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Abstract. Achieving fairness and soundness in non-simultaneous ratio-
nal secret sharing schemes has proved to be challenging. On the one hand,
soundness can be ensured by providing side information related to the
secret as a check, but on the other, this can be used by deviant players to
compromise fairness. To overcome this, the idea of incorporating a time
delay was suggested in the literature: in particular, time-delay encryption
based on memory-bound functions has been put forth as a solution. In
this paper, we propose a different approach to achieve such delay, namely
using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO
2019, and construct a fair and sound rational secret sharing scheme in
the non-simultaneous setting from HTLPs.

HTLPs are used to embed sub-shares of the secret for a predetermined
time. This allows to restore fairness of the secret reconstruction phase,
despite players having access to information related to the secret which
is required to ensure soundness of the scheme. Key to our construction
is the fact that the time-lock puzzles are homomorphic so that players
can compactly evaluate sub-shares. Without this efficiency improvement,
players would have to independently solve each puzzle sent from the other
players to obtain a share of the secret, which would be computationally
inefficient. We argue that achieving both fairness and soundness in a non-
simultaneous scheme using a time delay based on CPU-bound functions
rather than memory-bound functions is more cost effective and realistic
in relation to the implementation of the construction.

1 Introduction

Threshold secret sharing (SS) schemes provide a way to split a secret into shares
such that the secret can be reconstructed by a threshold number of mutually
distrustful parties. Knowledge of fewer than the threshold number of shares re-
veals nothing about the secret [6,40]. SS schemes are an important primitive
used in a variety of settings from multiparty computation [8,11], to attribute-
based encryption [23,44], and threshold cryptography [5,14]. In a SS scheme,
a trusted dealer splits the secret into shares and distributes one to each au-
thorised party. Parties then communicate and process their collective shares
in a reconstruction phase. During the communication phase, parties broadcast
their shares in one of two ways: simultaneously or non-simultaneously. That is,
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with or without synchronicity. Properties of SS schemes are better understood,
and easier to guarantee in the simultaneous setting [12], due to the fact that
a non-simultaneous construction needs to ensure the final party to communi-
cate is still incentivised to follow the protocol. However, simultaneous schemes
are difficult to implement in practice, therefore attention has recently turned to
non-simultaneous communication [3].

Typically, in the non-simultaneous setting [19,28,29], schemes consists of
rounds, where one round of the reconstruction phase simply translates to a
capped period of time in which parties have the opportunity to communicate
their share. Parties learn the secret is reconstructed when they reconstruct some
publicly known value (for example, an indicator), in what is known as a reve-
lation round [32,25]. The previous round to the revelation round is assumed to
be the one in which the secret can be reconstructed from, allowing parties to
identify when they will reconstruct the correct secret.

There is abundant literature for cryptographic [4,5,9,21,25,30,31,32,37,41]
and game-theoretical SS schemes [3,12,19,22,24,33], two somewhat independent
research areas considering honest/malicious parties and rational players, respec-
tively. We refer to Appendix G for a brief summary of past works. Rational
secret sharing (RSS) was introduced by [24], where they consider the problem
of secret sharing and multiparty computation assuming players prefer to learn
the secret over not learning it, and secondly, prefer that as few as possible other
players learn the secret. While for some applications the cryptographic setting
is appropriate, for other applications of secret sharing it may be more suitable
to view all parties as rational players. RSS is a good approach to capture more
interesting scenarios, such as how to motivate or force players to participate hon-
estly and even how a scheme can penalise players for deviant play. Furthermore,
modelling players as rational is not limited to assuming players always want to
learn the secret above all else. Indeed, as we will explore, an emerging scenario
in RSS considers players that prefer to mislead others above learning the secret.
For these reasons, our attention focuses on RSS schemes.

In RSS schemes, the outcome of the game influences the players’ strategies,
as they seek to maximise their payoff. Security of the game requires the strategies
of players to be in some form of equilibrium which motivates them to honestly
communicate1. Achieving an equilibrium between players’ strategies is the most
natural way to demonstrate a fundamental property of SS schemes, called fair-
ness [16,27].

A fair scheme ensures that if a player deviates, the probability that they can
recover the shared secret over honest players is negligible. That is, a player is
at no advantage in learning the secret if they withhold or dishonestly send a
share. In the simultaneous setting, [22,24] both achieve fairness using some form
of publicly known indicator, and by demonstrating that their protocol is in a
form of Nash equilibrium [36]. In the non-simultaneous setting, however, a basic
threat to fairness arises: in a (t, n) threshold RSS scheme, the last player out of

1 See Appendices D.1, and D.2 for further discussion on payoff functions and equilib-
rium concepts.
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t can decide not to communicate their share and use all the other players’ shares
to reconstruct the secret, leaving the (t− 1) honest players with an insufficient
number of shares to do so. The rational behaviour of all parties would therefore
be to withhold their share. In works such as [19,29,33], fairness can be achieved
similarly to the simultaneous setting, whereby players can recognise the reve-
lation round using (or reconstructing) some form of public indicator. However,
this only works under the assumption that players prefer everyone to obtain the
correct output over misleading others [3,12]. If this assumption does not hold,
an alternative way of providing fairness needs to be used, as another property
of SS schemes is no longer ensured, soundness.

In RSS schemes, soundness [3,12] ensures players never reconstruct an incor-
rect secret except with negligible probability. In other words, honest players are
guaranteed to output a correct value, or a special abort symbol ⊥ [3]. Soundness
is becoming of emerging relevance in the non-simultaneous setting, assuming
rational players obtain a greater payoff from misleading other players compared
to learning the secret. Soundness has been achieved in prior work [12] focusing
on non-simultaneous communication as follows: before reconstruction begins, all
players are given protocol-induced side information alongside their list of shares.
They must assume that when a player aborts communication, the previous round
was the revelation round. Even if a deviant player has aborted early, using this
side information, honest players can check that they have the correct value after
reconstruction. If not, they terminate the reconstruction altogether.

However, achieving soundness this way compromises fairness, as a deviant
player can use the side-information to check whether they can abort early and
learn the secret before honest players. The authors of [33] were the first to pro-
pose a fair RSS scheme that can tolerate arbitrary side-information, by propos-
ing the use of time-delay encryption (TDE) [7,35]. The basic idea of a TDE
scheme is to encrypt a message such that it can only be decrypted after a spe-
cific amount of time has elapsed. The scheme in [33] employs a cryptographic
memory-bound function2 (CMBF) [1,18] as a way to achieve time-delay in the
recovery of an encrypted sub-share of the secret. The fairness of their scheme is
restored by setting the runtime of rounds of the secret sharing scheme to be less
than the time it takes to decrypt the encrypted shares. Thus, there is no way
for a deviant player to learn anything about the secret during a reconstruction
round, before they must decide whether to abort communication. In addition, a
proof of the sender’s work in computing their message is sent. The scheme pro-
posed in [12] builds upon [33], by encrypting shares (shares are computed using
Shamir’s SS scheme) using the CMBF and further splits the encrypted shares
into sub-shares, distributed to players. During processing, players independently
evaluate the encrypted sub-shares to obtain the encrypted share, decrypt and
then reconstruct the polynomial to obtain the secret. They use a specific form
of side-information, called a checking share, which is an actual share of the se-

2 A CMBF is a family of deterministic algorithms such that an efficiently generated
key can decrypt the encrypted input, with a lower-bound on the number of memory-
access steps to do so.
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cret that players can use to confirm they have reconstructed the correct secret,
thus achieving soundness.3 We note that the memory-bound running times of
employing the MBF in [18], a cryptographic version of which is used for time-
delay in [12,33], endows a high cost on the players who have to verify the proof
of work from messages received by other players. In addition, the players send-
ing the message can potentially perform less work than what is stated in their
accompanying proof [17,39]. These drawbacks suggest that a better time-delay
mechanism should be explored to guarantee fairness, that reduces verification
costs of the communicated messages and\or increases computational efficiency
for honest players obtaining the secret shares after the delay.

1.1 Our Contributions

In this paper, we improve on [12] and propose a RSS scheme achieving fairness
and soundness in the non-simultaneous communication setting from a CPU-
bound function, as opposed to a CMBF, namely a homomorphic time-lock puzzle.

Informally, a time-lock puzzle (TLP) [38] embeds a secret into a puzzle such
that it cannot be decrypted until a certain amount of time T has elapsed. Char-
acteristics of a TLP include fast puzzle generation and security against parallel
algorithms, assuming the sequentiality of the underlying mathematical problem
[38]. A homomorphic time-lock puzzle (HTLP) scheme evaluates puzzles ho-
momorphically using some operation, without the evaluator knowing the secret
shares encapsulated within the corresponding puzzles. The resulting puzzle out-
put contains the homomorphic evaluation of the input puzzles, enabling a more
efficient way for decryptors to obtain the final output solution, as they can solve
just one puzzle rather than solving all of the puzzles individually with standard
TLPs, and then evaluating a final solution.

In our scheme, the dealer splits the secret into shares, and creates an addi-
tional share which is broadcast to all players, i.e., the checking share. The rest
of the shares are split into sub-shares, embedded into HTLPs and distributed
to the corresponding players in such a way that the HTLP scheme can recon-
struct the share from them. Intuitively, the checking share is used to verify the
soundness of the secret that players reconstruct, and the delay provided by the
HTLP scheme is used to guarantee fairness in the presence of a checking share for
players communicating non-simultaneously. More specifically, the HTLP scheme
embeds the sub-shares into puzzles that cannot be decrypted before a round of
communication in the reconstruction phase has finished. Fairness is achieved by
setting each round of communication to have an upper time bound of T . Thus, a
player wishing to deviate from their prescribed strategy and quit communication
will not be able to derive the secret before the end of the round, in which case,
the other players realise the deviant player has quit and output the result of the
previous rounds reconstruction. We show that even if a player quits in a round

3 Note that [33] works under the assumption that players prefer everyone to obtain
the correct output over misleading others, therefore soundness is not an issue that
needs to be addressed.
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and manages to learn the secret, the only case in which they can do so results
in the honest players also learning the secret. Therefore there is no advantage in
a player deviating from their prescribed strategy.

From our generic construction, which we show satisfies soundness and fair-
ness, we provide a concrete instantiation using the multiplicative variant of the
HTLP scheme proposed in [34]. The result is a concrete, efficient scheme whose
security relies on standard assumptions.

We argue that our improvement on prior work is threefold: we base the time
delay of the construction on CPU-bound functions, as opposed to CMBFs; we
provide an efficiency gain by using HTLPs instead of TLPs; and our solution
has inherent flexibility.

Basing the time-delay primitive on CPU-bound functions as opposed to
memory-bound functions captures a more realistic, inexpensive way to imple-
ment a SS scheme construction. Processors are faster than memory and scale
better; even more so, fast memory is considerably more expensive. In practice,
it is easier to raise the computational requirements of a player than it is mem-
ory accesses, up to a point, as adding more processors to a computer is more
accessible than making memory accesses faster. A justification for using MBFs
in [12,33] is that disparities in the computational power of players can cause
unfairness when using standard TLPs for time-delay. However, with reasonable
assumptions on the CPU-power of players, this disparity is not significant.

