homogeneous semi-regular system in F2. If we now assume our
homogeneous semi-regular system is of degree dF (all polynomials has degree dF ) in Fq with q > 2 , we write:

(1−XdF )m

(1−X)n

Hence, we will simply apply this method to all of the admissibility series in F2 to construct the admissibility series
for Fq, q > 2. Hence, if we let:

S = (1−XdF Y dF )m

(1−XY )k(1−X)n−k(1−X)(1− Y )
then:

Sk
D,d = S − (1−XdF )m

(1−X)n(1−X)(1− Y ) (19)

And therefore, our admissibility series will be:

Sk
D,d −

(1− Y dF )m

(1− Y )k(1−X)(1− Y ) (20)

As per the explanation in the previous section, the admissibility series only correctly predicts the size of our finalised
system if the number of monomials in k variables of degree d is larger than d. However, in this case, since we are not
working in a quotient ring, we are allowed to have powers up to and including q, if q is the size of the field. Hence,
this admissibility series only works if the number of degree d monomials over k is greater than d. This equivalent of
saying that

(
k+d−1

d

)
> d.

5.4 Columns of Mk
D,d

Firstly, let us establish that the number of monomials in n from degree 0 up to d is given by(
n + d

d

)
=

d∑
d′=0

(
n + d′ − 1

d′

)
(21)

However, in F2, we are working in a quotient field with field equations x2
i = 0 as per our explanation in Section 2.2.

This means we do not have any squares as, clearly, x2
i = 0. Hence, we adapt the above definition for F2:

d∑
d′=0

(
n

d′

)
(22)

Since the columns of the Macaulay Matrix index monomials in n variables from degree 0 to d, we can use the above
equations to calculate its number of columns. Let us continue with this example and let us construct Mk

D,d, which
requires us to get rid of any monomials in the columns of Mack

D,d whereby their degree in the first k variables is
smaller or equal to d. If we use d = 1 and k = 2, all monomials that have a degree lesser or equal to d in the first k
variables are removed. In this case, we have x1x2.

9



However, we would also include, for example, x1x2 multiplied by any monomial that is comprised of the last n−k
variables such as x3, such that the result is x1x2x3. This multiplication would have to result in a monomial whose
total degree is at most D, hence, if we let dk represent our initial monomial’s degree in the first k variables (in this
case, the initial monomial is x1x2), the degree of the monomial with variables from the last n− k variables must be
at most D − dk. Henceforth, this is the same as saying that we also want all monomials comprised of the last n− k
variables of degree 0 till D − dk. This leads us to the following equation for the number of columns for Fq, q > 2:

D∑
dk=d+1

D−dk∑
d′=0

(
k + dk − 1

dk

)(
n− k + d′ − 1

d′

)
(23)

In F2, the number of columns would be:

D∑
dk=d+1

D−dk∑
d′=0

(
k

dk

)(
n− k

d′

)
(24)

[15].

6 Complexity of the Crossbred Algorithm
The complexity of the algorithm for any Fq has the following form:

Ccrossq = O(kernel(Mk
D,d)) + qn−k · O((solving(P ∗ ∪Macd(F ∗)))) (25)

Recall that P ∗ is the system P upon evaluation of the last n− k variables. Block Wiedemann or Lanczös algorithms
can be used to calculate the kernel of a sparse matrix. The complexity of finding kernel vectors of a sparse matrix is:

Cker = O(ncols) +O(n2
cols log ncols log log ncols)

= Õ(ncols) + Õ(n2
cols)

(26)

whereby ncols the number of columns in our matrix [13]. Let us simplify this down to Õ(n2
cols).

We can also use the block Wiedemann or Lanczös to probabilistically test the consistency of a set of polynomials,
which in our case, is P ∗ ∪Macd(F ∗) for d > 1 and just P for d = 1. This has the same complexity as Cker. The
reason for this is because the number of columns of both P ∗ ∪Macd(F ∗) and P is equal to the number of monomials
in k variables from degrees 0 to d.

