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Abstract. Let Fq be a finite field and Eb : y2 = x3 + b be an ordinary elliptic Fq-curve of

j-invariant 0 such that
√
b ∈ Fq. In particular, this condition is fulfilled for the curve BLS12-

381 and for one of sextic twists of the curve BW6-761 (in both cases b = 4). These curves are
very popular in pairing-based cryptography. The article provides an efficient constant-time
hashing h : Fq → Eb(Fq) of an absolutely new type for which q/6 6 #Im(h). The main idea
of our hashing consists in extracting in Fq a cubic root instead of a square root as in the well
known (universal) SWU hashing and in its simplified analogue. Besides, the new hashing can
be implemented without quadratic and cubic residuosity tests (as well as without inversions)
in Fq. Thus in addition to the protection against timing attacks, h is much more efficient than
the SWU hashing, which generally requires to perform two quadratic residuosity tests in Fq.
For instance, in the case of BW6-761 this allows to avoid at least approximately 2·761 ≈ 1500
field multiplications.

Key words: constant-time implementation, cubic residue symbol and cubic roots, hash-
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Introduction

Many protocols of pairing-based cryptography [1] use a mapping h : Fq → Eb(Fq) called hashing
[1, §8] such that #Im(h) = Θ(q), where q ≈ #Eb(Fq) according to the Hasse inequality [2,
Theorem V.1.1]. In other words, h should cover most Fq-points of Eb. In addition, the hashing
h is called constant-time if the computation time of its value is independent of an input
argument. Almost all hashings used in practice have this property in order to be protected
against timing attacks [1, §8.2.2, §12.1.1].

There is the so-called SWU hashing [1, §8.3.4], which is applicable to any elliptic Fq-curve
(i.e., not necessarily of j = 0). However it generally requires the computation of two Legendre
symbols (i.e., quadratic residuosity tests) in Fq. Unfortunately, this operation (as well as the
inversion one in Fq) is vulnerable to timing attacks.

There is also the simplified SWU hashing (see, e.g., [3, §2]), which, on the contrary,
does not contain Legendre symbols at all. However, at the moment it cannot be applied
to some curves Eb, including the sextic twist (with b = 4) of the curve BW6-761 from [4].
The simplified SWU hashing sometimes can be constructed by means of a vertical Fq-isogeny
(the Wahby–Boneh approach [5]) or Fq2-isogeny (the Koshelev approach [3]) ψ : E → Eb of
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small degree d, where j(E) 6= 0. For example, the curve BLS12-381 (also with b = 4) [5, §2.1]
benefits from a vertical Fq-isogeny of degree d = 11.

In our opinion, the main disadvantage of using such isogenies is decreasing the cardinality
#Im(h) (not to mention increasing the computation time of h) with increasing degree d, even
though this correlation is linear. More precisely, if ker(ψ) ⊂ E(Fq) (what is true in the case
of BLS12-381), then the image cardinality of the Wahby–Boneh hashing equals ≈ 3q/(8d).
Indeed, that of the simplified SWU hashing equals ≈ 3q/8 according to [6, Propositon 4]. At
the same time, the isogeny ψ (by definition of its degree) maps exactly d points of E(Fq) to
only one point of Eb(Fq). In particular, for d = 11 we have 8d/3 = 88/3 ≈ 29.3.

The given work continues the previous ones [3], [7], [8] of the author. Therefore let us not
repeat a detailed overview of the given scientific field for the sake of brevity. In this article it
is represented a new efficient constant-time hashing h : Fq → Eb(Fq) provided that

√
b ∈ Fq.

We establish that q/6 6 #Im(h), which is at least 44/9 ≈ 4.9 times more than the image
cardinality of the Wahby–Boneh hashing (for d = 11).

Our approach is based on using the elliptic Fq(t)-curve E (1) and its Fq(t)-point ϕ (2),
where Fq(t) denotes the rational function field in one variable t over the constant field Fq.
Moreover, ϕ has very simple formulas, hence h can be implemented quite efficiently. In order
not to complicate the text we do not explain why the particular surface E was taken and how
the formulas of ϕ were derived. We can just add that it was used a certain cubic Fq-twist of
the generalized Kummer threefold of Calabi–Yau type from [9, §1.3] and the theory of the
Mordell–Weil lattices of elliptic Fq(t)-curves.

