
Possibility and Impossibility Results for
Receiver Selective Opening Secure PKE

in the Multi-Challenge Setting

Rupeng Yang 1 ?, Junzuo Lai 2 ?, Zhengan Huang 3 ?, Man Ho Au 1 ,
Qiuliang Xu 4 , and Willy Susilo 5

1 Department of Computer Science, The University of Hong Kong, Hong Kong, China
orbbyrp@gmail.com, allenau@cs.hku.hk

2 College of Information Science and Technology, Jinan University, Guangzhou, China
laijunzuo@gmail.com

3 Peng Cheng Laboratory, Shenzhen, China
zhahuang.sjtu@gmail.com

4 School of Software, Shandong University, Jinan, China
xql@sdu.edu.cn

5 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong NSW, Australia

wsusilo@uow.edu.au

Abstract. Public key encryption (PKE) schemes are usually deployed
in an open system with numerous users. In practice, it is common that
some users are corrupted. A PKE scheme is said to be receiver selec-
tive opening (RSO) secure if it can still protect messages transmitted
to uncorrupted receivers after the adversary corrupts some receivers and
learns their secret keys. This is usually defined by requiring the existence
of a simulator that can simulate the view of the adversary given only the
opened messages. Existing works construct RSO secure PKE schemes in
a single-challenge setting, where the adversary can only obtain one chal-
lenge ciphertext for each public key. However, in practice, it is preferable
to have a PKE scheme with RSO security in the multi-challenge setting,
where public keys can be used to encrypt multiple messages.

In this work, we explore the possibility of achieving PKE schemes with
receiver selective opening security in the multi-challenge setting. Our
contributions are threefold. First, we demonstrate that PKE schemes
with RSO security in the single-challenge setting are not necessarily RSO
secure in the multi-challenge setting. Then, we show that it is impossible
to achieve RSO security for PKE schemes if the number of challenge
ciphertexts under each public key is a priori unbounded. In particular,
we prove that no PKE scheme can be RSO secure in the k -challenge
setting (i.e., the adversary can obtain k challenge ciphertexts for each
public key) if its secret key contains less than k bits. On the positive
side, we give a concrete construction of PKE scheme with RSO security
in the k -challenge setting, where the ratio of the secret key length to k
approaches the lower bound 1.

? Corresponding author.

1 Introduction

The standard notion of security for public key encryption (PKE) schemes is
indistinguishability of 1-ciphertext (denoted as IND-CPA security). That is to
say, given one challenge ciphertext to an adversary, which encrypts a message
from a set of two messages chosen by the adversary, it could not distinguish which
message is encrypted. Such a simple security notion in fact implies semantic
security with multiple challenge ciphertexts, which prevents the adversary from
learning any information about the encrypted messages after viewing a priori
unbounded number of ciphertexts.

In many real world scenarios, the adversary may have the capability to learn
internal states of partial users via corrupting their devices. Such attacks are
called selective opening attacks [DNRS99]. A PKE scheme is said to be secure
against selective opening attacks if it can still protect messages transmitted be-
tween uncorrupted users. Surprisingly, standard security does not imply security
against selective opening attacks immediately [BDWY12, HR14, HRW16].

The formal study of selective opening secure PKE was initialized by Bel-
lare et al. in [BHY09]. They consider two types of selective opening attacks,
namely, sender selective opening (SSO) attacks, where the attacker corrupts
senders and obtains the randomness used for encrypting messages, and receiver
selective opening (RSO) attacks, where the attacker corrupts receivers and ob-
tains their secret keys. Also, for each attack, security can be defined by either
an indistinguishability-based definition, which extends the standard IND-CPA
security to the selective opening setting, or a simulation-based definition, which
defines semantic security against selective opening attackers. In all definitions,
the adversary first gets some challenge ciphertexts, then it “opens” some of them
via corrupting the related users. An indistinguishability-based definition ensures
that the adversary is not able to distinguish encrypted messages in unopened
ciphertexts, while in a simulation-based definition, there should exist a simulator
that can simulate the view of the adversary given only the opened messages.

Since selective opening security can be defined in different manners, it is im-
portant to clarify relations between different definitions. As shown in [HPW15],
indistinguishability-based selective opening security is not sufficient to imply
simulation-based selective opening security in both the SSO setting and the
RSO setting. Thus, for selective opening security, it is desirable to consider
simulation-based definitions.1

It is also interesting to explore whether selective opening security in the
single-challenge setting, i.e., each public key is only used once to produce a single
challenge ciphertext, is enough for achieving selective opening security in the
multi-challenge setting, where each public key can be reused to encrypt multiple

1 In addition, we prefer simulation-based definitions because indistinguishability-based
selective opening security are usually defined for efficiently conditionally re-samplable
message distributions [BHY09] only. A definition without such restriction (called
full IND-SO security [BHK12, ORV14]) needs an inefficient security experiment and
seems not achievable.

2

challenge messages. This question is particularly important for the RSO setting,
because all previous works in this area only consider how to construct encryption
schemes secure in the single-challenge setting and it is unknown whether they
are still secure in the more realistic multi-challenge setting.

1.1 Our Results

In this work, we initiate the study of RSO security in the multi-challenge setting.
In particular, we consider an adversary that can obtain k challenge ciphertexts
for each public key, and denote security in this setting as RSOk security. 2

We focus on simulation-based definitions and define security against both the
chosen-plaintext adversary (SIM-RSOk-CPA) and the chosen-ciphertext adver-
sary (SIM-RSOk-CCA). In summary, our contributions are as follows:

• We show that RSO security in the single-challenge setting is not enough
to guarantee RSO security in the multi-challenge setting. We demonstrate
this by providing a PKE scheme that is SIM-RSOk-CCA secure, but is not
SIM-RSOk+1-CPA secure for any polynomial k (recall that RSO security
in the single-challenge setting can be denoted as RSO1 security). The PKE
schemes build on an IND-CPA secure PKE scheme and a simulation-sound
non-interactive zero-knowledge (NIZK) proof, thus, this also provides the
first positive result for achieving RSO security in the multi-challenge setting.

• We prove that it is impossible to achieve SIM-RSO security in the multi-
challenge setting if we do not bound the number of challenge ciphertexts for
each public key. In particular, we provide a lower bound on the secret key
length for any PKE scheme with RSOk security in the non-programmable
random oracle model, which indicates that the size of the secret key must be
as large as the total number of message bits ever encrypted. For example, for
any PKE with RSOk security, assuming its message space is {0, 1}m and
the secret key space is {0, 1}l , then we have l ≥ mk .

