
 1

Mimblewimble Non-Interactive Transaction Scheme

Gary Yu
gary.yu@gotts.tech

Revised, Oct. 10, 2020

Abstract. I describe a non-interactive transaction scheme for Mimblewimble protocol, so as to
overcome the usability issue of the Mimblewimble wallet. With the Diffie–Hellman, we can
use an Ephemeral Key shared between the sender and the receiver, a public nonce 𝑅 is added
to the output for that, removing the interactive cooperation procedure. And an additional one-
time public key 𝑃′ is used to lock the output to make it only spendable for the receiver, i.e. the
owner of 𝑃′. The new data 𝑅 and 𝑃′ can be committed into the bulletproof to avoid the miner’s
modification. Furtherly, to keep Mimblewimble privacy character, the Stealth Address is used
in this new transaction scheme. All the cost of these new features is 66-bytes additional data
(the public nonce 𝑅 and the one-time public key 𝑃′)	in each output, and 64-bytes additional
signature data in each input. That is about 12% payload size increasing in a typical single input
double outputs Mimblewimble transaction.

Keywords: Mimblewimble, Stealth address, Bitcoin, Grin, Confidential transaction, Privacy

License. This work is released into the public domain.

Fig.1 Mimblewimble non-interactive transaction scheme design.

1 Introduction

Mimblewimble. In July 2016, someone called Tom Elvis Jedusor (Voldemort's French name
in J.K. Rowling's Harry Potter book series) placed the original Mimblewimble white
paper[MW16] on a bitcoin research channel, and then disappeared. Tom's white paper
"Mimblewimble" (a tongue-tying curse used in "The Deathly Hallows") was a blockchain
proposal that could theoretically increase privacy, scalability and fungibility. In January
2017, Andrew Poelstra, a mathematician at Blockstream, presented on this work at Stanford
University's Blockchain Protocol Analysis and Security Engineering 2017 conference. And he

 2

wrote a paper[Poe16] to make precise Tom's original idea, and added further scaling
improvements on it. Mimblewimble is a blockchain protocol with confidential transaction and
obscured transaction graph, also it has the ability to merge transactions in transaction pool, or
even merge them across blocks.

Because only UTXOs are kept, Mimblewimble blockchain data is much smaller than
other chain types. For example, Bitcoin[Bit08] today there are about 646,300 blocks, total
300GB or so of data on the hard drive to validate everything. These data are about 560 million
transactions and 68 million unspent nonconfidential outputs. Estimate how much space the
number of transactions take on a Mimblewimble chain. Each unspent output is around 0.7KB
for bulletproof[BBB16]. Each transaction kernel also adds about 100 bytes. The block headers
are negligible. Add this together and get 104GB -- with a confidential transaction and obscured
transaction graph!

Grin. At the end of 2016, Ignotus Peverell (name also comes from "Harry Potter", the original
owner of the invisibility cloak, if you know the Harry Potter characters) started a GitHub
project called Grin[Pev16]. Grin is the first project that implements a Mimblewimble
blockchain to provide extremely good scalability, privacy and fungibility, by relying on strong
elliptic curve cryptographic primitives. And it is a purely community driven project, just like
Bitcoin.

Interactive Transaction. In Mimblewimble and Grin, a typical transaction with 1 input and 2
outputs is defined as:

(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝑒𝑥𝑐𝑒𝑠𝑠" + 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝐺)
= (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) + (𝑥$ ∗ 𝐺 + 𝑎$ ∗ 𝐻) + 𝑓𝑒𝑒 ∗ 𝐻

Where,
- (𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) is the input coin owned and selected by the sender.
- (𝑥$ ∗ 𝐺 + 𝑎$ ∗ 𝐻) is the output coin created by the receiver.
- (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) is the change coin created by the sender.
- 𝑥! , 𝑥# , 𝑥$ are the private keys.
- 𝑎! , 𝑎# , 𝑎$ are the transaction values, which is hidden in the bulletproof attached on

each output commitment.
- 𝑓𝑒𝑒 is the transaction fee, which is an open value in the transaction kernel.
- 𝑜𝑓𝑓𝑠𝑒𝑡 is a random number selected by the sender.