Furthermore, we use a HTLP for time-delay, which requires less compu-
tational work on behalf of the players decrypting puzzles compared to using
standard TLPs. This efficiency improvement means that the consequence of dis-
parities in CPU-power becomes less significant. To see this, evaluating several
puzzles homomorphically, and then solving just one puzzle, requires fewer com-
putational steps than solving individual puzzles and evaluating a function over
the outputs, as in [12].

Finally, the instantiation of our generic scheme can use any correct SS scheme
with a suitable HTLP, dependent on the application. The HTLPs that we use,
from [34], are adaptable in the following ways: different operators (linear, mul-
tiplicative, and XOR) can be used, we can augment the setup with puzzles of
different time hardness parameters (T1, . . . , Tn) or have a reusable setup, in which
the scheme remains efficiently computable.

2 Definitions and Modelling

2.1 Secret Sharing

Informally, a (t, n) secret sharing scheme (SS) involves a dealer D, some secret
s, and a set P = {P1, P2, . . . , Pn} of n players. The dealer distributes shares of
a secret s chosen according to an efficiently samplable distribution of the set of
secrets, labelled S = {Sλ}λ∈N, with security parameter λ. The key idea behind
threshold SS is that no subset t′ < t of players in P can learn the secret s,
including an adversary controlling t′ players. Conversely, every subset t′ ≥ t of
players in P is capable of reconstructing s.
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A SS protocol is composed of two phases, share and reconstruction. During
the share phase, the dealer samples a secret s from Sλ and generates n shares
from the secret to be distributed to each player in P . The dealer does this non-
interactively, using the a share algorithm to generate the set of shares to be
distributed. The dealer digitally signs (typically using information theoretically
secure MACs) and encrypts the shares before distributing them to individual
players over a broadcast channel 4.

The reconstruction phase itself is composed of two parts: communication and
processing. The communication phase has players interact by sending their share
over the broadcast channel to every other player in P (if a broadcast channel
is not available to parties, then they have to send their share to each of the
other players separately). Once players have communicated, they can move to
the processing phase where they embark on reconstructing the secret s from the
shares that they have received. This is under the assumption that a sufficient
number of shares have been sent and received from other players, and that players
followed the protocol (correctness). If an insufficient amount of shares have been
received, the secret cannot be reconstructed, so players output ⊥. Any player
taking part in reconstruction proceeds to output their result.

Threshold secret sharing schemes have been explored extensively, and were
introduced independently by Shamir [40] and Blakley [6]: Shamir’s scheme is
based on polynomial interpolation over a finite field of prime order, and Blak-
ley’s scheme is based on the uniqueness of hyperplane intersection. Extending
the work of [40], [13,15,43] propose multiplicative homomorphic secret sharing
schemes based on polynomial interpolation over finite groups with respect to
multiplication, that need not be of prime order (See Appendix B).

Next, we recall the formal definition of a threshold secret sharing scheme,
with the implicit assumption that the dealer has digitally signed the shares
before distributing:

Definition 1 ((t, n) Secret Sharing). Given a dealer D, a secret s ∈ Sλ for
security parameter λ, and a set of n authorised players P = {P1, . . . , Pn}, a (t, n)
secret sharing scheme is a tuple of three PPT algorithms (Setup,Share,Recon)
defined as follows:

- Share Phase: D takes as input the secret s and performs the following steps
non-interactively:

1. pp ← Setup(1λ) a probabilistic algorithm that takes as input security
parameter 1λ and outputs public parameters pp, which are broadcast to
all players in P .

2. {s1, . . . , sn} ← Share(pp, s) a probabilistic algorithm that takes as input
the secret s ∈ Sλ and outputs n shares si, one for each player in P .

3. Distribute si to player Pi for every i ∈ [n] over a secret, authenticated
channel.

4 Privacy and authentication of the distribution of shares is a standard cryptographic
assumption in secret sharing schemes [37].
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- Reconstruction Phase: Any player in P = {P1, . . . , Pn} is able to take
part in this phase.
1. Communication:

(a) Each player Pi sends their share si over a secure broadcast channel
to all other players in P .

(b) Pi checks that they have received (t− 1) or more shares. If so, they
proceed to processing.5

2. Processing:
Once Pi has a set of t′ shares labelled S′, they independently do the
following:
(a) {s,⊥} ← Recon(pp, S′) a deterministic algorithm that takes as input

the set S′ of t′ shares and outputs the secret s if t′ ≥ t or outputs
abort ⊥ otherwise.

A (t, n) threshold SS scheme needs to satisfy the properties of correctness and
secrecy, whose definitions are provided in Appendix A.3. Informally, correctness
means that an honest execution of the scheme results in the true secret being
output, except with negligible probability; and secrecy ensures that reconstruc-
tion with fewer shares than the threshold (t) results in abort (⊥) being output,
except with negligible probability.

2.2 Rational Secret Sharing

Using game-theory notions, players are considered to be rational if they have a
preference in the outcome of the reconstruction phase. In a rational secret sharing
(RSS) scheme, a players strategy is to maximise their payoff from the outcome
of the game. The strategy σi taken by each player Pi must be determined by
the dealer in order to achieve a fair outcome. Observe that depending on the
scheme, the strategies of players in P may be the same or different.

In Definition 1, players only participate in the reconstruction phase. There-
fore, we define a RSS scheme by providing a definition of the reconstruction
phase only.

Definition 2 ((t, n) Rational Secret Reconstruction [12]). A reconstruc-
tion phase Γt,n is defined by Γt,n = (Γ,−→σ ) where Γ is the game to be played
by players during the reconstruction phase and −→σ = (σ1, · · · , σn) denotes the
strategy profile of the players in P prescribed by the dealer D during the share
phase for that scheme.

The outcome of the phase for all players is defined by the n-dimensional
vector

−→ω ((Γ,−→σ )t,n) = (ω1, . . . , ωn)

5 Whilst not explicit in the definition, there is an upper bound on how long players
can communicate their shares for. Therefore, at the end of their communication, if
a player Pi has not obtained a sufficient number of shares, then they output ⊥ at
the end of the reconstruction phase.
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where ωi refers to the outcome of the phase for player Pi.

The outcome ωi alludes to whether player Pi learns the entirety of s, nothing
of s, is mislead into learning a fake secret s′ or aborts the reconstruction phase
altogether (⊥). It is important to note that the outcome of the phase depends
on the strategy of the player.

One of the fundamental properties of secret sharing is fairness [42], which guar-
antees that no player has an advantage in the protocol over other players. The
following defines fairness in the context of a RSS scheme. We use the following
notation for a deviating strategy σ′i for player Pi, to signify when a player be-
haves in a different way to how they are meant to. That is, they do not follow
the protocol. In addition, P−i represents all players in P excluding player Pi,
and σ−i signifies the honest strategies of this set of (n− 1) players, P−i.

Definition 3 (Fairness [12]). The reconstruction phase Γt,n is
completely fair if for every arbitrary alternative strategy σ′i followed by player Pi
for some i ∈ [n], there exists a negligible function µ in the security parameter λ
such that the following holds:

Pr[ωi(Γ, (σ
′
i, σ−i)) = s] ≤ Pr[ω−i(Γ, (σ′i, σ−i)) = s] + µ(λ).

That is, the probability of player Pi learning the secret when they deviate from
their prescribed strategy in phase Γt,n (but all other players follow their pre-
scribed strategies) is only ever negligibly more than the probability of the other
players learning the secret too. Consequently, such a player has no real advantage
in deviating from their strategy.

How do we ensure that players (despite any preferences they may have) are
motivated to follow a strategy in the non-simultaneous setting? This is typically
done by assuming that the strategies of players are in a computationally strict
Nash equilibrium (or some other variant of a Nash equilibrium) [16,27,36]. This
concept makes certain that if every player Pi ∈ P believes all other players in
P are following their prescribed strategy in the phase, then they have nothing
to gain in deviating from their own strategy and are penalised in some way
by deviating. In our construction, we need to ensure players strategies are in a
computationally strict Nash equilibrium when they additionally have access to
side-information related to the secret. We discuss this further in Appendix D.2.

Another fundamental property of RSS is soundness. Simply put, soundness of
the reconstruction phase output means that the probability of players following
the scheme outputting an incorrect secret when another player deviates from
their own strategy is negligible.

Definition 4 (Soundness [12]). Reconstruction phase Γt,n is sound if for
every arbitrary alternative strategy σ′i followed by player Pi for i ∈ [n], there
exists a negligible function µ in the security parameter λ such that the following
holds:

Pr[ω−i(Γ, (σ
′
i, σ−i)) 6∈ {s,⊥}] ≤ µ(λ)
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In our construction, as we shall see, we achieve this property by using a check-
ing share, similarly to [12]. A checking share is an actual share of the secret,
kept separate from the other shares and publicly broadcast to players. In order
to formalise our scheme, discussed in Section 3, we recall the definition of a
homomorphic time-lock puzzle (HTLP) [34], on which our construction relies.

2.3 Homomorphic TLPs

Informally, a time-lock puzzle (TLP) scheme embeds a secret into a puzzle such
that it cannot be decrypted until a certain amount of time T has elapsed. The
seminal work of [38] outlined the characteristics of a TLP:

– Fast puzzle generation: namely, the time t required to generate a puzzle Z
must be t << T , for a given (time) hardness parameter T .

– Security against parallel algorithms: that is, the encapsulated secret s is
disguised within the puzzle Z for circuits of depth < T , regardless of the
size of the circuit.

However, when the decryptor is faced with a significant number of puzzles to
solve, a standard TLP scheme requires the decryptor to solve each individual
puzzle, which could be very inefficient. Driven by this limitation [34] introduced
the notion of a homomorphic TLP (HTLP), a scheme that compactly evaluates
puzzles homomorphically.

Homomorphic time-lock puzzles are augmented TLPs allowing anyone to
evaluate a circuit C over sets of puzzles (Z1, . . . ,Zn) homomorphically using op-
eration Ψ 6, without the evaluator necessarily knowing the secret values (s1, . . . , sn)
encapsulated within the corresponding puzzles. The resulting output (a puzzle
Z) contains the circuit output C(s1, . . . , sn), and the hardness parameter T
does not depend on the size of the circuit C that was evaluated (this is called
compactness).

Definition 5 (HTLP [34]). Let C = {Cλ}λ∈N be a class of circuits and let
secret space Sλ be a finite domain for security parameter λ. A homomorphic
time-lock puzzle (HTLP) with respect to C and Sλ is defined by a tuple of four
PPT algorithms (HP.Setup,HP.Gen,HP.Solve,HP.Eval) as follows:

– pp ← HP.Setup(1λ, T ) is a probabilistic algorithm that takes as input secu-
rity parameter 1λ and hardness parameter T and outputs public parameters
pp.

– Z ← HP.Gen(pp, s) a probabilistic algorithm that takes as input the public
parameters pp and a secret s ∈ Sλ and outputs a puzzle Z.

– s ← HP.Solve(pp,Z) is a deterministic algorithm that takes as input public
parameters pp and puzzle Z, and outputs a solution s.

