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Abstract. This paper presents a constant time hardware implementa-
tion of the NIST round 2 post-quantum cryptographic algorithm Stream-
lined NTRU Prime. We implement the entire KEM algorithm, including
all steps for key generation, encapsulation and decapsulation, and all
en- and decoding. We focus on optimizing the resources used, as well
as applying optimization and parallelism available due to the hardware
design. We show the core en- and decapsulation requires only a fraction
of the total FPGA fabric resource cost, which is dominated by that of
the hash function, and the en- and decoding algorithm. For the NIST
Security Level 3, our implementation uses a total of 1841 slices on a Xil-
inx Zynq Ultrascale+ FPGA, together with 14 BRAMs and 19 DSPs.
The maximum achieved frequency is 271 MHz, at which the key gener-
ation, encapsulation and decapsulation take 4808 µs, 524 µs and 958 µs
respectively. To our knowledge, this work is the first full hardware im-
plementation where the entire algorithm is implemented.

1 Introduction

The NIST Post-Quantum-Cryptography standardization project has resulted in
numerous new schemes designed to resist cryptanalysis by quantum computers
[18]. Lattice based key encapsulation mechanism (KEM) schemes are the largest
group, with nine submissions proceeding to round two. One common feature of
all schemes is their complete dissimilarity to traditional public key cryptographic
algorithms such as RSA and ECC. This makes existing hardware accelerators
often sub optimal, though there has been some research on their use [1]. In addi-
tion, key sizes are significantly increased. This calls for fast and efficient hardware
implementations, especially for embedded devices. NIST has addressed this by
asking for performance benchmarks of the schemes on FPGA platforms. To our
knowledge, this paper presents the first full constant time hardware implementa-
tion of round 2 Streamlined NTRU Prime. A software/hardware co-design, where
parts of the en- and decapsulation were implemented in hardware, was published
recently [9]. However, the co-design did not include the key generation. Our im-
plementation, while slower during en- and decapsulation, uses significantly less
FPGA fabric resources, even though we implement more functions in hardware.



2 Preliminary

NTRU Prime is a Ring Learning with Rounding based scheme [5, 6]. It has two
KEM instantiations: Streamlined NTRU Prime (SNTRUP), and NTRU LPrime.
The design goal behind NTRU Prime was to build a robust CCA secure public
key scheme based on the original NTRU scheme [12], while minimizing the attack
surface by removing the structures of cyclotomic rings. We focus on the Stream-
lined NTRU Prime variant. The Streamlined variant was the initial instantiation
of NTRU Prime [8], has a smaller ciphertext, and faster en- and decapsulation.
However, this comes at the cost of slower key generation and a larger public key
[6]. However, both use the polynomial ring R/q = (Z/q)[x]/(xp − x− 1), with p
and q being prime numbers, together with the ring R/3 = (Z/3)[x]/(xp−x−1).
A polynomial is small if all coefficients are in −1, 0, 1, e.g. elements of Z/3. A
polynomial has weight w if exactly w of its coefficients are non-zero. A polyno-
mial is short if it is both small and of weight w. The values for p, q and w are
part of the parameter set for SNTRUP, and are shown in Table 1. SHA-512 is
used as a hash function internally, though only the first 256 bits of the output
hash are used. Since all coefficients are either small or taken modulo a prime q,
SNTRUP packs the coefficients together to reduce space. This is done with a
decoding and encoding algorithm [5, 6].

Key generation, encapsulation and decapsulation are explained below. We use
(a, b) to denote the concatenation of element a and b. Hash(a) denotes the hash-
ing of a using SHA-512. Encode(a) and Decode(b) are the encoding and decoding
functions respectively (see Section 4.5 for more details).

Key Generation: Generate a uniform random small element g which is in-
vertible in R/3. Calculate 1/g ∈ R/3. Generate a random short f . Calculate
h = g/(3f) ∈ R/q. Output Encode(h) as the public key. Generate a ran-
dom ρ ∈ (0, . . . , 255)(p+3)/4 and k = (Encode(f), Encode(1/g)). Output (k,
Encode(h), ρ, hash(4, Encode(h))) as the secret key.

