
Circular Security Is Complete for KDM Security

Fuyuki Kitagawa1 and Takahiro Matsuda2

1 NTT Secure Platform Laboratories, Tokyo, Japan, fuyuki.kitagawa.yh@hco.ntt.co.jp
2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan,

t-matsuda@aist.go.jp

Abstract

Circular security is the most elementary form of key-dependent message (KDM) secu-
rity, which allows us to securely encrypt only a copy of secret key bits. In this work, we
show that circular security is complete for KDM security in the sense that an encryption
scheme satisfying this security notion can be transformed into one satisfying KDM security
with respect to all functions computable by a-priori bounded-size circuits (bounded-KDM
security). This result holds in the presence of any number of keys and in any of secret-
key/public-key and CPA/CCA settings. Such a completeness result was previously shown
by Applebaum (EUROCRYPT 2011) for KDM security with respect to projection functions
(projection-KDM security) that allows us to securely encrypt both a copy and a negation of
secret key bits.

Besides amplifying the strength of KDM security, our transformation in fact can start
from an encryption scheme satisfying circular security against CPA attacks and results in
one satisfying bounded-KDM security against CCA attacks. This result improves the recent
result by Kitagawa and Matsuda (TCC 2019) showing a CPA-to-CCA transformation for
KDM secure public-key encryption schemes.

Keywords: key-dependent message security, circular security, chosen ciphertext security

1

Contents

1 Introduction 2
1.1 Background . 2
1.2 Our Results . 3
1.3 Paper Organization . 5

2 Technical Overview 5
2.1 Secret-Key TE . 5
2.2 Secret-Key TE Based on Circular Secure SKE . 6
2.3 Towards the Completeness in the Public-Key Setting 8

3 Preliminaries 9
3.1 Basic Notation and Notions . 9
3.2 Public-Key and Secret-Key Encryption . 10
3.3 Targeted Encryption . 13

4 Targeted Encryption from Circular Security and Leakage-Resilience 15

5 Implications of Our TE Scheme 19

6 Conformed Targeted Encryption 20
6.1 Definitions . 20
6.2 Construction . 22

7 KDM-CCA Security in the Multi-key Setting 23

A Other Definitions 33
A.1 IND-CCA/CPA Security . 33
A.2 Designated-Verifier Non-interactive Zero-Knowledge Arguments 34
A.3 Garbling . 35

B Constructing Weakly Noisy-Leakage-Resilient PKE (Proof of Lemma 1) 36

1 Introduction

1.1 Background

Key-dependent message (KDM) security, introduced by Black, Rogaway, and Shrimpton [BRS03],
guarantees confidentiality of communication even if an adversary can get a ciphertext of secret
keys. This notion was formulated in order to capture situations where there could be cor-
relations between secret keys and messages to be encrypted. Although it seems that such
situations only arise from bugs or errors, it turned out that they naturally occur in natural
usage scenarios of encryption schemes such as hard-disc encryption [BHHO08], anonymous cre-
dentials [CL02], and formal methods [ABHS05]. Moreover, until today, a number of works
have shown that KDM security is useful when constructing various cryptographic primitives in-
cluding fully homomorphic encryption (FHE) [Gen09], non-interactive zero-knowledge (NIZK)
proofs/arguments [CCRR18, CCH+19, LQR+19, KM19], homomorphic secret sharing [BKS19],
and chosen ciphertext secure encryption schemes and trapdoor functions [HK15, KMT19].

KDM security is defined with respect to a function family F . Informally, a public-key en-
cryption (PKE) scheme is said to be F-KDM(n) secure if confidentiality of messages is protected
even when an adversary can see a ciphertext of f(sk1, · · · , skn) under the s-th public key for
any f ∈ F and s ∈ {1, · · · , n}, where n denotes the number of keys. Also, KDM security
is considered in both the chosen plaintext attack (CPA) and chosen ciphertext attack (CCA)
settings.

Completeness of Projection-KDM Security. KDM security with respect to the family
of projection functions (projection-KDM security) is one of the most widely studied notions. A
projection function is an elementary function in which each output bit depends on at most a
single bit of an input. Therefore, roughly speaking, projection-KDM security only guarantees
that an encryption scheme can securely encrypt a copy and a negation of secret key bits.

Although this security notion looks somewhat weak at first glance, Applebaum [App11]
showed that it is complete for KDM security in the sense that we can construct an encryption
scheme satisfying KDM security with respect to all functions computable by a-priori bounded-
size circuits (bounded-KDM security) based on one satisfying projection-KDM security. The
completeness of projection-KDM security in [App11] has generality in the sense that it is in-
sensitive to the exact setting of KDM security. More specifically, a projection-KDM secure
encryption scheme can be transformed into a bounded-KDM secure one for any number of keys
and in any of secret-key/public-key and CPA/CCA settings.

Moreover, recent works [KMT19, KM19, LQR+19] also showed the power and usefulness
of projection-KDM secure encryption schemes for achieving other security notions and con-
structing other primitives. Specifically, Kitagawa, Matsuda, and Tanaka [KMT19] showed
that projection-KDM secure PKE implies IND-CCA secure PKE, and Kitagawa and Mat-
suda [KM19] and Lombardi, Quach, Rothblum, Wichs, andWu [LQR+19] independently showed
that it implies a reusable designated-verifier NIZK argument system for any NP language.

Completeness of Circular Security? The focus in this work is on circular security, which
is another elementary form of KDM security that has been widely studied from both the positive
side [CL02, Gen09, HK15, CCH+19] and the negative side [ABBC10, CGH12, Rot13, KRW15,
GKW17, HK17]. Circular security is a weaker security notion compared to even projection-
KDM security since circular security allows us to securely encrypt only a copy of secret key

2

bits.1 In this work, we clarify whether this most elementary form of KDM security is also
complete in the above sense or not.

Let us explain the motivations for studying the completeness of circular security for KDM
security. From the practical aspect, although it is an elementally form of KDM security, it is
known to be sufficient for many practical applications of KDM security such as anonymous cre-
dentials, formal methods, and FHE listed above. Thus, studying circular security is expected to
give us insights on these applications. From the theoretical aspect, it has impacts on the study
of public-key cryptography since several recent works [KMT19, KM19, LQR+19] showed that a
projection-KDM secure encryption scheme is useful as a building block for constructing two im-
portant and central primitives of IND-CCA secure PKE and reusable designated-verifier NIZK
argument systems, among which we will expand explanations on the former in the paragraph
below. Furthermore, studying whether the ability to securely encrypt only a copy of secret key
bits has a similar power to that to securely encrypt both a copy and a negation of secret key
bits at the same time, is well-motivated from the viewpoint of “negation-complexity” of cryp-
tographic primitives [GI12, GMOR15]. For example, Goldreich and Izsak [GI12] showed that a
one-way function can be computed by a monotone circuit and yet a pseudorandom generator
cannot. It is interesting to investigate whether such a barrier exists in the context of KDM
security.

Implications to the Study of CPA vs CCA. The question whether an IND-CCA secure
PKE scheme can be constructed from an IND-CPA secure one has been standing as a major open
question in cryptography. The completeness of circular security for KDM security also has a deep
connection to this question: Hajiabadi and Kapron [HK15] tackled the above question, and they
built an IND-CCA secure PKE scheme based on a PKE scheme satisfying circular security and a
randomness re-usability property called reproducibility [BBS03]. Also, Kitagawa et al. [KMT19]
showed that an IND-CCA secure PKE scheme can be constructed from a projection KDM secure
PKE scheme.

The above two results surely made a progress on the study of CCA security versus CPA
security by showing that an IND-CCA secure PKE scheme can be constructed from a PKE
scheme satisfying only security notions against “CPA” (i.e. no decryption queries). Here, the
above results are incomparable since the former result requires a structural property while the
latter requires projection-KDM security that is stronger than circular security for the building
block scheme. It is an open question whether we can construct an IND-CCA secure PKE
scheme based on a PKE scheme satisfying only circular security without requiring any structural
property for the building block scheme. We see that this question is solved affirmatively if we
can prove the completeness of circular security for KDM security by combining it with the
previous results [KMT19, LQR+19, KM19].

1.2 Our Results

In this work, we show that circular security is complete in the sense that an encryption scheme
satisfying this security notion can be transformed into a bounded-KDM secure one. In this
work, unless stated otherwise, circular security indicates a security notion that guarantees that
an encryption scheme can securely encrypt a copy of each of secret key bits separately. We
show that this result has the same level of generality as the completeness of projection-KDM
security shown by Applebaum [App11]. Namely, we obtain the following theorem. Below, we
denote circular security against CPA under n key pairs as CIRC(n) security.

1Note that the phrase “circular security” is sometimes used to mean (similar but) different notion, such as
security when encrypting key cycles.

3

Theorem 1 (Informal) If there exists a CIRC(n) secure PKE (resp. SKE) scheme, then there
exists a bounded-KDM(n)-CCA secure PKE (resp. SKE) scheme for any number of keys n.

Note that the above theorem implies the completeness of circular security in both the CPA
and CCA settings at the same time since we start with a scheme satisfying circular security
against CPA and obtain a scheme satisfying bounded-KDM security against CCA. We obtain
Theorem 1 in the following way.

How to Obtain Completeness in the Public-Key Setting. We first focus on the case
where there is only a single key pair. In Section 4, as our main technical result, we show that an
encryption primitive called targeted encryption (TE), formalized by Barak, Haitner, Hofheinz,
and Ishai [BHHI10], can be constructed from the combination of a CIRC(1) secure SKE scheme
and an IND-CPA secure PKE scheme. Since both of the building blocks are implied by CIRC(1)

secure PKE, and a TE scheme in turn can be transformed into a bounded-KDM(1)-CPA secure
PKE scheme as shown by Barak et al. [BHHI10], this result implies that a CIRC(1) secure
PKE scheme can be transformed into a bounded-KDM(1)-CPA secure PKE scheme. Once
we construct a bounded-KDM(1)-CPA secure PKE scheme, by combining with the result by
Kitagawa and Matsuda [KM19], we can transform it into a bounded-KDM(1)-CCA secure PKE
scheme, which is stated in Section 5.

We then turn our attention to the case where there are multiple key pairs. Similarly to
the above, we can construct a bounded-KDM(n)-CPA secure PKE scheme based on a CIRC(n)

secure one for any n through a primitive called augmented TE [BHHI10] that is an extension
of TE. However, in the case of multiple key pairs, there is no transformation from a KDM-CPA
secure PKE scheme to a KDM-CCA secure one regardless of the function family with respect
to which we consider KDM security. Thus, in this case, we cannot easily carry the result in the
CPA setting to that in the CCA setting.

To overcome the above problem, in Section 6, we first introduce a primitive that we call
conformed TE (CTE). CTE is an extension of TE (with several similarities to augmented TE
of Barak et al. [BHHI10]) that is conformed to the construction of a KDM-CCA secure PKE
scheme in the presence of multiple key pairs. We then construct a CTE scheme based on a
CIRC(n) secure SKE scheme and an IND-CPA secure PKE scheme. Finally, in Section 7, we
construct a bounded-KDM(n)-CCA secure PKE scheme from a CTE scheme, a garbling scheme,
an IND-CCA secure PKE scheme, and a (reusable) DV-NIZK argument system. The last two
components are implied by a circular secure PKE scheme from our result in the case of a single
key pair and the results by Kitagawa and Matsuda [KM19] and Lombardi et al. [LQR+19]. This
implies that circular security is complete in both the CPA and CCA settings even when there
are multiple key pairs. Note that this result improves that of Kitagawa and Matsuda [KM19]
in the following two aspects: Not only our construction can start from a circular secure PKE
scheme, but also it works in the case of multiple key pairs.

How to Obtain Completeness in the Secret-Key Setting. From the result shown by
Backes, Pfitzmann, and Scedrov [BPS07], we can transform a bounded-KDM(n)-CPA secure
SKE scheme into a bounded-KDM(n)-CCA secure one for any n. Thus, in the secret-key setting,
all we have to do is to construct a bounded-KDM(n)-CPA secure SKE scheme based on a CIRC(n)

secure one. Similarly to the public-key setting, this is possible via the secret-key version of TE
for the case of a single key pair and via the secret-key version of augmented TE for the case of
multiple key pairs. These constructions are almost the same as the public-key counterparts, and
thus we omit their formal descriptions in the paper. (In Section 2, this construction is outlined
since we explain a technical overview of our results using the secret-key version of TE.)

4

Implications of Our Completeness Result. We obtain the following additional results:
We show that the construction of the bounded-KDM(1)-CPA secure PKE scheme mentioned
above, is in fact a fully black-box construction [RTV04] if we restrict the function family to
projection functions. Thus, by combining this fact with the result by Kitagawa et al. [KMT19],
we obtain a fully black-box construction of an IND-CCA secure PKE scheme from a circular
secure one. 2 Moreover, by simply combining Theorem 1 with the result independently achieved
by Kitagawa and Matsuda [KM19] and Lombardi et al. [LQR+19], we see that a reusable DV-
NIZK argument system can also be constructed from a circular secure PKE scheme.

1.3 Paper Organization

The rest of the paper is organized as follows: In Section 2, we give a technical overview of our
results. In Section 3 (and Section A), we review definitions of cryptographic primitives. In
Section 4, we present our construction of TE. In Section 5, we show several implications of our
TE scheme, and in particular the completeness of circular security for the single-key setting. In
Section 6, we introduce CTE and present its construction. Finally, in Section 7, we present the
completeness of circular security in the multi-key setting using CTE.

2 Technical Overview

In this section, we provide a technical overview of our results. Our main technical contribution
is to show that we can realize TE (and conformed TE) based only on a circular secure encryption
scheme in a completely generic way. Thus, in this overview, we mainly focus on this part after
briefly explaining how to construct a bounded-KDM secure scheme based on TE. For simplicity,
we explain our ideas in this part by showing how to construct the secret-key version of a TE
scheme based only on a CIRC(1) secure SKE scheme. In the following, for a natural number n,
we let [n] denote the set {1, . . . , n}.

2.1 Secret-Key TE

We first introduce the secret-key version of TE [BHHI10]. A secret-key TE scheme consists
of the three algorithms TKG, TEnc, and TDec.3 Similarly to an ordinary SKE scheme, TKG is
given a security parameter and outputs a secret key sk. We let ℓsk denote the secret key length.
On the other hand, TEnc and TDec have a functionality of a somewhat special form. As we will
soon see below, they are optimized for encrypting labels of garbled circuits [Yao86]. In addition
to the secret key sk, TEnc is given an index i ∈ [ℓsk] and a pair of messages (X0, X1), and outputs
a ciphertext as ct ← TEnc(sk, i,X0, X1). Correspondingly, given the secret key sk, the index
i ∈ [ℓsk], and the ciphertext ct, TDec outputs (only) Xsk[i], where sk[i] denotes the i-th bit of sk.
(Thus, it is similar to an oblivious transfer.) For TE, we consider two security notions: security
against the receiver and security against outsiders. Security against the receiver ensures that
ct hides the information of X1⊕sk[i] even against the receiver who holds sk. Security against
outsiders ensures that ct hides both X0 and X1 against adversaries who do not hold sk.4

2Note that this result does not simply follow from Theorem 1 since the construction of KDM-CCA secure
PKE used to show it is non-black-box due to the use of a DV-NIZK argument.

3Here, we adopt the syntax that is slightly different from the one we use in the subsequent sections, in that the
latter allows to encrypt Xv for each v ∈ {0, 1} separately. The syntax used here makes the following explanations
easier and cleaner. For the formal definition, see Section 3.3.

4Hereafter, we refer to adversaries that do not hold the secret key as outsiders.