6 What Ψ is depends on the application the HTLP is being used for. It could be
addition, multiplication or XOR for example.
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– Z̃ ← HP.Eval(pp, C, Ψ,Z1, . . . ,Zn) is a probabilistic algorithm taking as in-
put a circuit C ∈ Cλ, parameters pp, homomorphic-operation Ψ , and a set
of n puzzles (Z1, . . . ,Zn), and outputs a master puzzle Z̃.

A HTLP scheme should satisfy correctness, security, and compactness. Infor-
mally, correctness means that if a scheme is executed properly, then the proba-
bility of the output being anything other than the solution is negligible. Captured
within the definition of correctness of [34] is the time-delay in solving a HTLP.
Informally, given a puzzle evaluated in the scheme, there exists a fixed polyno-
mial over the security and time hardness parameters which bounds the runtime
solving the puzzle in the HTLP scheme.

Intuitively, a scheme is considered secure if the output of execution is in-
distinguishable from random to an eavesdropping adversary. Compactness is a
non-trivial property requiring that the complexity of decrypting an evaluated
ciphertext does not depend on the function used to evaluate the ciphertext. In-
tuitively, it means that the ciphertext size should not grow through homomorphic
operations and the output length of the homomorphically evaluated ciphertext
only depends on the security parameter. In the context of a HTLP, compactness
therefore requires the size of the evaluated puzzle ciphertexts to be independent
of the size of the circuit, and for the runtime of the evaluation algorithm to be
independent of the hardness parameter T .

3 A Fair and Sound Non-Simultaneous Rational Secret
Sharing Scheme

We consider a RSS scheme with the reconstruction phase defined as in Definition
2. In our construction, the dealer runs the share phase, where they sample a value
for the number of shares needed to reconstruct the secret, as well as splitting the
secret into shares and further into sub-shares, similarly to the approach in [12].
Then, the dealer distributes a unique, ordered list of sub-shares to each player,
alongside broadcasting public parameters.

The reconstruction phase works in rounds, with the n players in P performing
the communication phase and processing phase in parallel. In the first round of
the reconstruction phase, only the communication phase occurs. The processing
phase does not start until the second round onwards. Each round (after the first)
of the reconstruction phase works as follows. Players communicate (following the
order of their given list) the sub-share corresponding to the round of Γ that they
are in, one at a time. They must check at the end of the round that they have
obtained sub-shares from all other players.

At the same time, players process the sub-shares received in the previous
round, evaluating them over some function to obtain a share of the secret. After
a certain number of rounds, as decided by the dealer, a sufficient number of
shares will have been derived and players can use these shares to reconstruct
the correct secret. The concept of rounds in RSS means that players gradually
recover the secret, by reconstructing just one share per round, motivating all
players to continue following the reconstruction phase.
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More specifically, we let the dealer D be honest and non-interactive, only tak-
ing part in the share phase. Following [28], we assume that the dealer (information-
theoretically) authenticates the shares distributed to players so that a player
cannot send an incorrect share to another player, and the set of shares that a
player sends to other players is unique. These assumptions translate to only one
of two actions that a player can perform in each round: communicate (follow
their strategy) or remain silent. We assume the players’ strategies in the recon-
struction phase are in a (computationally) strict Nash equilibrium in order to
motivate them to follow the phase and not deviate.

In the share phase of our construction, D samples r, the revelation value.
The revelation value signifies how many correctly run rounds, or equivalently,
how many recovered shares are sufficient for a player to reconstruct the secret.
D determines r by randomly sampling from an efficiently samplable discrete
distribution G, keeping the value secret from all players. Next, D obtains the
first (r + 1) shares of the secret s; where the 0th share s0 will be the checking
share, and is kept separate and broadcast to all players before the reconstruction
phase. We note that the checking share is only used to verify the output of the
reconstruction phase, and cannot be used to reconstruct the secret itself. This
is necessary in order to ensure soundness of the output.

Additionally, the dealer randomly samples a value d from an efficiently sam-
plable discrete distribution G′ and generates d fake shares, used to disguise the
value r. Typically both G and G′ are geometric distributions [21,12], see Ap-
pendix C. Letting m = r+d, the dealer proceeds to create n sub-shares for each
of the m shares, so that each player has a sub-share of every share, for a total
of m sub-shares in each of the n lists, one for each player.

Similarly to [33], we need the sub-shares to be encrypted before being dis-
tributed to a player in a way that no player can decrypt their sub-shares before
a round of communication is over. This is done so that players communicating
non-simultaneously do not know until after they have broadcast their share for
a given round, whether or not that was the revelation round. This is crucial to
achieve fairness and ensure that players continue to be motivated to follow the
scheme [24].

Our construction achieves this time delay using homomorphic time-lock puz-
zles (HTLPs), first introduced in [34] (see Definition 5). Using a HTLP scheme
with hardness parameter T , the dealer sets the time limit for each round of com-
munication to be bounded above by time T . Encrypting the sub-shares creates
so-called sub-puzzles7 of the sub-shares, which the dealer distributes as a list to
individual players before reconstruction begins.

Each round of the reconstruction phase Γr,r+1 has players communicate non-
simultaneously the corresponding sub-puzzle from their list, whilst processing
in parallel the sub-puzzles received from the previous round. In a round of the

7 We call the HTLP encryption of the sub-shares sub-puzzles for ease of understanding.
They are simply time-lock puzzles that can be homomorphically evaluated to obtain
a puzzle of the share which corresponds to the homomorphic evaluation of the given
sub-shares.
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communication phase, players must send their sub-share before time T . Once
this time has elapsed, a player checks that they have received (n−1) sub-puzzles
from the other players. In this case, in the next round of the reconstruction phase,
these n sub-puzzles will be processed.

In the processing phase, players work independently and evaluate the n sub-
puzzles from the previous round. In doing so, they will obtain a puzzle of the
share for the previous round. This is computationally correct given that the sub-
shares were derived by the dealer such that over some function the sub-shares
homomorphically compute this share. The puzzle of the share is decrypted using
the solve algorithm in the HTLP scheme to obtain the corresponding share.

Players attempt to reconstruct the actual secret from the shares that they
have reconstructed so far. They determine whether they have reached the rev-
elation round by using the checking share s0 to confirm whether their solution
is the real secret. If so, players output the secret s. If the reconstructed value as
determined by the checking share, is s′ 6= s, the players do not output a result.
Instead, they will start the subsequent reconstruction phase round. Players re-
peat this cycle of steps until the have reconstructed the correct secret s, unless
either of the following scenarios occur:

1. A deviant player has quit communicating in a round of the phase. Even if
they correctly guess the right round to quit (round r), the time delay of the
encrypted sub-puzzles ensures that the deviant player cannot decrypt the
evaluated puzzle of the share before the end of a round.
The non-deviant players quit communicating if at the end of the round they
have received fewer than (n− 1) sub-puzzles. As a consequence, they cannot
reconstruct a puzzle share for that round and will have an insufficient number
of reconstructed shares, so the outcome for reconstruction will be ⊥. The
act of aborting means that no player learns the secret including the deviant
player, as they are identified as a cheater before they can reconstruct the
secret, if at all.

2. Players have sent the final, mth sub-puzzle from their list and so have no
more sub-puzzles to share after this round. Players quit communication and
attempt to reconstruct the secret from the shares that were reconstructed in
the previous rounds.

3.1 Our Construction

Given an honest, non-interactive dealer D and a set of n rational players P =
{P1, . . . , Pn} communicating non-simultaneously, we use a HTLP to build a fair
RSS scheme with a sound output. Assume that each round of the reconstruction
phase is bounded by the time hardness parameter T .

Definition 6 (Non-Simultaneous RSS Scheme).

Given security parameter λ, time hardness parameter T , an efficiently samplable
distribution of the set of secrets Sλ with operator Ψ , secret s ∈ Sλ, efficiently



Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 13

samplable discrete distributions G,G′, we construct a RSS scheme with recon-
struction phase in the non-simultaneous setting as a tuple of three PPT algo-
rithms (Setup′,Share′,Recon′) from a secret sharing scheme (Setup,Share,Recon)
and a HTLP scheme
(HP.Setup,HP.Gen,HP.Solve,HP.Eval) as follows:

– Sharing Phase: The honest dealer D takes as input the secret s ∈ Sλ and
performs the following steps non-interactively:

1. pp′ ← Setup′(1λ, T ) a probabilistic algorithm on inputs 1λ, T in which
the dealer runs:
(a) pp1 ← HP.Setup(1λ, T ) which outputs public parameters pp1.
(b) pp2 ← Setup(1λ, T ) which outputs the public parameters pp2. Addi-

tionally let for r ←$ G be the sampled revelation value and d be a
random value d←$ G′.

Outputs are sampled values r, d and public parameters pp′ := {pp1, pp2}.
2. {s0, {list1, . . . , listn}} ← Share′(pp′, s): a probabilistic algorithm that

takes as input the secret s ∈ Sλ and public parameters pp′. The output
consists of a checking share s0 and lists labelled listj for j ∈ [n], each
composed of m sub-puzzles for m = r + d.

(a) Run {s0, {s1, . . . , sr}} ← Share(pp2, s) a probabilistic algorithm with
inputs the public parameters pp2 and secret s ∈ Sλ. The outputs are
(r + 1) shares of the secret; the checking share s0 and si for i ∈ [r].

(b) {sr+1, . . . , sm} ←$ Sλ, randomly sample d fake shares from Sλ.
(c) For every i ∈ [m], compute the list of sub-shares {si,1, . . . , si,n} such

that si = Ψ
j∈[n]

si,j .

(d) Run Zi,j ← HP.Gen(pp1, si,j) a probabilistic algorithm that takes as
input sub-shares si,j and public parameters pp1, and outputs sub-
puzzles Zi,j , ∀i ∈ [m],∀j ∈ [n].

(e) D distributes listj = {Z1,j , · · · ,Zr,j ,Zr+1,j , · · · ,Zm,j} to the corre-
sponding player Pj , for every j ∈ [n].

3. The dealer distributes the following:
(a) D broadcasts {pp′, s0} to all P the public parameters pp′ and check-

ing share s0.
(b) D distributes listj to Pj for every j ∈ [n].

– Reconstruction Phase: All players in P = {P1, . . . , Pn} independently
take part in this phase.

1. Communication: We are in the kth round of the communication, for some
1 < k ≤ m.
(a) Pj sends to all of P the sub-puzzle Zk,j for every j ∈ [n] non-

simultaneously.
(b) At the end of round k (after time T has elapsed), along with their

own sub-puzzle, player Pj should have received {Zk,1, . . . ,Zk,n} from
all of P .
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(c) Move to round (k+ 1) of communication and round k of processing,
unless fewer than (n−1) sub-puzzles have been received. In this case,
proceed to abort communication and move to 2c with reconstructed
shares {s1, . . . , sk−1}.

2. Processing: We are in round (k− 1) of processing, for some 1 < k ≤ m.8

For any j ∈ [n], Pj does the following:

(a) Zk−1 ← HP.Eval(pp1, T , Ψ,Zk−1,1, · · · ,Zk−1,n): Run the probabilis-
tic algorithm HP.Eval with inputs the public parameters pp1, hard-
ness parameter T , and the list of n sub-puzzles for the (k − 1)th
round, a player homomorphically evaluates sub-puzzles with opera-
tor Ψ to output share puzzle Zk−1.