The 𝑒𝑥𝑐𝑒𝑠𝑠" is called as “public excess” which is the signature public key of the transaction
kernel and consists of:

𝑒𝑥𝑐𝑒𝑠𝑠" = (𝑥# − 𝑥! − 𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝐺 + 𝑥$ ∗ 𝐺
Where,

- (𝑥# − 𝑥! − 𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝐺 is a public key which only sender knows the private key.
- 𝑥$ ∗ 𝐺 is a public key which only receiver knows the private key.

To sign this transaction with 𝑒𝑥𝑐𝑒𝑠𝑠" as the public key, the Simpler Variants of MuSig[DCC19]
interactive signature scheme is used, meaning both the sender and the receiver exchanges the
public key and public nonce info, then executes a MuSig partial signature in both side, then
either the sender or the receiver finally aggregate these two partial signatures to get a final joint
Schnorr signature, which can be verified exactly as a standard Schnorr signature with respect
to a single public key:	𝑒𝑥𝑐𝑒𝑠𝑠".

 3

The pros of this transaction scheme are impressively on the simplicity and the minimum
size, which only needs one 2-of-2 Schnorr signature to authorize this spending, i.e. a 64-bytes
signature info. But the cons are also extremely impressed at:

- The bad usability on the wallet implementation, mainly because of the interactive
process.

- Slow, because of the cooperation time between payer and payee.
- The wallet security concern, because the receiver wallet must listen online to the

payments and the private key must be used to receive.
Grin should have gotten much more adoption and be much more popular than today if it does
not need an interactive transaction.

My Contribution. In this paper, I propose a new transaction scheme for Mimblewimble
protocol, which is non-interactive so as to overcome above major weakness. With the Diffie–
Hellman, we can use an Ephemeral Key shared between the sender and the receiver, a public
nonce 𝑅 is added to the output for that, so as to remove the interactive cooperation process.
And an additional one-time public key 𝑃′ is used to lock the output to make it only spendable
for the owner of 𝑃′. The new data 𝑅 and 𝑃′ can be committed into the bulletproof to avoid the
miner’s modification. Furtherly, to keep Mimblewimble privacy character, the Stealth
Address[Byt11, Sab13, Tod14, CM17, Yu20] is used in this new transaction scheme. All the
cost of these new features is 66-bytes additional data (a public nonce 𝑅 and the one-time public
key 𝑃′)	in each output, and 64-bytes additional signature data in each input. That is about 12%
payload size increasing in a typical single input double outputs Mimblewimble transaction,
which is supposed to be about 1.6KB with the original interactive transaction scheme.

2 Mimblewimble Non-Interactive Transaction Scheme

2.1 Non-Interactive Transaction Scheme Design

A typical transaction with 1 input and 2 outputs is defined as:

(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝑒𝑥𝑐𝑒𝑠𝑠" + 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝐺)
= (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) + (𝑞 ∗ 𝐺 + 𝑎$ ∗ 𝐻) + 𝑓𝑒𝑒 ∗ 𝐻

Where,
- (𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) is the input coin owned and selected by the sender.
- (𝑞 ∗ 𝐺 + 𝑎$ ∗ 𝐻) is the output coin created by the sender.
- (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) is the change coin created by the sender.
- 𝑥! , 𝑥# are the private keys of the sender.
- 𝑞 is the Ephemeral Key shared between the sender and the receiver, which will be

explained later.
- 𝑎! , 𝑎# , 𝑎$ are the transaction values, which is the hidden info in the bulletproof

attached on each output commitment.
- 𝑓𝑒𝑒 is the transaction fee, which is an open value in the transaction kernel.
- 𝑜𝑓𝑓𝑠𝑒𝑡 is a random number selected by the sender.

The 𝑒𝑥𝑐𝑒𝑠𝑠" is called as “public excess” which is the signature public key of the transaction
kernel and consists of:

𝑒𝑥𝑐𝑒𝑠𝑠" = (𝑥# − 𝑥! − 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑞) ∗ 𝐺
Where,

- (𝑥# − 𝑥! − 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑞) is a private key which can be calculated by the sender.

 4

To sign this transaction with 𝑒𝑥𝑐𝑒𝑠𝑠" as the public key, the standard Schnorr signature scheme
[WNR18] is used.