Encapsulation: Input is the encoded public key, Encode(h). Generate a ran-
dom short r. Decode the public key h. Compute hr ∈ R/q. Compute c =
Round(hr), where each element is rounded to the nearest multiple of 3. Com-
pute Confirm = hash(2, hash(3, r), hash(4, Encode(h))). Output ciphertext C
= (Encode(c), Confirm), and hash(1, hash(3, r), C) as the shared secret.

Decapsulation: Input is the encoded secret key (k, Encode(h), ρ, hash(4,
Encode(h))) from the key generation step, and the encoded ciphertext C =
(Encode(c), Confirm) from the encapsulation. Decode polynomials f and v
∈ R/3 from k (note that v = 1/g). Decode public key h. Decode ciphertext C and
store as polynomial c ∈ R/q. Compute 3fc ∈ R/q. While viewing each coefficient
x of 3fc ∈ R/q as an integer −(q− 1)/2 < x < (q− 1)/2, calculate each element
modulo 3, and store as the new polynomial e ∈ R/3. Calculate r′ = ev ∈ R/3.
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If r′ does not have weight w, then set r′ to (1, 1, ..., 1, 0, 0..., 0), with the first
w elements being 1. Redo the encapsulation for the Fujisaki-Okamoto transfor-
mation [10], setting r = r′, obtaining the ciphertext C ′. If C = C ′ then output
hash(1,hash(3, r), C) as the shared secret, otherwise output hash(0, hash(3, ρ),
C).

Table 1: Streamlined NTRU Prime parameters for the NIST round 2 standardization
process, as well as the corresponding public key, secret key and cipher text sizes [6].
Note that the public key is contained in the secret key and does not have to be stored
separately. Additional, non-standardized parameter sets can be found in [5].

Security Level p q w Ciphertext Bytes Public key Bytes Secret key Bytes

NIST Level 1 653 4621 250 897 994 1518
NIST Level 3 761 4591 286 1039 1158 1763
NIST Level 5 857 5167 322 1184 1322 1999

3 Design Goals

Our primary goals was to develop a resource optimized Streamlined NTRU Prime
implementation, while staying as generic as possible. Our implementation, ex-
cept for the decoding module, is indeed fully generic, with parameters p, q, and
w freely customizable, as long as they comply to the SNTRUP specifications. An
expanded list of valid parameter sets can be found in [5]. This is useful, as any
future parameter changes can be adopted with minimal changes. The encoding
and decoding module do currently require some pre-calculated tables based on
p and q. In addition, the design currently cannot process different values of p,
q, and w at the same time, but needs to be resynthesized for any parameter
changes. Though this also means that there is no performance and resource im-
pact of being generic, as all modules and memories are synthesized to exactly
match the requirements of the chosen parameter set. In addition, our design is
written in platform agnostic VHDL.

4 Core Modules

4.1 R/q Multiplication

The multiplication in R/q is the core operation of both the en- and decapsula-
tion. Due to the design of Streamlined NTRU Prime, the method of using the
NTT for multiplication is not naturally possible [5]. Instead, conventional means
of multiplying polynomials are used.

During a multiplication, a polynomial in R/q is multiplied with a R/3 poly-
nomial. This means that R/q polynomial has signed 13 bit coefficients, whereas
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the R/3 polynomial has signed two bit coefficients. However, these two bit coef-
ficients can only have the values -1, 0 and 1. This results in the multiplier being
almost trivial to implement. Using a pure product scanning schoolbook multi-
plication[14], our multiplier consumes only a small area (see Table 4). However,
to improve performance, we use a combination of Karatsuba multiplication [15]
and product scanning schoolbook multiplication. A single layer of Karatsuba
multiplication is performed. This splits the multiplication of degree p into three
multiplications of degree dp/2e. The three partial multiplications are then done
in parallel with schoolbook product scanning multiplication. This speeds up the
multiplication by almost a factor of 4. During the schoolbook multiplication,
we also make use of the dual port BRAM to read and write two words per
clock cycle, doubling the speed of the multiplication. The use of Karatsuba does
make the partial multiplication slightly more complicated, as one of the partial
multiplications involves the addition of the lower and upper part of the R/3
polynomial. This leads to a polynomial in R/q with 3 bit coefficients, with val-
ues between -2 and +2. The R/q multiplier also performs the multiplication of
two polynomials in R/3 during decapsulation. The single difference is that as a
final step, all coefficients are reduced to Z/3.