(b) sk−1 ← HP.Solve(pp1, T ,Zk−1): Run the probabilistic algorithm
HP.Solve that takes as input the public parameters pp1; hardness
parameter T ; and puzzle share Zk−1 and outputs secret share sk−1.
Output the round share sk−1 and move to reconstructing s.

(c) {s,⊥} ← Recon′(pp′, s0, {s1, . . . , sk−1}): where the players run
{s,⊥} ← Recon(pp2, {s1, . . . , sm}), a deterministic algorithm that
inputs public parameters pp2 and (k−1) reconstructed shares of the
secret {s1, . . . , sk−1}. Player Pj uses checking share s0 to confirm the
soundness of their reconstructed value and outputs either the correct
secret s or abort ⊥.

(d) If Pj outputs ⊥, but no player quit in round k of communication
and every player Pj ∈ P has listj 6= ∅, then players go to (k + 1)th
round of reconstruction phase. If either case holds, output ⊥.

In Theorem 1 (Appendix F) we prove that our construction satisfies correctness,
achieves soundness in the non-simultaneous setting using protocol-induced side
information, and achieves fairness despite the presence of this side-information
by using a HTLP to provide a time-delay to the scheme.

More specifically, in our security analysis (Appendix F), we summarise the
scenarios in which a deviant player attempts to mislead. In particular, we demon-
strate that if a player aborts in a round k with respect to revelation round r, re-
gardless of the round that k is, the outcome for all players is the same. Analysing
the scenarios in which a players quits communicating aids the proofs of fairness
and correctness, by providing an intuition to the outcome of the reconstruction
phase.

Fairness of the scheme is proven as follows: we show that Definition 3 is
satisfied in our construction assuming the correctness and security of the HTLP
scheme [34] (Appendix A.2), which is employed to implement a time-delay in the
scheme. We use a reduction to break the correctness and security of the HTLP
scheme, contradicting our assumptions, in order to show that there does not
exist a deviant player with the ability to decrypt a puzzle in time less than T .
Furthermore, assuming the correctness and secrecy of the underlying SS scheme
(Appendix A.3), we show that the probability of a deviant player learning the

8 At least one round of communication is required before players can start processing.
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secret, whilst other players do not, is negligible in the security parameter λ.
Observe that we additionally show in Appendix D.2 that the rational players
strategies −→σ are in a computationally strict Nash equilibrium (Definition 16)
following the proofs of [12,33].

In order to prove soundness, we provide an Appendix E preceding the analysis
of Theorem 1 to define the side information used to achieve soundness. We closely
follow the proof of [12] by firstly defining a membership oracle. Informally, this
is an oracle queried by players in reconstruction in order to check the soundness
of their reconstructed value [33]. Following [12], we claim and prove that the
checking share in our construction can be used in place of a sound membership
oracle (Definition 18, Appendix E), as a specific form of protocol-induced side
information to ensure soundness. Finally, we prove Theorem 2, that states our
construction achieves soundness with a checking share.

We defer the reader to Appendix F for the full details of our proofs.

Next, we highlight the efficiency improvements our construction achieves by
using a HTLP over standard TLPs. We then discuss how our results improve
upon the scheme of [12], the most relevant related work.

HTLPs vs. TLPs The homomorphic property of a HTLP scheme means that
solving a puzzle, the most computationally expensive step for the players, need
only be run once rather than n times in the processing phase of our scheme. The
computational cost of running HP.Solve is Ω(2T )-steps 9.

Indeed, if we were to use a standard TLP in the processing phase of our
scheme, each player would independently have to solve each of the n sub-puzzles
using P.Solve, and then evaluate the n sub-shares to obtain the share for that
round. Conversely, by using a HTLP in our scheme, players must run HP.Eval
once over the n sub-puzzles, outputting a master puzzle, and proceed to run
HP.Solve once on this master puzzle to obtain the corresponding share. Thus,
HTLPs are more efficient by a linear factor of n, where n corresponds to the
number of players participating in the reconstruction phase.

It is important that the homomorphic property of the HTLP scheme satisfies
Definition 9 of compactness [34]. This means that the runtime of homomor-
phically evaluating puzzles, is bounded above by a fixed polynomial that only
depends on the security parameter λ and not the time hardness parameter T .
Otherwise, the trivial solution would be indeed to use a standard TLP scheme.

Comparison with [12] Our scheme closely follows the work of [12]. Their con-
struction involves linearly evaluating sub-shares encrypted using memory-bound
functions for the time-delay to ensure fairness of the scheme, and reconstructing
the secret using Shamir’s SS scheme. In contrast, our generic construction uses

9 In a standard TLP scheme, the computational complexity of the puzzle solving
algorithm P.Solve is the same as HP.Solve.
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CPU-bound HTLPs to ensure a time-delay in rounds of the scheme, which we
have argued in the Introduction constitutes an improvement.

Furthermore, the construction of [12] requires players to independently de-
crypt each share before they proceed to the secret reconstruction using Shamir
SS scheme. The advantage of using HTLPs is that they provide an efficiency
improvement for the honest players evaluating puzzles in comparison to using
standard TLPs. Therefore our contributions are the efficiency improvements for
honest players in homomorphically evaluating puzzles.

Finally, we have generalised our construction so that it can be adapted for
different applications. The HTLP schemes of [34] are flexible in using different
homomorphic operations, and can be extended to using puzzles with varying lev-
els of hardness (different T values), with potential for public-coin setup schemes
and reusable setup schemes. Unlike [12] who provide a concrete scheme, our
construction is generic and adaptable to the application for which it is being
used.

3.2 A Concrete Instantiation

Our final contribution is to provide a concrete fair and sound RSS scheme by
instantiating our construction with a specific variant of Shamir’s SS scheme
and a multiplicative-HTLP (MHTLP [34]). In more detail, we instantiate our
construction as follows:

– A multiplicative homomorphic threshold secret sharing scheme
(Setup,Share,Recon) (Appendix B), for a secret space Sλ over a finite group
with respect to multiplication, defined as in [43,15,13],

– A MHTLP scheme (MHP.Setup,MHP.Gen,MHP.Eval,MHP.Solve) (Appendix
A.2), which is multiplicatively homomorphic over a ring (JN , ·).

The multiplicative operator ⊗ enables the dealer to split the ith share, for some
i ∈ [m], of the secret into n sub-shares in the following way,

si,n = si ·

(
n−1∏
j=1

si,j

)−1
,

enabling players to homomorphically evaluate sub-puzzles by running MHP.Eval,
and MHP.Solve on the master puzzle output from evaluation to obtain the cor-
rectly reconstructed share for the ith round. In addition to the assumptions used
in the security analysis of our generic construction, the instantiation relies on
standard cryptographic and number theoretical assumptions, including the se-
quential squaring and decisional Diffie- Hellman assumptions for a MHTLP [34],
found in Appendix A.2. We defer to Appendix C for a full description of the
instantiation of our construction.

Final remarks In this paper we have proposed a construction for a fair and
sound rational secret sharing scheme in the non-simultaneous setting of com-
munication from homomorphic time-lock puzzles. We have argued the benefits
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of this novel approach, and we have suggested a concrete scheme, relying on
standard assumptions.
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A Definitions and Assumptions

A.1 Number Theory

Let N = p · q be a composite, for primes p, q. Define Z∗N = {x ∈ ZN |gcd(x,N) =
1} as the finite group of numbers modulo N , closed under the multiplication
operation (⊗). For prime p, the Jacobian subgroup Jp ⊆ Z∗p is defined as; Jp =
{x ∈ Z∗p|∃y ∈ Z∗p s.t y2 = x (mod p)}. The same holds for prime q, so that
the Jacobian subgroup JN ⊆ Z∗N is formed of elements x such that JN (x) =
Jp(x) · Jq(x).
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A.2 Homomorphic-TLPs

The following are formal definitions of correctness, security and compactness of
a HTLP scheme from section (2.3), [34]. The following definition considers the
case when the evaluation algorithm is executed only once (it can be extended,
as in [20]):

Definition 7 (Correctness [34]). Define (HP.Setup,HP.Gen,HP.Solve,HP.Eval)
as a correct HTLP scheme for the class family C where C = {Cλ}λ∈N is defined
as a class of circuits, if ∀λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and
respective inputs (s1, . . . , sn) ∈ Sn,all public parameters pp and for all puzzles
Zi in support of HP.Gen(pp, si), the following two conditions are satisfied:

1. There exists a negligible function µ(·) such that
Pr[HP.Solve(pp,HP.Eval(C, pp, Ψ,Z1, . . . ,Zn)) 6= C(s1, . . . , sn)] ≤ µ(·).

2. There exists a fixed polynomial p(·) such that HP.Solve(pp,Z) runtime is
bounded by p(1λ, T ), where Z ← HP.Eval(C, pp, Ψ,Z1, . . . ,Zn).

Definition 8 (Security [34]). A HTLP scheme
(HP.Setup,HP.Gen,HP.Solve,HP.Eval) is secure with gap ε < 1 if there exists a
polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-
size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from
above by T ε(λ), there exists a negligible function µ(·), such that for all λ ∈ N it
holds that

Pr

b← A2(pp,Z, τ) :

(τ, s0, s1)← A1(1λ),

pp← HP.Setup(1λ, T (λ)),

b←$ {0, 1},
Z ← HP.Gen(pp, sb)

 ≤ 1
2 + µ(λ)

and (s0, s1) ∈ S2.

Definition 9 (Compactness). Define (HP.Setup,HP.Gen,HP.Solve,HP.Eval) as
a compact HTLP scheme for the class family C where C = {Cλ}λ∈N is defined
as a class of circuits, if ∀λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and
respective inputs (s1, . . . , sn) ∈ Sn, all public parameters pp and for all puzzles
Zi in support of HP.Gen(pp, si), the following two conditions are satisfied:

1. There exists a fixed polynomial p(·) such that |Z| = p(λ, |C(s1, . . . , sn)|),
where
Z ← HP.Eval(C, pp,Z1, . . .Zn).

2. There exists a fixed polynomial p̃(·) such that the runtime
HP.Eval(C, pp, Ψ,Z1, . . . ,Zn) is bounded by p̃(1λ, |C|).

Let g be a generator of the quadratic residues of Z∗N . The following assumptions
are needed, depending on the operator Ψ , in proving the security of the HTLP
schemes in [34].
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Assumption 1 (Strong RSA Modulus [26]) Let λ be the security parame-
ter and N is the product of two λ-bit, distinct safe primes p, q, where p = 2p′+1
and q = 2q′+ 1. Let e be a randomly chosen prime such that 2λ < e < 2λ+1− 1.
Let QRN be the group of quadratic residues in Z∗N of order p′ · q′. Given (N, e)
and a random h ∈ QRN , it is hard to compute x such that xe ≡ h (mod N).

Assumption 2 (Sequential Squaring [34]) Let N be a uniform strong RSA
integer, g a generator of JN , and T (·) be a polynomial. Then there exists some
0 < ε < 1 such that for every polynomial-size adversary A = {Aλ}λ∈N who’s
depth is bounded from above by T ε(λ), there exists a negligible function µ(·) such
that

Pr

b← A(N, g, T (1λ), x, y) :

x←$ JN ; b←$ {0, 1}
if b = 0 then y ←$ JN

if b = 1 then y := x2
T (1λ)

 ≤ 1
2 + µ(λ).