• We construct a concrete SIM-RSOk-CPA secure PKE scheme from the DDH
assumption, where the message space is {0, 1} , the public key is a group
element and the secret key only contains a number in Zq and k bits.3 This
is nearly optimal in an asymptotic sense as the ratio of secret key length to
k is 1 + log q

k , which approaches the lower bound 1 as the messages number
k increases.

• We prove that the well-known Naor-Yung paradigm [NY90, Sah99] still works
for SIM-RSO security and give a generic construction of SIM-RSOk-CCA se-
cure PKE scheme from a SIM-RSOk-CPA secure PKE scheme, an IND-CPA
secure PKE scheme, and a simulation-sound NIZK proof. The construction
preserves the key length of the underlying SIM-RSOk-CPA secure scheme.
Thus, combining our (nearly) optimal SIM-RSOk-CPA secure scheme with
the generic construction, we obtain a (nearly) optimal SIM-RSOk-CCA se-
cure PKE scheme.

2 Previous definitions in the single-challenge setting are specific cases of this new
definition and can be denoted as RSO1 security.

3 Here, q is the group order and is fixed by the security parameter.

3

1.2 Technical Overview

In this section, we give a brief overview of how to achieve our negative and posi-
tive results. In a high-level, we first observe that a large enough secret key space
(conditioned on some public information) is needed to achieve RSOk security,
and employ this observation to lower bound the secret key length for any RSOk

secure PKE scheme. Then we apply the observation to some concrete construc-
tions and provide counterexamples separating RSOk security and RSOk+1 se-
curity. Finally, we construct (nearly) optimal RSOk secure PKE scheme, whose
secret key length approaches the above lower bound in an asymptotic sense.

Next, we describe the ideas in more detail.

On Lower Bounding Key Length of RSOk Secure PKE scheme. We
start by showing that a RSOk secure PKE scheme must have a long enough
secret key. For simplicity of discussion, here we assume that the message space
of the scheme is {0, 1} and explain why it cannot be RSOk secure if its secret
key length contains at most k − 1 bits.

Intuitively, this is because the number of possible secret keys are not enough
to explain k messages. In more detail, to simulate an adversary’s output, a RSOk

simulator4 should generate challenge ciphertexts and send them to the adversary
first. Then in the opening phase, on input the opened messages, the simulator
needs to generate secret keys that can map each ciphertext to corresponding
message. Remember that it needs to map k fixed ciphertexts to a vector of k
1-bit messages using each secret key. Thus, the number of candidate secret keys
should be at least 2k to guarantee that the simulator is able to choose the correct
secret key for every possible messages vector. However, if the secret key length
of the scheme does not exceed k−1 , then the number of possible secret keys will
not exceed 2k−1 . That is to say, for at least half of the possible messages vectors,
the simulator is not able to create a correct secret key to explain them. So, with
probability 1/2 (assuming messages are sampled uniformly), the simulation will
fail.

To formalize this intuition, we use ideas in previous works [Nie02, BSW11,
BDWY12, BO13] that argue impossibility to achieve simulation-based security
against a key-revealing attacker.5 In a nutshell, given a hash function, which is
modeled as a non-programmable random oracle, we define a RSOk adversary as
follows. In the first phase, on receiving a set of n public keys PK = (pki)i∈[n] ,
it returns a uniform distribution; then in the second phase, on receiving a set of
challenge ciphertexts CT , it returns a set of indices I ⊆ [n] , which is the hash
of (PK,CT) ; finally, on receiving the opened secret keys SKI and messages
MI

6, it outputs (PK,CT ,SKI) . Note that a simulator who would like to

4 We refer the readers to Sec. 2.2 for the formal definition of a RSOk simulator in
either the CPA setting and the CCA setting.

5 We remark that similar lower bounds on key length are achieved in these works, but
these results do not imply lower bound for SIM-RSO secure PKE scheme directly.

6 We use SKI and MI to denote the set of secret keys for (pki)i∈I and messages
encrypted under (pki)i∈I respectively

4

simulate the adversary’s view should generate PK and CT before viewing
the opened messages, since otherwise, it has to invert the random oracle, which
is infeasible. Thus, if we feed the simulator with different messages, it should
create secret keys conditioned on fixed PK and CT . As the number of possible
messages is much larger than the number of possible secret keys7, such simulator
does not exist.

On Separating RSOk+1 Security and RSOk Security. Next, we ex-
plain how to construct a scheme that is SIM-RSOk-CCA secure, but is not
even SIM-RSOk+1-CPA secure. Our starting point is an encryption scheme Π1

from the well-known Naor-Yung paradigm [NY90, Sah99], which is proved to
be SIM-RSO1-CCA secure for 1-bit message in [HKM+ 18]. We first recall the
scheme briefly and show that it is not SIM-RSO2-CPA secure. Then we ex-
plain how to upgrade it to a scheme that is SIM-RSOk-CCA secure, but is not
SIM-RSOk+1-CPA secure.

A brief review of Π1 . The scheme Π1 relies on a normal PKE scheme E and
a simulation-sound NIZK proof system. Its public key PK = (pk0, pk1) is a
pair of public keys of E and its secret key is SK = (s, sks) , where s is a
bit and sks is the secret key corresponding to pks . The encryption of a bit
m includes an encryption of m under pk0 , an encryption of m under pk1
and a proof indicating that the two ciphertexts encrypt the same message. To
decrypt a ciphertext, the decryption algorithm first checks the validity of the
proof attached and decrypts the ciphertext under pks using sks .

The SIM-RSO1-CCA security of Π1 comes from the fact that given a mal-
formed ciphertext, which encrypts a random bit b under pk0 and encrypts 1−b
under pk1 , one can open it to any message m ∈ {0, 1} . In particular, if m = b ,
then the returned secret key is (0, sk0) and otherwise, the returned secret key
is (1, sk1) . In this way, to simulate the view of a SIM-RSO1-CCA adversary
the simulator can generate such malformed ciphertext in the beginning and an-
swer the opening query according to the opened messages. Indistinguishability
between malformed ciphertexts and well-formed ciphertexts comes from security
of E and zero-knowledge property of the underlying NIZK. Also, determining the
secret keys until the opening stage will not affect answers to decryption oracle
queries since the adversary is only allowed to submit a well-formed ciphertext,
which are identically decrypted under sk0 and sk1 .

Π1 is not SIM-RSO2-CPA secure. Next, we show that if for each public key of
E , there exists at most one valid secret key for it and it is easy to check if a
public key/secret key pair is valid 8, Π1 will not be SIM-RSO2-CPA secure.