If we assume that we then solve our resulting system via linearisation, then we can write the complexity estimate
for the Crossbred Algorithm as:

Ccrossq>2 = Õ

( D∑
dk=d+1

D−dk∑
d′=0

(
k + dk − 1

dk

)(
n− k + d′ − 1

d′

))2
+ qn−k · Õ

((
k + d− 1

d

)ω)
(27)

And in F2:

Ccrossq=2 = Õ

( D∑
dk=d+1

D−dk∑
d′=0

(
k

dk

)(
n− k

d′

))2
+ qn−k · Õ

((
d∑

i=0

(
k

i

))ω)
(28)

Whereby ω is the exponent of matrix multiplication. For the rest of the paper, when discussing cases where
the value of q could be ≥ 2 we refer to the complexity of the Crossbred algorithm as Ccrossq , which could either be
Ccrossq=2 or Ccrossq>2 .

6.1 Comparison with MQDSS’s Estimate
In the supporting documentation for a NIST Post Quantum Cryptography Round 2 candidate, MQDSS, Samardijska
et al. [18] provide a complexity for the Crossbred algorithm, for q > 2, which has a very similar form:

Ccrossq>2 = O

((
n + D − 1

D

)2
)

+ log(n− k) · qn−k ·
(

k + d− 1
d

)ω

(29)

Note that Samardijska et al. included log(n − k). This is because log(n − k) is the amount of field operations
necessary to specialise n− k variables [18].
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The O
((

n+D−1
D

)2
)
part represents the complexity of finding kernel vectors in Mk

D,d using, for example, the block
Wiedemann algorithm. The only difference between the complexity estimate of this step in relation to the estimate
provided in this work is the number of columns of Mk

D,d. Samardijska et al. [18] assumes that Mk
D,d has

(
n+D−1

D

)
columns, which is equivalent to the number of monomials in n variables of degree up to D. Clearly, Mk

D,d will not
have the same number of columns as the the initial Macaulay Matrix, making this estimate inaccurate. However,
this may be interpreted as an upper bound.

The last
(

k+d−1
d

)ω represents solving an overdetermined system of multivariate polynomials with k variables
of degree d via computing the Gaussian Elimination of a large matrix, which represents solving the system via
linearisation. This is the same in our complexity estimate. Hence, the only real difference between the estimate
provided in this paper is that the estimate presented by Samardijska et al. may be interpreted as an upper bound.

7 Methodology
To analyse the overall performance of the Crossbred Algorithm, n was incremented from 1 until 200 for F2, F3 and
F256 We assume that all polynomials in this section are polynomials. Admissible parameters were obtained from the
bivariate generating function such that they minimised the evaluation of the complexity function of the algorithm.

In terms of the field sizes, F2 was chosen as a baseline to compare the other results to. F3 was chosen since it
represents a very small field, but still larger than F2 and F256 represents a very large field, hence, it represents a
corner case. In fact, this field was taken from one of the parameter sets in the supporting documentation of a Round
2 NIST candidate, Rainbow [8, p.10]. F7 was also considered but it presented almost identical results to F3, hence,
it is not included.

These complexity bounds are intended for semi-regular systems. Furthermore, to be clear, the results were
obtained by finding the optimal admissible parameters and substituting them into the complexity estimate presented
in the previous section. The optimal parameters were found by iterating through a triple-nested loop. The outer
loops iterates over k = 1, . . . , n. For each value of k, iterate over D from 2, . . . , dreg(n). This upper limit was chosen
D is at most dreg(n) over m equations. Since we are assuming semi-regularity, if Fq with q > 2, we can calculate
the degree of regularity by finding the first non-negative power of the Hilbert Series presented in Equation 5. If the
system is in a F2, we instead use Equation 6. In the inner-most loop, we iterate over d from 1, . . . , D − 1.

For each tuple (k, D, d), its admissibility is checked with the appropriate admissibility series. If it is admissible,
we calculate the complexity by substituting in the values of the tuple and values of m and n into the appropriate
complexity estimate equation presented in the previous section. After exiting the triple-nested loop, we output the
minimum complexity found and the associated tuple.