Obtained results

Consider the Fq(t)-curve given as the intersection of two quadratic Fq(t)-surfaces

E :

{
y21 − b = bt3(y20 − b),
y22 − b = b2t3(y20 − b)

⊂ A3
(y0,y1,y2)

. (1)

Lemma 1 ([10]). E is an elliptic Fq(t)-curve of j-invariant

256·
(
b4t6 − b2(b+ 1)t3 + b2 − b+ 1

)3(
b(b− 1)(b2t3 − 1)(bt3 − 1)

)2 .

In other words, E ⊂ A4
(y0,y1,y2,t)

is an elliptic Fq-surface (see, e.g., [11, Chapter III]), whose

the elliptic fibration is the projection to t. In [12, §2.5.4] it is described how to transform E
into Weierstrass form.

Theorem 1 ([10]). E has the Fq(t)-point (i.e., Fq-section)

ϕ :=



y0(t) :=
√
b · −b

2(b− 1)2 ·t6 − 2b(b+ 1)·t3 + 3

den
,

y1(t) :=
√
b · b

2(b+ 3)(b− 1)·t6 − 2b(b− 1)·t3 + 1

den
,

y2(t) :=
√
b · b

2(3b+ 1)(b− 1)·t6 − 2b(b− 1)·t3 − 1

den
,

(2)
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where
den := b2(b− 1)2 ·t6 − 2b(b+ 1)·t3 + 1.

Moreover,
y0(t)− y1(t) + y2(t) =

√
b, by21(t)− y22(t) = b(b− 1).

For the frequent case b = 4 we obtain

ϕ =



y0(t) := 2·−2432 ·t6 − 235·t3 + 3

den
,

y1(t) := 2· 2
43·7·t6 − 233·t3 + 1

den
,

y2(t) := 2· 2
43·13·t6 − 233·t3 − 1

den
,

where den = 2432 ·t6 − 235·t3 + 1.

We everywhere assume that q ≡ 1 (mod 3), i.e., ω := 3
√

1 ∈ F∗q , where ω 6= 1. In particular,
by virtue of [2, Example V.4.4] this is true if Eb is an ordinary (i.e., non-supersingular)
curve. As is well known, only such curves are applied in pairing-based cryptography. For
a ∈ F∗q denote by

(
a
q

)
3

:= a(q−1)/3 the cubic residue symbol, which is a group homomorphism

F∗q → {ωi}2i=0.

Lemma 2 ([13, Remark 2.3]). An element a ∈ F∗q is a cubic residue if and only if
(
a
q

)
3

= 1.
Moreover, in this case

3
√
a =


[14, Proposition 1] if q ≡ 1 (mod 9) and q 6≡ 1 (mod 27),

a−(q−4)/9 = a(8q−5)/9 if q ≡ 4 (mod 9),

a(q+2)/9 if q ≡ 7 (mod 9).

It is well known (see, e.g., [8, Remark 1]) that in the case
(
b
q

)
3

= 1 the simplified SWU hashing

can be used. Therefore without loss of generality we will assume that
(
b
q

)
3

= ω.

We would like to explain how ϕ : A1
t 99K E ⊂ A4

(y0,y1,y2,t)
gives a constant-time hashing

h : Fq → Eb(Fq). It will be considered the cases q ≡ 4 (mod 9) (occurs for BW6-761) and
q ≡ 10 (mod 27) (occurs for BLS12-381). The cases q ≡ 7 (mod 9) and q ≡ 19 (mod 27) are
processed in a similar way.

Letting gi := y2i − b for i ∈ {0, 1, 2}, we get E : {gj = bjt3g0}2j=1. It is obvious that{(
gi
q

)
3

}2
i=0

= {ωi}2i=0 whenever gi, t ∈ F∗q . We denote by U and V respectively the domain

of definition and the image for ϕ. Besides, n ∈ {0, 1, 2} will be the position number of an

element t ∈ F∗q in the set
{
ωit
}2
i=0

ordered with respect to some order in F∗q . For example, if
q is a prime, then this can be the usual numerical one.

The case q ≡ 4 (mod 9). Under this assumption(ω
q

)
3

= ω(q−1)/3 = ω(q−4)/3 ·ω = ω3(q−4)/9 ·ω = ω.
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Let θ := g
(8q−5)/9
0 and cj := 3

√
(b/ω)j ∈ F∗q for j ∈ {1, 2}. We obtain

gj = bjt3g0 = (cjθt)
3 if θ3 = ωjg0, i.e.,

(g0
q

)
3

= ω3−j.