Note that the restriction of the domain of x, y to JN to avoid trivial attacks
where the distinguisher computes the Jacobi symbol of the group element.
In [10], they showed that the decisional Diffie-Hellman (DDH) assumption over
JN is implied by the DDH assumption over Z∗p and Z∗q and by the quadratic
residue assumption over Z∗N .

Assumption 3 (Decisional Diffie-Hellman [34]) Let N be a uniform strong
RSA integer. Then for every polynomial-size adversary A = {Aλ}λ∈N there ex-
ists a negligible function µ(·) such that

Pr

b← A(N, g, gx, gy, gz) :

(x, y)←$ {1, . . . , φ(N)/2}; b←$ {0, 1}
if b = 0 then z ←$ {1, . . . , φ(N)/2}
if b = 1 then z := x · y (mod φ(N)/2)

 ≤ 1
2 + µ(λ)

A.3 Threshold SS Schemes

A (t, n) SS scheme, as given in Definition 2.1, needs to satisfy the properties of
correctness and secrecy as follows,

Definition 10 (Correctness [19]). A (t, n) secret sharing scheme defined as
(Setup,Share,Recon) is correct if ∀λ ∈ N and for all possible sets of n authorised
players P = {P1, . . . , Pn}, given Setup(1λ)→ pp; for all secrets s ∈ Sλ and any
subset of t′ shares S′ from Share(pp, s)→ {s1, . . . , sn} communicated by players
in P , there exists a negligible function µ(·) such that

Pr[Recon(pp, S′) 6= s] ≤ µ(λ).

Definition 11 (Secrecy [19]). A (t, n) secret sharing scheme defined as
(Setup,Share,Recon) is secret if ∀λ ∈ N and for all possible sets of n authorised
players P = {P1, . . . , Pn}, given Setup(1λ) → pp; for all secrets s ∈ Sλ and
any subset of t′ < t shares S′ from Share(pp, s)→ {s1, . . . , sn} communicated by
players in P , there exists a negligible function µ(·) such that

Pr[Recon(pp, S′) 6= ⊥] ≤ µ(λ).
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B Homomorphic Multiplicative Threshold Secret Sharing

Let P = {P1, . . . , Pn} be a group of n players, D be the honest dealer, Sλ the set
of secrets under security parameter λ. Assume the share for Pi, i ∈ [n] is selected
from the set Si10. A (t, n) threshold scheme consists if D running setup and
sharing algorithms and taking a secret input from Sλ, mapping Sλ → S1×. . .×Sn
to assign shares to every players in P of the form (xi, si) for a (t − 1)-degree
polynomial,

f(x) = s+ a1x+ a2x
2 + . . .+ at−1x

t−1

such that {a1, . . . , at−1} ←$ Sλ and {x1, . . . , xn} ∈ Sλare distinct inputs, with
outputssi ∈ Si corresponding to xi, ∀i ∈ [n].

The reconstruction algorithm sees a subset of the players, A ⊆ P either
return the secret or the phase of reconstruction fails.

In multiplicative homomorphic threshold secret sharing ([43]) over groups
([15,13]) the secret space Sλ is a finite group with respect to the operation
⊗, and for any t distinct players Pi for i ∈ S ′ such that S ′ ⊆ Sλ, |S ′| = t,
S ′ = {i1, . . . , it}, there exists a family of function for all l ∈ [t] such that;

fil,S′ : Sil → S

with {i1, . . . , il} publicly ordered with the following property:
For any secret s ∈ Sλ and shares si1 , . . . , sit that have been distributed to Pi,
i ∈ S ′ by the dealer D on input s, the secret can be expressed as follows,

s = fi1,S′(si1)⊗ . . .⊗ fit,S′(sit)

such that, provided the share set Si is a group, the function fi,S′ : Si → Sλ is a
group homomorphism for ∀i,S ′; then ∀l ∈ [t], define

fil,S′(sil) = f(xil)
∏

j∈S′,j 6=il

−xj
(xil−xj)

.

assuming that (xil − xj) ∈ Sλ with a multiplicative inverse. In other words, a
unit of Sλ.

C A Concrete Instantiation

We provide a concrete example of our construction by instantiating it with a gen-
eralised version of Shamir’s SS scheme (Appendix B). The instantiation uses a
multiplicative homomorphic threshold secret sharing scheme (Setup,Share,Recon),
such that the secret space Sλ is a finite group with respect to multiplication,
defined as in [13,15,43]; and the multiplicative-HTLP scheme defined in [34] as
the tuple of algorithms (MHP.Setup,MHP.Gen,MHP.Eval,MHP.Solve).

So far, we have detailed a HTLP scheme (Definition 2.3) and provided our
generic construction (Definition 6) with a homomorphic operation Ψ , to be used

10 We drop the λ in the set of shares for simplicity of notation.
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as a tool in realising our construction. For the concrete instantiation we will make
use of a multiplicative HTLP (MHTLP) which is multiplicatively homomorphic
over the ring (JN , ·) using operator ⊗.

We consider an honest dealer D, n rational players P = {P1, . . . , Pn} and
efficiently samplable distribution Sλ = JN (see Appendix A.1 for further de-
tails11) under security parameter λ for secret s ∈ JN . Here, we define N = p · q
to be a strong RSA prime (See Appendix A.2, Assumption 1, [26]), time hard-
ness parameter T , and efficiently samplable discrete distributions G,G′ 12. The
multiplicative homomorphic SS scheme is an (r, r + 1) threshold scheme such
that, for value r ←$ G = {1, . . . , N2}, given r + 1 shares of s, a threshold of
r shares is sufficient to reconstruct s. We implicitly assume that both the mul-
tiplicative homomorphic SS and HTLP scheme share parameters. In the share
phase, the honest dealer D takes as input the secret s ∈ JN and performs the
following steps:

1. pp′ ← Setup′(1λ, T ) on inputs 1λ, T in which the dealer runs:
(a) pp1 ← MHP.Setup(1λ, T ):

Uniformly sample g̃ ←$ Z∗N and set g := −g̃2(mod N) such that g ∈ JN ,

where g is the generator of JN . Compute h := g2
T

.13 Define pp1 :=
(T , N, g, h).

(b) pp2 ← Setup(1λ, T ): Define pp2 := {p, {y0, . . . , yr}} with prime p >
{s, n} and with {y0, . . . , yr} ←$ JN .

Additionally, let r ←$ G be the sampled revelation value r and d ←$ G′ a
random value, and output r, d and public parameters pp′ := {pp1, pp2}.

2. {s0, {list1, . . . , listn}} ← Share′(pp′, s): takes as input the secret s ∈ JN and
public parameters pp′. The output consists of a checking share s0 and lists
labelled listj for j ∈ [n], each composed of m sub-puzzles for m = r + d.

(a) {s0, {s1, . . . , sr}} ← Share(pp2, s): inputs are the public parameters pp2
and secret s ∈ JN . The dealer outputs (r + 1) shares si, determined as
follows:
D chooses a random r degree polynomial f(x) = a0 +a1x+a2x

2 + . . .+
arx

r where a0 = s and {a1, . . . , ar} ←$ JN. The dealer then determines
shares si for i ∈ {0, . . . , r}, computed as si = f(yi) (mod N) such that
si ∈ JN .

(b) {sr+1, . . . , sm} ← JN , randomly sample d fake shares from secret space
JN .

(c) In our construction, shares {s1, . . . , sr} are split into n sub-shares so
that they can be distributed to P (along with other, fake sub-shares).
Checking share s0 is publicly broadcast and used to check soundness.

11 JN is the cyclic group of elements of Z∗
N with Jacobi symbol +1.

12 We suggest geometric distributions over N, with the parameter dependent on players
outcome preferences (see Appendix D.2), denoted β. Let β be the probability of the
first success in a repeated Bernoulli trial, that is, repeatedly tossing a biased coin
until the first head appears [21].

13 The dealer can optimise h by reducing the exponent modulo φ(N)/2 first, as sug-
gested in [34].
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Distributing sub-shares to P enables just one share to be reconstructed
per round, gradually releasing the secret to players in the reconstruction
phase.
How are sub-shares created by the dealer during the setup phase?
Here,D creates n sub-shares for each of them shares they have derived as
follows: for a fixed i ∈ [m], the dealer samples sub-puzzles si,j ←$ QRN
for j ∈ {1, n− 1} and defines the nth sub-share to be

si,n = si ·

(
n−1∏
j=1

si,j

)−1
for every i ∈ [m]. The ith share is defined as

si =
∏
j∈[n]

si,j (mod N). (∗)

(d) Next, D generates sub-puzzles Zi,j to embed the sub-shares as follows. It
runs MHP.Gen(pp1, si,j) on input public parameters pp1 and sub-shares
si,j : ∀i ∈ [m], ∀j ∈ [n], uniformly sample ri,j ←$ {1, · · · , N2}, and
generate the elements ui,j := gri,j (mod N), vi,j := hri,j · si,j(mod N).
Define the n sub-puzzles for the ith share to be Zi,j := (ui,j , vi,j) ∈ J2N .
The dealer outputs sub-puzzles Zi,j , ∀i ∈ [m],∀j ∈ [n].

(e) D distributes listj = {Z1,j , · · · ,Zr,j ,Zr+1,j , · · · ,Zm,j} to the corre-
sponding player Pj , for every j ∈ [n].

3. The dealer distributes the following:
(a) D broadcasts {pp′, s0} to all P the public parameters pp′ and checking

share s0 = f(y0) (mod N), determined in the second step above.
(b) D distributes listj to Pj for every j ∈ [n].

In the reconstruction phase, whilst sending sub-puzzles for communication phase
k, for some 1 < k ≤ m, players simultaneously process the set of n sub-puzzles
that they obtained in the previous round. In the processing phase, assume that
players are in round (k−1) of processing. For any j ∈ [n], Pj does the following:

1. Zk−1 ← MHP.Eval(pp1, T ,⊗,Zk−1,1, · · · ,Zk−1,n): input public parameters
pp1, hardness parameter T , and the list of n sub-puzzles for the (k − 1)th
round. Compute uk−1 := Πn

j=1uk−1,j(mod N), vk−1 := Πn
j=1vk−1,j(mod N)

and output the homomorphic puzzle Zk−1 := (uk−1, vk−1) of share sk−1.
2. sk−1 ← MHP.Solve(pp1, T ,Zk−1): on input the public parameters pp1, hard-

ness parameter T , and puzzle share Zk−1, compute wk−1 := u2
T

k−1(mod N)
by sequential squaring. Output sk−1 := vk−1/wk−1 as the solution to the
puzzle. Move to reconstructing s from shares {s1, . . . , sk−1}.
The dealer in a SS scheme will have created sub-shares using (∗) for the
concrete instantiation of our construction using a MHTLP. As a consequence,
following the correctness of the MHTLP construction [34], sk−1 = Πj=nsi,j ,
which is precisely the (k − 1)th share.