5

Bounded-KDM(1)-CPA Security via TE. As shown by Barak et al. [BHHI10], we can
construct a bounded-KDM(1)-CPA secure SKE scheme based on a secret-key TE scheme by
using garbled circuits.5 The construction is fairly simple. The secret key of the resulting SKE
scheme is that of the underlying secret-key TE scheme itself. When encrypting a message m,
we first garble an ℓsk-bit-input constant function Cm that outputs m for any input. This results
in a single garbled circuit C̃ and 2ℓsk labels (labi,v)i∈[ℓsk],v∈{0,1}. Then, for every index i ∈ [ℓsk],
we encrypt the pair of labels (labi,0, labi,1) under the index i into cti using TEnc. The resulting

ciphertext for the SKE scheme consists of C̃ and (cti)i∈[ℓsk]. When decrypting this ciphertext, we
first obtain (labi,sk[i])i∈[ℓsk] from (cti)i∈[ℓsk] by using TDec with sk. Then, we evaluate the garbled

circuit C̃ with these labels. This results in m from the correctness of the garbling scheme.
We can prove that the above construction is bounded-KDM(1)-CPA secure. In a high level,

we can generate a simulated encryption of f(sk) without using sk itself that is indistinguishable
from a real ciphertext based on the security against the receiver of the underlying secret-key
TE scheme and the security of the underlying garbling scheme, where f is a function queried
by an adversary as a KDM-encryption query. We then finish the security proof by relying on
the security against outsiders of the secret-key TE scheme. For more details, see [BHHI10].

2.2 Secret-Key TE Based on Circular Secure SKE

Below, we explain how to construct a secret-key TE scheme based on a CIRC(1) secure SKE
scheme. We first show that a secret-key TE scheme can be naturally realized from a projection-
KDM(1) secure SKE scheme. We then show how to weaken the starting point to a CIRC(1)

secure SKE scheme.

Secret-Key TE Based on Projection-KDM Secure SKE. Consider the following naive
way to realize a secret-key TE scheme based on an SKE scheme SKE. A secret key sk of SKE is
used as that of the secret-key TE scheme. When encrypting (X0, X1) under an index i ∈ [ℓsk],
we just encrypt Xsk[i] into ct by using the encryption algorithm Enc of SKE with the secret key
sk. We call this naive realization Naive. Naive clearly satisfies security against the receiver since
ct is independent of X1⊕sk[i]. However, it is not clear whether we can prove the security against
outsiders of Naive if we only assume that SKE satisfies IND-CPA security. This is because the
encrypted message Xsk[i] is dependent on the secret key sk. On the other hand, we can prove

the security against outsiders of Naive if SKE satisfies projection-KDM(1)-CPA security which
allows us to securely encrypt both a copy and a negation of sk[i].

To see this in detail, we suppose that Xsk[i] is encrypted by SKE in a bit-by-bit manner, and
its length is µ. We denote the j-th bit of X0 (resp. X1) by X0[j] (resp. X1[j]). We can classify
the indices in [µ] into the following four types:

Type 1: j ∈ [µ] such that X0[j] = X1[j] = 0.

Type 2: j ∈ [µ] such that X0[j] = X1[j] = 1.

Type 3: j ∈ [µ] such that X0[j] = 0 and X1[j] = 1.

Type 4: j ∈ [µ] such that X0[j] = 1 and X1[j] = 0.

We have to generate the following ciphertexts of SKE for each type to encrypt Xsk[i]:

• For j of Type 1, we have to generate Enc(sk, 0) regardless of the value of sk[i].

5Note that the actual transformation shown by Barak et al. is in the public-key setting. Also, the following
explanations assume that the reader is familiar with a garbling scheme. See Section A.3 for its formal definition.

6

• For j of Type 2, we have to generate Enc(sk, 1) regardless of the value of sk[i].

• For j of Type 3, we have to generate Enc(sk, sk[i]), that is, an encryption of a copy of sk[i].

• For j of Type 4, we have to generate Enc(sk, 1⊕ sk[i]), that is, an encryption of a negation
of sk[i].

Namely, when some bit of X0 is 0 and the corresponding bit of X1 is 1, we have to generate an
encryption of a copy of sk[i]. Similarly, when some bit of X0 is 1 and the corresponding bit of
X1 is 0, we have to generate an encryption of a negation of sk[i]. However, if SKE is projection-
KDM(1)-CPA secure, then Xsk[i] is hidden from outsiders. Since X1⊕sk[i] is completely hidden
(even against the legitimate receiver), Naive satisfies security against outsiders based on the
projection-KDM(1)-CPA security of SKE.

Replacing Projection-KDM-CPA Secure SKE with Circular Secure SKE. We now
try to realize a secret-key TE scheme based on a circular secure (CIRC(1) secure) SKE scheme.
Recall that CIRC(1) security allows us to securely encrypt only a copy of secret key bits. Thus,
as the first attempt to avoid encrypting negations of secret key bits, we modify the above
construction Naive into the following construction that we call Naive∗.

In Naive∗, when encrypting (X0, X1) under an index i ∈ [ℓsk], we basically encrypt Xsk[i]

in a bit-by-bit manner in the same way as Naive. However, for indices j ∈ [µ] of Type 4, we
replace the ciphertext of SKE with the special symbol flip. When receiving the symbol flip
instead of the j-th ciphertext, the receiver sets the value of Xsk[i][j] as 1⊕ sk[i]. This is possible
since the receiver has sk and knows the value of sk[i]. Thus, if we modify the construction in
this way, the receiver holding sk can obtain the entire bits of Xsk[i] similarly to Naive.

In Naive∗, we now need to generate encryptions of only a copy of sk[i] and not those of a
negation of sk[i]. However, we cannot prove that Naive∗ satisfies the two security notions of TE
(security against the receiver/outsiders) based on the CIRC(1) security of SKE. For example,
considering security against outsiders, X0 and X1 are partially leaked to outsiders because of
the use of the symbol flip. Concretely, outsiders can know that X0[j] = 1 and X1[j] = 0 for
the indices j of Type 4. A similar problem lies in the argument on security against the receiver.
Concretely, the receiver holding sk can know X1⊕sk[i][j] for the indices j of Type 4 and either
one of Type 1 or 2 depending on the value of sk[i]. The reason why X1⊕sk[i][j] for the indices j
of Type 4 are leaked to the receiver is clear. The reason why those for the indices j of Type 1
or 2 are leaked to the receiver is as follows. For example, when sk[i] = 0, the receiver finds
that the value of X1⊕sk[i][j] is 1 for j of Type 2 from the fact that the decrypted message from
the j-th ciphertext is 1 but the symbol flip was not sent for this j.

To summarize, if SKE is CIRC(1) secure, the following properties hold for Naive∗: X0[j] and
X1[j] for the indices j of Type 1, 2, and 3 are hidden but those for the indices j of Type 4 are
leaked to outsiders. Also, X1⊕sk[i][j] for the indices j of Type 3 and either one of Type 1 or 2
are hidden but the remaining parts are leaked to the receiver holding sk.

Transforming into a Full-Fledged Secret-Key TE Scheme. A natural question here
is whether the above Naive∗ is useful or not. We show that by using a leakage-resilient SKE
scheme lrSKE, we can transform Naive∗ into an ordinary secret-key TE scheme sTE. As we will
explain later, the type of leakage-resilience that lrSKE should satisfy is weak, and any IND-CPA
secure SKE scheme can be transformed into one satisfying it. Thanks to this transformation,
we can realize a secret-key TE scheme based only on a CIRC(1) secure SKE scheme.

The description of sTE is as follows. The secret key sk of sTE is that of Naive∗ itself. When
encrypting (X0, X1) under the index i ∈ [ℓsk], we first generate two keys lrk0 and lrk1 of lrSKE.

7

Then, we encrypt X0 and X1 into lrct0 and lrct1 by using lrSKE with the keys lrk0 and lrk1,
respectively. Moreover, we encrypt (lrk0, lrk1) into ct by using Naive∗ with the key sk. The
resulting ciphertext of sTE is (lrct0, lrct1, ct). When decrypting this ciphertext, we first obtain
lrksk[i] from ct by using Naive∗ with the key sk. We then obtain Xsk[i] by decrypting ctsk[i] using
lrSKE with the key lrksk[i].

We now argue that sTE satisfies (full-fledged) security against the receiver/outsiders. With-
out loss of generality, we assume that lrk0 and lrk1 are uniformly random n-bit strings. We
define Type 1, 2, 3, and 4 for indices in [n] as before using lrk0 and lrk1 instead of X0 and X1.
Since lrk0 and lrk1 are chosen uniformly at random, these four types appear equally likely. In
this case, ct hides expectedly a 1/2-fraction of bits of lrk1⊕sk[i] against the receiver holding sk.
Also, ct hides expectedly a 3/4-fraction of bits of each of lrk0 and lrk1 against outsiders. Thus,
if lrSKE is resilient against both forms of secret key leakage, sTE satisfies both security against
the receiver and security against outsiders.

Fortunately, the leakage-resilience that lrSKE should satisfy in the above argument is weak.
The amount of leakage is (expectedly) only a constant fraction. In addition, more importantly,
which bits of the secret key are leaked is determined completely at random from the fact that
Type 1, 2, 3, and 4 appear uniformly at random, out of the control of adversaries. Leakage-
resilience against such secret key leakage is weak, and we can transform any IND-CPA secure
SKE scheme into one satisfying it by using the leftover hash lemma [HILL99, DRS04]. From
this fact, sTE can be realized from a CIRC(1) secure SKE scheme.

2.3 Towards the Completeness in the Public-Key Setting

As we mentioned earlier, in the actual technical sections, we deal with the public-key setting.
Namely, we prove Theorem 1 in the PKE setting. We finally explain how to prove it with the
techniques explained so for.

Single-Key Setting. We first construct a (public-key) TE scheme based on a CIRC(1) secure
SKE scheme and an IND-CPA secure PKE scheme both of which are implied by a CIRC(1) secure
PKE scheme. This construction is almost the same as that of sTE above except that we use
a leakage-resilient PKE scheme instead of a leakage-resilient SKE scheme. By combining this
transformation with the previous results [BHHI10, KM19], we can obtain Theorem 1 in the
PKE setting for the number of key pairs n = 1.

Multi-key Setting. We then move on to the case of multiple key pairs. As mentioned before,
for achieving the completeness in this setting, we introduce an extended version of TE that we
call conformed TE (CTE). CTE is conformed to construct KDM(n)-CCA secure PKE schemes
for n > 1. Roughly, CTE is TE that satisfies the following two additional properties.

• It has additional (untargeted and secret-key) encryption/decryption algorithms, and a
ciphertext generated by the additional encryption algorithm is indistinguishable even un-
der the existence of encryptions of a “key cycle” generated by the additional encryption
algorithm. Encryptions of a key cycle are ciphertexts such that the s-th ciphertext is an
encryption of the (s mod n) + 1-th secret key under the s-th secret key when there are n
keys. We call this property special weak circular security.

• When generating a public/secret key pair, it additionally generates a trapdoor that enables
us to recover both a “0-side” message X0 and a “1-side” message X1 from a ciphertext
encrypting (X0, X1). (Recall that in ordinary TE, the receiver can recover only one of
them even having the secret key.)

8

We remark that a TE scheme satisfying only the first property is almost the same as augmented
TE introduced by Barak et al. [BHHI10] to construct a bounded-KDM(n)-CPA secure PKE
scheme for n > 1. Roughly speaking, when constructing a KDM-CCA secure PKE scheme, the
first property mainly plays its role to deal with multiple key pairs, and the second property
plays its role to deal with decryption queries. For the details of the formalization of CTE as
well as its relation to augmented TE, see Section 6.

We construct a CTE scheme based on a CIRC(n) secure SKE scheme and an IND-CPA
secure PKE scheme. Basically, this construction is again an extension of sTE in which a leakage-
resilient PKE scheme is used instead of a leakage-resilient SKE scheme. The trapdoor of the
construction consists of secret keys of the leakage-resilient PKE scheme. Also, the special weak
circular security of it is proved based on the CIRC(n) security of the underlying SKE scheme.

We finish the proof of Theorem 1 in the public-key setting for n > 1 by constructing a
bounded-KDM(n)-CCA secure PKE scheme from the combination of the following four building
blocks: (1) a CTE scheme, (2) an IND-CCA secure PKE scheme, (3) a garbling scheme for
circuits, and (4) a reusable DV-NIZK argument system for NP languages. As we already
explained, by Theorem 1 for n = 1 and results by [KM19, LQR+19], an IND-CCA secure PKE
scheme and a reusable DV-NIZK argument system can be constructed from the combination of
an IND-CPA secure PKE scheme and a CIRC(1) secure SKE scheme. Also, a garbling scheme
for circuits can be constructed from a one-way function. Thus, all the building blocks can
be based on the combination of an IND-CPA secure PKE scheme and a CIRC(n) secure SKE
scheme. This completes the proof of Theorem 1 in the PKE setting for n > 1.

Our construction of bounded-KDM-CCA secure PKE in the multi-key setting can be seen
as combining the construction ideas from the two existing constructions: the construction of
KDM-CPA secure PKE in the multi-key setting based on an augmented TE scheme by Barak
et al. [BHHI10], and the construction of KDM-CCA secure PKE in the single key setting based
on an IND-CPA secure PKE scheme and a projection-KDM secure SKE by Kitagawa and
Matsuda [KM19]. However, a simple combination of each of the techniques from [BHHI10,
KM19] as it is is not sufficient. We bridge the gap with the properties of the CTE scheme. For
the details, see Section 7.

3 Preliminaries

In this section, we review the basic notation, and the definitions as well as existing results for
encryption primitives treated in this paper. We give the formal definitions for ordinary IND-
CCA/CPA security, a (reusable) DV-NIZK argument system, and a garbling scheme for circuits
in Section A.

3.1 Basic Notation and Notions

For n ∈ N, we define [n] := {1, . . . , n}. For strings x and y, “|x|” denotes the bit-length of x,

“x[i]” (with i ∈ [|x|]) denotes the i-th bit of x, and “(x
?
= y)” is the operation that returns

1 if x = y and 0 otherwise. For a discrete finite set S, “|S|” denotes its size, and “x
r←− S”

denotes choosing an element x uniformly at random from S. For a (probabilistic) algorithm
A, “y ← A(x)” denotes assigning to y the output of A on input x, and if we need to specify
a randomness r used in A, we write “y ← A(x; r)”. If furthermore O is a function or an
algorithm, then “AO” means that A has oracle access to O. A function ϵ(λ) : N → [0, 1] is
said to be negligible if ϵ(λ) = λ−ω(1). We write ϵ(λ) = negl(λ) to mean ϵ being negligible. The
character “λ” always denotes a security parameter. “PPT” stands for probabilistic polynomial
time.

9

For a distribution X , the min-entropy of X is defined by H∞(X) := − log2(maxx Pr[X =
x]). For distributions X and Y (forming a joint distribution), the average min-entropy of X
given Y is defined by H̃∞(X|Y) := − log2(Ey←Y [maxx Pr[X = x|Y = y]]).

3.2 Public-Key and Secret-Key Encryption

Here, we recall the definitions for public-key and secret-key encryption schemes. We first intro-
duce the definitions for PKE, and then briefly mention how to recover those for SKE.

Syntax of Public-Key Encryption. A PKE scheme PKE consists of the three PPT algo-
rithms (KG,Enc,Dec):6

• KG is the key generation algorithm that takes 1λ as input, and outputs a public/secret
key pair (pk, sk).

• Enc is the encryption algorithm that takes a public key pk and a message m as input, and
outputs a ciphertext ct.