4.2 Reciprocal in R/q and R/3

During key generation, two polynomial inversions must be performed, one in
R/q and one in R/3. We implement the constant time extended GCD algorithm
from CHES 2019 [7]. For hardware accelerators for servers and other heavy-duty
systems, batch inversion using Montgomery’s trick [17] may be beneficial, but
we did not consider this for our implementation. During key generation, the two
inversions are done in parallel. Even so, the inversion is by far the single slowest
operation (see Table 2).

In addition, we follow the reference implementation of SNTRUP by always
calculating the inverse of g, rather than checking beforehand if g is invertible.
Instead, we check the validity after the inversion has been completed. Should g
not have been invertible, then we repeat the inversion with a new random small
polynomial. In those cases, the key generation time is almost doubled.

4.3 Generating Short Polynomials and Constant Time Sorting

For the generation of the random short f during key generation and the random
short r during encapsulation, a constant time sorting algorithm is used to sort
a total of p 32 bit random values. In this context, constant time refers to being
timing independent of the values sorted. Before sorting, the lowest 2 bits from
first w 32 bit numbers are set so that they are always even. The lowest 2 bits
from the rest are set so that they are odd. After sorting, the upper 30 bits are
discarded, and the result is subtracted by 1. As a result, exactly w elements are
either 1 or -1, and the rest are all zero, thus the polynomial is short. For the
sorting itself, we implement a VHDL version of the algorithm suggested by [5].
The C-code of the sorting algorithm can be found in Listing 1.1.
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void minmax( uint32 *x , u int32 *y ) {
uint32 x i = *x ; u int32 y i = *y ;
u int32 xy = xi ˆ y i ;
u int32 c = y i − x i ;
c ˆ= xy & ( c ˆ y i ˆ 0x80000000 ) ;
c >>= 31 ;
c = −c ;
c &= xy ;
*x = xi ˆ c ; *y = yi ˆ c ;

}
void u i n t 3 2 s o r t ( u int32 *x , int n) {

int top , p , q , i ;
top = 1 ;
while ( top < n − top ) top += top ;
for (p = top ; p > 0 ; p >>= 1) {

for ( i = 0 ; i < n − p;++ i )
minmax(x + i , x + i + p ) ;

for ( q = top ; q > p ; q >>= 1)
for ( i = 0 ; i < n − q;++ i )

minmax(x + i + p , x + i + q ) ;
}

}

Listing 1.1: The C code of the sorting algorithm. The minmax function compares and
swaps the two inputs [5].

4.4 Modulo Reduction in Z/q and Z/3
In many parts during the KEM, we must reduce integers to Z/3 and Z/q, e.g.
during the inversion, or after the R/3 multiplication. To quickly reduce coeffi-
cients, we used pipelined Barrett reductions [3]. This is different from the refer-
ence implementation, which uses a constant time division algorithm [6]. Barrett
reduction allows a modulo operation to be replaced with a multiplication and a
bit shift. This can be implemented efficiently in the DSP units of the FGPA. For
the reduction to Z/3, we slightly modify the constants than those from Barrett’s
original paper. The modified constants are needed as we need to reduce values
from a larger interval than normally allowed: Barrett reduction for a modulus n
is only correct for the interval [0, n2]. This obviously does not work if we wish
to reduce values from Z/q to Z/3 if q > 9. In addition, the modifications al-
lows us to reuse the reduction during encapsulation to round coefficients to the
nearest multiple of three. A Python version of our reduction algorithm with the
constants is found in Listing 1.2. To verify the correctness of the modified con-
stants, we mechanically verify in a simulator that all possible elements from Z/q
are both rounded correctly and reduced to the correct values in Z/3. This would
mean that for elements outside of Z/q, one would first have to reduce to Z/q,
and then again to Z/3. However, this situation does not occur in our design.