3. {s,⊥} ← Recon′(pp′, s0, {s1, . . . , sk−1}): from the secret sharing scheme, run
{s,⊥} ← Recon(pp2, {s1, . . . , sk−1}) with inputs of the public parameters
pp2 and (k − 1) reconstructed shares of the secret {s1, . . . , sk−1}.
Outputting the secret is done firstly by players using polynomial interpola-
tion (see Appendix B):
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f ′(x) =
∏

i∈[k−1]

[
f(yi) ·

∏
l∈[k−1],l 6=i

(x−xl)
(xi−xl)

]
= a′0 +a′1x+a′2x

2 + . . .+a′k−1x
k−1

using the shares {s1, . . . , sk−1} in such that a′0 = s′.
4. Pj uses checking share s0 to see if f ′(s0) = f(s0). If this equality holds, it

must be the case that (k − 1) = r and so s′ = s is output. If (k − 1) 6= r,
the equality will not hold, which means that s′ 6= s. The output may be ⊥
depending on the following.

5. If Pj outputs ⊥, but no player quit in round k of communication and every
player Pj ∈ P has listj 6= ∅, then players go to (k + 1)th round of recon-
struction phase. However, if either case holds, output ⊥ as the final outcome
of the reconstruction game.

The concrete instantiation of our scheme relies on standard assumptions, as it
is based on Shamir’s SS and the MHTLP scheme from [34], both of which rely
on standard cryptographic and number theoretic assumptions. More specifically,
letting the modulus N be a strong RSA modulus; if the sequential squaring
(Assumption 2 in Appendix A.2) and decisional Diffie-Hellman (Assumption 3
in Appendix A.2) assumptions hold over over JN , then the MHTLP scheme of
[34] is proven secure.

In addition, the compactness property of the MHTLP scheme ensures, infor-
mally, that the length of evaluated puzzle Zi of share si, only depends on the
security parameter λ. As a consequence, in the context of our construction, it
is more efficient for players to solve the evaluated puzzle Zi than it is to solve
individual sub-puzzles Zi,j for a fixed i ∈ [m], ∀j ∈ [n], obtain sub-shares si,j
and using (∗) as a function to evaluate the share si. More succinctly, it is more
efficient for the players to evaluate the function of embedded sub-shares than it
is for them to evaluate the function of the decrypted sub-puzzles.

D Equilibrium Concepts

D.1 Utilities

Definition 12 (Utility Functions [12] ).

The set Ui for each player Pi, is defined as the set of utility values resulting
from the possible outcomes of the game, which are polynomial in the security
parameter (λ) of the protocol. These values are determined by the outcomes −→o
of the reconstruction phase, which depends on the strategies −→σ taken by the n
rational parties.
The set consists of the following, Ui = {UTNi , UTTi , UNNi , UNTi , UFNi , UNFi }.
The parameters T,N ,and F define the utility gained from the following actions
of players (in which the players may be honest or dishonest):

– T signifies the case where a player learns the secret.
– N signifies the case where a player does not learn the secret.
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– F signifies the case where a player learns a fake secret (mislead).

Therefore, the utility UNFi for Pi, is the value Pi gains from not learning the
secret, whilst misleading the other (n−1) parties into learning a fake (incorrect)
secret. There are two preference relation scenarios which are of importance in
defining our games for rational players, ∀i ∈ [n]:

1. UTNi > UTTi > UNNi > UFNi and UNFi ≥ UTTi ;

2. UTNi > UTTi > UNNi > UFNi and UNFi < UTTi .

Definition 13 (Utility Independence [3]).

Let Ũ ∈ U be a set for a specific utility function, consisting of all the corre-
sponding utility values for every player in P . Define the set of polynomial utility
functions U ′ = {UTNi , UTTi , UNNi , UNTi , UFNi , UNFi }ni=1 \ Ũni=1 , as the set ex-
cluding all Ũni=1 values. A mechanism (Γ,−→σ ) is said to be Ũ−utility independent
if for all polynomial utility functions Ũni=1, the elements in U = U ′∪Ũni=1 satisfies
a certain preference relationship R. Therefore, (Γ,−→σ ) is a is a fair reconstruction
mechanism for preference relationship R among the elements of U .

Informally, rational players participating in a reconstruction protocol may obtain
a positive utility from learning nothing and misleading others (UNF ) . FSS
schemes provide the utility of UTT to everyone, meaning that all parties learn
the secret. Therefore, (Γ,−→σ ) is sound provided UNF < UTT . What happens in
the case of UNF ≥ UTT ? That is, the first preference relation, as above.

In the non-simultaneous channel model, soundness no longer holds. Our con-
struction will follow the ideas in scheme of [12] that is UNF -independent despite
the presence of protocol-induced auxiliary information. This is done assuming
players are in a computationally strict Nash equilibrium state.

D.2 Nash Equilibrium

A variant of a Nash equilibrium is a formalisation of what it means for players
in a secret sharing scheme to follow their strategies. Let Γr,r+1 = (Γ,−→σ ) be the
scheme that players in P are following, where σi ∈ −→σ is a strategy for player
Pi, for some i ∈ [n]. We need to show that the players are in a computationally
strict Nash equilibrium with side information (the checking share), assuming the
utility of misleading is greater than the utility of honestly following the scheme.
We prove this following the analysis in [12] in showing that players strategies
−→σ are in a computationally strict Nash equilibrium with protocol induced side-
information.

Definition 14 (Computationally Strict Nash Equilibrium [12]). Given
reconstruction phase Γr,r+1 = (Γ,−→σ ), a strategy profile −→σ for Γ is said to be in
a computationally strict Nash Equilibrium if for every i ∈ [n] and every deviating
strategy σ′i 6= σi that player Pi uses, it holds that Ui(σi,

−→σ−i) > Ui(σ
′
i,
−→σ−i).
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To rephrase, the utility (gain) of Pi following an alternative strategy σ′i is less
than the utility of Pi following their prescribed strategy σi from Γr,r+1, assuming
all other players are following their prescribed strategy −→σ−i.

A rational player will adopt the strategy that results in them obtaining the
highest utility value in the reconstruction phase. Definition 14 is used to ensure
that players choose to follow their prescribed strategy, and thus ensure that
fairness of the reconstruction scheme is achieved.

Definition 15 (Fair reconstruction Mechanism [3]). Let U = {U1, . . . , Un}
be the set of utility functions for players in P . The reconstruction phase Γr,r+1 =
(Γ,−→σ ) is fair for utility functions U if −→σ is a computational Nash equilibrium,
and the probability that the outcome −→ω = ⊥ for players in P when they follow
−→σ is negligible.

Furthermore, the notion of equivalent play was defined by the authors of [19] and
augmented by [33] to incorporate a scheme where players have access to any side
information related to the secret (or access to an oracle, see Appendix E). They
defined Aux = {auxi}i∈[n] to be the (protocol-induced) side information related
to the secret that players in P have access to during Γr,r+1. When deviant player
Pi takes alternative strategy σ′i, then σ′i ≈Aux

−→σ yields equivalent player if given
the views of all other players Pj ∈ P−i, including their side information auxj for
player Pj , no polynomial time algorithm can distinguish whether Pi is following
prescribed strategy σi ∈ −→σ or alternative strategy σ′i.

Definition 16 (Computationally Strict Nash Equilibrium with Protocol-
Induced Side Information [12,33]). Prescribed strategy −→σ in reconstruction
phase Γr,r+1 = (Γ,−→σ ) is a computational Nash equilibrium in the presence of
protocol induced side-information Aux = {auxi}i∈[n] if it is a Nash equilibrium
with protocol-induced side information such that, given security parameter λ, for
every Pi ∈ P and for any PPT alternative strategy σ′i 6≈Aux

−→σ , there exists a
negligible function µ over the security parameter λ such that,

Ui((σ
′
i, σ−i), Aux) < Ui(

−→σ ,Aux) + µ(λ).

We make the following assumptions about our construction in Definition 6:

– The discrete distributions G,G′ that the dealer randomly samples r and d
from respectively, are set over the utility parameter β, which is determined
by the utility functions of the players in P .

– We define the utility parameter β following [12], by setting β < (UTT−UNN )
(UTN−UNN )

as the parameter for discrete distributions G,G′ used in our construction.14

We define UTNi as the utility function for Pi learning s, and P−i learning
nothing, UTTi as the utility function for all of P learning s and UNNi as the
utility function for all of P outputting ⊥.

14 Under the assumption that some rational players may prefer to mislead other players,
rather than follow their strategy, the utility parameter is defined in this way to ensure
that the reconstruction phase is independent of this preference.
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– Assume that some players may prefer to mislead others, denoting the corre-
sponding utility function as UNFi for player Pi misleading players in P−i.

Fairness. Similarly to [12], given the assumptions above we prove that our con-
struction Γr,r+1 is fair by showing that the players strategies −→σ are a computa-
tional Nash equilibrium with protocol-induced auxiliary information, with utility
functions for a player Pi ∈ P defined as UTNi > UTTi > UNNi .

Proof. In the analysis of Theorem 1, we showed that if Pi deviates in round (k+
1) < r, then all of P have outcome −→ω = ⊥. If Pi quits in round (k+1) = (r+1),
then all of P have outcome −→ω = s. Given that Pi deviates in round (k+ 1) = r,
let us denote Pr[ωi(Γ, (σ

′
i, σ−i) = s] = δ and Pr[ωi(Γ, (σ

′
i, σ−i) = ⊥] = (1 − δ).

Given the utility parameter β, the probability of the secret being reconstructed
with (k + 1) = r shares is δ = β(1 − β)r−1. Therefore, we have the following
inequality for Pi deviating in any round (k + 1):

δUTNi + (1− δ)UNNi ≤ βUTNi + (1− β)UNNi < UTTi ,

given that r ≥ 1. Therefore, deviating with strategy σ′i in round (k+1) does not
give Pi an advantage over others. Following the correctness of our construction
Γr,r+1 (see Theorem 1), we additionally showed that the probability of players
outcome −→ω = ⊥ when they all follow −→σ is negligible. As a consequence, Defini-
tion 15 is satisfied. ut

E Soundness with Checking Shares

Before proving soundness of our construction (Theorem 1), following the proofs
of [12,33], we provide the necessary definitions for the proof. The authors of
[12] follow the work of [33] by introducing protocol-induced (i.e. chosen by the
protocol designer) auxiliary-information in the form of an extra share of the
secret, known as the checking share.

The authors of [33] propose giving each player in P some arbitrary auxiliary
information or access to a membership oracle Os0k,j . Either of these enable a
player Pj ∈ P to confirm whether the value s′ ∈ Sλ they reconstructed in the
kth round of reconstruction is the correct secret or not. Intuitively, a membership
oracle should not reveal any information about the secret itself, meaning that
no player can learn anything important about s by simply observing the oracle
or querying it with arbitrary inputs. The authors of [12] first define what a
membership oracle is, in order to use specific protocol-induced side information
to ensure soundness. We present the following definitions from [12].