• Dec is the (deterministic) decryption algorithm that takes a public key pk, a secret key
sk, and a ciphertext ct as input, and outputs a message m or the invalid symbol ⊥.

A PKE scheme PKE = (KG,Enc,Dec) is said to be correct if for all λ ∈ N, (pk, sk) ← KG(1λ),
and m, we have Dec(pk, sk,Enc(pk,m)) = m.

We refer to a PKE scheme whose message space is 1-bit as a bit-PKE scheme.

Simple Key Generation. We say that a PKE scheme has simple key generation if its key
generation algorithm KG first picks a secret key sk uniformly at random (from some prescribed
secret key space) and then computes a public key pk from sk. For PKE with simple key genera-
tion, we slightly abuse the notation and simply write pk← KG(sk) to denote this computation.
Any IND-CPA/IND-CCA secure PKE scheme can be viewed as one with simple key generation
by just regarding a randomness used in the key generation algorithm as sk.

Weak Noisy-Leakage-Resilience. We will use a PKE scheme that satisfies weak noisy-
leakage-resilience (against CPA), formalized by Naor and Segev [NS09]. In the weak “noisy”
leakage setting, an adversary’s leakage function f must be chosen before seeing pk, and must
satisfy the condition that the average min-entropy of sk given f(sk) is greater than a pre-
determined lower bound.

Formally, for a PKE scheme PKE = (KG,Enc,Dec), a polynomial L = L(λ), and an adversary
A = (A0,A1), consider the experiment described in Figure 1. In the experiment, A is required
to be L-noisy-leakage-respecting, which requires that L ≥ H∞(sk)− H̃∞(sk|f(sk), st) hold.

Definition 1 (Weak Noisy-Leakage-Resilience) Let L = L(λ) be a polynomial. We say
that a PKE scheme PKE is weakly L-noisy-leakage-resilient if for all PPT L-noisy-leakage-
respecting adversaries A = (A0,A1), we have AdvwlrPKE,A,L(λ) := 2 · |Pr[ExptwlrPKE,A,L(λ) = 1] −
1/2| = negl(λ).

Any IND-CPA secure PKE scheme can be straightforwardly converted into a weakly noisy-
leakage-resilient one by using the leftover hash lemma [HILL99, DRS04]. In fact, Naor and
Segev [NS09] showed this fact for the case of weak “bounded” leakage-resilience (where the

6In this paper, we only consider (public-key/secret-key) encryption schemes in which secret keys and messages
are bit strings, whose lengths are determined by the security parameter λ.

10

ExptwlrPKE,A,L(λ) :
(f, st)← A0(1

λ)
(pk, sk)← KG(1λ)

b
r←− {0, 1}

b′ ← AOEnc(·,·)
1 (pk, f(sk), st)

Return (b′
?
= b).

OEnc(m0,m1) : // |m0| = |m1|
Return ct← Enc(pk,mb).

Figure 1: The weak noisy-leakage-resilience experiment for PKE. In the experiment, it is required that
L ≥ H∞(sk)− H̃∞(sk|f(sk), st).

output-length of a leakage function is bounded), and it is easy to see that their proof carries
over to the noisy-leakage-resilience setting. Furthermore, this conversion is fully black-box and
preserves the simple key generation property. (It works for SKE as well.) Since we will use
this fact in Section 5, for completeness, we provide a formal proof of this fact in Section B.

Lemma 1 Assume that there exists an IND-CPA secure PKE scheme with simple key genera-
tion whose secret key length is ℓsk = ℓsk(λ). Then, for any polynomials L = L(λ) and ℓ′sk = ℓ′sk(λ)
satisfying ℓ′sk− (L+ ℓsk) = ω(log λ), there exists a weakly L-noisy-leakage-resilient PKE scheme
with simple key generation whose secret key length is ℓ′sk. Furthermore, the construction is fully
black-box.7

For example, from an IND-CPA secure PKE scheme with simple key generation with secret key
length ℓsk, for any constant β ∈ [0, 1), we can construct a scheme whose secret key length is ℓ′sk
and satisfies weak (βℓ′sk)-noisy-leakage resilience by setting the term ω(log λ) simply as λ and

setting ℓ′sk :=
ℓsk+λ
1−β .

KDM-CCA/CPA Security. We recall KDM-CCA/CPA security for PKE.

Definition 2 (KDM-CCA/CPA Security) Let PKE = (KG,Enc,Dec) be a PKE scheme
whose secret key length and message length are ℓsk and µ, respectively. Let n = n(λ) be a
polynomial, and F be a family of functions with domain ({0, 1}ℓsk)n and range {0, 1}µ. We say
that PKE is KDM-CCA secure with respect to F in the n-key setting (F-KDM(n)-CCA secure)
if for all PPT adversaries A, we have Advkdmcca

PKE,F,A,n(λ) := 2 · |Pr[Exptkdmcca
PKE,F,A,n(λ) = 1]− 1/2| =

negl(λ), where the experiment Exptkdmcca
PKE,F,A,n(λ) is described in Figure 2.

KDM-CPA security with respect to F in the n-key setting (F-KDM(n)-CPA security) is
defined analogously, except that A is disallowed to use Odec.

Function Families for KDM Security. In this paper, the function classes for KDM security
that we will specifically treat are as follows.

• P (Projection functions): A function is said to be a projection function if each of its
output bits depends on at most a single bit of its input. We denote by P the family of
projection functions.

• Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size = size(λ) is a
polynomial, the function family each of whose members can be described by a circuit of
size size.

7A fully black-box construction of a primitive Q from another primitive P means that (1) the construction of Q
treats an instance of P as an oracle, and (2) the reduction algorithm (for proving the security of the construction
of Q) treats the adversary attacking the construction of Q and the instance of P as oracles. (See [RTV04] for
the formal treatment.)

11

Exptkdmcca
PKE,F,A,n(λ) :

Lkdm ← ∅
∀s ∈ [n] : (pks, sks)← KG(1λ)

b
r←− {0, 1}

b′ ← AOkdm(·,·,·),Odec(·,·)((pks)s∈[n])

Return (b′
?
= b).

Okdm(α, f0, f1) : // α ∈ [n], f0, f1 ∈ F
m← fb((sk

s)s∈[n])
ct← Enc(pkα,m)
Lkdm ← Lkdm ∪ {(α, ct)}
Return ct.

Odec(α, ct) : // α ∈ [n]
If (α, ct) ∈ Lkdm then return ⊥.
Return Dec(pkα, skα, ct).

Figure 2: The KDM-CCA experiment for PKE.

ExptcircPKE,A,n(λ) :
∀s ∈ [n] : (pks, sks)← KG(1λ)

b
r←− {0, 1}

b′ ← AOcirc(·,·)((pks)s∈[n])

Return (b′
?
= b).

Ocirc(α, i) : // α ∈ [n], i ∈ [ℓsk] ∪ {zero, one}

m1 ←

skα[i] if i ∈ [ℓsk]

0 if i = zero

1 if i = one

m0 ← 0
Return ct← Enc(pkα,mb)

Figure 3: The circular security experiment for bit-PKE.

Circular Security. In this paper, we also treat circular security (against CPA), which we con-
sider for bit-encryption schemes. Although it is a special case of KDM security, it is convenient
for us to introduce a separate definition in the form we use in this paper.

Definition 3 (Circular Security for Bit-PKE) Let n = n(λ) be a polynomial. Let PKE =
(KG,Enc,Dec) be a bit-PKE scheme with the secret key length ℓsk. We say that PKE is cir-
cular secure in the n-key setting (CIRC(n) secure) if for all PPT adversaries A, we have
AdvcircPKE,A,n(λ) := 2·|Pr[ExptcircPKE,A,n(λ) = 1]−1/2| = negl(λ), where the experiment ExptcircPKE,A,n(λ)
is described in Figure 3.

Our definition here follows the definition called “circular security with respect to indistinguisha-
bility of oracles” formalized by Rothblum [Rot13], with a slight modification to the interface of
the oracle: In addition to capturing the multi-key setting, the circular-encryption oracle Ocirc

in our definition accepts the special commands “zero” and “one” (returning an encryption of 0
and that of 1, respectively, in the case b = 1) to explicitly capture ordinary IND-CPA security.
This is for convenience and clarity: A bit-encryption scheme satisfies our definition if and only
if it simultaneously satisfies the original definition in [Rot13] (without the augmentation of the
oracle interface) and IND-CPA security.

Secret-Key Encryption. An SKE scheme SKE consists of the three PPT algorithms (K,E,D):

• K is the key generation algorithm that takes 1λ as input, and outputs a secret key sk.

• E is the encryption algorithm that takes a secret key sk and a message m as input, and
outputs a ciphertext ct.

• D is the (deterministic) decryption algorithm that takes a secret key sk and a ciphertext
ct as input, and outputs a message m or the invalid symbol ⊥.

An SKE scheme SKE = (K,E,D) is said to be correct if for all λ ∈ N, sk ← K(1λ) and m, we
have D(sk,E(sk,m)) = m.

We refer to an SKE scheme whose message space is 1-bit as a bit-SKE scheme.

12

Weak noisy-leakage-resilience, KDM security, and circular security for (bit-)SKE are defined
analogously to those defined for (bit-)PKE, with the following natural adaptions in the security
experiments:

• All of (pk, sk) ← KG(1λ), Enc(pk, ·), and Dec(pk, sk, ·) in the experiments for PKE are
replaced with sk ← K(1λ), E(sk, ·), and D(sk, ·) in the experiments for SKE, respectively.
We do the same treatment for those with the superscripts s, α ∈ [n].

• All the public keys pk and pks (s ∈ [n]) given as input to an adversary in the experiments
for PKE are replaced with 1λ in the experiments for SKE.

Results from [KMT19, KM19]. We recall the results on IND-CCA/KDM-CCA secure
PKE from [KMT19, KM19], which we will use in Section 5.

Theorem 2 ([KMT19]) If there exist an IND-CPA secure PKE scheme and a P-KDM(1)-CPA
secure SKE scheme, then there exists an IND-CCA secure PKE scheme. Furthermore, the con-
struction is fully black-box.

Theorem 3 ([KM19]) If there exist an IND-CPA secure PKE scheme and a P-KDM(1)-CPA
secure SKE scheme, then for any polynomial size = size(λ), there exists a Bsize-KDM(1)-CCA
secure PKE scheme.

We note that [KM19] also showed a construction of a multi-key-KDM-CCA secure PKE scheme
by additionally assuming (passive) RKA-KDM security with respect to projection functions for
the underlying SKE scheme. We do not formally recall it here since it is not known if it follows
from the multi-key version of ordinary P-KDM security and our result in Section 7 improves it
in terms of the strength of assumptions.

3.3 Targeted Encryption

Here, we recall targeted encryption (TE) [BHHI10].
A TE scheme TE consists of the three PPT algorithms (TKG,TEnc,TDec):

• TKG is the key generation algorithm that takes 1λ as input, and outputs a public/secret
key pair (pk, sk), where |sk| =: ℓsk.

• TEnc is the encryption algorithm that takes a public key pk, an index i ∈ [ℓsk], a bit
v ∈ {0, 1}, and a message m as input, and outputs a ciphertext ct.

• TDec is the (deterministic) decryption algorithm that takes a public key pk, a secret key
sk ∈ {0, 1}ℓsk , an index i ∈ [ℓsk], and a ciphertext ct as input, and outputs a message m or
the invalid symbol ⊥.

As the correctness for a TE scheme, we require that for all λ ∈ N, (pk, sk)← TKG(1λ), i ∈ [ℓsk],
and m, we have TDec(pk, sk, i,TEnc(pk, i, sk[i],m)) = m.

Barak et al. [BHHI10] defined two kinds of security notions for TE: security against the
receiver and security against outsiders. We recall them here.

13

ExptreceiverTE,A (λ) :
(i∗ ∈ [ℓsk], st)← A0(1

λ)
(pk, sk)← TKG(1λ)

b
r←− {0, 1}

b′ ← AOTEnc(·,·)
1 (pk, sk, st)

Return (b′
?
= b).

OTEnc(m0,m1) : // |m0| = |m1|
ct← TEnc(pk, i∗, 1⊕ sk[i∗],mb)
Return ct.

ExptoutsiderTE,A (λ) :
(i∗ ∈ [ℓsk], v

∗ ∈ {0, 1}, st)← A0(1
λ)

(pk, sk)← TKG(1λ)

b
r←− {0, 1}

b′ ← AOTEnc(·,·)
1 (pk, st)

Return (b′
?
= b).

OTEnc(m0,m1) : // |m0| = |m1|
ct← TEnc(pk, i∗, v∗,mb)
Return ct.

Figure 4: The experiments for TE: Security against the receiver (left) and security against outsiders
(right).

Security against the Receiver. As the name suggests, this is a security notion against a
receiver who holds a secret key. More specifically, this security notion ensures that for every
i ∈ [ℓsk], if a message is encrypted under the position (i, 1 ⊕ sk[i]), its information does not
leak to the receiver of the ciphertext who holds a secret key sk. For convenience, we introduce
the multi-challenge version of this security notion, which can be shown to be equivalent to the
single-challenge version defined in [BHHI10] via a query-wise hybrid argument.

Formally, for a TE scheme TE = (TKG,TEnc,TDec) and an adversary A = (A0,A1), con-
sider the experiment ExptreceiverTE,A (λ) described in Figure 4 (left). We emphasize again that since
this security is considered against a receiver, an adversary is given a secret key sk as input.8

Definition 4 (Security against the Receiver) We say that a TE scheme TE satisfies secu-
rity against the receiver if for all PPT adversaries A, we have AdvreceiverTE,A (λ) := 2·|PrExptreceiverTE,A (λ)
= 1]− 1/2| = negl(λ).

Security against Outsiders. This security notion simply ensures that ciphertexts generated
under any pair (i, v) ∈ [ℓsk]× {0, 1} do not leak the information of encrypted messages. Again,
we introduce the multi-challenge version for this security notion, which is equivalent to the
single-challenge version formalized in [BHHI10].

Formally, for a TE scheme TE = (TKG,TEnc,TDec) and an adversary A = (A0,A1), con-
sider the experiment ExptoutsiderTE,A (λ) described in Figure 4 (right).

Definition 5 (Security against Outsiders) We say that a TE scheme TE satisfies security
against outsiders if for all PPT adversaries A, we have AdvoutsiderTE,A (λ) := 2 · |PrExptoutsiderTE,A (λ) =
1]− 1/2| = negl(λ).

Result from [BHHI10]. Barak et al. [BHHI10] showed the following result, which we will
use in Section 5.

Theorem 4 ([BHHI10]) If there exists a TE scheme satisfying security against the receiver
and security against outsiders, then for any polynomial size = size(λ), there exists a Bsize-KDM(1)-CPA
secure PKE scheme. Furthermore, there is a fully black-box construction of a P-KDM(1)-CPA
secure PKE scheme from a TE scheme satisfying the two security notions.

8The original definition by Barak et al. [BHHI10] considered statistical security (i.e. security against com-
putationally unbounded adversaries), but it was remarked there that computational security suffices for their
construction of KDM-CPA secure PKE.

14

We remark that the result on the fully black-box construction can be extended to any function
family such that a canonical description of a circuit computing any function in the family can
be learned and reconstructed (with overwhelming probabiltiy) by just making polynomially
many oracle queries to the function. (This is because in the security proof in [BHHI10], what
is garbled is a function queried as a KDM-encryption query.) We only state it for P-KDM
security since it is sufficient for our purpose.