import math
q=4591; q h a l f = math . f l o o r ( q /2 ) ; p=761
k=16; r=math . f l o o r ((2**k ) / 3)
def reduce and round ( input ) :

rounded output = 3* ( ( ( input+q ha l f ) * r + 2**( k − 1) ) >> k)−q ha l f
mod 3 resu l t = input − rounded output
return [ rounded output , mod 3 resu l t ]

Listing 1.2: A python version of our combined Barrett reduction to Z/3 and rounding
algorithm.
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4.5 En- and Decoder for Polynomials R/q and R/3

In order to save bytes during transmission, Streamlined NTRU Prime has speci-
fied an encoding for public and private keys and the ciphertext. The polynomials
of the secret key f and 1/g are both in R/3, and each polynomial coefficient is
in Z/3 and can be represented with 2 bits. Four of these coefficients are simply
packed into a byte using a shift register. The encoder for the ciphertext and pub-
lic key is more complicated, as both polynomials are in R/q, with coefficients in
Z/q. Here, the coefficients are all have 13-bit size. However, since values in the
interval between q and 213 do not occur, packing can save space by “overlapping”
the coefficients. There is a slightly different encoding for the ciphertext, as each
coefficient of the ciphertext is rounded to the nearest multiple of 3. This allows
us to save further space. See Appendix A for the Python code of the encoder.

Decoding elements inR/3 is similar to the encoding, with a simple shift register.
Decoding the elements from R/q however, is again more complex. In fact, the
R/q decoder is one of the most expensive modules when it comes to resource
consumption. One reason for this is that the decoder requires a 32 by 16 bit
division. In order to avoid the need to implement a full division circuit, we
precalculate all divisors, which are not dependent on any secrets, and store these
in a table. For p = 761 and q = 4591, there are in total 42 different divisors, each
fitting in 16 bits. Half of these are for the decoding the rounded coefficients of
the ciphertext, the other half are for the public key. Due to the precalculation,
we can then use integer division by a constant, allowing us to replace the division
with a multiplication and a bit shift [16]. See Appendix A for the Python code
of the decoder.

Before decapsulation and encapsulation can begin, the secret key and public
key respectively must be decoded first. However, for subsequent en- and decap-
sulations, the decoding does not have to be repeated. Instead, the decoded public
and secret keys are stored in internal memory. This can save time whenever a
key is reused for multiple KEM runs.

4.6 SHA-512

Streamlined NTRU Prime uses SHA-512 as a hash function. This is used on
the one hand to generate the shared secret after the en- and decapsulation, but
also for the ciphertext confirmation hash. The confirmation hash is the hash of
the short polynomial r and the public key, and is appended to the ciphertext
during encapsulation. We did not write our own SHA-512 implementation, but
instead used an open source one [20], with some slight modifications to improve
performance and reduce resource consumption. The SHA-512 module consumes
nearly half of all LUTs and over half of the flip-flops of the entire implementation
(see Table 4), making it by the far the single most expensive component. A note
to remember is that only the first 256 bits of the hash output are actually used.
As such, usage of other hash functions such as SHA-256 or SHA3-256 could be
worth a consideration in order to save resources. On the other hand, one could
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argue that in many systems, SHA-512 accelerators are already available, so using
SHA-512 does not add any resource cost. From a speed perspective, the time
spent on hashing is negligible (see Table 2 and 3).

Table 2: A summary of the cycle count of the core modules of our implementation
for the parameter set p = 761, q = 4591 and w = 246. Note that the times for sub-
modules are included (sometime multiple times) in upper modules. The cycle counts
for key generation, encapsulation and decapsulation are all using the Karatsuba R/q
multiplication.