Now, look at the Ephemeral Key 𝑞, which is the core part of this non-interactive transaction
scheme.

Definitions.

𝐴" = 𝐻(𝑘 ∗ 𝐴) ∗ 𝐺 ≡ 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺
𝑃′ = 𝐻(𝐴′) ∗ 𝐺 + 𝐵

𝑃 = 𝐴" + 𝐵
𝑞 = 𝐻(𝑃)

Where 𝐻 is a hash function, and (𝐴, 𝐵) is the concatenation of the public view key and
the public spend key of the recipient’s Stealth Address, which is designed to protect recipient
privacy. 𝑘 is a secret nonce (a random number) selected by the sender and a related public
nonce 𝑅 = 𝑘 ∗ 𝐺 is attached to the transaction output.

Thanks to the Diffie–Hellman key exchange, i.e. the truth that 𝑎 ∗ 𝑅 ≡ 𝑘 ∗ 𝐴, the recipient can
also calculate this Ephemeral Key 𝑞 by 𝑎, where 𝑎 is the recipient’s private view key of 𝐴.

The receiver checks every passing transaction (UTXO actually) with his/her private key (𝑎, 𝐵),
picks the 𝑅 and 𝑃′ from the UTXO, computes 𝐴" = 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺 and then 𝑞" = 𝐻(𝐴′ + 𝐵)
and 𝑃" = 𝐻(𝐴′) ∗ 𝐺 + 𝐵, collects the payments if 𝑞" = 𝑞 by bulletproof rewinding and if 𝑃" =
𝑃′.

With the sharing private key of 𝐴, an auditor for example can also computes this 𝑞" and 𝑃"
therefore is capable to view every incoming transaction for that recipient’s Stealth Address.

As the sender, he/she must attach both 𝑅 and 𝑃′ to the payment output, i.e. together with
(𝑞 ∗ 𝐺 + 𝑎$ ∗ 𝐻) commitment in above example. That is 66-bytes additional cost for each
output, compared to the native interactive Mimblewimble transaction scheme. The new data 𝑅
and 𝑃′ need be committed into the bulletproof to lock the output data. For example, H(commit
|| R || 𝑃′) is committed.

For the receiver, when spending this received coin (𝑞 ∗ 𝐺 + 𝑎$ ∗ 𝐻) in the future, he/she must
attach a Schnorr signature of 𝑃′ to provide the additional ownership proof, in the input structure,
which is 64-bytes additional cost for each input, compared to the native interactive transaction
scheme. The private key of 𝑃′:

𝑝" = 𝐻(𝐴′) + 𝑏

Where 𝐴" = 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺 and (𝑎, 𝑏) is the private keys of the recipient’s Stealth Address and
𝑅 is the public nonce in the output data. The signature in transaction kernel is still needed as
before to prove he/she knows the secret 𝑞.

2.2 Payment Confirmation and Insecure Zero-Confirmation Transaction

A common concept in blockchain is the transaction confirmations, which presents the truth that
as blocks are buried deeper and deeper into the blockchain the transactions become harder and
harder to change or remove, this gives rise of blockchain's Irreversible Transactions. And
because of the possible forks of the chain, a popular best practice for a recipient is to wait

 5

enough block confirmations before he/she confirms the payment and deliver the products or
service, for example waiting 6 block confirmations in Bitcoin or waiting 10 block
confirmations in Grin.

The 0-confirmation transaction is defined as an exchange that has not yet been recorded and
verified on the blockchain. Instead the seller immediately assumes he received his money and
delivers what was sold.

Normally, in blockchain world, the 0-confirmation transaction is insecure, mainly because of
the possible forks on the chain. But in this Mimblewimble non-interactive transaction scheme,
the 0-confirmation transaction is insecure by the design, precisely by the CoinJoin feature of
Mimblewimble, even there is no forks happening.