Our key observation is that in this case, while the number of possible secret
keys is very large, the number of possible secret keys for a fixed public key is not
enough to explain 2 messages. Recall that to prove SIM-RSO2-CPA security of
Π1 , we need a simulator that is forced to produce challenge ciphertexts before

7 If |I| = 1 , then the number of possible messages is 2k while the number of possible
secret keys is no more than 2k−1 .

8 Concretely, we may view E as ElGamal encryption scheme.

5

seeing the opened messages and is required to create the correct secret keys that
maps the challenge ciphertexts to the opened messages. For a public key PK =
(pk0, pk1) , the best possible strategy for the simulator to generate the challenge
ciphertext seems to set the first ciphertext CT1 = (E.Enc(pk0, b1),E.Enc(pk1,
1−b1)) and set the second ciphertext CT2 = (E.Enc(pk0, b2),E.Enc(pk1, 1−b2)) ,
where b1 and b2 are random bits. Then, in the opening phase, the simulator
can return a secret key, which is either (0, sk0) or (1, sk1) , to the adversary,
where sk0, sk1 are the unique valid secret keys for pk0 and pk1 respectively.
The secret key (0, sk0) can decrypt the challenger ciphertexts to (b1, b2) and
the secret key (1, sk1) can decrypt the challenger ciphertexts to (1− b1, 1− b2) .
But if the opened messages are (b1, 1 − b2) or (1 − b1, b2) , no secret key can
map challenge ciphertexts to them. So, with probability 1/2 (assuming messages
are sampled uniformly), the simulation will fail. Therefore, we can exploit the
techniques for lower bounding secret key length of RSOk secure PKE schemes
to compromise the RSO2 security of Π1 .

Upgrading Π1 . Next, we explain how to upgrade Π1 to a RSOk -secure but
RSOk+1 -insecure scheme. Our main idea is to use k pairs of public keys of E
to encrypt messages. More precisely, to encrypt a bit m under a public key
PK = (pk1,0, pk1,1, . . . , pkk,0, pkk,1) , the encryption algorithm first samples a
k -bit string (p1, . . . , pk) that p1 ⊕ . . . ⊕ pk = m , and then encrypts pi with
(pki,0, pki,1) . Then it generates a NIZK proof proving the correctness of all k
pairs of ciphertexts. The final ciphertext includes all 2k ciphertexts of E and
the proof.

Now, to simulate the view of an adversary in a SIM-RSOk experiment, or
alternatively, to generate k ciphertexts and open them to any k -bit string, the
simulator generates the ciphertexts as follows:

(pk1,0, pk1,1) (p1,1, 1− p1,1) (p2,1, p2,1) . . . (pk,1, pk,1)

(pk2,0, pk2,1) (p1,2, p1,2) (p2,2, 1− p2,2) . . . (pk,2, pk,2)

...
...

...
. . .

...

(pkk,0, pkk,1) (p1,k, p1,k) (p2,k, p2,k) . . . (pk,k, 1− pk,k)

CT1 CT2 . . . CTk

where each pi,j
$← {0, 1} , and CTi consists of encryption of (pi,j , pi,j) (or (pi,i,

1−pi,i)) under public key (pkj,0, pkj,1) and a fake proof generated by the NIZK
simulator.

Note that, for each public key pair (pki,0, pki,1) , the simulator is only re-
quired to cheat on one ciphertext (the ones in a dashed box), thus it can succeed
in finding the correct secret key.

The reason that the new scheme is not SIM-RSOk+1-CPA secure is the same
as that why Π1 is not SIM-RSO2-CPA secure. Note that in the new scheme, the
number of valid secret keys for a public key PK = (pk1,0, pk1,1, . . . , pkk,0, pkk,1)
is 2k , which is much less than the number of possible opening messages (2k+1).

6

Thus, we can use a similar strategy to show that no simulator is able to simulate
the adversary’s view in a SIM-RSOk+1-CPA experiment.

On Constructing RSOk Secure PKE Scheme with (Nearly) Optimal
Secret Key Length. Now, we demonstrate how to achieve SIM-RSOk-CCA
secure PKE scheme with (nearly) optimal secret key length. Note that standard
techniques for shortening secret keys of PKE schemes (e.g., deriving secret keys
from a shorter seed via a pseudorandom generator) do not work here since in
the receiver selective opening setting, the simulator needs to generate secret keys
satisfying some conditions and using these techniques may lead to an inefficient
simulator (e.g., the simulator may have to invert a pseudorandom generator).

Our starting point is the celebrated Cramer-Shoup encryption scheme [CS98],
which was shown to be SIM-RSO1-CCA secure in [HKM+ 18, HLC+ 19]. Here,
we will use its variant with CPA security (ΠCS-CPA). We first reduce the key
length of the scheme. Then, we upgrade it to be SIM-RSOk-CPA secure via
merely adding k − 1 bits to the secret key. Finally, we transform the scheme
into a SIM-RSOk-CCA secure one by employing the well-known Naor-Yung
double encryption paradigm [NY90, Sah99], where a normal IND-CPA secure
PKE scheme and a simulation-sound NIZK proof is additionally used. In our
construction, we fix the secret key of the new scheme to be the secret key of the
underlying SIM-RSOk-CPA secure scheme. Also, we need to tweak the security
proof to fit the definition of SIM-RSO-CPA/CCA security.

Next, we first recall ΠCS-CPA and explain why it is SIM-RSO1-CPA secure.
Then we provide a more detailed description on how to reduce its key length
and how to upgrade the scheme to achieve SIM-RSOk-CPA security.

A brief review of ΠCS-CPA . The scheme ΠCS-CPA works in a cyclic group G of
prime order q with generator g . Let g0 = ga0 , g1 = ga1 , h = gb , then the secret
key of the scheme is (s0, s1) ∈ Z2

q and the public key is pk = gs00 g
s1
1 . To encrypt

a bit m ∈ {0, 1} , the encryption algorithm samples w
$← Zq , and computes

the ciphertext CT = (x0, x1, C) = (gw0 , g
w
1 , pkw ·hm) . The decryption algorithm

tests if xs00 x
s1
1 = C and outputs 0 if this is the case.