Definition 17 (Membership Oracle [12]). Given the secret s and recon-
structed value s′, both in secret space Sλ and checking share s0, we define a
membership oracle Os0k,j : Sλ → {0, 1} queried by player Pj ∈ P in the kth round
of the reconstruction phase as follows:

Os0k,j(s
′) =

{
1 if s′ = s,

0 otherwise.
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Note that the behaviour of the oracle may be dependent on s. For example, it may
output 1 on s and 0 on all other inputs, or it may output 1 on input s′ if f(s) =
f(s′) for some function f, where the function depends on the reconstruction
process of the underlying SS scheme. Given this, in order to ensure soundness
of the reconstruction phase with reconstructed value s′ ∈ Sλ, the oracle must
always output the correct decision on whether this is actually the secret or not.
Similarly to [12], we want to ensure soundness, therefore we must define a sound
membership-oracle.

Definition 18 (Sound Membership Oracle[12]). Given input s′ ∈ Sλ, a
correct membership oracle Os0k,j : Sλ → {0, 1} for player Pj ∈ P in the kth round
of reconstruction with access to checking share s0 has the following properties:

1. Pr[Os0k,j(s
′) = 1] ≤ µ(λ) for any s′ 6= s;

2. Pr[Os0k,j(s
′) = 0] ≤ µ(λ) for s′ = s.

for a negligible function µ(λ), over security parameter λ.

Definition 19 (Protocol-Induced Membership Oracle [12]). A sound mem-
bership oracle Os0k,j provided by scheme (Setup′,Share′,Recon′), given to player
Pj for j ∈ [n] for the kth round of the reconstruction phase is called a protocol-
induced membership oracle.

For our construction, the sound membership oracle can be modelled as proto-
col induced auxiliary information in the form of a checking share, like in [12].

Assuming players do not have a preference to mislead, let (Γf ,
−→
σf ) be a fair

reconstruction phase where players follow their prescribed strategies of commu-
nicating, reconstruct some function f in order to reconstruct the secret s. Note
that function f is the honestly constructed function created by the dealer dur-
ing the share phase, dependent on the underlying SS scheme and its assumed
security, in which players participating in the fair reconstruction phase (Γf ,

−→σf )
with a sufficient number of shares can reconstruct to obtain the secret.

In our construction, similar to the work of [12], we propose a fair reconstruc-
tion phase (Γfk ,

−→σfk) for players Pj ∈ P with k shares and access to protocol-
induced auxiliary information in the form of a checking share s0, assuming that
some players may prefer to mislead other players into outputting an incorrect
secret. Informally, this works as follows: Let player Pi deviate with strategy σ′i in
the (k+1)th round, and the non-deviant players P−i are following strategies −→σfk
throughout the reconstruction phase. Strategy σfk,j for Pj instructs a player to
follow their normal strategy σf,j of reconstructing a value s′ ∈ Sλ or outputting
⊥ in the case that Pi quits communicating in the (k + 1)th round. If a value
s′ ∈ Sλ is reconstructed from reconstructed function fk, strategy σfk,j instructs
Pj to check the soundness of value s′ obtained in the kth round, by using the
checking share s0. Let s0 = (y0, f(y0)) for some input y0 computed by the dealer
in the share phase; if fk(y0) = f(y0), then Pj concludes that s′ = s, otherwise
Pj concludes that s′ 6= s.
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Following the claim made by the authors of [12], we claim and prove that the
checking share in our construction can be used in place of the sound member-
ship oracle of Definition 18, as protocol-induced auxiliary-information to ensure
soundness.

Claim. Let (Γfk ,
−→σfk) be the reconstruction mechanism (Γf ,

−→σf ) with Pj ∈ P
possessing k shares, checking share s0, and reconstructed value s′ ∈ Sλ. Let
s0 = (y0, f(y0)) for some input y0 computed by the dealer in the share phase;
if fk(y0) = f(y0), then Pj concludes that s′ = s, otherwise Pj concludes that
s′ 6= s.

Proof. By Definition 18, we can assume that the the following conditions hold:

1. Pr[fk(y0) = f(y0)] ≤ µ(λ) for s′ 6= s.
2. Pr[fk(y0) 6= f(y0)] ≤ µ(λ) for s′ = s.

Function f is honestly constructed by the dealer during the share phase such
that the secret can be recovered from it. Due to the security of the underlying
SS scheme, which we assume in Theorem 1, the function f must be one-to-one.
This uniqueness property means that the function is unique and given some
reconstructed value s′ 6= s, the probability of f and and reconstructed function
fk being equal for a specific input is negligible. So the first inequality holds.

The second inequality holds by the correctness of our construction, proved
in Theorem 1. This says that the players will always output s when they have
reconstructed s′ = s, except with negligible probability. Thus the checking share
follows Definition 18, and can be used to provide soundness in the reconstruction
phase (Γfk ,

−→σfk). ut

F Security Analysis of Our Construction

Theorem 1. Our non-simultaneous rational secret scheme (Setup′,Share′,Recon′)
satisfies correctness, fairness and soundness in the presence of side information
related to the secret, assuming the following properties:

– correctness, security, and compactness of the HTLP scheme,
– correctness and secrecy of the SS scheme,
– the checking share side information is correct, protocol-induced auxiliary in-

formation.

Proof. We begin by proving the correctness of our construction, which follows
from the correctness of the SS and HTLP schemes underlying it. For all possible
players in P , ∀λ, T ∈ N and for all possible secrets s ∈ Sλ; given Setup′(1λ, T )→
pp′ and Share′(pp′, s)→ {s0, {list1, . . . , listn}} run as in our construction (Def-
inition 6) using homomorphic operator Ψ , our scheme (Setup′,Share′,Recon′) is
correct for some negligible function µ(·) over the security parameter λ. Namely,
at round r of the reconstruction phase, players reconstruct s using the first r
reconstructed shares. Correctness holds except with negligible probability for the
following reasons:
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– Following the correctness of (HP.Setup,HP.Gen,HP.Eval,HP.Solve), the HTLP
scheme (recalled in Appendix 7) constructed using operator Ψ such that for
∀i ∈ [r], and shares si = Ψ

j∈[n]
si,j there exists a negligible function µ′(·) such

that Pr[HP.Solve(pp,HP.Eval(pp1, T , Ψ,Zi,1, . . . ,Zi,n)) 6= si] ≤ µ′(λ).
– Assuming shares {s1, . . . , sr} were constructed correctly as we just described,

and following the assumed correctness of the underlying SS scheme we have,
for some negligible function µ′′(·),
Pr[Recon′(pp′, s0, {s1, . . . , sr}) 6= s] ≤ µ′′(λ).

Next we analyse the fairness and soundness of our construction. We note that
the outcome of the reconstruction phase Γr,r+1 is the same for every player in
P irrespective of the round in which a deviant player quits in relation to the
revelation round. To see this we provide an explanation of what happens when
deviant player Pi quits and the resulting outcome. We will only look at a player
who is the last to communicate in a round. If a player quits before every other
player has sent their sub-share for that round, then they will not be able to
reconstruct the corresponding share for the round that they quit in. In this case,
the deviant player in no better a position than other players.15

Suppose Pi follows the reconstruction phase with their prescribed strategy σi
(that is, to share the corresponding sub-puzzle) for the first k rounds, then
follows the alternative strategy σ′i (quit communicating) in the (k+ 1)th round.

The other players discounting Pi are labelled P−i, and are assumed to be
following the same strategy, prescribed by the dealer, of communicating. This
is represented by the (n − 1) vector of strategies σ−i. To restore fairness, P−i
must abort communication after the (k + 1)th round has finished (bounded
above by time T ) and they realise that Pi has not sent their sub-puzzle Zk+1,i,
concluding that the previous round was the revelation round r. P−i are not able
to homomorphically evaluate (k+ 1) sub-puzzles, since Pi did not communicate
Zk+1,i, so they cannot reconstruct the (k + 1)th share. As a consequence, P−i
move to reconstructing the secret from the k previously reconstructed shares
{s1, . . . , sk} by running Recon′. The checking share s0, essential to ensuring
soundness, is used before P−i outputs a result to confirm whether their outcome
from reconstruction is the true secret.

As we have mentioned, the outcomes −→ω = (ω1, . . . , ωn) for every player
depend on the round that Pi quits relative to revelation value r. We denote
the outcome of deviant player Pi as ωi and the outcome for the other (n − 1)
non-deviant players P−i as ω−i in the following cases:

Case 1. (k + 1) < r:
As Pi is last to communicate, they will be able to reconstruct the (k+1)th puzzle
Zk+1 of share sk+1 using the sub-puzzles communicated by all other players in
the (k + 1)th round. Essential to ensuring fairness, intuitively, the time-delay is

15 Notice that the non-deviant players will also be unable to reconstruct the share for
that round.
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ensured by the correctness of the HTLP (see Definition 7, Appendix A.2). Using
the HTLP time-delay scheme in our construction prevents the deviant player Pi
from solving Zk+1 (by running MHP.Solve) before time T has elapsed and other
players begin the reconstruction process. Thus, Pi has no time to reconstruct the
secret before players P−i begin reconstructing the secret. Indeed, by the property
of compactness in the HTLP scheme, the players P−i are able to evaluate the sub-
puzzles to obtain the corresponding share before the end of the reconstruction
phase round.

Furthermore, the total number of shares that Pi possesses remains insufficient
(< r) to reconstruct the secret. As a consequence, Pi will be identified as a
cheater when P−i use the checking share to verify their reconstruction solution
from shares {s1, . . . , sk}, as they too have an insufficient number of shares to
reconstruct s. The output of the phase will be ⊥. Outcome for all players:
−→ω = ⊥.

Note that Pi could attempt to reconstruct the secret with previously recon-
structed shares plus the checking share s0. Whilst this means that Pi potentially
has r shares (as is the case if they quit when k+ 1 = r− 1) and can reconstruct
the correct secret, the value of r remains unknown and the deviant player no
longer has the checking share to verify that they have reconstructed the correct
secret. Even if Pi adopts this strategy, the best Pi can do is correctly guess
the value of r. Additionally, players P−i will reconstruct an incorrect value and
identify Pi as a cheater.

Case 2. (k + 1) = r:
Whilst Pi actually has the correct number of shares to reconstruct s (they do
not know this at the time), by the design of our construction there is an upper
bound of time T for the length of a round in the phase, as in Case 1, so Pi
cannot solve Zk+1 within this time limit of round (k + 1) to reconstruct the
share sk+1. Furthermore, other players will have started reconstruction of the
secret as follows.

When the (k+1)th round of communication has finished, P−i will abort after
not receiving sub-puzzle Zk+1,i from Pi, moving to outputting the result from
reconstruction of the secret with the previous k = (r− 1) derived shares. As the
other players have an insufficient number of shares to reconstruct s, the checking
share will demonstrate that their output is incorrect, so ω−i = ⊥, identifying Pi
as a cheater in the process. Pi will not be able to reconstruct the secret s before
players P−i have output ⊥. Outcome for all players: −→ω = ⊥.

Case 3. (k + 1) > r:
The non-deviant players P−i will have previously reconstructed k shares from the
phase. If k = r, P−i have the precise number of shares to reconstruct s and can
verify their output using checking share s0, that is ω−i = s. Despite Pi quitting
in the (k + 1)th round, all players will be able to reconstruct the secret s when
k = r. Our construction uses an (r, r + 1) secret sharing scheme such that one
of the (r + 1) shares is a checking share that cannot be used to reconstruct the
secret if soundness must be ensured. Pi can only deviate from their strategy up
until the (r+ 1)th round of communication. Outcome for all players: −→ω = s.
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Remark 1. Even if deviant players decide to send randomly generated sub-puzzles
in the communication phase, the soundness of our scheme ensures that their
deviance would be detected by honest players in the processing phase of recon-
struction. This is because the honest players possess the checking share, which
will confirm that they have reconstructed an incorrect secret. As a result, the
output of reconstruction from such an attack would be ⊥.