For example, we have two transactions 𝑇% and 𝑇&:

𝑇%:		𝐼% + 𝐸% = 𝐶% + 𝑂%
𝑇&:		𝐼& + 𝐸& = 𝐶& + 𝑂&

Where 𝐼& = 𝑂%, meaning the transaction 𝑇& is spending the output 𝑂% which is just created in
the transaction 𝑇%, and both 𝑇% and 𝑇& are created by same people. When transaction 𝑇% has 0-
confirmation, both 𝑇% and 𝑇& exist in the transaction pool. So, a CoinJoin for 𝑇% and 𝑇& will
happen in the transaction pool, as one of the outstanding features of Mimblewimble protocol.
The merged transaction 𝑇%& becomes:

𝑇%&:		𝐼% + 𝐸% + 𝐸& = 𝐶% + 𝐶& + 𝑂&

Where both 𝐼& from the inputs and 𝑂% from the outputs disappear, because of Mimblewimble
cut-through. It seems no problem when both 𝑇% and 𝑇& are honest transaction, means their
transaction validation is ok. But in case a dishonest people is spending 𝑂% which is just created
by self, he/she can create a fake 𝑇& which cannot pass the transaction validation by itself,
because the wrong signature in 𝐼&. Unfortunately, the merged transaction 𝑇%& cuts that fake 𝐼&,
and the remaining parts of 𝑇%& will pass the validation well. Then, after the merged transaction
𝑇%& is packed by a block and get enough confirmations, the creator of transaction 𝑇% is capable
to provide a valid payment proof about 𝑂%, which belongs to other people but he/she already
spent it.

Therefore, there are two aspects to solve this problem. One is the payment proof, which need
provide the output MMR proof, so as to make the above 𝑇% become an invalid payment proof.
This will be explained in §2.5 for detail.

Another one is the transaction confirmation, an important security tip here, the Mimblewimble
non-interactive transaction confirmation must stick to the UTXO confirmations, meaning the
payment output must be unspent on the chain and have enough confirmations before someone
confirms he/she receives the payment. This is same as other blockchains but differentiate itself
from the original Mimblewimble protocol which instead use the transaction kernel for the
confirmations.

2.2.1 Dishonest Receiver

In above example of 𝑇% and 𝑇&, we described the case that a dishonest sender is spending 𝑂%.
Here we will look into the case of a dishonest receiver.

 6

For the dishonest receiver, he/she can scan the transaction pool instead of the block chain
for his/her outputs, which someone is paying for him/her, once a payment is found, in a
transaction 𝑇% for example, he/she can collect it immediately by creating a transaction 𝑇& to
spend that 𝑂%, then the merged transaction 𝑇%&:		𝐼% + 𝐸% + 𝐸& = 𝐶% + 𝐶& + 𝑂& could be packed
into next block, instead of 𝑇% and 𝑇&. The consequence is the payer will not be able to provide
a valid payment proof even the dishonest receiver got his/her payment.

In this case, even we should not call the receiver as “dishonest” since the protocol allows
this cut-through behaviour.

To fix this problem, we can use a consensus to forbid the cut-through on the payment
output, 𝑂% in above example, but obviously a dishonest node will still be able to do that cut-
through and this broken transaction can’t be detected by other nodes.

In Mimblewimble framework, with this non-interactive transaction scheme, a feasible
solution is freezing all cut-through behaviour in the transaction pool, by adding a field 𝑛 into
the transaction kernel, to indicate how many Inputs a transaction has. In block validation, we
sum all 𝑛 of kernels and validate the total Inputs number.

The cut-through between the blocks is still feasible, which is great to reduce weight for
non-archive nodes. Normally the cut-through between blocks is launched for the old blocks
under the Horizon, we will discuss more about that in §3.1.

The cost of this fixing solution is a little losing of the privacy, since the cut-through in
transaction pool is helpful for the further transaction graph obscuring. In original
Mimblewimble protocol, the 𝑂% in above example will never appear into the block chain, that
is a nice way to avoid tracking. But considering the block chain analysers is able to track the
transaction pool also, instead of tracking the block chain, this so-called losing is really trivial.

Another concern in this solution is the new field 𝑛 increases the linkable risk. But actually
it is not the truth. For example, still in above example, 𝑇%&:		𝐼% + 𝐼& + 𝐸% + 𝐸& = 𝐶% + 𝐶& +
𝑂% + 𝑂& with 𝐸% contains a 𝑛 = 1 and 𝐸& contains a 𝑛 = 1, this obviously does not increase a
bit of the linkability.