To simulate the view of a SIM-RSO1-CPA adversary, the simulator can first

sample (s′0, s
′
1)

$← Z2
q , compute pk = g

s′0
0 g

s′1
1 and generate a malformed ci-

phertext CT = (x0, x1, C) = (gw0
0 , gw1

1 , x
s′0
0 x

s′1
1) for each receiver. Here, w0, w1

are distinct random elements in Zq and the malformed ciphertext is indistin-
guishable from an honestly generated one due to the DDH assumption. Then,
for each corrupted receiver, assuming the opened message is m , the simulator
creates the secret key (s0, s1) compatible with the current view by solving the
following equations: {

gs00 g
s1
1 = g

s′0
0 g

s′1
1

xs00 x
s1
1 · hm = x

s′0
0 x

s′1
1

(1)

which can be transformed into{
a0s0 + a1s1 = a0s

′
0 + a1s

′
1

a0w0s0 + a1w1s1 + bm = a0w0s
′
0 + a1w1s

′
1

7

The equation has a solution since w0 6= w1 . Thus, the simulator can succeed in
simulating the view of a SIM-RSO1-CPA adversary.

Reducing the Key Length. It is worth noting that in the scheme ΠCS-CPA , some
bits of the secret key are wasted. In particular, the simulator is able to simulate
the view of the adversary if Equation (1) has solutions in both the case m = 0
and that m = 1 . Thus, it is appealing to see if the equations still always have
solutions in some smaller solution space.

We observe that, if we change the strategy of the simulator, then it is pos-
sible to reduce the secret key space to Zq × {0, 1} . In more detail, for each

receiver, the simulator samples (s′0, s
′
1)

$← Zq × {0, 1} , computes pk = g
s′0
0 g

s′1
1

and changes the format of malformed ciphertext into CT = (x0, x1, C) = (gw0 ,

gw1 ·hα, x
s′0
0 x

s′1
1) . Here α = 1 if s′1 = 1 and α = −1 if s′1 = 0 , and the malformed

ciphertext is still indistinguishable from an honestly generated one due to the
DDH assumption. Now, the secret key (s0, s1) needs to satisfy the following
equation: {

a0s0 + a1s1 = a0s
′
0 + a1s

′
1

a0ws0 + a1ws1 + bαs1 + bm = a0ws
′
0 + a1ws

′
1 + bαs′1

It is easy to see that if m = 0 , then s1 = s′1 and thus s1 ∈ {0, 1} ; if m = 1 ,
then 1 = α · (s′1 − s1) , which implies that 1) if s′1 = 1 , then s1 = 0 and 2) if
s′1 = 0 , then s1 = 1 . Therefore, the scheme is still secure if we reduce the secret
key length to dlog qe+ 1 .

Achieving RSOk Security. Next, we show how to upgrade the revised scheme
to achieving SIM-RSOk-CPA security. Our first attempt is to use the idea in
upgrading the counterexample Π1 , i.e., secret sharing the message into k bits
and using k independent instances of the scheme to encrypt each bit. However,
this will lead to a scheme with key length k · (dlog qe + 1) , which is far from
optimal.

To solve this problem, our key observation is that, when generating the k
public key/secret key pairs, s0 and the public key can be reused. More precisely,
let g0 = ga0 , g1 = ga1 , . . . , gk = gak , h = gb , then we set the secret key to be

(s0, s1, . . . , sk)
$← Zq × {0, 1}k and set the public key to be pk = gs00 g

s1
1 . . . gskk .

Note that the secret key only contains dlog qe + k bits. Then, to encrypt a

bit m ∈ {0, 1} , the encryption algorithm samples w
$← Zq , and computes the

ciphertext CT = (x0, x1, . . . , xk, C) = (gw0 , g
w
1 , . . . , g

w
k , pkw·hm) . The decryption

algorithm tests if xs00 x
s1
1 . . . xskk = C and outputs 0 if this is the case.

Next, we illustrate why the above scheme is SIM-RSOk-CPA secure. For each

receiver, the simulator samples (s′0, s
′
1, . . . , s

′
k)

$← Zq × {0, 1}k and computes

pk = g
s′0
0 g

s′1
1 . . . g

s′k
k . Also, it generates k malformed ciphertexts, where for the

i -th ciphertext, xi is dishonestly created. That is, CTi = (xi,0, xi,1, . . . , xi,i,

. . . xi,k, C) = (gwi
0 , gwi

1 , . . . , gwi
i · hαi , . . . , gwi

k , x
s′0
i,0x

s′1
i,1 . . . x

s′k
i,k) . Here αi = 1 if

s′i = 1 and αi = −1 if s′i = 0 . Then, for each corrupted receiver, assuming the

8

k opened messages are m1, . . . ,mk , the simulator creates the secret key (s0, s1,
. . . , sk) compatible with the current view by solving the following equations:

∏k
j=0 g

sj
j =

∏k
j=0 g

s′j
j

(
∏k
j=0 x

sj
1,j) · hm1 =

∏k
j=0 x

s′j
1,j

...

(
∏k
j=0 x

sj
k,j) · hmk =

∏k
j=0 x

s′j
k,j

This is equivalent to the following equation:

∑k
j=0 ajsj =

∑k
j=0 ajs

′
j

(
∑k
j=0 ajw1sj) + bα1s1 + bm1 = (

∑k
j=0 ajw1s

′
j) + bα1s

′
1

...

(
∑k
j=0 ajwksj) + bαksk + bmk = (

∑k
j=0 ajwks

′
j) + bαks

′
k

which can be transformed into

∑k
j=0 ajsj =

∑k
j=0 ajs

′
j

m1 = α1(s′1 − s1)
...

mk = αk(s′k − sk)

Note that, for i ∈ [1, k] , we can set si = s′i if mi = 0 and set si = 1 − s′i if
mi = 1 . Therefore, the simulator is able to produce a simulated secret key (s0,
s1, . . . , sk) ∈ Zq×{0, 1}k and thus can simulate the view of the SIM-RSOk-CPA
adversary.

1.3 Related Works

Since first proposed in [BHY09], PKE with selective opening security has been
extensively studied. Numerous constructions of SSO secure PKE have been pro-
posed based on various assumptions in previous works (see [FHKW10, HLOV11,
Hof12, HLQ13, LP15, HJKS15, HP16, LSSS17, BL17, LLHG18] and references
therein for more details).

In contrast, the setting of RSO security is less studied. It is folklore that
(receiver) non-committing encryption schemes [CFGN96, Nie02, DN00, CHK05,
CDSMW09] imply RSO secure PKE schemes. Then, in [HPW15], Hazay et al.
show that RSO security is achievable from a variety of well-established cryp-
tographic primitives and construct RSO secure PKE schemes from various as-
sumptions. In subsequent works [JLL16, JLL17, HKM+ 18, HLC+ 19], chosen-
ciphertext attacks (CCA) are also considered in the RSO setting and PKE
schemes with RSO-CCA security are provided. Moreover, in [KT18], RSO-secure
identity-based encryption scheme is constructed. However, in all these works, the
proposed encryption schemes are only proved to have RSO security in the single-
challenge setting.