We also remark that [BHHI10] also showed that their construction achieves KDM-CPA
security in the multi-key setting by additionally assuming that the underlying TE scheme is an
augmented TE scheme satisfying circular security in the multi-key setting. We do not recall
this result and the formal definition of augmented TE since we do not use them directly. In
Section 6, we introduce conformed TE, which is also an extension of TE in a similar manner to
augmented TE but has several differences. For the details, see the explanation there.

4 Targeted Encryption from Circular Security and Leakage-
Resilience

In this section, as our main technical result, we show how to construct a TE scheme from
the combination of a circular secure bit-SKE scheme (in the single-key setting) and a weakly
noisy-leakage-resilient PKE scheme.

Construction. Our construction uses the following building blocks:

• Let SKE = (K,E,D) be a CIRC(1) secure bit-SKE scheme with the secret-key length ℓk
for some polynomial ℓk = ℓk(λ). We assume that there exists a special symbol flip that
is perfectly distinguishable from possible outputs of E.

• Let PKE = (Setup,KG,Enc,Dec) be a weakly L-noisy-leakage-resilient PKE scheme with
simple key generation whose secret-key length is ℓsk for some polynomial ℓsk = ℓsk(λ). We
assume L = 0.6ℓsk.

Using these buliding blocks, we construct a TE scheme TE = (TKG,TEnc,TDec), whose
secret key length is ℓk, as described in Figure 5.

Correctness. The correctness of TE follows from that of the building blocks SKE and PKE.
Specifically, since TEnc(PK, i, SK[i] = k[i],m) just computes Enc(pki,k[i],m) and TDec(PK,SK, i, ct)
computes Dec(pki,k[i], sk

′ct) in its last step, it suffices to see that sk′ computed in TDec always
equals to ski,k[i] for any i ∈ [ℓk]. Indeed, for every j ∈ [ℓsk], we have

• If (ski,0[j], ski,1[j]) = (1, 0), then note that this case implies ski,k[i][j] = 1 ⊕ k[i]. On the
other hand, ei,j = flip holds by the design of TKG. Hence, TDec sets sk′[j]← 1⊕ k[i] =
ski,k[i][j].

• Otherwise (i.e. (ski,0[j], ski,1[j]) ̸= (1, 0)), ei,j is just an encryption of ski,k[i][j]. Thus,
TDec decrypts it as sk′[j] = D(k, ei,j) = ski,k[i][j].

Hence, we have sk′[j] = ski,k[i][j] for every j ∈ [ℓsk], namely, sk′ = ski,k[i] holds. Thus, TE
satisfies correctness.

15

TKG(1λ) :
k← K(1λ)
∀i ∈ [ℓk]:

∀v ∈ {0, 1}: ski,v
r←− {0, 1}ℓsk ; pki,v ← KG(ski,v)

∀j ∈ [ℓsk]:

ei,j ←

{
flip if (ski,0[j], ski,1[j]) = (1, 0)

E(k, ski,k[i][j]) otherwise

PK← (pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk]; SK← k
Return (PK,SK).

TEnc(PK, i, v,m) :
(pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] ← PK
Return ct← Enc(pki,v,m).

TDec(PK,SK = k, i, ct) :
(pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] ← PK
∀j ∈ [ℓsk]:

sk′[j]←

{
1⊕ k[i] if ei,j = flip

D(k, ei,j) otherwise

Return m← Dec(pki,k[i], sk
′, ct).

Figure 5: The construction of a TE scheme TE from a circular secure bit-SKE scheme SKE and a weakly
noisy-leakage-resilient PKE scheme PKE.

Security. We now show that TE satisfies the two security notions for TE.

Theorem 5 If PKE is weakly (0.6ℓsk)-noisy-leakage-resilient, then TE satisfies security against
the receiver.

Proof of Theorem 5. Let A = (A0,A1) be any PPT adversary that attacks the security
against the receiver of TE. We show that for A, there exists a PPT (0.6ℓsk)-noisy-leakage-
respecting adversary B such that AdvreceiverTE,A (λ) = AdvwlrPKE,B,0.6ℓsk(λ), which implies the theorem.
The description of B = (B0,B1) is as follows.

B0(1λ): B0 first runs (i∗, st) ← A0(1
λ). Next, B0 computes k ← K(1λ), and picks ski∗,k[i∗]

r←−
{0, 1}ℓsk . Let P := {j ∈ [ℓsk] | ski∗,k[i∗][j] = 1 ⊕ k[i∗]} and ℓ := |P |, and suppose P
is {p1, . . . , pℓ} such that 1 ≤ p1 < · · · < pℓ ≤ ℓsk. B0 defines the leakage function
fP : {0, 1}ℓsk → {0, 1}ℓ by

fP (z) := (z[p1], . . . , z[pℓ]) ∈ {0, 1}ℓ.

Then, B0 sets stB as all the information known to B0, and terminates with output (fP , stB).

BOEnc(·,·)
1 (pk′, fP (sk

′) = (sk′[p1], . . . , sk
′[pℓ]) ∈ {0, 1}ℓ, stB): (where (pk′, sk′) denotes the key pair

generated in B’s experiment) B1 first computes pki∗,k[i∗] ← KG(ski∗,k[i∗]), and regards pk′

as pki∗,1⊕k[i∗] (correspondingly, implicitly regards sk′ as ski∗,1⊕k[i∗] ∈ {0, 1}ℓsk). Then, for
every j ∈ [ℓsk], B1 generates ei∗,j by

ei∗,j ←

{
flip if j ∈ P ∧ sk′[j] = k[i∗]

E(k, ski∗,k[i∗][j]) otherwise
.

Note that by the definition of P , we have ski∗,k[i∗][j] = 1 ⊕ k[i∗] if and only if j ∈ P .
Furthermore, by the definition of the leakage function fP (·), we have sk′[j] = ski∗,1⊕k[i∗][j]
for all j ∈ P . Hence, we have

j ∈ P ∧ sk′[j] = k[i∗] ⇐⇒ (ski∗,k[i∗][j], ski∗,1⊕k[i∗][j]) = (1⊕ k[i∗], k[i∗])

⇐⇒ (ski∗,0[j], ski∗,1[j]) = (1, 0).

16

Hence, the generation of ei∗,j is in fact exactly the same as in ExptreceiverTE,A (λ).

Then, B1 generates the remaining components in PK = (pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] (i.e.

the components for the positions i ∈ [ℓk] \ {i∗}) by itself exactly as TKG(1λ) does.

Now, B1 runs A1(PK,SK = k, st). When A1 submits an encryption query (m0,m1), B1
just forwards it to its own encryption oracle OEnc(·, ·), and returns whatever returned from
the oracle to A1.

When A1 terminates with output b′, B1 terminates with output b′.

The above completes the description of B. As mentioned above, B generates the key pair
(PK,SK) with exactly the same distribution as that in the actual experiment for security against
the receiver. Since B embeds its instance pk′ to the position (i∗, 1⊕ k[i∗]), it is straightforward
to see that B perfectly simulates the security experiment for A so that A’s the challenge bit is
that of B’s, and thus B’s advantage is exactly the same as that of A’s.

It remains to confirm that B is a (0.6ℓsk)-noisy-leakage-respecting adversary, namely, 0.6ℓsk ≥
H∞(sk′)− H̃∞(sk′|fP (sk′), stB) = ℓsk − H̃∞(sk′|fP (sk′), stB) or equivalently 2−H̃∞(sk′|fP (sk′),stB)

≤ 2−0.4ℓsk holds. To see this, firstly note that stB output by B0 is independent of the choise of
sk′

r←− {0, 1}ℓsk , and thus we have H̃∞(sk′|fP (sk′), stB) = H̃∞(sk′|fP (sk′)). Thus, it is sufficient

to show 2−H̃∞(sk′|fP (sk′)) ≤ 2−0.4ℓsk . Next, notice that P is distributed uniformly over 2[ℓsk] (i.e.
all the subsets of [ℓsk]), since P is determined by the random choice of ski∗,k[i∗]

r←− {0, 1}ℓsk .
Thus, we have

2−H̃∞(sk′|fP (sk′)) = E
P

r←−2[ℓsk], y
r←−{0,1}|P |

[
max
x∗

Pr
sk′

r←−{0,1}ℓsk
[sk′ = x∗|fP (sk′) = y]

]

= E
P

r←−2[ℓsk]

[
2−ℓsk+|P |

]
= 2−2ℓsk ·

∑
P ′⊆[ℓsk]

2|P
′| = 2−2ℓsk ·

ℓsk∑
k=0

(
ℓsk
k

)
· 2k

(∗)
= 2−2ℓsk · 3ℓsk = 2−(2−log2 3)ℓsk

(†)
< 2−0.4ℓsk ,

where the equality (*) uses
∑n

k=0

(
n
k

)
xk = (1 + x)n, and the inequality (†) uses log2 3 < 1.6.

Hence, B is (0.6ℓsk)-noisy-leakage-respecting. □ (Theorem 5)

Theorem 6 If SKE is CIRC(1) secure and PKE is (0.6ℓsk)-noisy-leakage-resilient, then TE sat-
isfies security against outsiders.

Proof of Theorem 6. Let A = (A0,A1) be any PPT adversary that attacks the security against
outsiders of TE. We show that there exist PPT adversaries Bc and Bw (where the latter is
(0.6ℓsk)-noisy-leakage-respecting) satisfying

AdvoutsiderTE,A (λ) ≤ 2 · AdvcircSKE,Bc,1(λ) + AdvwlrPKE,Bw,0.6ℓsk(λ), (1)

which implies the theorem.
To this end, we consider the following two games Game 1 and Game 2.

Game 1: This is the experiment for security against outsiders ExptoutsiderTE,A (λ).

Game 2: Same as Game 1, except that every invocation of E(k, ·) during the generation of PK
is replaced with E(k, 0).

17

For t ∈ {1, 2}, let SUCt be the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game t. By the definitions of the games and events and the triangle inequality, we
have

AdvoutsiderTE,A (λ) = 2 ·
∣∣∣Pr[SUC1]− 1

2

∣∣∣ ≤ 2 ·
∣∣∣Pr[SUC1]− Pr[SUC2]

∣∣∣+ 2 ·
∣∣∣Pr[SUC2]− 1

2

∣∣∣. (2)

In the following, we show how the terms appearing in Equation 2 are bounded.

Lemma 2 There exists a PPT adversary Bc such that AdvcircSKE,Bc,1(λ) = |Pr[SUC1]− Pr[SUC2]|.

Proof of Lemma 2. The description of Bc is as follows. Below, k and β denote the secret key
and the challenge bit, respectively, chosen in Bc’s experiment. Furthermore, since there is only
a single key in the experiment of Bc, we simplify the interface of the circular-encryption oracle
Ocirc to take just i ∈ [ℓk] ∪ {zero, one} as input.

BOcirc(·)
c (1λ): Bc first runs (i∗, v∗, st)← A0(1

λ). Next, for every i ∈ [ℓk], Bc does the following:

1. For both v ∈ {0, 1}, pick ski,v
r←− {0, 1}ℓsk and compute pki,v ← KG(ski,v).

2. For the positions j ∈ [ℓsk] for which (ski,0[j], ski,1[j]) = (1, 0) holds, set ei,j ← flip.

3. For the remaining positions j ∈ [ℓsk] with (ski,0[j], ski,1[j]) ̸= (1, 0), set

ij ←

zero if (ski,0[j], ski,1[j]) = (0, 0)

one if (ski,0[j], ski,1[j]) = (1, 1)

i if (ski,0[j], ski,1[j]) = (0, 1)

,

submit ij to Bc’s oracle Ocirc(·), and receive ei,j as the answer from Ocirc.

Note that if (ki,0[j], ki,1[j]) = (0, 1) then ski,k[i][j] = k[i] holds, and the latter is
trivially true for the cases (ki,0[j], ki,1[j]) ∈ {(0, 0), (1, 1)}. Thus, Ocirc computes ei,j
as follows:

ei,j ←

{
E(k, ski,k[i][j]) if β = 1

E(k, 0) if β = 0
.

Therefore, if β = 1 (resp. β = 0), then ei,j for every j ∈ [ℓsk] is computed exactly as
in Game 1 (resp. Game 2).

Then, Bc sets PK← (pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk], picks b
r←− {0, 1}, and runs A1(PK, st).

Bc answers A1’s encryption queries (m0,m1) by returning ct← Enc(pki∗,v∗ ,mb).

When A1 terminates with output b′, Bc terminates with output β′ ← (b′
?
= b).

The above completes the description of Bc. It is straightforward to see that if β = 1 (resp.
β = 0), then Bc simulates Game 1 (resp. Game 2) perfectly for A. Since Bc outputs β′ = 1 if
and only if A succeeds in guessing the challenge bit (i.e. b′ = b occurs), we have

AdvcircSKE,Bc,1(λ) =
∣∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]

∣∣∣ = ∣∣∣Pr[SUC1]− Pr[SUC2]
∣∣∣.

□ (Lemma 2)

Lemma 3 There exists a PPT (0.6ℓsk)-noisy-leakage-respecting adversary Bw such that
AdvwlrPKE,Bw,0.6ℓsk(λ) = 2 · |Pr[SUC2]− 1/2].

18

Proof Sketch of Lemma 3. The reduction algorithm Bw for the proof of this lemma proceeds
very similarly to B used in the proof of Theorem 5, with the following differences:

• Bw embeds its instance pk′ into the position (i∗, v∗) output by A0 (rather than (i∗, 1 ⊕
k[i∗])), which means that (pk′, sk′) now corresponds to (pki∗,v∗ , ski∗,v∗); Bw generates the
key pair of the opposite position, namely (pki∗,1⊕v∗ , ski∗,1⊕v∗) by itself.

• Bw defines the set P by P := {j ∈ [ℓsk]|ski∗,1⊕v∗ [j] = v∗}, and uses it to define the leakage
function fP (·) exactly B in the proof of Theorem 5 does. Note that since we have the
correspondence sk′ = ski∗,v∗ , the leakage fP (sk

′) is (ski∗,v∗ [j])j∈P .

• For every j ∈ [ℓsk], Bw generates ei∗,j by

ei∗,j ←

{
flip if j ∈ P ∧ sk′[j] = 1⊕ v∗

E(k, 0) otherwise
.

Then, by the definition of P and the correspondence sk′ = ski∗,v∗ , we have

j ∈ P ∧ sk′[j] = 1⊕ v∗ ⇐⇒ (ski∗,1⊕v∗ [j], ski∗,v∗ [j]) = (v∗, 1⊕ v∗)

⇐⇒ (ski∗,0[j], ski∗,1[j]) = (1, 0).

Thus, ei∗,j is generated exactly as in Game 2.

Then, it is straightforward to see that Bw is (0.6ℓsk)-noisy-leakage-respecting and simulates
Game 2 perfectly for A, and its advantage in attacking the weak noisy-leakage-resilience of PKE
is exactly 2 · |Pr[SUC2]− 1/2|. □ (Lemma 3)

Combining Lemmas 2 and 3 with Equation 2, we can conclude that there exist PPT adver-
saries Bc and Bw satisfying Equation 1. □ (Theorem 6)

5 Implications of Our TE Scheme

In this section, we explain the implications of our TE scheme in Section 4.

Completeness of Circular Security for KDM Security in the Single-Key Setting.
Note that our construction of TE is a fully black-box construction from the building blocks.
Moreover, by appropriately setting parameters, we can construct a PKE scheme with simple key
generation whose secret key length is ℓsk and that satisfies weak (0.6ℓsk)-noisy-leakage-resilience,
based on any IND-CPA secure PKE scheme via Lemma 1. Hence, the following theorem follows
from the combination of Theorems 4, 5, and 6, and Lemma 1.