The last concern is the payload size increment. But since we can use the variable size
transaction kernel, we can define a missing field 𝑛 means 𝑛 = 1, so as to cover over 90% use
cases with zero size increment. For other cases with 𝑛 > 1, one octet should be enough to
encode this 𝑛.

2.3 Zero-Confirmation Transaction for Change Spending

In a special situation when spending the change output/s, the Mimblewimble 0-confirmation
transaction is secure, both in native interactive transaction scheme, and in this non-interactive
transaction scheme.

For example, we have two transactions 𝑇% and 𝑇&:

𝑇%:		𝐼% + 𝐸% = 𝐶% + 𝑂%
𝑇&:		𝐼& + 𝐸& = 𝐶& + 𝑂&

Where 𝐼& = 𝐶% , meaning the transaction 𝑇& is spending the change output 𝐶% which is just
created in the transaction 𝑇%, obviously both 𝑇% and 𝑇& are created by same people in this case.

A CoinJoin for 𝑇% and 𝑇& will happen in the transaction pool. The merged transaction 𝑇%&
becomes:

𝑇%&:		𝐼% + 𝐸% + 𝐸& = 𝐶& + 𝑂% + 𝑂&

 7

Obviously, even we lose the signature info in 𝐼& after merging, the merged transaction 𝑇%& is
still good and is doing the job as we wanted. With this character, a fast continuous payments
feature is feasible for Mimblewimble blockchain, meaning a Mimblewimble wallet will never
be locked for waiting the transaction confirmation unless the wallet balance is over, when this
wallet is only doing the payments.

Nevertheless, after we freeze the cut-through for solving the insecurity in §2.2, this
CoinJoin for 𝑇% and 𝑇& will not cut-through, so the merged transaction will look like this even
𝐼& = 𝐶%:

𝑇%&:		𝐼% + 𝐼& + 𝐸% + 𝐸& = 𝐶% + 𝐶& + 𝑂% + 𝑂&
We can see this is not helpful for getting a smaller size of the transaction, and the transaction
fee is also not attractive for user since the fee is same as the sum of 𝑇% and 𝑇&. Therefore, this
continuous spending on the change output is not proposed. Instead, for payments to multiple
receivers in this non-interactive transaction scheme, we propose to create a single transaction
for that:

𝑇:		𝐼% + 𝐸% = 𝐶% + 𝑂% + 𝑂&
This single transaction with multiple payment outputs for multiple receivers can save 25%
transaction fee for above example. For 𝑚 receivers, the fee of the continuous spending scheme
needs 0.004 ∗ (2𝑚) coins, but the fee of the single transaction scheme only needs 0.004 ∗
(𝑚 + 1) coins. In addition, the latter is much more elegant.

2.4 The Migration

The mixing of the native interactive transaction and the new non-interactive transaction scheme
is possible but strongly not proposed, not only because of the complexity of the mixing, but
also the privacy concern. All outputs data should have same data structure and they should
looks no difference between interactive transaction output and non-interactive transaction
output.

Therefore, for those existing Mimblewimble blockchains, a hard fork and a migration is
proposed, to obsolete the interactive transaction and adopt the new non-interactive transaction
scheme. All existing UTXOs can be kept as same as before, but all the new transaction outputs
will use the new format, meaning with the additional 66-bytes for storing the public nonce 𝑅
and the one-time public key 𝑃′.

For the universal output format, all the change output should also use the same structure as
the payment output.

2.5 The Mixing

Even not proposed, the mixing of the native interactive transaction and the new non-interactive
transaction scheme is possible, but it needs a very careful design to consider all kinds of
security concerns.

For the easiness of description, we will use the following abbreviations for the remaining
parts:

IT - Interactive Transaction
NIT - Non-Interactive Transaction
ITO - Interactive Transaction Output, meaning the output without that 𝑃′ and 𝑅
NIO - Non-Interactive Transaction Output, meaning the output with that 𝑃" and 𝑅

 8

First of all, to support the mixing, an indicator has to be added to differentiate the ITO and
NIO. And the dedicated MMR for unspent ITO and NIO could be applied because of different
output data size.

This will leave a linkability issue that an analyser is able to differentiate the change output
and the payment output, i.e. the Input and the ITO belongs to same people, that’s why this
mixing is not proposed. But considering the flexibility benefit, this cost could be deserved. It’s
up to the designer to decide using this mixing or not.