9

1.4 Roadmap

We recall some preliminaries and define RSOk security in Sec. 2. Then in Sec.
3, we provide the lower bound for RSOk secure PKE scheme. Next, we show
our counterexamples separating RSOk security and RSOk+1 security in Sec. 4.
Then, we construct (nearly) optimal PKE schemes with SIM-RSOk-CPA secu-
rity and SIM-RSOk-CCA security in Sec. 5. Finally, in Sec. 6, we conclude our
work with a few possible future works.

2 Preliminaries

Notations. For any positive integer n , we use [n] to denote the set {1, 2, · · · ,
n} . For positive integers n1, n2 s.t. n1 < n2 , we use [n1, n2] to denote the set
{n1, n1 + 1, · · · , n2 − 1, n2} . We use boldface to denote vectors, e.g., x . We use
x[i] to denote the i -th component of x . Also, for a string s ∈ {0, 1}∗ , we use
s[i] to denote the i -th bit of s .

For a finite set S , we use |S| to denote the size of S and use s
$← S to

denote the process of sampling s uniformly from S . For a distribution D , we
use x← D to denote the process of sampling x from D . For a positive integer
n , we use Un to denote the uniform distribution over {0, 1}n .

For a probabilistic algorithm A , we use A(x; r) to denote the process of
running A on input x and inner randomness r . We write PPT for probabilistic
polynomial-time. We use negl(λ) to denote a negligible function.

2.1 Assumptions and Cryptographic Primitives

The DDH Assumption. First, we recall the DDH assumption. Let G be a
cyclic group of prime order q with a generator g . The DDH assumption requires

that it is hard to distinguish (ga, gb, gc) and (ga, gb, gab) , where a, b, c
$← Zq .

Unbounded Simulation-Sound NIZK Proofs. The notion of NIZK proof
was proposed by Blum et al. in [BFM88]. As shown in [Sah99], an unbounded
simulation-sound NIZK proof for every language in NP exists assuming the ex-
istence of (doubly-enhanced) trapdoor permutations.

Let R be an efficiently computable binary relation. A NIZK proof for a
language L = {x : ∃w, (x,w) ∈ R} consists of three PPT algorithms:

• Gen . On input the security parameter λ , the common reference string gen-
eration algorithm outputs a common reference string crs .

• Prove . On input a common reference string crs , a statement x ∈ L and a
witness w for x , the proving algorithm outputs a proof π .

• Verify . On input a common reference string crs , a statement x and a proof
π , the verification algorithm outputs a bit indicating whether the proof is
valid.

Also, it satisfies the following conditions:

10

• Completeness. For any (x,w) ∈ R , let crs← Gen(1λ) and π ← Prove(crs,
x, w) , then we have Verify(crs, x, π) = 1 .

• Unbounded Zero-Knowledge. There exists a PPT simulator (S1, S2)
that for any PPT adversary A , we have∣∣∣∣∣Pr

[
crs← Gen(1λ);

AP(crs,·,·)(crs) = 0

]
− Pr

[
(crs, td)← S1(1λ);

AS(crs,td,·,·)(crs) = 0

]∣∣∣∣∣ ≤ negl(λ)

where P(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and outputs ⊥
otherwise; S(crs, td, x, w) outputs S2(crs, td, x) if (x,w) ∈ R and outputs ⊥
otherwise.

• Unbounded Simulation-Soundness. Let (S1, S2) be a PPT simulator
for the zero-knowledge property of the NIZK proof. For any unbounded
adversary A , we have

Pr


(crs, td)← S1(1λ);

(x, π)← AS(crs,td,·)(crs);

Let Q be list of input/output

pairs for the oracle S

:
(x, π) 6∈ Q ∧ x 6∈ L
∧ Verify(crs, x, π) = 1

 ≤ negl(λ)

where S(crs, td, x) outputs S2(crs, td, x) .

2.2 PKE with RSOk Security

A public key encryption scheme PKE = (Setup, Gen, Enc, Dec) consists of four
PPT algorithms:

• Setup . On input the security parameter 1λ , the setup algorithm outputs
the public parameter pp .

• Gen . On input the public parameter pp , the key generation algorithm out-
puts a public key pk and a secret key sk .

• Enc . On input the public parameter pp , the public key pk and a message
m , the encryption algorithm outputs a ciphertext ct .

• Dec . On input the public parameter pp , the public key pk , the secret key
sk and a ciphertext ct , the decryption algorithm outputs a message m .

Correctness of PKE requires that Pr[Dec(pp, pk, sk, ct) 6= m] ≤ negl(λ) for any
message m , where pp← Setup(1λ), (pk, sk)← Gen(pp), ct← Enc(pp, pk,m) .

The basic security requirement of PKE schemes is IND-CPA security:

Definition 2.1 (IND-CPA Security). We say that a PKE scheme PKE =
(Setup, Gen, Enc, Dec) is IND-CPA secure if for any PPT adversary A = (A1,
A2) ,

Pr[pp← Setup(1λ), (pk, sk)← Gen(pp), (state,m∗0,m
∗
1)← A1(pp, pk),

b
$← {0, 1}, ct∗ ← Enc(pp, pk,m∗b) : A2(state, ct∗) = b] ≤ 1/2 + negl(λ)

11

In this work, we also consider the stronger receiver selective opening security
for PKE schemes. Next, we provide definitions of RSOk security, which are
adapted from previous works [HPW15, HKM+ 18, HLC+ 19]. Our definitions
consider chosen-plaintext attackers and chosen-ciphertext attackers respectively
and in both cases, we will define security in a simulation-based sense.

Definition 2.2 (SIM-RSOk-CPA Security). We say that a PKE scheme
PKE = (Setup, Gen, Enc, Dec) is SIM-RSOk-CPA secure, if for any polynomially
bounded function n > 0 , any PPT adversary A = (A1,A2,A3) , there exists a
PPT simulator S = (S1,S2,S3) , such that for any PPT distinguisher D ,

|Pr[D(ExpRSOk−CPA−real
PKE,A,n (λ)) = 1]− Pr[D(ExpRSOk−CPA−ideal

PKE,S,n (λ)) = 1]| ≤ negl(λ)

where ExpRSOk−CPA−real
PKE,A,n and ExpRSOk−CPA−ideal

PKE,S,n are defined in Figure 1.