Theorem 7 If there exist an IND-CPA secure PKE scheme and a CIRC(1) secure bit-SKE
scheme, then for any polynomial size = size(λ), there exists a Bsize-KDM(1)-CPA secure PKE
scheme. Furthermore, there exists a fully black-box construction of a P-KDM(1)-CPA secure
PKE scheme from an IND-CPA secure PKE scheme and a CIRC(1) secure bit-SKE scheme.

Combining Theorem 7 with Theorem 3, we obtain the following completeness theorem for
KDM security in the single-key setting. This improves the results of [App11] and [KM19] in
terms of assumptions.

Theorem 8 If there exists an IND-CPA secure PKE scheme and a CIRC(1) secure bit-SKE
scheme, then for any polynomial size = size(λ), there exists a Bsize-KDM(1)-CCA secure PKE
scheme.

19

In Section 7, we will show that a similar completeness theorem for KDM security in the
multi-key setting can be established. For the result, we will rely on the results on IND-CCA
secure PKE and a reusable DV-NIZK argument system9 for NP languages stated below.

Additional Results on IND-CCA PKE and DV-NIZK. As stated in Theorem 7, a
P-KDM(1)-CPA secure PKE scheme can be constructed from an IND-CPA secure PKE and a
CIRC(1) secure bit-SKE scheme in a fully black-box manner. Hence, combined with Theorem 2,
we obtain the following result on IND-CCA secure PKE, which improves the results of [KMT19]
and [HK15] in terms of assumptions.

Theorem 9 There exists a fully black-box construction of an IND-CCA secure PKE scheme
from an IND-CPA secure PKE scheme and a CIRC(1) secure bit-SKE scheme.

Finally, combining Theorem 7 with Theorem 15, we also obtain the following result on a
reusable DV-NIZK argument system, which improves the results of [KM19] and [LQR+19] in
terms of assumptions.

Theorem 10 If there exists an IND-CPA secure PKE scheme and a CIRC(1) secure bit-SKE
scheme, then there exists a reusable DV-NIZK argument system for all NP languages.

6 Conformed Targeted Encryption

In this section, we introduce an encryption primitive that we call conformed targeted encryption
(CTE). This is an extension of an ordinary TE, and has some similar flavor to augmented TE
formalized by Barak et al. [BHHI10]. Our definitional choice of CTE is made so that (1) it can
be achieved from the combination of an IND-CPA secure PKE scheme and a circular secure
bit-SKE scheme, and (2) it is sufficient as a building block for constructing a KDM-CCA secure
PKE scheme in the multi-key setting.

In Section 6.1, we give the definitions for CTE and explain its difference with augmented TE
formalized by Barak et al.. In Section 6.2, we show how our TE scheme presented in Section 4
can be extended to be a CTE scheme satisfying all the requirements.

6.1 Definitions

Syntax and Correctness. A conformed targeted encryption (CTE) scheme TE consists of

the six algorithms (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec):

• CKG, CEnc, and CDec are defined similarly to the key generation, encryption, and de-
cryption algorithms of a TE scheme, respectively, except that in addition to a pub-
lic/secret key pair (pk, sk), CKG also outputs a trapdoor td. This process is written
as (pk, sk, td)← CKG(1λ).

• ĈDec is the trapdoor-decryption algorithm that takes td, an index i ∈ [ℓsk], a bit v ∈ {0, 1},
and a ciphertext ct (supposedly generated by CEnc) as input, and outputs a message m.

• CSEnc and CSDec are the additional secret-key encryption and decryption algorithms,
respectively, where they use a secret key sk generated by CKG. We denote c̃t to indicate
that it is a ciphertext generated by CSEnc.

9The formal definitions for IND-CCA security, and those for a reusable DV-NIZK argument system as well as
Theorem 15 (which recalls the result from [KM19, LQR+19]) are given in Sections A.1 and A.2, respectively.

20

As the correctness for a CTE scheme, we require that for all λ ∈ N and (pk, sk, td)← CKG(1λ),
the following conditions are satisfied:

1. CDec(pk, sk, i,CEnc(pk, i, sk[i],m)) = m holds for all i ∈ [ℓsk] and m.

2. ĈDec(td, i, v,CEnc(pk, i, v,m)) = m holds for all (i, v) ∈ [ℓsk]× {0, 1} and m.

3. CDec(pk, sk, i, ct) = ĈDec(td, i, sk[i], ct) holds for all i ∈ [ℓsk] and ct (not necessarily in the
support of CEnc).

4. CSDec(sk,CSEnc(sk,m)) = m holds for all m.

Note that the first condition of correctness ensures that (CKG,CEnc,CDec) constitutes a TE
scheme when td in the output of CKG is discarded. We also remark that the third condition
of correctness is required to hold for all values of ct not necessarily in the support of CEnc.
Looking ahead, this property plays an important role in our construction of KDM-CCA secure
PKE in Section 7.

Security Definitions for CTE. For a CTE scheme, we require two security notions: security
against the receiver and special weak circular security (in the multi-key setting).10 The former
is defined in exactly the same way as that for TE, except that we just discard and ignore the
trapdoor td generated from CKG. Thus, we omit its formal description.

The latter security notion, special weak circular security, requires that the additional secret-
key encryption/decryption algorithms (CSEnc,CSDec) satisfy a weak form of circular security
in the multi-key setting. Specifically, in the n-key setting, we require that messages encrypted
by CSEnc be hidden even in the presence of public keys {pks}s∈[n], trapdoors {tds}s∈[n], and
encryptions of a “key cycle” {CSEnc(sks, sk(s mod n)+1)}s∈[n]. We call it weak since except for
giving {(pks, tds)}s∈[n] to an adversary, our definition is the same as the definition of weak
circular security formalized by Cash, Green, and Hohenberger [CGH12].

Formally, let n = n(λ) be a polynomial. For a CTE scheme (CKG,CEnc,CDec, ĈDec,CSEnc,
CSDec), n, and an adversary A, consider the experiment Exptsp−wcircCTE,A,n(λ) described in Figure 6.
Note that in the experiment, OCSEnc is an ordinary (challenge) encryption oracle. Thus, except
for the encryptions of a key cycle {CSEnc(sks, sk(s mod n)+1)}s∈[n], A is not allowed to directly
obtain encryptions of key-dependent messages.

Definition 6 (Special Weak Circular Security) Let n = n(λ) be a polynomial. We say
that a CTE scheme CTE satisfies special weak circular security in the n-key setting (special weak
CIRC(n) security) if for all PPT adversaries A, we have Advsp−wcircCTE,A,n(λ) := 2·|Pr[Exptsp−wcircCTE,A,n(λ) =
1]− 1/2| = negl(λ).

Relation to Augmented TE. As mentioned earlier, Barak et al. [BHHI10] introduced the
notion of augmented TE, and used it to construct a Bsize-KDM(n)-CPA-secure PKE scheme for
any polynomials n = n(λ) and size = size(λ). An augmented TE scheme is a TE scheme with
the additional public-key encryption/decryption algorithms, for which Barak et al. assumed
circular security in the n-key setting. (Their definition requires that encryptions of a key cycle
of length n are indistinguishable from encryptions of some fixed messages.)

We observe that their security proof goes through even if (1) the additional encryption/decryption
algorithms are of secret-key, and (2) we only require weak circular security in the n-key setting

10We can also consider security against outsiders for CTE. However, we do not formalize it since we need not
use it in our construction of KDM-CCA secure PKE.

21

Exptsp−wcirc
CTE,A,n(λ) :

∀s ∈ [n] : (pks, sks, tds)← CKG(1λ)

(c̃t
s
)s∈[n] ← EncCycle((sks)s∈[n])

b
r←− {0, 1}

b′ ← AOCSEnc(·,·,·)((pks, tds, c̃t
s
)s∈[n])

Return (b′
?
= b).

EncCycle((sks)s∈[n]) :

∀s ∈ [n] : c̃t
s ← CSEnc(sks, sk(s mod n)+1)

Return (c̃t
s
)s∈[n].

OCSEnc(α,m0,m1) : // α ∈ [n], |m0| = |m1|
c̃t← CSEnc(skα,mb)
Return c̃t.

Figure 6: The experiment for defining special weak circular security for a CTE scheme.

[CGH12], which requires that IND-CPA security holds in the presence of encryptions of a key
cycle of length n.

Our formalization for CTE is based on these observations, but CTE has an additional
syntactical extension involving a trapdoor generated in the key generation algorithm, together
with the additional correctness requirements. This plays an important role in the security proof
for our Bsize-KDM(n)-CCA secure PKE scheme presented in Section 7. We also remark that we
do not require CTE to satisfy security against outsiders, while it is necessary for augmented TE
used in the construction of KDM-CPA secure PKE in [BHHI10]. Our construction of KDM-
CCA secure PKE does not require security against outsiders for the underlying CTE scheme
because of the other building blocks. (See Section 7.)

6.2 Construction

Let n = n(λ) be a polynomial for which we would like our CTE scheme CTE to satisfy special
weak CIRC(n) security. Let PKE = (KG,Enc,Dec) and SKE = (K,E,D) be PKE and SKE
schemes as in Section 4, respectively, where we now require SKE to be CIRC(n) secure.

Our construction of a CTE scheme CTE = (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec) based
on PKE and SKE, is a simple extension of our TE scheme TE = (TKG,TEnc,TDec) presented
in Section 4. Specifically, each algorithm of CTE operates as follows:

• CKG computes a public/secret key pair (PK,SK) in exactly the same way as TKG, and
additionally outputs td := (pki,v, ski,v)i∈[ℓk],v∈{0,1} as a trapdoor.

• CEnc and CDec are exactly TEnc and TDec, respectively.

• ĈDec(td, i, v, ct) := Dec(pki,v, ski,v, ct).

• CSEnc and CSDec use E and D to encrypt/decrypt a message/ciphertext in a bit-wise
fashion. More specifically, CSEnc(SK = k,m ∈ {0, 1}µ) outputs c̃t = (c̃tt)t∈[µ], where

c̃tt ← E(k,m[t]) for each t ∈ [µ]; CDec(SK = k, c̃t = (c̃tt)t∈[µ]) computes m[t] ← D(k, c̃tt)
for each t ∈ [µ], and outputs m.

See Figure 5 for the figure version of our construction CTE.

Correctness. The first condition of correctness is exactly the same as the correctness for
TE. The third condition of correctness holds because sk′ computed in CDec(PK,SK = k, i, ·) is
ski,k[i] as we saw for the correctness of TE. The second and fourth conditions of correctness are
trivially satisfied because of the correctness of PKE and SKE, respectively.

Security. The following theorems guarantee that CTE satisfies the two kinds of security no-
tions for CTE. We omit the proof of Theorem 11 since it is exactly the same as that of Theorem 5.

22

CKG(1λ) :
k← K(1λ)
∀i ∈ [ℓk]:

∀v ∈ {0, 1}: ski,v
r←− {0, 1}ℓsk ; pki,v ← KG(ski,v)

∀j ∈ [ℓsk]:

ei,j ←

{
flip if (ski,0[j], ski,1[j]) = (1, 0)

E(k, ski,k[i][j]) otherwise

PK← (pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk]; SK← k; td← (ski,v, pki,v)i∈[ℓk],v∈{0,1}
Return (PK,SK, td).

CEnc(PK, i, v,m) :
(pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] ← PK
Return ct← Enc(pki,v,m).

ĈDec(td, i, v, ct) :
(pki,v, ski,v)i∈[ℓk],v∈{0,1} ← td
Return m← Dec(pki,v, ski,v, ct).

CDec(PK,SK = k, i, ct) :
(pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] ← PK
∀j ∈ [ℓsk]:

sk′[j]←

{
1⊕ k[i] if ei,j = flip

D(k, ei,j) otherwise

Return m← Dec(pki,k[i], sk
′, ct).

CSEnc(SK = k,m) :
∀t ∈ [|m|] : c̃tt ← E(k,m[t])
Return c̃t = (c̃tt)t∈[|m|].

CSDec(SK = k, c̃t) :
Parse c̃t as (c̃tt)t∈[µ] for some µ ∈ N
where each c̃tt is a ciphertext of SKE.
∀t ∈ [µ] : m[t]← D(k, c̃tt)
Return m.

Figure 7: The construction of a CTE scheme CTE from a circular secure bit-SKE scheme SKE and a
weakly noisy-leakage-resilient PKE scheme PKE.

Theorem 11 If PKE is weakly (0.6ℓsk)-noisy-leakage-resilient, then CTE satisfies security against
the receiver.

Theorem 12 Let n = n(λ) be a polynomial. If SKE is CIRC(n) secure, then CTE satisfies
special weak CIRC(n) security.

Proof Sketch of Theorem 12. This is straightforward to see by noting that CSEnc directly uses
E to encrypt a given message in a bit-wise fashion, and the trapdoor td consists only of key
pairs of the underlying PKE scheme PKE and thus is independent of a secret key SK = k.

More specifically, for s ∈ [n], let SKs = ks denote the s-th secret key. Then, consider
a modified security experiment, which proceeds similarly to the experiment for the special
weak CIRC(n) security of CTE, except that for every s ∈ [n], all invocations of E(ks, ·) (which
include those during the execution of EncCycle((SKs = ks)s∈[n]), those during the execution

of (PKs, SKs = ks, tds) ← CKG(1λ), and those for encryption queries from an adversary) are
replaced with E(ks, 0). Note that this modified experiment is independent of the challenge bit
b, and thus any adversary has zero advantage. Furthermore, by the CIRC(n) security of SKE,
for any PPT adversary, its advantage in the original special weak CIRC(n) security experiment
is negligibly close to that in the modified experiment. □ (Theorem 12)

7 KDM-CCA Security in the Multi-key Setting

In this section, we show the completeness of circular security in the multi-key setting. Specifi-
cally, we show the following theorem:

Theorem 13 Let n = n(λ) be a polynomial. Assume that there exist an IND-CPA secure PKE
scheme and a CIRC(n) secure bit-SKE scheme. Then, for any polynomial size = size(λ), there
exists a Bsize-KDM(n)-CCA secure PKE scheme.

23

Note that this result improves the result by Kitagawa and Matsuda [KM19] (recalled as Theo-
rem 3) in terms of the strength of assumptions and the number of keys.

As explained earlier, we will show the above theorem by constructing a Bsize-KDM(n)-CCA
secure PKE scheme from the building blocks that are all implied by an IND-CPA secure PKE
scheme and a CIRC(n) secure bit-SKE scheme. Our construction can be seen as combining the
construction ideas from the bounded-KDM(n)-CPA secure PKE scheme from an augmented TE
scheme by Barak et al. [BHHI10] and the bounded-KDM(1)-CCA secure PKE scheme from an
IND-CPA secure PKE scheme and a projection-KDM(1)-CPA secure SKE scheme by Kitagawa
and Matsuda [KM19]. The latter construction in fact uses an IND-CCA secure PKE scheme,
a garbling scheme, and a reusable DV-NIZK argument system as additional building blocks,
which are implied by the assumption used in [KM19]. Construction-wise, roughly speaking, our
construction is obtained by replacing the underlying IND-CPA secure scheme of the Kitagawa-
Matsuda construction with a CTE scheme.

Construction. To construct a Bsize-KDM(n)-CCA secure PKE scheme, we use the following
building blocks all of which are implied by the combination of an IND-CPA secure PKE scheme
and a CIRC(n) secure SKE scheme:

• Let CTE = (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec) be a CTE scheme whose secret key
length is ℓsk. We denote the randomness space of CEnc by R.

• Let PKEcca = (KGcca,Enccca,Deccca) be an IND-CCA secure PKE scheme.