This linkability issue does not have a fix solution yet, but a workaround exists. The user
has to use an IT to spend a NIO, so as to get 2 obscured ITOs, then spending this obscured ITO
either with IT or with NIT, the aforementioned linkability issue is eliminated.

2.5.1 Spending NIO

A general rule for the transaction which is spending a NIO is that the signature of 𝑃′ is
mandatory in Input, no matter what type the transaction is, either IT or NIT. This guarantee that
only the coin’s true owner can spend the coin. The principle is quite similar to Bitcoin’s
P2PKH(Pay-to-Public-Key-Hash).

2.5.2 Spending ITO

An ITO commit with (𝑥 ∗ 𝐺 + 𝑣 ∗ 𝐻) has the blinding factor 𝑥 which is only known to the
owner, and ITO does not have the fields of 𝑃′ and 𝑅. Therefore, the transaction spending an
ITO only need one signature into the transaction kernel, no matter it’s an IT or NIT.

2.5.3 Outputs of NIT

At least one NIO must be there in a NIT, and normally that NIO is for the receiver. For the
Change output/s, there is an option to use NIO or ITO in the mixing scheme.

Change output/s format
in a NIT

Pros Cons

NIO Obscured Change and Payment
for same format

67 bytes size increment

ITO Smaller size Linkability between Input
and Change

2.6 Payment Proof

Payment proof means a proof to the third party (normally an arbiter) to prove the payment was
made, when someone sends money to a party who then disputes the payment was made. The
payment proof in Bitcoin is simple since the recipient address is recorded in the chain and open
to anyone, but for a blockchain which uses stealth address, the payment proof is not so straight.

A simple method is to use the secret nonce 𝑘 since only the sender knows this secret. Just
provide a signature on a given message from the third party with this 𝑘 as the secret key.

In a payment proof with signature, the following info will be provided as the payment proof:
1. The transaction output, which can be used to get that corresponding public nonce 𝑅;
2. The transaction output MMR[Tod12] proof;
3. The receiver’s address but please note the third party arbiter will also need to know this

address to assert it all ties together;

 9

4. A message from the third party and the corresponding signature from the sender. The
signature can be verified with above 𝑅 as the public key.

The pros of this method are obviously the simplicity of proof construction. The cons are

mainly on the reliability, meaning the sender is incapable to create the proof once the secret 𝑘
is lost, since this secret nonce 𝑘 is only stored in local wallet.

2.7 Special Application with Missing 𝑷′

With 𝑃′ missing in the output, an interesting feature is feasible with this NIT scheme, which
makes the NIO/s spendable both for the sender and for the receiver, since both of them know
that Ephemeral Key 𝑞. With this feature, recovering funds sent to the wrong receiver is also
easy. The developers can facilitate this feature to design some kinds of interesting applications.

For example, for the transaction among the trusted people such as family members, it will
be able to recover funds if the receiver lose his/her key or forget wallet password. Another
example is the airdrop in an early stage, if many years later some of those airdropped coins are
still there unspent, it will be a very high probability that those airdropped receivers lost their
keys, then the one who did that airdrop can recover those unspent airdrop coins. The 3rd
example is the gift application, which enable the receiver to “reject” receiving, considering a
Bitcoin wallet is unable to refuse receiving any payment.

The common ground of all these special applications is that the receiver will never require

a payment proof, which is not available in this feature.
To spend a NIO with missing 𝑃′, there is no need (actually impossible) to provide the

signature of 𝑃′. And to finalize such kind of payments, the receiver must complete a final
receiving step to transfer the funds into an output commitment which only he/she knows the
blinding factor, i.e. creating a new transaction to send these payments to him/her self.

2.8 Security of the Mimblewimble Non-Interactive Transaction Scheme

2.8.1 Horizon Attack

I call it Horizon Attack here, to differentiate it from Long Range Attack which only makes
sense in PoS (Proof of Stake).