8 Results
8.1 Results for m = 2n
It was assumed that m = 2n and the results are presented in Figure 1 and Figure 2.
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Figure 1: Optimal Cost of Crossbred as m = 2n increases
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The results shown in Figure 1 behave as expected, whereby as n increases, the complexity increases exponentially.
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Figure 2: Growth of degree D as m = 2n increases

One thing to note is that Crossbred clearly scales well to larger fields, as exemplified with F3 and F256.

8.1.1 Comparison to FES
To compare Crossbred and FES, n was enumerated from 1 till 200 and its complexity was calculated. Recall that for
Fq, the complexity of FES is logq(n)qn. The results of this are plotted in Figure 3 and the results for the Crossbred
algorithm are also included for ease of comparison.
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Figure 3: Optimal Cost of Running FES and Crossbred as m = 2n
increases

In F2, the difference between Crossbred and FES may be considered irrelevant as it may be due to small missing
factors in either complexity estimates. Hence, in this case, despite practical speed, the Crossbred algorithm does
not provide an improved complexity estimate. However, for larger fields, Crossbred clearly provides an improved
complexity, which is in line with the practical findings of Joux and Vitse [15], even if their results were limited to F2.
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8.1.2 Comparison to Hybrid-F5

The methodology was used for comparison was the same used to compare the FES approach and Crossbred.
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Figure 4: Optimal Cost of Running Hybrid-F5 and Crossbred as
m = 2n increases

The complexities are very similar throughout for both the Crossbred and Hybrid approach. In general, Crossbred
provided no asymptotic improvement over Hybrid-F5.

An interesting note is that for F256, Hybrid-F5 almost always sets the value of k = 0, indicating that for large
fields, Hybrid-F5 may degenerate down to F5.

8.2 Results for m = n + 1
The methodology for this is identical to the previous section. The reason for selecting m = n + 1 is because it is the
‘least’ overdetermined system possible and hence, it can be considered a corner or boundary case. The results are
presented in Figure 5.
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Figure 5: Optimal Cost of Crossbred as m = n + 1 increases
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The results are very similar to the previous case and hence, there will not be much discussion surrounding them.
However, it should be noted that the complexity is much larger in size, meaning that the Crossbred algorithm
performs worse when m = n + 1. The increase in the complexity of the Crossbred algorithm is due to a larger
degree of regularity as our ratio between equations and variables is almost 1 : 1. Furthermore, there is a much larger
separation between F3 and F256 in terms of their complexities.

8.2.1 Comparison to FES
The methodology used for comparison was the same used to compare the FES approach and Crossbred when m = 2n.
The results can be found in Figure 6.
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Figure 6: Optimal Cost of Running FES and Crossbred as m = n+1
increases

For F2 and F3, the Crossbred approach provides little to no asymptotic improvement over FES. However, for larger
fields, it is clear that there is a significant improvement.
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8.2.2 Comparison to Hybrid-F5
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Figure 7: Optimal Cost of Running Hybrid-F5 and Crossbred as
m = n + 1 increases

Once again, Crossbred provides no asymptotic complexity improvement over the Hybrid approach. The reason the
line representing F3 for Hybrid-F5 is not visible is that the results of F3 for Crossbred are so similar that Crossbred
covers Hybrid’s results.

9 Conclusion
In conclusion, the bivariate generating function to test the admissibility of parameters to the algorithm in F2 was
investigated and a new series for Fq, q > 2 was presented. A complexity estimate was given for the Crossbred
algorithm for both F2 and Fq, q > 2. By plotting the best-case complexities of theoretically applying the Crossbred,
FES and Hybrid-F5 to polynomial systems of various sizes of n and q, it was determined that for larger fields,
the Crossbred algorithm provides an improved asymptotic complexity over FES. However, it does not provide any
improvement over Hybrid-F5.

Whilst this question about whether the Crossbred attack poses any improvement over the state of the art al-
gorithms, namely FES and Hybrid-F5, is answered, there is still much research to be done. This is because the
reason why this topic was investigated to begin with is because it is believed that there probably exists a better
way of solving polynomial systems than F5 or FES and by scrutinising these sort of algorithms, we are able to fully
understand them. Hence, we are able to make an informed decision of whether an algorithm is an improvement on
previous work and if so, how much of an improvement. In the end, even a slight improvement may be the difference
between breaking an algorithm in the real-world or not.
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