• Let GC = (Garble,Eval, Sim) be a garbling scheme for circuits.

• Let DVNIZK = (DVKG,P,V) be a reusable DV-NIZK argument system for the following
NP language L:11

L =

{ (
pk, (cti,v)i∈[ℓsk],v∈{0,1}

) ∣∣∣∣ ∃(labi, ri,0, ri,1)i∈[ℓsk] s.t. ∀(i, v) ∈ [ℓsk]× {0, 1} :
cti,v = CEnc(pk, i, v, labi; ri,v)

}
.

Let µ = µ(λ) be a polynomial that denotes the length of messages to be encrypted by our
constructed PKE scheme. Let size = size(λ) ≥ max{ℓsk, µ} and n = n(λ) be polynomials for
which we wish to achieve Bsize-KDM(n)-CCA security. Finally, let pad = O(n · |CSDec|+ size) ≥
size be the size parameter for the underlying garbling scheme, where |CSDec| denotes the size
of the circuit computing CSDec.

Using these ingredients, we construct our proposed PKE scheme PKEkdm = (KGkdm,Enckdm,
Deckdm) whose message space is {0, 1}µ as described in Figure 8.

Correctness. The correctness of PKEkdm follows from that of the building blocks. Specifi-
cally, let (PK, SK) = ((pk, pkcca, pkdv, c̃t), sk) be a key pair output by KGkdm, let m ∈ {0, 1}µ
be any message, and let CT ← Enckdm(PK,m) be an honestly generated ciphertext. Due to
the correctness of CTE, PKEcca, and DVNIZK, each decryption/verification done in the execu-
tion of Deckdm(PK, SK,CT) never fails, and just before the final step of Deckdm, the decryptor
can recover a garbled circuit Q̃ and the labels (labi)i, which is generated as (Q̃, (labi)i) ←
Sim(1λ, pad,m). Then, by the correctness of GC, we have Eval(Q̃, (labi)i) = m.

11Intuitively, a statement (pk, (cti,v)i∈[ℓsk],v∈{0,1}) of the language L constitutes a (ℓsk×2)-matrix of ciphertexts
such that the pair (cti,0, cti,1) in the i-th row encrypt the same plaintext labi for each i ∈ [ℓsk].

24

KGkdm(1
λ) :

(pk, sk, td)← CKG(1λ)
(pkcca, skcca)← KGcca(1

λ)
(pkdv, skdv)← DVKG(1λ)
c̃t← CSEnc(sk, (skcca, skdv))
PK← (pk, pkcca, pkdv, c̃t); SK← sk
Return (PK,SK).

Deckdm(PK,SK = sk,CT) : (⋆)

(pk, pkcca, pkdv, c̃t)← PK
(skcca, skdv)← CSDec(sk, c̃t)

(Q̃, (cti,v)i,v, π)← Deccca(pkcca, skcca,CT)
x← (pk, (cti,v)i,v)
If V(skdv, x, π) = reject then return ⊥.
∀i ∈ [ℓsk] : labi ← CDec(pk, sk, i, cti,sk[i])

Return m← Eval(Q̃, (labi)i).

Enckdm(PK,m) :
(pk, pkcca, pkdv, c̃t)← PK

(Q̃, (labi)i)← Sim(1λ, pad,m)
∀(i, v) ∈ [ℓsk]× {0, 1} :
ri,v

r←− R
cti,v ← CEnc(pk, i, v, labi; ri,v)

x← (pk, (cti,v)i,v)
w ← (labi, ri,0, ri,1)i
π ← P(pkdv, x, w)

CT← Enccca(pkcca, (Q̃, (cti,v)i,v, π))
Return CT.

Figure 8: The construction of a Bsize-KDM(n)-CCA secure PKE scheme PKEkdm from a CTE
scheme CTE, an IND-CCA secure PKE scheme PKE, a garbling scheme for circuits GC, and
a reusable DV-NIZK argument system DVNIZK. The notations like (Xi,v)i,v and (Xi)i are
abbreviations for (Xi,v)i∈[ℓsk],v∈{0,1} and (Xi)i∈[ℓsk], respectively.

(⋆) If CSDec, CDec, or Deccca
returns ⊥, then Deckdm returns ⊥ and terminate.

Security. The following theorem guarantees the Bsize-KDM(n)-CCA security of PKEkdm. Com-
bined with Theorems 9, 10, 11, and 12, it implies Theorem 13.

Theorem 14 Let n = n(λ), µ = µ(λ), and size = size(λ) ≥ max{ℓsk, µ} be any polynomials.
Also, let pad = O(n · |CSDec| + size), where |CSDec| denotes the size of the circuit computing
CSDec. Assume that CTE satisfies security against the receiver and special weak CIRC(n) se-
curity, PKEcca is IND-CCA secure, GC is a secure garbling scheme, and DVNIZK is a reusable
DV-NIZK argument system (satisfying soundness and zero-knowledge) for the NP language L.
Then, PKEkdm is Bsize-KDM(n)-CCA secure.

Overview of the Proof. The proof uses a sequence of games argument. The first game is the
original Bsize-KDM(n)-CCA experiment regarding PKEkdm. Let A be a PPT adversary, and for
s ∈ [n], let (PKs = (pks, pkscca, pk

s
dv, c̃t

s
),SKs = sks) denote the s-th public/secret key pair.

We first invoke the zero-knowledge of DVNIZK to change the security game so that the
simulator S = (S1,S2) is used to generate each (pksdv, sk

s
dv) at key generation, and generate π

in the response to KDM-encryption queries.
Next, we deal with the KDM-encryption queries (α, f0, f1), and make the behavior of the

KDM-encryption oracle (essentially) independent of the secret keys {sks}s∈[n]. If there ex-
isted only a single key pair (PK, SK = sk), then we could change the generation of the CTE-
ciphertexts (cti,v)i,v in the KDM-encryption oracle so that we garble the KDM function fb by

(Q̃, (labi,v)i,v)← Garble(1λ, fb) and then encrypt labi,v by cti,v ← CEnc(pks, i, v, labi,v) for every

(i, v) ∈ [ℓsk] × {0, 1}. Since Eval(Q̃, (labi,sk[i])i∈[ℓsk]) = fb(sk), this can go unnoticed by A due
to the security of GC and the security against the receiver of CTE, and the behavior of the re-
sulting KDM-encryption oracle becomes independent of the secret key sk. However, we cannot
take this rather simple approach in the multi-key setting, since the KDM-function fb here is
a function that takes all keys {sks}s∈[n] as input, while we need to garble a circuit that takes
a single key skα as input. Here, we rely on the clever technique of Barak et al. [BHHI10] to

25

transform the KDM function fb to a circuit Q so that Q(skα) = fb((sk
s)s∈|n|) holds, by using

encryptions of the key cycle {ẽs = CSEnc(sks, sk(s mod n)+1)}s∈[n]. Specifically, Q has α, fb, and
{ẽs}s∈[n] hardwired, and it on input skα decrypts the encryptions of the key cycle one-by-one
to recover all keys {sks}s∈[n] and then outputs fb((sk

s)s∈[n]). Then, we can garble Q instead
of garbling fb directly, and the argument goes similarly to the above. This change necessitates
that the subsequent games generate the encryptions of the key cycle.

Then, we deal with the decryption queries (α,CT), and make the behavior of the decryption
oracle independent of the secret keys {sks}s∈[n]. To achieve this, notice that the only essential
part that we need to use the secret key skα in the decryption procedure is the step of executing
labi ← CDec(pkα, skα, cti,sk[i]) for every i ∈ [ℓsk]. To eliminate the dependency on skα in this

step, in the next game we replace the above step with labi ← ĈDec(tdα, i, skα[i], cti,skα[i]) for
every i ∈ [ℓsk]. This makes no change in the behavior of the decryption oracle due to the third
condition of the correctness of CTE. Next, we further change this step to always decrypt the “0-

side” ciphertext cti,0 as labi ← ĈDec(tdα, i, 0, cti,0) for every i ∈ [ℓsk]. Now the behavior of the
decryption oracle becomes independent of the secret keys {sks}s∈[n]. The behavior of the decryp-
tion oracle could differ between the change only if ĈDec(tdα, i∗, 0, cti∗,0) ̸= ĈDec(tdα, i∗, 1, cti∗,1)
holds for some i∗ ∈ [ℓsk] and yet the proof π recovered from CT is valid. Let us call such a
query a bad decryption query. If A does not make a bad decryption query, this change of the
behavior of the decryption oracle cannot be noticed by A. Similarly to [KM19], we bound the
probability of a bad query occurring to be negligible using a deferred analysis technique and
postpone to bound it in a later (in fact the final) game, together with the second correctness
condition of CTE. See the formal proof for this argument.

Now, since the behavior of the KDM-encryption and decryption oracles become independent
of the secret keys {sks}s∈[n], the remaining steps in which we use the secret keys are to generate

{c̃ts}s∈[n] in public keys, and to generate the encryptions of the key cycle {ẽs}s∈[n]. Then, we

can rely on the special weak CIRC(n) security of CTE to ensure that c̃t
s
is indistinguishable

from an encryption of a garbage that contains no information on (skscca, sk
s
dv) in the presence of

the trapdoors {tds}s∈[n] and the encryptions of the key cycle {ẽs}s∈[n]. Finally, we invoke the
IND-CCA security of PKEcca to conclude that A’s advantage in the final game is negligible.

Proof of Theorem 14. Let n = n(λ) be an arbitrary polynomial that denotes the number of
key pairs. Let A be an arbitrary PPT adversary that attacks the Bsize-KDM(n)-CCA security
of PKEkdm. For simplicity and without loss of generality, we assume that A does not make a
decryption query (α,CT) such that (α,CT) ∈ Lkdm. We proceed the proof via a sequence of
games argument using nine games. For every t ∈ [9], let SUCt be the event that A succeeds in
guessing the challenge bit b in Game t. The final game (Game 9) is used only to bound the
probability of a bad event introduced later.

Game 1: This is the original Bsize-KDM(n)-CCA game regarding PKEkdm. Thus, we have
Advkdmcca

PKEkdm,Bsize,A,n(λ) = 2 · |Pr[SUC1]− 1/2|.
The detailed description of the game is as follows:

Generate a key pair (PKs, SKs) of PKEkdm for every s ∈ [n] as follows:

1. Compute (pks, sks, tds)← CKG(1λ).

2. Compute (pkscca, sk
s
cca)← KGcca(1

λ).

3. Compute (pksdv, sk
s
dv)← DVKG(1λ).

4. Compute c̃t
s ← CSEnc(sks, (skscca, sk

s
dv)).

26

5. Set PKs := (pks, pkscca, pk
s
dv, c̃t

s
) and SKs := sks.

Then, choose the challenge bit b
r←− {0, 1}, generate an empty list Lkdm, and runA((PKs)s∈[n]).

From here on, A may start making KDM-encryption and decryption queries.

• The KDM-encryption oracle responds to A’s query (α, f0, f1) ∈ [n] × (Bsize)2 as
follows:

1. Compute (Q̃, (labi)i)← Sim(1λ, pad, fb((sk
s)s∈[n])).

2. For every i ∈ [ℓsk] and v ∈ {0, 1}, pick ri,v
r←− R and compute cti,v ← CEnc(pkαi,v,

i, v, labi; ri,v).

3. Set x := (pkα, (cti,v)i,v) and w := (labi, ri,0, ri,1)i, and compute π ← P(pkαdv, x, w).

4. Return CT ← Enccca(pk
α
cca, (Q̃, (cti,v)i,v, π)) to A and add (α,CT) to the list

Lkdm.

• The decryption oracle responds to A’s query (α ∈ [n],CT) as follows:

1. Compute (Q̃, (cti,v)i,v, π)← Deccca(pk
α
cca, sk

α
cca,CT).

2. If V(skαdv, (pk
α, (cti,v)i,v), π) = reject, then return ⊥ to A.

3. For every i ∈ [ℓsk], compute labi ← CDec(pkα, skα, i, cti,skα[i]).

4. Return m← Eval(Q̃, (labi)i) to A.
Note that the above procedure is not exactly the same as Deckdm(PK

α,SKα = skα,
CT), because the computations of CSDec(skα, c̃t

α
) for retrieving (skαcca, sk

α
dv) is omit-

ted. However, the answer to a decryption query computed by the above procedure
is exactly the same as that computed by Deckdm. Therefore, it does not affect A’s
view. Looking ahead, the trapdoors {tds}s∈[n] will be used from Game 5.

At some point, A outputs b′ ∈ {0, 1} and terminates.

Game 2: Same as Game 1, except that the simulator S = (S1,S2) for the zero-knowledge
property of DVNIZK is used for generating (pksdv, sk

s
dv) for every s ∈ [n] and a proof π in

a ciphertext in response to KDM-encryption queries, instead of using DVKG and P.

More precisely, we make the following two changes from the previous game:

(1) When generating PKs and SKs, (pksdv, sk
s
dv, td

s
dv) ← S1(1λ) is executed instead of

(pksdv, sk
s
dv)← DVKG(1λ).

(2) When responding to A’s KDM-encryption query (α, f0, f1), the KDM-encryption ora-
cle computes π ← S2(tdαdv, x) instead of π ← P(pkαdv, x, w), where x = (pkα, (cti,v)i,v) and
w = (labi, ri,0, ri,1)i.

By applying the zero-knowledge of DVNIZK with a hybrid argument over key indices [n], we
have |Pr[SUC1]− Pr[SUC2]| = negl(λ).

Game 3: Same as Game 2, except that for answering to KDM-encryption queries from A, the
KDM-encryption oracle uses a garbled circuit Q̃ and the labels (labi)i∈[ℓsk] generated by
garbling a circuit into which encryptions of the “key cycle” is hardwired, instead of using
the simulator Sim of GC.

More specifically, we make the following two changes from the previous game:

27

Circuit Q[α, f, (ẽs)s∈[n]](·) :
Hardwired: An index α ∈ [n], a circuit f : {0, 1}ℓsk·n → {0, 1}µ, and ciphertexts (ẽs)s∈[n].

Input: A string z ∈ {0, 1}ℓsk .

1. Set zα ← z.

2. For k = α, α + 1, . . . , α + n − 2 (where set k ← k − n if k > n), compute z(k mod n)+1 ←
CSDec(zk, ẽk).

3. Return m← f((zs)s∈[n]).

Figure 9: Description of the circuit Q.

(1) Just after generating key pairs {(PKs, SKs)}s∈[n], encryptions of the “key cycle” are
generated by using the additional encryption algorithm CSEnc, namely by computing
ẽs ← CSEnc(sks, sk(s mod n)+1) for every s ∈ [n].

(2) When responding to a KDM-encryption query from A, the KDM-encryption oracle
generates a garbled circuit by garbling the circuit Q shown in Figure 9.

More precisely, when A makes a KDM-encryption query (α, f0, f1), the KDM-encryption
oracle computes (Q̃, (labi,v)i,v) ← Garble(1λ,Q[α, fb, (ẽ

s)s∈[n]]). Moreover, for every i ∈
[ℓsk] and v ∈ {0, 1}, the oracle computes cti,v ← CEnc(pkα, i, v, labi,skα[i]).

12

Note that for every s ∈ [n], ẽs encrypts sk(s mod n)+1 with the key sks, and thus CSDec(sks, ẽs)
= sk(s mod n)+1 holds. Thus, we have

Q[α, fb, (ẽ
s)s∈[n]](sk

α) = fb((sk
s)s∈[n]).

Therefore, by setting pad as the size of the circuit Q which is O(n · |CSDec| + size), from the
security of GC with a hybrid argument over A’s KDM-encryption queries, we have |Pr[SUC2]−
Pr[SUC3]| = negl(λ).