In Mimblewimble system, only UTXOs and transaction kernels are stored in MMR which

will be downloaded for every fresh node to get blockchain state synced. The Horizon here
means some recent blocks will be transferred one by one via p2p protocol, instead of
downloading by MMR data package. For example, in Grin, this Horizon consensus is 48 hours,
or 2,880 blocks. That means for all fresh installed nodes, only recent 2,880 blocks will be
validated for all inputs signature, and all inputs signature in older blocks will be ignored. This
has no any problem when a fork happened but the fork depth less than the Horizon height.
However, if the fork depth is bigger than the Horizon height, the Horizon Attack could happen
in all fresh installed nodes, the payments which has at least Horizon confirms could be stolen
by the original payer. But for all existing nodes in Mimblewimble network, there is another
consensus called Cut-through Horizon which is 7x24 hours or 10,080 blocks for example in
Grin, means the Horizon Attack fork depth has to be much longer.

In another side, in case somebody really has the amazing hash power and go to execute
the Horizon Attack, he/she is able to do any double-spending as he/she want, no matter the

 10

double-spending is executed in this way or that way. Therefore, this Horizon Attack only has
the meaning in theory, it has almost same effect as 51% attack. Anyway it is possible to simply
increase this Horizon consensus to improve this Horizon Attack depth.

An easy workaround to avoid this Horizon Attack, just remember to collect all payments

by a new transaction which is created by self, so as to avoid sharing that Ephemeral Key with
the payer, before the payment output reaching the Horizon confirmations.

2.8.2 Leakage of the One-Time Key Difference

In case the sender makes two payments to the same receiver, the one-time public key
𝑃"	difference between both payment outputs is known to the sender.

𝑂%:			𝑃%" = 𝐻(𝐻(𝑘% ∗ 𝐴) ∗ 𝐺) ∗ 𝐺 + 𝐵
𝑂&:			𝑃&" = 𝐻(𝐻(𝑘& ∗ 𝐴) ∗ 𝐺) ∗ 𝐺 + 𝐵
=> 𝑃%′ − 𝑃&′ and the related secret 𝑝%" − 𝑝&" is known for the sender

This is not an issue at all for us, since 𝑝%′/𝑝&′ must be known for spending 𝑂%/𝑂&,	considering
the similar Stealth Address scheme has been used in Monero[Xmr13] for years. But it must be
clear that any future application must not rely on this difference.

Reference

DCC19 Gregory Maxwell, Andrew Poelstra, Yannick Seurin, Pieter Wuille. Simple

Schnorr multi-signatures with applications to Bitcoin. Designs, Codes and
Cryptography volume 87, pages2139–2164(2019).
https://doi.org/10.1007/s10623-019-00608-x

BBB16 Benedikt Bunz , Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
Greg Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and
More. https://eprint.iacr.org/2017/1066.pdf

Byt11 user ‘bytecoin’. Untraceable transactions which can contain a secure message
are inevitable. 2011. https://bitcointalk.org/index.php?topic=5965.0

Sab13 Nicolas van Saberhagen. CrypoNote v 2.0. 2013.
https://cryptonote.org/whitepaper.pdf

Tod14 Peter Todd. [Bitcoin-development] Stealth addresses. 2014. http://www.mail-
archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html

CM17 Nicolas T. Courtois, Rebekah Mercer. Stealth Address and Key Management
Techniques in Blockchain Systems. In Proceedings of the 3rd International
Conference on Information Systems Security and Privacy (ICISSP 2017),
pages 559-566.

Yu20 Gary Yu. Blockchain Stealth Address Schemes.
https://eprint.iacr.org/2020/548.pdf

Tod12 Peter Todd. Merkle Mountain Range. 2012.
https://github.com/mimblewimble/grin/blob/master/doc/mmr.md

Bit08 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
http://bitcoin.org/bitcoin.pdf

WNR18 Pieter Wuille, Jonas Nick, Tim Ruffing. Schnorr signatures for secp256k1,
2018. https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

MW16 Tom Elvis Jedusor. Mimblewimble. 2016.
https://github.com/mimblewimble/docs/wiki/Mimblewimble-origin

 11

Poe16 Andrew Poelstra. Mimblewimble.
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

Pev16 Ignotus Peverell. Introduction to Mimblewimble and Grin.
https://github.com/mimblewimble/grin/blob/master/doc/intro.md

Xmr13 https://web.getmonero.org/resources/moneropedia/stealthaddress.html