Definition 2.3 (SIM-RSOk-CCA Security). We say that a PKE scheme
PKE = (Setup, Gen, Enc, Dec) is SIM-RSOk-CCA secure, if for any polynomi-
ally bounded function n > 0 , any PPT adversary A = (A1,A2,A3) , there exists
a PPT simulator S = (S1,S2,S3) , such that for any PPT distinguisher D ,

|Pr[D(ExpRSOk−CCA−real
PKE,A,n (λ)) = 1]− Pr[D(ExpRSOk−CCA−ideal

PKE,S,n (λ)) = 1]| ≤ negl(λ)

where ExpRSOk−CCA−real
PKE,A,n and ExpRSOk−CCA−ideal

PKE,S,n are defined in Figure 1.

3 Lower Bound for PKE with RSOk Security

In this section, we establish a lower bound on the secret key size of a PKE
scheme with RSOk security. Roughly, we show that a PKE scheme cannot be
SIM-RSOk-CPA secure (this also implies that it is not SIM-RSOk-CCA secure)
if the length of its secret key is not k times larger than the length of message.
Formally, we have:

Theorem 3.1. Let Π = (Setup, Gen, Enc, Dec) be a PKE scheme with secret
key space SK and message space M (w.l.o.g, we assume SK = {0, 1}l and
M = {0, 1}m). If l ≤ mk − 1 , then Π is not SIM-RSOk-CPA secure in the
non-programmable random oracle model.

Proof. Let H : {0, 1}∗ → {0, 1}h be a hash function, which is modeled as a non-
programmable random oracle. Let PP , PK and C be the public parameters
set, the public key space and the ciphertext space of Π respectively. Also, let
a = dlog |PP |e , b = dlog |PK |e , c = dlog |C |e and let κ = a + b + ck + 2 . Let
n = h+ 1 , ε = 1/(4κ) .

Consider the concrete adversary A = (A1,A2,A3) and distinguisher D de-
fined in Figure 2. Next, we show that for any PPT simulator S = (S1,S2,S3) :

|Pr[D(ExpRSOk−CPA−real
Π,A,n (λ)) = 1]− Pr[D(ExpRSOk−CPA−ideal

Π,S,n (λ)) = 1]| > ε

12

ExpRSOk−CPA−real
PKE,A,n :

pp← Setup(1λ)

(pk, sk) := (pki, ski)i∈[n] ← (Gen(pp))n

(M, s1)← A1(pp,pk)

M := (mi,j)i∈[n],j∈[k] ←M
(ci,j ← Enc(pp, pki,mi,j))i∈[n],j∈[k]

(I, s2)← A2((ci,j)i∈[n],j∈[k], s1)

out← A3((ski,mi,j)i∈I,j∈[k], s2)

Return (M ,M, I, out)

ExpRSOk−CPA−ideal
PKE,S,n :

(M, s1)← S1(1λ)

M := (mi,j)i∈[n],j∈[k] ←M
(I, s2)← S2(s1)

out← S3((mi,j)i∈I,j∈[k], s2)

Return (M ,M, I, out)

ExpRSOk−CCA−real
PKE,A,n :

pp← Setup(1λ)

(pk, sk) := (pki, ski)i∈[n] ← (Gen(pp))n

C = ∅
(M, s1)← ADec

1 (pp,pk)

M := (mi,j)i∈[n],j∈[k] ←M
(ci,j ← Enc(pp, pki,mi,j))i∈[n],j∈[k]

C := {(i, ci,j) | i ∈ [n], j ∈ [k]}
(I, s2)← ADec

2 ((ci,j)i∈[n],j∈[k], s1)

out← ADec
3 ((ski,mi,j)i∈I,j∈[k], s2)

Return (M ,M, I, out)

ExpRSOk−CCA−ideal
PKE,S,n :

(M, s1)← S1(1λ)

M := (mi,j)i∈[n],j∈[k] ←M
(I, s2)← S2(s1)

out← S3((mi,j)i∈I,j∈[k], s2)

Return (M ,M, I, out)

Dec(i, c) :

If (i, c) ∈ C :

Return ⊥
Return Dec(pp, pki, ski, c)

Fig. 1 Experiments for defining SIM-RSOk-CPA security and SIM-RSOk-CCA secu-
rity. Let M be the message space of PKE , then in all experiments, M is a distribution
over M n×k and I ⊆ [n] .

First, by the correctness of Π , we have

Pr[D(ExpRSOk−CPA−real
Π,A,n (λ)) = 1] ≤ negl(λ)

Next, fixing any PPT simulator S = (S1,S2,S3) 9, let

δ = Pr[D(ExpRSOk−CPA−ideal
Π,S,n (λ)) = 1]

Then, it is sufficient to show that δ is notably larger than ε . Concretely, we will
argue that δ ≥ 1/(2κ) in the remaining part of the proof.

To lower bound δ , we consider an auxiliary experiment ExpΠ,S,D,n,k,κ de-
fined in Figure 3 and analyze the distribution of its output. Here, we use RD to
denote the distribution of the randomness for the distinguisher D (the random-
ness is used in the decryption algorithm of Π) and use D(·, ·, ·, ·;R) to denote
running the distinguisher D with randomness R .

9 Here, w.l.o.g., we assume that S2 and S3 are deterministic. This will not restrict
the power of S since we can feed coins for S2 and S3 to S1 and require S1 (resp.
S2) to put coins for S2 and S3 (resp. S3) in its outputted state s1 (resp. s2).

13

A1(PP, (PKi)i∈[n]) :

M = Umnk

s1 = (PP, (PKi)i∈[n])

Output (M, s1)

A2((Ci,j)i∈[n],j∈[k], s1) :

t = H(PP, (PKi, Ci,j)i∈[n],j∈[k])

I = {i | i ∈ [h] ∧ t[i] = 1} ∪ {n}
s2 = (s1, (Ci,j)i∈[n],j∈[k])

Output (I, s2)

A3((SKi,mi,j)i∈I,j∈[k], s2) :

out = (s2, (SKi)i∈I)

Output out

D((mi,j)i∈[n],j∈[k],M, I, out) :

If M 6= Umnk : Output 1

(PP, (PKi, Ci,j)i∈[n],j∈[k], (SKi)i∈I) = out

t = H(PP, (PKi, Ci,j)i∈[n],j∈[k])

I′ = {i | i ∈ [h] ∧ t[i] = 1} ∪ {n}
If I 6= I′ : Output 1

(m′i,j ← Dec(PP, PKi, SKi, Ci,j))i∈I,j∈[k]

For i ∈ I, j ∈ [k] :

If mi,j 6= m′i,j : Output 1

Output 0

Fig. 2 The adversary A and D in attacking SIM-RSOk-CPA security of Π . Here,
we abuse the notation of Umnk to denote the description of an algorithm that outputs
uniform mnk -bit string and assume that this description is hardwired in A and D .