Consider the auxiliary map

h′ : V (Fq)→ Eb(Fq), (y0, y1, y2, t) 7→


(
ωn ·θ, y0

)
if θ3 = g0,(

ωn ·c1θt, y1
)

if θ3 = ωg0,(
ωn ·c2θt, y2

)
if θ3 = ω2g0.

The element θ can be computed with the cost of one exponentiation in Fq. Indeed,

(u/v)(8q−5)/9 = u(8q−5)/9 ·v(q−4)/9 = u3(u8v)(q−4)/9 (3)

for any u, v ∈ F∗q . Since

θ3 = g
−(q−4)/3
0 = g

q−1−(q−4)/3
0 = g

(2q+1)/3
0 = g

2(q−1)/3
0 ·g0,

the map h′ is well defined everywhere on V (Fq).

The case q ≡ 10 (mod 27). Take any ζ := 9
√

1 ∈ F∗q such that ζ3 = ω. In this case(ζ
q

)
3

= ζ(q−1)/3 = ω(q−1)/9 = ω(q−10)/9 ·ω = ω3(q−10)/27 ·ω = ω.

Let θ := g
(2q+7)/27
0 and cj := 3

√
(b/ζ)j ∈ F∗q for j ∈ {1, 2}. Given i ∈ {0, 1, 2} we obtain

gj = bjt3g0 = (cjθt)
3/ωi if θ3 = ωiζjg0, i.e.,

(g0
q

)
3

= ω3−j.

Consider the auxiliary map

h′ : V (Fq)→ Eb(Fq), (y0, y1, y2, t) 7→


(
ωn ·θ/ζ i, y0

)
if ∃i : θ3 = ωig0,(

ωn ·c1θt/ζ i, y1
)

if ∃i : θ3 = ωiζg0,(
ωn ·c2θt/ζ i, y2

)
if ∃i : θ3 = ωiζ2g0.

The element θ can be computed with the cost of one exponentiation in Fq. Indeed,

(u/v)(2q+7)/27 = u(2q+7)/27 ·vq−1−(2q+7)/27 = u(2q+7)/27 ·v(25q−34)/27 =

= u·u2(q−10)/27 ·v3v5(5q−23)/27 = uv8(u2v25)(q−10)/27.
(4)

for any u, v ∈ F∗q . Since

θ3 = g
(2q+7)/9
0 = g

2(q−1)/9
0 ·g0,

the map h′ is well defined everywhere on V (Fq).
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In both cases, for any t ∈ Fq we can put

h(t) :=

{
(h′ ◦ ϕ)(t) if t ∈ U(Fq),
(0 : 1 : 0) if t /∈ U(Fq).

We emphasize that in the definition of h′ (a fortiori, ϕ) the cubic residue symbol (in
other words, cubic residuosity test) does not appear. In turn, by returning the value of h in
(weighted) projective coordinates, we entirely avoid inversions in the field. It is also worth
noting that the constants cj are found once, using precalculations. Finally, by virtue of the
formulas (3), (4) we obtain

Remark 1. On the set U(Fq) the new hashing h is computed in constant time, namely in
that of one exponentiation in Fq.

Theorem 2. We have q/6 6 #Im(h).

Proof. First, suppose that h(t) = ±P0, where P0 := (0,
√
b). Then θ(t) = g0(t) = 0 or t = 0.

In the first case, y0(t) = ±
√
b. More precisely,

y0(t) =
√
b ⇔ t3 =

±1

b(b− 1)
, y0(t) = −

√
b ⇔ t3 =

1

b(b+ 1)
.

In the second case, y0(0) = 3
√
b, g0(0) = 8b, and hence

(g0(0)
q

)
3

= ω. Since y2(0) = −
√
b, we

have h(0) = −P0. As a result, #h−1(P0) 6 6 and #h−1(−P0) 6 4.
Now take t ∈ U(Fq) such that h(t) 6= ±P0. For definiteness let the value g0(t) is a cubic

residue in Fq. Then for t′ ∈ Fq from the collision h(t) = h(t′) it follows that exists i ∈ {0, 1, 2}
such that y0(t) = yi(t

′). Every given equation has at most 6 solutions in Fq with respect to
t′. However, in the definition of h′ the (non-zero) x-coordinate is multiplied by ωn, hence we
can take into account only 2 solutions (with the different cubic powers).

In turn, the set Fq \ U(Fq) contains only Fq-roots of the polynomial den, that is

t /∈ U(Fq) ⇔ t3 =
(
√
b± 1)2

b(b− 1)2
.

Thus for every point from Eb(Fq) its inverse image under h contains at most 6 elements of
the field Fq and our theorem is proved.
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