Module Clock Cycles

Key generation 1 304 738
Key encapsulation 134 844
Key encapsulation inc. key load 142 229
Key decapsulation 251 425
Key decapsulation inc. key load 259 899
R/q Schoolbook multiplication 292 232
R/q Karatsuba multiplication 78 132
Reciprocal in R/q 1 168 960
Reciprocal in R/3 1 168 899
Generating short polynomials 50 927
Sorting algorithm 49 400
SHA-512 (per 1024 bit block) 325
Encode R/q (public key) 5 348
Encode R/q (ciphertext) 5 197
Decode R/q (public key) 7 380
Decode R/q (ciphertext) 6 721
Encode R/3 761
Decode R/3 761

5 Architecture

The architecture of our implementation is tailored to Streamlined NTRU Prime.
After synthesis, the design is specific to a single parameter set. The design has
the following inputs:

– Start Encap. Begin the encapsulation
– Start Decap. Begin the decapsulation
– Start Key Gen. Begin the key generation
– Public Key. Input a new encoded public key for encapsulation
– Secret Key. Input a new encoded secret key for decapsulation
– Ciphertext. Input a new encoded ciphertext for encapsulation
– Random. Source of randomness

The design has the following outputs:

– Public Key. Output encoded public key after key generation
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Table 3: A summary of how the how the clock cycles of key generation, encapsulation
and decapsulation are distributed among the sub modules for the parameter set p =
761, q = 4591 and w = 246. For en- and decapsulation, both times included the
decoding of the public and/or secret key.

Operation Function Relative share of
clock cycles (%)

Key Generation

R/q and R/3 reciprocal 89.6%
R/q multiplication 6%

Generating short polynomials 3.9%
Other 0.5%

Encapsulation

R/q multiplication 54.9%
Generating short polynomials 35.8%

Decoding public key 5.2%
Encoding cipher text 3.6%

Other 0.5%

Decapsulation

R/q and R/3 multiplication 60.3%
Re-encapsulation 32.4%

Decoding cipher text 2.6%
Decoding secret key 2.7%

Other 2%

– Secret Key. Output encoded secret key after key generation
– Ciphertext. Output encoded ciphertext after encapsulation
– Shared secret. Output shared secret after en- and decapasulation

The design has a main finite state machine (FSM), which controls the access
to the different shared modules, as well as starting the separate main operations
such as key generation. The design can only process a single key generation,
encapsulation or decapsulation at a time. The shared modules are operations
that are needed across key generation, de- and encapsulation. This includes the
R/q multiplication, the en- and decoding, hashing, the reduction to Z/3, the
generation of short polynomials, as well as the parts of the encapsulation that
are needed for the Fujisaki-Okamoto transformation [10] during decapsulation.

6 Implementation Results on an FPGA

We implemented the design on a Xilinx Zynq Ultrascale+ ZCU102 FPGA, using
the parameter set for level 3 as an example. This means p = 761, q = 4591 and
w = 246. We achieve a maximum clock frequency of 271 MHz. In total, the design
uses 9538 LUT, 7802 flip-flops, 14 BRAMs, and 19 DSP units. An encapsulation
takes 142 229 clock cycles. A decapsulation takes 251 425 clock cycles, excluding
the time it takes to load and decode the secret key, and 259 899 clock cycles
if it is included. A key generation takes 1 304 738 clock cycles. We did not
implement any kind of RNG into our design, instead it simply has an input where
cryptographically secure random bits are expected. During both encapsulation
and key generation, 24 352 random bits are needed for the generation of the short
polynomials, for which 761 (i.e. p) random 32 bit values are needed. During key
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Table 4: A summary of the resources used for the parameter set p = 761, q = 4591
and w = 246. We also included a subset of non-shared sub-modules that are of special
interest. Note that the resources for non-shared sub-modules are included (sometime
multiple times) in upper modules. The row “total” is using the Karatsuba R/q multi-
plication. The numbers for the schoolbook multiplication are for comparison and are
not included in the total.