ExpΠ,S,D,n,k,κ :

(M, s1)← S1(1λ) ; (I, s2) = S2(s1) ; R←RD ;

For ι ∈ [1, κ] :

(mι
i,j)i∈[n],j∈[k] ←M ; outι = S3((mι

i,j)i∈I,j∈[k], s2)

If D((mι
i,j)i∈[n],j∈[k],M, I, outι;R) = 1 : Output 1

For ι ∈ [2, κ] :

Parse outι = (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k], (SK

ι
i)i∈I)

If (PPι−1, (PKι−1
i , Cι−1

i,j)i∈[n],j∈[k]) 6= (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k]) :

Output 2

Output 0

Fig. 3 The auxiliary experiment ExpΠ,S,D,n,k,κ .

Lemma 3.1. Pr[ExpΠ,S,D,n,k,κ = 0] ≤ 1/4 .

Proof. Assume the experiment outputs 0. First, we have M = Umnk , thus, for
each ι ∈ [κ], i ∈ [n], j ∈ [k] , mι

i,j is sampled uniformly at random from {0, 1}m .
Also, we know that n ∈ I and for ι ∈ [κ] and j ∈ [k] , we set PKι = PKι

n ,
Cιj = Cιn,j , SKι = SKι

n , and mι
j = mι

n,j . Moreover, we have (PPι−1, (PKι−1,

Cι−1j)j∈[k]) = (PPι, (PKι, Cιj)j∈[k]) for all ι ∈ [n] and thus we can write PPι as
PP , PKι as PK and Cιj as Cj . Finally, for all ι ∈ [κ] and j ∈ [k] , we have
mι
j = Dec(PP, PK, SKι, Cj ; r

ι
j) , where rιj is the randomness for Dec derived

deterministically from R .

Next, for any randomness R (which determines (rιj)ι∈[κ],j∈[k]), we analyze
the probability that all above requirements are satisfied.

14

First, fix any tuple (PP, PK,C = (C1, . . . , Ck),SK = (SK1, . . . , SKκ)) in
{0, 1}a+b+ck+lκ , which is not necessary the output of the simulator, then we
have

Pr[∀ι ∈ [κ], j ∈ [k],mι
j = Dec(PP, PK, SKι, Cj ; r

ι
j)] =

1

2mkκ

where the probability is taken over the random choice of each mι
j .

As the total possible ways to choose PP , PK , C = (C1, . . . , Ck) , and
SK = (SK1, . . . , SKκ) does not exceed 2a+b+ck+lκ = 2(l+1)κ−2 , we have

Pr[∃PP, PK,C,SK : ∀ι ∈ [κ], j ∈ [k],

mι
j = Dec(PP, PK, SKι, Cj ; r

ι
j)] ≤

2(l+1)κ−2

2mkκ ≤ 2mkκ−2

2mkκ =
1

4

Therefore, the probability that the auxiliary experiment ExpΠ,S,D,n,k,κ out-
puts 0 does not exceed 1/4 .

Lemma 3.2. Pr[ExpΠ,S,D,n,k,κ = 1] ≤ κ · δ .

Proof. First, note that randomness of the experiment ExpΠ,S,D,n,k,κ comes from
three parts, namely, R , randomness of the simulator S (denoted as ρ here)
and randomness used in sampling mι

i,j . Let RS be the distribution of the
randomness for the simulator S . Let

f(R, ρ) = Pr


(M, s1) = S1(1λ; ρ);

(I, s2) = S2(s1);

M := (mi,j)i∈[n],j∈[k] ←M;

out = S3((mi,j)i∈I,j∈[k], s2);

: D(M ,M, I, out;R) = 1


where the probability is taken over the random choice of each M . Then, we
have

Pr[ExpΠ,S,D,n,k,κ = 1]

=ER←RD,ρ←RS
(1− (1− f(R, ρ))κ)

≤ER←RD,ρ←RS
(κ · f(R, ρ))

=κ · ER←RD,ρ←RS
f(R, ρ)

=κ · δ

where the second inequality comes from the Bernoulli’s inequality.

Lemma 3.3. Pr[ExpΠ,S,D,n,k,κ = 2] ≤ 1/4 .

Proof. This comes from the collision resistant property of the non-programmable
random oracle, which is a random function whose output is not controlled by
the simulator.

Assuming that H has been queried (either by the adversary, the distinguisher
or the simulator) Q times, where Q is a polynomial. Then the probability that

15

there exists two distinct queries x1, x2 s.t. H(x1) = H(x2) does not exceed Q2

2h
,

which is negligible.
However, if the experiment outputs 2 with a non-negligible probability (e.g.,

1/4), then, via running the experiment, one can find ι ∈ [κ] that

1) (PPι−1, (PKι−1
i , Cι−1i,j)i∈[n],j∈[k]) 6= (PPι, (PKι

i , C
ι
i,j)i∈[n],j∈[k])

2) H(PPι−1, (PKι−1
i , Cι−1i,j)i∈[n],j∈[k]) = H(PPι, (PKι

i , C
ι
i,j)i∈[n],j∈[k]) = (t[1],

. . . , t[h]) , where t[i] = 1 iff i ∈ I (otherwise, the experiment will output
1)

with a non-negligible probability, which makes a contradiction.

Finally, combining Lemma 3.1 to Lemma 3.3, we have

1 ≤ 1/4 + κ · δ + 1/4

which implies δ ≥ 1
2κ and this completes the proof.

Remark 3.1. Theorem 3.1 claims that if the key length of a PKE scheme is not
large enough, then it is impossible to prove its SIM-RSOk-CPA security even
in the non-programmable random oracle model. At first glance, this also rules
out standard model achievability of RSOk security for PKE schemes with short
keys. However, as stated in [BO13], impossibility result in non-programmable
random oracle model does not extend to that in standard model naturally, since
the adversary in the non-programmable random oracle model is also able to
access the random oracle and thus is stronger than a standard model adversary.

Nonetheless, We can adapt the proof for Theorem 3.1 to achieve the same
lower bound (i.e. l > mk−1) in the standard model. More precisely, the revised
proof is identical to proof of Theorem 3.1, except that we use a collision resistant
hash function to replace the use of non-programmable random oracle. But the
proof only works in the auxiliary input model, where all participants, including
the adversary, the distinguisher, and the simulator, are given some common
auxiliary input in the beginning. Here, the auxiliary input is a random key for
the underlying collision resistant hash function.

4 RSOk Security 6⇒ RSOk+1 Security

We present counterexamples that separate the RSOk security and the RSOk+1

security in this section. More precisely, for any polynomial k , we construct a
PKE scheme Π that is SIM-RSOk-CCA secure in the standard model but is
not SIM-RSOk+1-CPA secure in the non-programmable random oracle model.