Game 4: Same as Game 3, except that when responding to a KDM-encryption query (α, f0, f1),
the KDM-encryption oracle computes cti,1⊕skα[i] ← CEnc(pkα, i, 1⊕ skα[i], labi,1⊕skα[i]) for
every i ∈ [ℓsk].

By applying the security against the receiver of CTE with a hybrid argument over all posi-
tions [ℓsk] and all key indices [n], we have |Pr[SUC3]− Pr[SUC4]| = negl(λ).

Due to the change made in this game, cti,v is now computed as cti,v ← CEnc(pkα, i, v, labi,v)
for every (i, v) ∈ [ℓsk]×{0, 1}. This means that except for the use of the encryptions of the key
cycle {ẽs}s∈[n], the behavior of the KDM-encryption oracle becomes independent of the secret
keys {sks}s∈[n]. In the next two games, we will make changes that ensure that the secret keys
are also not used for responding to decryption queries.

Game 5: Same as Game 4, except that when responding to a decryption query under a key
index α ∈ [n], the decryption oracle computes the label labi by decrypting cti,skα[i] using

the trapdoor-decryption algorithm ĈDec, instead of the ordinary decryption algorithm
CDec, for every i ∈ [ℓsk].

More precisely, for a decryption query (α,CT), the decryption oracle responds as follows.
(The change from the previous game is underlined.)

12In Game 3, the labels of the opposite positions, {labi,1⊕skα[i]}i∈[ℓsk], are not used at all. They will be used in
the subsequent games.

28

1. Compute (Q̃, (cti,v)i,v, π)← Deccca(pk
α
cca, sk

α
cca,CT).

2. If V(skαdv, (pk
α, (cti,v)i,v), π) = reject, then return ⊥ to A.

3. For every i ∈ [ℓsk], compute labi ← ĈDec(tdα, i, skα[i], cti,skα[i]).

4. Return m← Eval(Q̃, (labi)i) to A.

Recall that the third condition of the correctness of CTE ensures that CDec(pkα, skα, i, ct) =

ĈDec(tdα, i, skα[i], ct) holds for all i ∈ [ℓsk] and all ciphertexts ct that are not necessarily in the
support of CEnc. Hence, the behavior of the decryption oracle does not change between Games
4 and 5, and we have Pr[SUC4] = Pr[SUC5].

Game 6: Same as Game 5, except that when responding to a decryption query under a key
index α ∈ [n], the decryption oracle computes the label labi by decrypting the “0-side”
ciphertext cti,0, instead of the “(1⊕ skα[i])-side” ciphertext cti,skα[i], for every i ∈ [ℓsk].

More precisely, for a decryption query (α,CT), the decryption oracle responds as follows.
(The change from the previous game is underlined.)

1. Compute (Q̃, (cti,v)i,v, π)← Deccca(pk
α
cca, sk

α
cca,CT).

2. If V(skαdv, (pk
α, (cti,v)i,v), π) = reject, then return ⊥ to A.

3. For every i ∈ [ℓsk], compute labi ← ĈDec(tdα, i, 0, cti,0).

4. Return m← Eval(Q̃, (labi)i) to A.

By the change made in this game, the secret keys {sks}s∈[n] are not needed for responding
to decryption queries.

We define the following events in Game t ∈ {5, . . . , 9}.

BDQt: In Game t, A makes a decryption query (α,CT) that satisfies the following two conditions,
where (Q̃, (cti,v)i,v, π)← Deccca(pk

α
cca, sk

α
cca,CT):

1. V(skαdv, (pk
α, (cti,v)i,v, π) = accept.

2. ĈDec(tdα, i∗, 0, cti∗,0) ̸= ĈDec(tdα, i∗, 1, cti∗,1) holds for some i∗ ∈ [ℓsk].

We call such a decryption query a bad decryption query.

Games 5 and 6 are identical unless A makes a bad decryption query in the corresponding
games. Thus, we have |Pr[SUC5]− Pr[SUC6]| ≤ Pr[BDQ6].

Game 7: Same as Game 6, except that for every s ∈ [n], when generating PKs, c̃t
s
is generated

as c̃t
s ← CSEnc(c̃t

s
, 0µ

′
), instead of c̃t

s ← CSEnc(sks, (skscca, sk
s
dv)), where µ′ = |skscca| +

|sksdv|.

Recall that in Games 6 and 7, the secret keys {sks}s∈[n] are used only to generate (1)

the ciphertexts {c̃ts}s∈[n] contained in the public keys {PKs}s∈[n], and (2) the encryptions of

the key cycle {ẽs}s∈[n] = {CSEnc(sks, sk(s mod n)+1)}s∈[n]. Recall also that the special weak

CIRC(n) security of CTE ensures the confidentiality of messages encrypted by CSEnc even in
the presence of the trapdoors {tds}s∈[n] and encryptions of the key cycle. A reduction algorithm

(attacking the special weak CIRC(n) security of CTE) can use the encryptions of the key cycle
{ẽs}s∈[n] for responding to KDM-encryption queries, and trapdoors {tds}s∈[n] for responding
to decryption queries as well as detecting whether a bad query has been submitted. Hence,
by the special weak CIRC(n) security of CTE, we have |Pr[SUC6] − Pr[SUC7]| = negl(λ) and
|Pr[BDQ6]− Pr[BDQ7]| = negl(λ).

29

Game 8: Same as Game 7, except that when responding to a KDM-encryption query (α, f0, f1),
the KDM-encryption oracle computes CT ← Enccca(pk

α
cca, 0

µ′′
), where µ′′ = |Q̃| + 2ℓsk ·

|cti,v|+ |π|.

Recall that in the previous game, we have eliminated the information of skscca from c̃t
s

for every s ∈ [n]. Thus, we can rely on the IND-CCA security of PKEcca at this point,
and straightforwardly derive |Pr[SUC7]− Pr[SUC8]| = negl(λ) by applying a key-index-wise hy-
brid argument. Moreover, a reduction algorithm (attacking the IND-CCA security of PKEcca)
can detect whether A’s decryption query (α,CT) is bad by using tdα, skαdv, and the reduc-
tion algorithm’s own decryption queries. Thus, the IND-CCA security of PKEcca also implies
|Pr[BDQ7]− Pr[BDQ8]| = negl(λ).

We see that in Game 8, the challenge bit b is information-theoretically hidden from A’s
view. Thus, we have Pr[SUC8] = 1/2.

We need one more game to bound Pr[BDQ8].

Game 9: Same as Game 8, except that for every s ∈ [n], when generating PKs, the experiment
uses DVKG to generate (pksdv, sk

s
dv), instead of using S1. Namely, we undo the change

made between Games 1 and 2 for generating (pksdv, sk
s
dv) for every s ∈ [s].

By the zero-knowledge of DVNIZK, we have |Pr[BDQ8]− Pr[BDQ9]| = negl(λ).

Finally, we argue that the soundness of DVNIZK implies Pr[BDQ9] = negl(λ). To see this,
note that in Game 9, (pksdv, sk

s
dv) is now generated by DVKG for every s ∈ [n]. Also, suppose A

submits a bad decryption query (α,CT) such that

• (1) V(skαdv, (pk
α, (cti,v)i,v), π) = accept, and

• (2) ĈDec(tdα, i∗, 0, cti∗,0) ̸= ĈDec(tdα, i∗, 1, cti∗,1) for some i∗ ∈ [ℓsk],

where (Q̃, (cti,v)i,v, π) ← Deccca(pk
α
cca, sk

α
cca,CT). Then, notice that the condition (2) implies

(pkα, (cti,v)i,v) /∈ L. This can be seen by considering the contrapositive: (pkα, (cti,v)i,v) ∈ L
implies that for all i ∈ [ℓsk], cti,0 and cti,1 are in the support of CEnc(pkα, i, 0, lab) and CEnc(pkα,

i, 1, lab) for some message lab, respectively, and thus ĈDec(tdα, i, 0, cti,0) = ĈDec(tdα, i, 1, cti,1)
holds due to the second condition of the correctness of CTE. Therefore, x = (pkα, (cti,v)i,v) and
π computed from a bad decryption query satisfy the condition of violating the soundness of
DVNIZK.

Thus, we can consider the following reduction algorithm B attacking the soundness of
DVNIZK: On input a public proving key pk′dv, B first randomly guesses an index α∗ for which
it expects A to make a bad decryption query, sets pkα

∗
dv ← pk′dv, generates all the key mate-

rials in Game 9 except for (pkα
∗

dv , sk
α∗
dv), and simulates Game 9 for A. Whenever A makes a

bad decryption query under the position α∗, B outputs a statement/proof pair violating the
soundness of DVNIZK, while if A does not make a bad decryption query under the position α∗

and terminates, B simply gives up and aborts. Note that in Game 9, to simulate the KDM-
encryption oracle, B just returns an encryption of the all-zero string and thus need not compute
a proof π of DVNIZK. Note also that B is not directly given the secret verification key skα

∗
dv but

is allowed to use the verification oracle, which is sufficient to perfectly simulate the decryption
oracle in Game 9. Moreover, B can detect whether A has made a bad decryption query under
the position α∗ by using skα

∗
cca and tdα

∗
generated by itself, and its own verification oracle. Thus,

B’s advantage in breaking the soundness of DVNIZK is at least 1/n times the probability that
A makes a bad decryption query in Game 9. Hence, by the soundness of DVNIZK, we have
Pr[BDQ9] = negl(λ).

30

From the above arguments, we have

1

2
· Advkdmcca

PKEkdm,Bsize,A,n(λ) =
∣∣∣Pr[SUC1]− 1

2

∣∣∣
≤

∑
t∈[7]

∣∣∣Pr[SUCt]− Pr[SUCt+1]
∣∣∣+ ∣∣∣Pr[SUC8]− 1

2

∣∣∣
≤

∑
t∈[7]\{5}

∣∣∣Pr[SUCt]− Pr[SUCt+1]
∣∣∣+ Pr[BDQ6]

≤
∑

t∈[7]\{5}

∣∣∣Pr[SUCt]− Pr[SUCt+1]
∣∣∣+ ∑

t∈{6,7,8}

∣∣∣Pr[BDQt]− Pr[BDQt+1]
∣∣∣+ Pr[BDQ9]

= negl(λ).

Since the choice of A and n was arbitrary, we can conclude that PKEkdm is Bsize-KDM(n)-CCA
secure. □ (Theorem 14)

Acknowledgement A part of this work was supported by JST CREST Grant Number JP-
MJCR19F6 and JSPS KAKENHI Grant Number 19H01109.

References

[ABBC10] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic agility
and its relation to circular encryption. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 403–422. Springer, Heidelberg, May / June 2010.

[ABHS05] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of for-
mal encryption in the presence of key-cycles. In Sabrina De Capitani di Vimercati,
Paul F. Syverson, and Dieter Gollmann, editors, ESORICS 2005, volume 3679 of
LNCS, pages 374–396. Springer, Heidelberg, September 2005.

[App11] Benny Applebaum. Key-dependent message security: Generic amplification and
completeness. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 527–546. Springer, Heidelberg, May 2011.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in
multi-recipient encryption schemeas. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 85–99. Springer, Heidelberg, January 2003.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-
dependent message security. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 423–444. Springer, Heidelberg, May / June 2010.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 108–125. Springer, Heidelberg, August 2008.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices
without FHE. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

31

[BPS07] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message
security under active attacks - brsim/uc-soundness of symbolic encryption with key
cycles. In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8
July 2007, Venice, Italy, pages 112–124. IEEE Computer Society, 2007.

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme secu-
rity in the presence of key-dependent messages. In Kaisa Nyberg and Howard M.
Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Heidelberg,
August 2003.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In
Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090.
ACM Press, June 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir
and correlation intractability from strong KDM-secure encryption. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.

[CGH12] David Cash, Matthew Green, and Susan Hohenberger. New definitions and sep-
arations for circular security. In Marc Fischlin, Johannes Buchmann, and Mark
Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 540–557. Springer, Hei-
delberg, May 2012.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, August 2002.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540.
Springer, Heidelberg, May 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009.

[GI12] Oded Goldreich and Rani Izsak. Monotone circuits: One-way functions versus
pseudorandom generators. Theory of Computing, 8(1):231–238, 2012.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and
circular security for symmetric-key bit encryption from the learning with errors
assumption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 528–557. Springer, Heidelberg,
April / May 2017.

[GMOR15] Siyao Guo, Tal Malkin, Igor Carboni Oliveira, and Alon Rosen. The power of
negations in cryptography. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part I, volume 9014 of LNCS, pages 36–65. Springer, Heidelberg, March
2015.

32

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[HK15] Mohammad Hajiabadi and Bruce M. Kapron. Reproducible circularly-secure bit
encryption: Applications and realizations. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 224–243.
Springer, Heidelberg, August 2015.

[HK17] Mohammad Hajiabadi and Bruce M. Kapron. Toward fine-grained blackbox sep-
arations between semantic and circular-security notions. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of
LNCS, pages 561–591. Springer, Heidelberg, April / May 2017.

[KM19] Fuyuki Kitagawa and Takahiro Matsuda. CPA-to-CCA transformation for KDM
security. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume
11892 of LNCS, pages 118–148. Springer, Heidelberg, December 2019.

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and trap-
door functions via key-dependent-message security. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
33–64. Springer, Heidelberg, August 2019.

[KRW15] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security
for arbitrary length key cycles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 378–400. Springer, Heidelberg,
March 2015.

[LQR+19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu.
New constructions of reusable designated-verifier NIZKs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 670–700. Springer, Heidelberg, August 2019.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer,
Heidelberg, August 2009.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 579–598. Springer, Heidelberg, March
2013.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 1–20. Springer, Heidelberg, February 2004.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Other Definitions

A.1 IND-CCA/CPA Security

Here, we recall the definitions of IND-CCA/CPA security for PKE and SKE schemes. For
convenience, we consider the multi-challenge version by default. We start with the definitions

33

ExptindccaPKE,A(λ) :
Lenc ← ∅
(pk, sk)← KG(1λ)

b
r←− {0, 1}

b′ ← AOenc(·,·),Odec(·)(pk)

Return (b′
?
= b).

Oenc(m0,m1) : // |m0| = |m1|
ct← Enc(pk,mb)
Lenc ← Lenc ∪ {ct}
Return ct.

Odec(ct) :
If ct ∈ Lenc then return ⊥.
Return Dec(pk, sk, ct).

Figure 10: The IND-CCA experiment for PKE.

for PKE.

For a PKE scheme PKE = (KG,Enc,Dec) and an adversary A, consider the experiment
ExptindccaPKE,A(λ) described in Figure 10.

Definition 7 (IND-CCA/CPA Security) We say that a PKE scheme PKE is IND-CCA
secure if for all PPT adversaries A, we have AdvindccaPKE,A(λ) := 2 · |Pr[ExptindccaPKE,A(λ) = 1]− 1/2| =
negl(λ).

IND-CPA security is defined analogously, except that A is disallowed to submit a decryp-
tion query. We denote the IND-CPA advantage of A and IND-CPA security experiment by
AdvindcpaPKE,A(λ) and ExptindcpaPKE,A(λ), respectively.

IND-CCA/CPA security for SKE is defined similarly to that for PKE, with the differences
that (1) (pk, sk)← KG(1λ), Enc(pk, ·), and Dec(pk, sk, ·) in the experiments for PKE are replaced
with sk← K(1λ), E(sk, ·), and D(sk, ·), respectively, in the experiments for SKE, and (2) pk given
as an input to an adversary A is just replaced with 1λ.