Module Logic Slices LUT Flip-flops BRAM DSP

Main
operations

Key generation 458 2499 1082 3 11
Key encapsulation 77 157 94 0.5 0
Key decapsulation 204 739 263 1.5 0

Shared
modules

Key encapsulation shared core 25 113 22 0.5 1
R/q schoolbook multiplication 94 418 281 1 0
R/q Karatsuba multiplication 298 1463 817 4 0
Generating short polynomials 45 231 87 1 0
SHA-512 716 3174 4710 1 0
Encode R/q 47 215 131 0.5 1
Decode R/q 128 676 571 2 5
Reduce to Z/3 & rounding 10 23 19 0 1
Top level leaf cells 0 248 6 0 0

Total 1841 9538 7802 14 19

Non-shared
sub-modules

Sorting algorithm 33 159 56 0 0
Reciprocal in R/q 278 1642 726 2 11
Reciprocal in R/3 92 518 216 0 0
Reduce to Z/q 54 304 107 0 1
Encode R/3 8 18 20 0 0
Decode R/3 7 24 22 0 0
Constant integer division 50 232 188 0 5

generation, a further 24 352 bits are needed for the random g, and 1528 bits for
the random value ρ, for a total of 50 232 bits. No randomness is needed during
decapsulation. A detailed list of the runtimes of all core modules can be found
in Table 2. A summary of the resources used can be found in Table 4.

Table 3 details the cycles count for key generation, en - and decapsulation as
percentages. For the key generation, the cycle count is dominated by the polyno-
mial inversion, which take 89.6% of the total time. Both the R/q multiplication
and the generation of short polynomials only take 6% and 3.9% respectively.
Encoding and hashing are minuscule in comparison, and are grouped together
under other. For encapsulation, the time for R/q multiplication and the gen-
eration of short polynomials is 54.9% and 35.8% respectively. Encoding and
decoding only take a small single digit percentage of the cycles. The hashing
is again negligible, and is grouped under other. For decapsulation, the time is
dominated by the R/q and R/3 multiplication. One each is performed during
the core decapsulation itself, and a further R/q multiplication is done during
the re-encapsulation for the Fujisaki-Okamoto transformation [10]. The cycles
spent for the re-encapsulation differ from a normal encapsulation in that no
short polynomials have to be generated, and the decoding of the public key is
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not needed, as it was already decoded as part of the secret key. Once again,
decoding, encoding and hashing are almost negligible. As such, improving the
R/q multiplication speed can significantly improve decapsulation speed. Encap-
sulation can also be improved, but not to such an extent, as the time taken for
the generation of the short polynomials will quickly dominate. The cycles for
the generation of the short polynomials are almost entirely due to the sorting
algorithm, which takes 97.7% of the cycles. Thus, a faster sorting method would
also lead to a speed improvement of the encapsulation. Key generation cannot
be meaningfully improved by either faster R/q multiplication or faster sorting,
as both only take a small percentage of the total cycles.

In the Xilinx Zynq FPGA, each Block RAM is 36 kilobits. They can be split
into two 18 kb BRAMs. The majority of the BRAM are used by the en- and
decoding, the R/q polynomial inversion, and the R/q multiplication. In several
instances, we explicitly use disturbed RAM instead, in order to save BRAM
resources from being consumed for very small memories. Examples for this is the
storage of small polynomials, which only require 1522 bits. Note that all memory
is instantiated where needed, i.e. there is no central memory. This means that
there is no sharing or overlapping of memory.

The Xilinx FPGA has numerous Digital Signal Processor (DSP) cells, which
can be used for fast addition and multiplication. Of the 23 DSP cells, 11 are
used for the R/q polynomial inversion during key generation. More specifically,
they are used for the modular multiplication and modular addition during the
inversion (see also Section 4.4 on Barrett reduction). A further five DSP cells
are used for the constant integer division during decoding. Only two DSPs are
used during the core en- and decapsulation.

To test our implementation for correctness we use the known answer test (KAT)
also used by the reference code. In total, we run 50 KATs, for key generation,
encapsulation and decapsulation. In all cases, the outputs of our design match
that of the reference code. We used the default synthesis and implementation
settings of Vivado (version 2018.3.1), with two exceptions: We turn on register
retiming, and set the synthesis hierarchy parameter to full.