Remark 2. For simplicity, we consider the case of one deviating player, however
we note that the construction tolerates up to (r−1) deviant players co-operating.

Now that we have explained the various outcomes to the reconstruction phase,
we show that fairness and soundness of our construction are ensured.

Fairness. Following Definition 3, we want to show that there exists some negli-
gible function µ under security parameter λ such that

Pr[ωi(Γ, (σ
′
i, σ−i)) = s] ≤ Pr[ω−i(Γ, (σ

′
i, σ−i)) = s] + µ(λ) (1)

Let us note that there are two, mutually exclusive scenarios in which Pi learns
s when deviating:

– When Pi takes strategy σ′i in round (k + 1) = (r + 1), as in Case 3. Define
this scenario as Event1, which has probability Pr[ωi(Γ, (σ

′
i, σ−i)) = s] =

Pr[ω−i(Γ, (σ
′
i, σ−i)) = s], or

– When Pi takes strategy σ′i in round (k + 1) = r, and P−i have an insuffi-
cient number of shares to reconstruct s, by the secrecy of the underlying SS
scheme. Define Event2 to be the scenario in which Pi learns s but P−i does
not learn s.
Firstly, the only way for Pi to learn s in this event is to evaluate the rth
round sub-puzzles to obtain puzzle share Zr, solve Zr to obtain share sr
and then reconstruct s from the r shares. The correctness of the HTLP
states that the runtime for solving the puzzle is bounded by a fixed, positive
polynomial p(λ, T ) and the security of the HTLP means that the solution of
the puzzles is hidden for all players that run in (parallel) time T ε(·) < T (·),
for some ε < 1. The definition of security follows the standard cryptographic
security notion of indistinguishable-CPA security. Suppose Pi is able to do
this, meaning that there exists some algorithm able to solve a puzzle in time
T ε(λ). We can use this in a reduction to break the correctness and security
of the HTLP scheme, contradicting these assumptions in our construction.
As a consequence, the probability that Pi solves Zr to reconstruct the share
sr in time T ε is Pr[HP.PSolve(pp1, T ε,Zr) → sr] ≤ 1/2 + µ(λ) for some
negligible function µ over the security parameter of the HTLP. In addition,
assuming the correctness of the underlying SS scheme, we have

Pr[ωi(Γ, (σ
′
i, σ−i)) = s]

= Pr[(HP.PSolve(pp1, T ε,Zr)→ sr) ∩ (Recon(pp, {s1, . . . , sr}) 6= ⊥])

≤ (1/2 + µ(λ)) · µ′(λ) ≤ µ′′(λ),
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for some negligible function µ′′.

Secondly, assuming the secrecy of the SS scheme, for players P−i with k < r
shares, the probability Pr[Recon(pp, {s1, . . . , sk}) 6= ⊥] ≤ µ′(λ). That is,
Pr[Recon(pp, {s1, . . . , sk}) = ⊥] ∈ [1− µ′(λ), 1], and so
Pr[ω−i(Γ, (σ

′
i, σ−i)) = ⊥] ∈ [1− µ′(λ), 1]. Given this fact,

Pr[Event2] = Pr[(ωi(Γ, (σ
′
i, σ−i)) = s) ∩ (ω−i(Γ, (σ

′
i, σ−i)) = ⊥)]

≤ µ′′(λ) · 1 = µ′′(λ).

Given the two disjoint scenarios in which Pi can reconstruct and learn s, we
have;

Pr[ωi(Γ, (σ
′
i, σ−i)) = s] = Pr[Event1 ∪ Event2] = Pr[Event1] + Pr[Event2]

= Pr[ω−i(Γ, (σ
′
i, σ−i)) = s] + Pr[Event2]

≤ Pr[ω−i(Γ, (σ
′
i, σ−i)) = s] + µ′′(λ).

Therefore Equation 1 is satisfied. Modelling the players in secret reconstruction
as rational calls for their strategies to satisfy a form of equilibrium that motivates
them to follow their strategy, ensuring fairness. We demonstrated in Appendix
D.2 we prove that players strategies −→σ are in a computationally strict Nash
equilibrium despite the presence of the checking share, satisfying Definition 16.
Our proof of fairness follows the proofs of [12,33].

Soundness. Following Definition 4, we want to show that there exists some neg-
ligible function µ under security parameter λ such that

Pr[ω−i(Γ, (σ
′
i, σ−i)) /∈ {s,⊥}] ≤ µ(λ) (2)

Theorem 2 (Soundness with a Checking Share). Let Γr,r+1 = (Γfk ,
−→σfk)

be the (r, r+1) fair secret reconstruction phase of our construction (Definition
6), assuming player Pj ∈ P has k shares, access to protocol-induced auxiliary
information in the form of a checking share s0 = (y0, f(y0)), defined as above
such that function f is determined by the dealer to reconstruct the secret. Then,
the reconstruction phase is sound.

Proof. By the assumptions of Theorem 1, the reconstruction phase of our con-
struction is fair despite every player having access to protocol-induced auxiliary
information in the form of a checking share s0, and satisfies correctness.

Suppose that deviant player Pi follows an alternative strategy σ′i which sees
player Pi follow their normal strategy σi for the first k rounds, and then deviate
in round (k + 1) by quitting communication.

Regardless of the round that Pi deviates in with respect to the value r,
assuming players have access to the checking share of the (r, r+1) such that
Claim in Appendix E holds, the fair reconstruction phase (Γfk ,

−→σfk) for rational
players satisfies soundness. More precisely, given an value s′ ∈ Sλ, suppose Pi
either reconstructs s′ /∈ {s,⊥} with r shares or k < r shares:
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Pr[ω−i(Γfk , (σ
′
i, σ−i,fk)) /∈ {s,⊥}] = Pr[(ω−i(Γfk , (σ

′
i, σ−i,fk)) = s′)]

= Pr[(Recon′(pp′, s0, {s1, . . . , sr}) = s′) ∪ (Recon′(pp′, s0, {s1, . . . , sk}) = s′)]

= Pr[Recon′(pp′, s0, {s1, . . . , sr}) 6= s] + Pr[Recon′(pp′, s0, {s1, . . . , sk}) = s′]

≤ µ(λ) + Pr[Recon′(pp′, s0, {s1, . . . , sk}) = s′] = µ(λ) + Pr[fk(y0) = f(y0)]

≤ µ(λ) + µ′(λ) ≤ µ′′(λ),

for some negligible function µ′′, where negligible function µ′ in the penultimate
inequality comes from the fact that Pr[fk(y0) = f(y0)] ≤ µ′(λ) when s′ 6= s.
Therefore Equation 2 is satisfied. ut

G Related Work

Cryptographic Secret Sharing Schemes In order to achieve fairness, [32]
proposed that in addition to obtaining a share of the secret, each party possesses
a check vector which they can use to verify the validity of other parties’ shares,
and a certificate vector, which is used to prove the validity of their own share in
the reconstruction phase. The dealer in the scheme chooses an indicator, which is
a form of public information unrelated to the secret that must be reconstructed.
In their scheme, the secret is hidden in a sequence of elements, such that the
subsequent element of the sequence is the indicator and the rest of the elements
are dummy secrets.

The authors of [25] continued the work of [32]. The scheme in [32] works
under the assumption that all parties sharing are legitimate. In other words,
their scheme only deals with inside adversaries. Whereas [25] protects the secret
from inside adversaries as well as unauthorised parties (outside adversaries) who
are not legitimate shareholders.

In [31], a V -fair (t, n) SS scheme is proposed, where given n-parties, they
have an equal probability of obtaining the secret, even if V < (t/2) parties are
dishonest. This is achieved by the dealer dividing the secret into multiple sub-
secrets with different threshold values, and generating shares for each of the
sub-secrets.

The authors of [9] showed that complete fairness cannot be achieved in gen-
eral, without an honest majority. Intuitively, complete fairness means that it is
possible for an adversary to learn the output of secret reconstruction if, and only
if, the honest parties learn the output too [2]. In the setting of secure two-party
computation, if just one of the parties is dishonest, there is no longer an honest
majority, and so it was believed that no non-trivial function could be computed
with complete fairness. However, the work of [21] demonstrated the existence of
some non-trivial functions, based on cryptographic assumptions, which can be
computed with complete fairness in the two-party setting.

In [21], the reconstruction phase is based on rounds, such that parties input
a share of the secret into some function in every round and the round in which
the party learns the secret depends on the value of their input (in contrast to
standard protocols). If one party aborts after learning the secret in a round, and
the second party has not yet received the function output, then the second party
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assumes the first learned the secret in the round they aborted and reconstructs
the function output for that round independently. The scheme of [41] extend
the work in [21], achieving a more efficient scheme. At a high level, their recon-
struction scheme provides complete fairness by hiding the secret in a sequence
of secrets such that the validity of the shares can be verified and used to detect
deviant parties.

RSS schemes The main idea of the scheme in [28] is that no information about
the players’ inputs into rounds is revealed until the round in which the secret is
recovered, in which players are communicating non-simultaneously. They achieve
this by introducing a new cryptographic tool called meaningful/meaningless en-
cryption, where players are motivated to follow the scheme as they do not know
whether a round of reconstruction is meaningful or not.

Following on from [28], [19] propose a scheme that does not require simulta-
neous broadcast channels or physical assumptions in both two-player and multi-
player RSS scheme instantiations. The protocol follows a series of fake rounds,
followed by a real round. That is, in the real round, every player learns the se-
cret, and in the fake rounds no information about the secret is revealed. Players
cannot know whether a round is real or fake. They identify the real round in
the subsequent round, where they reconstruct public information in the form
of a flag/indicator (akin to the schemes of [25,32] in the cryptographic model).
Similarly, the authors of [29] use the same idea of players reconstructing an
indicator.

In the non-simultaneous setting, reconstructing an indicator can cause un-
fairness in the scheme. The player who is last to communicate will be able to
reconstruct the indicator before other players, and therefore know before others
that the previous round reconstructed the secret. Therefore, reconstructing a
publicly known value such as an indicator, is not suitable for non-simultaneous
schemes.
How can players determine when the secret has been reconstructed without some
form of indicator? If some players derive a greater payoff from misleading, they
can abort communicating in order to trick other players in reconstructing an
incorrect value. With no way to check if this is the secret, soundness is not
ensured.

The work of [33] fairness can be achieved in a RSS scheme in the presence of
arbitrary side information, something that had previously not been achieved. In
[33], the authors use a time-delay encryption (TDE) scheme to restore the fair-
ness of the scheme over a standard point-to-point network that does not require
broadcasting, that is, has a loose form of synchronicity. Subsequently, [12] used
specific protocol-induced side information to provide the first fair and sound
RSS scheme in the non-simultaneous setting, additionally achieving indepen-
dence from the utility of misleading. By proposing a scheme that is independent
of this utility, [12] disprove one of the impossibility results proposed in [3].
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