A.2 Designated-Verifier Non-interactive Zero-Knowledge Arguments

Here, we review the definitions for (reusable) designated-verifier non-interactive zero-knowledge
(DV-NIZK) argument systems. We adopt the syntax used in [KM19].

Let L be an NP language associated with the corresponding NP relation R. A DV-NIZK
argument system DVNIZK for L consists of the three PPT algorithms (DVKG,P,V):

• DVKG is the key generation algorithm that takes 1λ as input, and outputs a public proving
key pk and a secret verification key sk.

• P is the proving algorithm that takes a public proving key pk, a statement x, and a witness
w as input, and outputs a proof π.

• V is the (deterministic) verification algorithm that takes a secret verification key sk, a
statement x, and a proof π as input, and outputs either accept or reject.

A DV-NIZK argument system DVNIZK = (DVKG,P,V) is correct if for all λ ∈ N, (pk, sk) ←
DVKG(1λ), and (x,w) ∈ R, we have V(sk, x,P(pk, x, w)) = accept.

We require that a DV-NIZK argument system satisfy (adaptive) soundness and (adaptive)
zero-knowledge. As in [KM19, LQR+19], we consider the reusable setting, where the security
experiment for soundness (resp. zero-knowledge) allows an adversary to make multiple ver-
ification (resp. proving) queries. A DV-NIZK argument system satisfying these versions of
soundness and zero-knowledge is called reusable.

34

Exptzk−real
DVNIZK,A(λ) :

(pk, sk)← DVKG(1λ)
b′ ← AOprove(·,·)(pk, sk)
Return b′.
Oprove(x,w)
If (x,w) /∈ R then return ⊥.
Return π ← P(pk, x, w).

Exptzk−sim
DVNIZK,S,A(λ) :

(pk, sk, td)← S1(1λ)
b′ ← AOprove(·,·)(pk, sk)
Return b′.

Oprove(x,w)
If (x,w) /∈ R then return ⊥.
Return π ← S2(td, x).

Figure 11: The experiments for defining zero-knowledge of a DV-NIZK argument system: The real
experiment (left) and the simulated experiment (right).

Soundness. The soundness of a DV-NIZK argument system is defined as follows.

Definition 8 (Soundness) We say that a DV-NIZK argument system DVNIZK = (DVKG,P,
V) for a language L satisfies soundness if for all PPT adversaries A, we have

AdvsoundDVNIZK,A(λ) := Pr

[
(pk, sk)← DVKG(1λ);

(x′, π′)← AV(sk,·,·)(pk)
:

V(sk, x′, π′) = accept
∧ x′ /∈ L

]
= negl(λ).

Zero-Knowledge. As usual, the zero-knowledge property of a DV-NIZK argument system
DVNIZK = (DVKG,P,V) is defined by using a simulator S = (S1,S2) whose syntax is as follows:

• S1 takes 1λ as input, and outputs a fake public key pk, a fake secret key sk, and a trapdoor
td.

• S2 takes a trapdoor td and a statement x as input, and outputs a fake proof π.

For DVNIZK (for an NP language L with the corresponding NP relation R), a simulator S =
(S1,S2), and an adversary A, consider the real and simulated experiments Exptzk−realDVNIZK,A(λ) and

Exptzk−simDVNIZK,S,A(λ), respectively, defined in Figure 11.

Definition 9 (Zero-Knowledge) We say that a DV-NIZK argument system DVNIZK = (DVKG,
P,V) for an NP language L satisfies zero-knowledge if there exists a PPT simulator S such
that for all PPT adversaries A, we have AdvzkDVNIZK,S,A(λ) := |Pr[Exptzk−realDVNIZK,A(λ) = 1] −
Pr[Exptzk−simDVNIZK,S,A(λ) = 1]| = negl(λ).

Result from [KM19, LQR+19]. Here we recall the result independently and concurrently
achieved by Kitagawa and Matsuda [KM19] and Lombardi et al. [LQR+19], which we will use
in Section 5.

Theorem 15 If there exists an IND-CPA secure PKE scheme and a P-KDM(1)-CPA secure
SKE scheme, then there exists a reusable DV-NIZK argument system for all NP languages.

A.3 Garbling

Here, we recall the definitions of a garbling scheme in the form we use in this paper.
Let C = {Cn}n∈N be a family of circuits, where the input length of each member in Cn is n.

A garbling scheme GC for C consists of the three PPT algorithms (Garble,Eval, Sim).

• Garble is the garbling algorithm that takes 1λ and (the description of) a circuit C ∈ Cn,
where n = n(λ) is a polynomial. Then, it outputs a garbled circuit C̃ and 2n labels
(labi,v)i∈[n],v∈{0,1}.

35

Exptgc−real
GC,A (λ) :

(C, x ∈ {0, 1}n, st)← A1(1
λ)

(C̃, (labi,v)i∈[n],v∈{0,1})← Garble(1λ,C)

b′ ← A2(C̃, (labi,x[i])i∈[n], st)
Return b′.

Exptgc−sim
GC,A (λ) :

(C, x ∈ {0, 1}n, st)← A1(1
λ)

(C̃, (labi)i∈[n])← Sim(1λ, |C|,C(x))
b′ ← A2(C̃, (labi)i∈[n], st)
Return b′.

Figure 12: The security experiments for a garbling scheme: The real experiment (left) and the simulated
experiment (right).

• Eval is the (deterministic) evaluation algorithm that takes a garbled circuit C̃ and n labels
(labi)i∈[n] as input, and outputs an evaluation result y.

• Sim is the simulator algorithm that takes 1λ, the size parameter size (where size = size(λ)
is a polynomial), and a string y as input, and outputs a simulated garbled circuit C̃ and
n simulated labels (labi)i∈[n].

For a garbling scheme, we require the following correctness and security properties.

Correctness For all λ, n ∈ N, x ∈ {0, 1}n, and C ∈ Cn, we require that the following two
conditions hold.13

• Eval(C̃, (labi,x[i])i∈[n]) = C(x) for all (C̃, (labi,v)i∈[n],v∈{0,1}) output by Garble(1λ,C).

• Eval(C̃, (labi)i∈[n]) = C(x) for all (C̃, (labi)i∈[n]) output by Sim(1λ, |C|,C(x)), where |C|
denotes the size of C.

Security For all PPT adversaries A, we have
AdvgcGC,A(λ) := |Pr[Exptgc−realGC,A (λ) = 1] − Pr[Exptgc−simGC,A (λ) = 1]| = negl(λ), where the

experiments Exptgc−realGC,A (λ) and Exptgc−simGC,A (λ) are defined as in Figure 12.

We can realize a garbling scheme for all efficiently computable circuits based on a one-way
function [Yao86].

B Constructing Weakly Noisy-Leakage-Resilient PKE (Proof of
Lemma 1)

In this section, we give a proof of Lemma 1, namely, how to transform an IND-CPA secure
PKE scheme with simple key generation into a weakly noisy-leakage-resilient one (with simple
key generation). The transformation uses a universal hash function and its security proof uses
the leftover hash lemma [HILL99, DRS04].14 Thus, we first introduce them, and then proceed
to the formal proof.

Recall that for distributions X and Y defined over the same set, the statistical distance
between X and Y is defined by SD(X ,Y) := 1

2

∑
z |Pr[X = z]− Pr[Y = z]|.

Definition 10 (Universal Hash Family) A family of hash functions (hash family, for short)
H = {H : D → R} is said to be universal if for all distinct elements x, x′ ∈ D, we have

Pr
H

r←−H
[H(x) = H(x′)] ≤ |R|−1.

13Requiring correctness for the output of the simulator may be somewhat non-standard. However, it is satisfied
by Yao’s garbling scheme based on an IND-CPA secure SKE scheme.

14Naor and Segev [NS09] showed their result on weak bounded leakage resilience by using a randomness
extractor. We use a universal hash family and the leftover hash lemma for concreteness.

36

KG′(sk′ ∈ {0, 1}ℓ′sk) :
H

r←− H
sk← H(sk′)
pk← KG(sk)
Return pk′ ← (pk,H).

Enc′(pk′,m) :
(pk,H)← pk′

ct← Enc(pk,m)
Return ct.

Dec′(pk′, sk′, ct) :
(pk,H)← pk′

m← Dec(pk,H(sk′), ct).
Return m.

Figure 13: The transformation of an IND-CPA secure PKE scheme with simple key generation
into a weakly noisy-leakage-resilient one.

Lemma 4 (Leftover Hash Lemma, Adapted from [DRS04]) Let H = {H : D → R} be
a universal hash family. Let (X ,Y) be a joint distribution such that the support of X is contained
in D. Define the following two distributions Dreal

(X ,Y) and D
rand
(X ,Y):

Dreal
(X ,Y) :=

{
H

r←− H; (x, y)← (X ,Y) : (H,H(x), y)
}
,

Drand
(X ,Y) :=

{
H

r←− H; (x, y)← (X ,Y); r
r←− R : (H, r, y)

}
.

Then, it holds that

SD(Dreal
(X ,Y),D

rand
(X ,Y)) ≤

1

2

√
|R| · 2−H̃∞(X|Y).

Proof of Lemma 1. We first show a transformation of a PKE scheme PKE with simple key
generation to another scheme PKE′ (which also has simple key generation) using a universal
hash family H, and then show that if PKE is IND-CPA secure, then PKE′ is weakly L-noisy-
leakage-resilient. It will be evident that the construction and reduction are black-box.

The transformation uses the following building blocks/parameters:

• Let PKE = (KG,Enc,Dec) be an IND-CPA secure PKE scheme with simple key generation
whose secret key length is ℓsk = ℓsk(λ).

• Let L = L(λ) and ℓ′sk = ℓ′sk(λ) be any polynomials satisfying ℓ = ℓ(λ) := ℓ′sk − (L+ ℓsk) =
ω(log λ).

• Let H = {H : {0, 1}ℓ′sk → {0, 1}ℓsk} be a universal hash family.

Using PKE and H as building blocks, the transformed PKE scheme with simple key gener-
ation PKE′ = (KG′,Enc′,Dec′), whose secret key length is ℓ′sk, is constructed as in Figure 13.

We remark that if we adopt the syntax of a PKE scheme in which there is a setup algorithm
that generates a public parameter shared by all users and algorithms, then the universal hash
function H can be put into the public parameter, and thus need not be generated for each
public key.

We now give the proof of security. Let A = (A0,A1) be any PPT L-noisy-leakage-respecting
adversary that attacks the weak L-noisy-leakage-resilience of PKE′. We will show that there
exists a PPT adversary B that attacks the IND-CPA security of the underlying PKE scheme
PKE so that

AdvwlrPKE′,A,L(λ) ≤ AdvindcpaPKE,B(λ) + 2−ℓ/2. (3)

Since ℓ = ω(log λ) and thus 2−ℓ/2 = negl(λ), this inequality implies that if PKE is IND-CPA
secure, then PKE′ is weakly L-noisy-leakage-resilient.

To this end, consider the following two games:

37

Game 1: This is the weak L-noisy-leakage-resilience experiment ExptwlrPKE′,A,L(λ) itself.

Game 2: Same as Game 1, except that at the key generation, the key pair (pk, sk) of the
underlying PKE scheme PKE is generated by picking sk ∈ {0, 1}ℓsk independently of sk′

and then computing pk← KG(sk), instead of using sk← H(sk′).

Note that in this game, the leakage is still computed as f(sk′). Because of the change
made in this game, sk becomes independent of sk′.

For t ∈ {1, 2}, let SUCt be the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game t. By the definition of the games and the triangle inequality, we have

AdvwlrPKE′,A,L(λ) = 2 ·
∣∣∣Pr[SUC1]− 1

2

∣∣∣ ≤ 2 ·
∣∣∣Pr[SUC1]− Pr[SUC2]

∣∣∣+ 2 ·
∣∣∣Pr[SUC2]− 1

2

∣∣∣.
We thus bound the two terms appearing in the above inequality.

Firstly, we argue 2 · |Pr[SUC1]− Pr[SUC2]| ≤ 2−ℓ/2. For t ∈ {1, 2}, let Dt be the distribution
of the values (H, sk, f(sk′), st) in Game t, where f is the leakage function and st is the state
information both output by A0(1

λ). Note that the only difference between Game 1 and Game 2
is the distribution of this tuple. (More specifically, only in the generation of sk: sk = H(sk′)
in Game 1 and sk

r←− {0, 1}ℓsk in Game 2.) Hence, |Pr[SUC1] − Pr[SUC2]| is upper-bounded by
SD(D1,D2). Now, consider the following distribution D′:

D′ :=
{

(f, st)← A0(1
λ); sk′

r←− {0, 1}ℓ′sk : (sk′, f(sk′), st)
}
.

We interpret D′ as the joint distribution (X ,Y) where X corresponds to sk′ and Y corresponds
to (f(sk′), st). By definition, we have H̃∞(X|Y) = H̃∞(sk′|f(sk′), st). Since A is L-noisy-
leakage-respecting, we have L ≥ H∞(sk′)− H̃∞(sk′|f(sk′), st) = ℓ′sk− H̃∞(X|Y), or equivalently
H̃∞(X|Y) ≥ ℓ′sk−L. Also, note that D1 (resp. D2) can be seen as the distribution Dreal

(X ,Y) (resp.

Drand
(X ,Y)) defined in the leftover hash lemma (Lemma 4). Hence, by applying the leftover hash

lemma, we have

2 ·
∣∣∣Pr[SUC1]− Pr[SUC2]

∣∣∣ ≤ 2 · SD(D1,D2) = 2 · SD(Dreal
X ,Y ,Drand

(X ,Y))

≤
√

2ℓsk · 2−H̃∞(X|Y) ≤
√

2−(ℓ
′
sk−(ℓsk+L)) = 2−ℓ/2,

as desired.
Secondly, we show that there exists a PPT adversary B that attacks the IND-CPA security

of the underlying PKE scheme PKE so that AdvindcpaPKE,B(λ) = 2 · |Pr[SUC2] − 1/2|. To see this,
consider the following adversary B:

BOEnc(·,·)(pk): B firstly runs (f, st) ← A0(1
λ). Next, B picks H

r←− H and sk′
r←− {0, 1}ℓ′sk , sets

pk′ ← (pk,H), and runs A1(pk
′, f(sk′), st).

For each of A1’s encryption queries (m0,m1), B just forwards the pair (m0,m1) to its own
encryption oracle OEnc(·, ·), and returns the received result to A1.

When A1 terminates with output b′, B outputs b′ and terminates.

It is straightforward to see that B perfectly simulates Game 2 for A so that B’s challenge
bit is that of A’s. Hence, we have AdvindcpaPKE,B(λ) = 2 · |Pr[SUC2]− 1/2|.

Putting everything together, we have shown that for any PPT L-noisy-leakage-respecting
adversary A, there exists a PPT adversary B satisfying Equation 3. This means that PKE′ is
weakly L-noisy-leakage-resilient. □ (Lemma 1)

38

	Introduction
	Background
	Our Results
	Paper Organization

	Technical Overview
	Secret-Key TE
	Secret-Key TE Based on Circular Secure SKE
	Towards the Completeness in the Public-Key Setting

	Preliminaries
	Basic Notation and Notions
	Public-Key and Secret-Key Encryption
	Targeted Encryption

	Targeted Encryption from Circular Security and Leakage-Resilience
	Implications of Our TE Scheme
	Conformed Targeted Encryption
	Definitions
	Construction

	KDM-CCA Security in the Multi-key Setting
	Other Definitions
	IND-CCA/CPA Security
	Designated-Verifier Non-interactive Zero-Knowledge Arguments
	Garbling

	Constructing Weakly Noisy-Leakage-Resilient PKE (Proof of Lemma 1)