6.1 Side Channels

The implementation is fully constant time, i.e. all operations are timing inde-
pendent with regards to secret input. The case during key generation where the
inversion of g fails is not relevant here, as the polynomial is discarded, and a new
one generated. That being said, we did not employ any protections against more
advanced side channels, such as DPA, nor invasive attacks such as fault attacks.
There have been side channel attacks on the polynomial multiplication part of
lattice schemes [19, 13]. Many of these attacks were applied on software imple-
mentations, some were also applied to hardware implementations [2]. There have
also been side channel attacks that exploit decryption failures of lattice schemes
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[4]. As Streamlined NTRU Prime does not have any decryption failures, these at-
tacks do not apply. The authors from [11] show an attack on the re-encapsulation
(based on the Fujisaki-Okamoto transformation [10]) of the FrodoKEM scheme,
due to the ciphertext comparison being non constant time. This attack also does
not apply to our implementation, as the comparison is completely constant time.
We plan on investigating further side channel resistance in future work.

6.2 Comparison With Other Implementations

To our knowledge, there are no other complete pure hardware implementations
of Streamlined NTRU Prime. The authors of [9] have a hardware software co/de-
sign, where some parts of the algorithm are implemented in hardware. Specifi-
cally, they have not implemented the key generation and decoding. Overall, our
design uses significantly fewer LUTs and flip-flops, even when considering that
our design implements more functionality in hardware (see Table 5). [9] however
does not use any DSP units. Our design has an initially noticeable higher usage of
block RAMs, but this is due to the inclusion of the key generation and decoding.
When these are counted separately, our design uses the same amount of BRAMs.
Our design runs at a slightly faster clock speed, though the total encapsulation
and decapsulation time of [9] is shorter, as can be seen in Table 5. The main
reason for this difference is in the implementation of the R/q multiplication. Our
design uses a combination of Karatsuba and schoolbook multiplication, whereas
[9] uses an linear feedback shift register (LFSR). While using an LFSR is faster,
the resource cost is significantly higher. In addition, our multiplication design
has the additional advantage that it can be easily tweaked, as the numbers of
Karatsuba layers can be modified. Using more Karatsuba layers would increase
performance, though also increase resource cost. See Table 5 for a full comparison
of all metrics.

Table 5: A comparison of our design (both the full version, and once without the key
generation and decoding) and existing Streamlined NTRU Prime implementations for
the parameter set p = 761, q = 4591 and w = 246. For the implementation from [9],
we only consider the timing from the hardware design.

Design Slices LUT Flip-flops BRAM DSP Clock
Speed

Encap
Time

Decap
Time

Ours 1841 9538 7803 14 19 271 MHz 524 µs 958 µs

Ours, without
key gen or de-
coding

1261 6240 6223 9 3 279 MHz 483 µs 901 µs

[9], no key gen
or decoding

10 319 70 066 38 144 9 0 263 MHz 56.3 µs 53.3 µs
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6.3 Potential Improvements

In this section, we describe a number of potential improvements that we have
not yet implemented or tested. We plan on investigating these improvements in
future work.

An option would be to use an LFSR polynomial multiplier for theR/3 multiplier
only. As polynomials in R/3 only require 2 bits of storage per coefficient, the
resource cost is not as high as with a full R/q multiplier. Doing so would speed
up decapsulation. In a similar vein, the R/q Karatsuba multiplication currently
uses only a single layer of Karatsuba. Implementing more layers would bring
further speedups, though also increase resource cost. In particular, the amount
of memory needed to store intermediate results would increase, leading to an
increase of BRAMs usage. In addition, the partial multiplier would increase in
complexity: As the partial factors are added together, previously small factors
become more and more complex, requiring an increasingly complex modular
multiplication circuit.

During the key generation, the reciprocal algorithms work on a single coefficient
per clock cycle. However, there is no interdependence between the coefficients.
As such, it would be possible to operate on batches of coefficients. On Xilinx
FPGAs, the BRAMs can have word width of up to 72 bits. For theR/q inversion,
this would be enough to read five coefficients per clock cycle. This would speed
up the inversion by roughly a factor of five. However, this would also significantly
increase the resource consumption of the inversion, as we would need to duplicate
the modular multiplication circuits five times. Since the modular multiplication
during the R/q inversion currently requires six DSP units, the duplication would
increase this to 30 DSP units.

Currently, the design has a single global clock. However, not all parts are
required to run at the same speed. Parts such as the hashing, en- and decoding,
which take only a small duration of the overall time, could be clocked at a
slower speed, saving power, as well as reducing the number of pipeline steps
needed. This is especially true for the hash function. We believe that there is
still a potential for resource saving there, though finding the optimal SHA-512
implementation was considered out of scope for this work.

As mentioned previously, there is no central memory, instead block and dis-
tributed RAMs are inferred where needed. This aids performance and simplicity,
but causes a larger memory footprint, as memory reuse is not possible. However,
as many functions are executed sequentially, and not parallelly, sharing memory
could save significant resources. At a higher level, this includes the fact that key
generation, encapsulation and decapsulation cannot happen at the same time,
thus memory space could be shared. At a lower level, this includes functions like
the de- and encoding, which also never occur at the same time.
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Currently, the design is also fixed to a single parameter set after synthesis. For
greater flexibility, it would be useful if the design could switch between parameter
sets during runtime.

7 Conclusion

We present the first full constant-time hardware implementation of the round
2 scheme Streamlined NTRU Prime. We implement the entire KEM in VHDL,
including key generation, and all en- and decoding. Compared to existing partial
implementations of Streamlined NTRU Prime, our design is slower, but uses
significantly less resources. The source code of our implementation is available
at https://github.com/AdrianMarotzke/SNTRUP.
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A Encode and Decode algorithm

l im i t = 16384
def Encode (R,M) :

i f len (M) == 0 : return [ ]
S = [ ]
i f len (M) == 1 :

r ,m = R[ 0 ] ,M[ 0 ]
while m > 1 :

S += [ r%256]
r ,m = r //256 ,(m+255)//256

return S
R2 ,M2 = [ ] , [ ]
for i in range (0 , len (M)−1 ,2) :

m, r = M[ i ]*M[ i +1] ,R[ i ]+M[ i ]*R[ i +1]
while m >= l im i t :

S += [ r%256]
r ,m = r //256 ,(m+255)//256

R2 += [ r ]
M2 += [m]

i f len (M)&1:
R2 += [R[ −1 ] ] ; M2 += [M[ −1 ] ]

return S+Encode (R2 ,M2)

Listing 1.3: The Python code of the encoder [6]. The lists R and M must have the same
length, and ∀i : 0 ≤ R[i] ≤M [i] ≤ 214. Then, Decode(Encode(R;M);M) = R.

l im i t = 16384
def Decode (S ,M) :

i f len (M) == 0 : return [ ]
i f len (M) == 1 : return [sum(S [ i ]*256** i for i in range ( len (S)))%M[ 0 ] ]
k = 0 ; bottom ,M2 = [ ] , [ ]
for i in range (0 , len (M)−1 ,2) :

m, r , t = M[ i ]*M[ i +1] ,0 ,1
while m >= l im i t :

r , t , k ,m = r+S [ k ]* t , t *256 , k+1 ,(m+255)//256
bottom += [ ( r , t ) ]
M2 += [m]

i f len (M)&1:
M2 += [M[ −1 ] ]

R2 = Decode (S [ k : ] ,M2)
R = [ ]
for i in range (0 , len (M)−1 ,2) :

r , t = bottom [ i / / 2 ] ; r += t *R2 [ i / / 2 ] ;
R += [ r%M[ i ] ] ; R += [ ( r //M[ i ])%M[ i +1] ]

i f len (M)&1:
R += [R2[ −1 ] ]

return R

Listing 1.4: The Python code of the decoder [6].
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