Let λ be the security parameter and let k be a positive integer that is
polynomial in λ .

Let E = (E.Setup,E.Gen,E.Enc,E.Dec) be a CPA Secure PKE scheme with
a deterministic decryption algorithm and an additional verification algorithm

16

Ver . The algorithm Ver takes as input a public parameter pp and a public
key/secret key pair (pk, sk) , and outputs a bit indicating if (pk, sk) is a valid
key pair. Also, we require that E has the following two properties:

• Verification Correctness. Let pp← E.Setup(1λ) , (pk, sk)← E.Gen(pp) ,
then Pr[E.Ver(pp, pk, sk) = 1] = 1 .

• Key Uniqueness. For any pp and for any pk , |{sk | E.Ver(pp, pk, sk) =
1}| ≤ 1 .

It is easy to see that the well-known ElGamal encryption scheme satisfies this
property.

Let NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Verify) be an unbounded
simulation-sound NIZK proof system for NP. In particular, we will use it to
prove the following language:

{(pp, (pkı,, cı,)ı∈[k],∈{0,1}) : ∃((pı, rı,)ı∈[k],∈{0,1}),
(cı, = E.Enc(pp, pkı,, pı; rı,))ı∈[k],∈{0,1}}

The PKE scheme Π = (Setup, Gen, Enc, Dec) works as follows:

• Setup . On input a security parameter λ , the setup algorithm computes
pp← E.Setup(1λ) and crs← NIZK.Gen(1λ) . The public parameter for Π is
PP = (pp, crs) .

• Gen . On input a public parameter PP = (pp, crs) , the key generation algo-
rithm first computes (pkı,, skı,) ← E.Gen(pp) for ı ∈ [k] and  ∈ {0, 1} .

Then it samples s1, . . . , sk
$← {0, 1} . The public key PK = (pkı,)ı∈[k],∈{0,1}

and the secret key SK = (sı, skı,sı)ı∈[k] .
• Enc . On input a public parameter PP = (pp, crs) , a public key PK =

(pkı,)ı∈[k],∈{0,1} and a message m ∈ {0, 1} , the encryption algorithm
first samples p1, . . . , pk uniformly at random from {0, 1} s.t. m = p1 ⊕
p2 ⊕ . . . ⊕ pk . Then for ı ∈ [k],  ∈ {0, 1} , it samples rı, randomly from
the randomness space of E and computes cı, = E.Enc(pp, pkı,, pı; rı,) .
Finally, it computes π ← NIZK.Prove(crs, (pp, (pkı,, cı,)ı∈[k],∈{0,1}), ((pı,
rı,)ı∈[k],∈{0,1})) . The ciphertext is C = ((cı,)ı∈[k],∈{0,1}, π) .

• Dec . On input a public parameter PP = (pp, crs) , a public key PK =
(pkı,)ı∈[k],∈{0,1} , a secret key SK = (sı, skı,sı)ı∈[k] and a ciphertext C =
((cı,)ı∈[k],∈{0,1}, π) , the decryption algorithm first checks if π is valid and
aborts with a decryption failure symbol ⊥ if it is not the case. Otherwise, it
computes pı = E.Dec(pp, pkı,sı , skı,sı , cı,sı) and outputs m = p1 ⊕ . . .⊕ pk .

Theorem 4.1. If E is an CPA secure PKE scheme and NIZK is a simulation-
sound NIZK proof system, then Π is SIM-RSOk-CCA secure in the standard
model.

Theorem 4.2. If E is a PKE scheme with deterministic decryption algorithm,
verification correctness and key uniqueness, then Π is not SIM-RSOk+1-CPA
secure in the non-programmable random oracle model.

17

Proofs of Theorem 4.1 and Theorem 4.2 are provided in Appendix A.1 and
Appendix A.2 respectively.

Note that we can also prove that Π is not SIM-RSOk+1-CPA secure in the
standard model, but similar to the setting discussed in Remark 3.1, we need to
assume that all participants, including the adversary, the distinguisher, and the
simulator, are given some common auxiliary input in the beginning.

5 RSOk Secure PKE with (Nearly) Optimal Secret Key
Length

In this section, we construct RSOk secure PKE schemes with secret key length
l = k + O(λ) . Here the ratio of secret key length to the messages number k is
l
k = 1 + o(1) . As shown in Sec. 3, no PKE scheme can achieve RSOk security if

l ≤ k − 1 (i.e., l
k < 1). Thus, our schemes are optimal in an asymptotic sense.

Next, in Sec. 5.1, we first construct an optimal SIM-RSOk-CPA secure
scheme from the DDH assumption. Then in Sec. 5.2, we upgrade the scheme
to achieve SIM-RSOk-CCA security by using a NIZK proof system.

5.1 SIM-RSOk-CPA Secure PKE with (Nearly) Optimal Secret
Key Length

Let λ be the security parameter and let k be a positive integer that is polyno-
mial in λ . Let G be a group generator algorithm that takes as input a security
parameter λ and outputs a multiplicative cyclic group G of prime order q and
a generator g of G .

The PKE scheme Π = (Setup, Gen, Enc, Dec) works as follows:

• Setup . On input a security parameter λ , the setup algorithm first generates

(G, q, g) ← G(1λ) and samples a0, a1, . . . ak, b
$← Zq . Then it computes

gı = gaı for ı ∈ [0, k] and h = gb . The public parameter for Π is PP = (G,
q, g, g0, g1, . . . , gk, h) .

• Gen . On input a public parameter PP = (G, q, g, g0, g1, . . . , gk, h) , the key

generation algorithm first samples s0
$← Zq and s1, . . . sk

$← {0, 1} and
sets the secret key sk = (s0, s1, . . . , sk) . Then it computes the public key
pk =

∏
ı∈[0,k] g

sı
ı .

• Enc . On input a public parameter PP = (G, q, g, g0, g1, . . . , gk, h) , a public
key pk and a message m ∈ {0, 1} , the encryption algorithm first samples

w
$← Zq . Then it computes x = (x0, x1, . . . , xk) = (gw0 , g

w
1 , . . . , g

w
k) , K =

pkw and C = K · hm . The ciphertext CT = (x, C) .
• Dec . On input a public parameter PP = (G, q, g, g0, g1, . . . , gk, h) , a secret

key sk = (s0, s1, . . . , sk) and a ciphertext CT = (x0, x1, . . . , xk, C) , the
decryption algorithm first computes K ′ =

∏
ı∈[0,k] x

sı
ı . Then it outputs 0 if

C = K ′ and outputs 1 if C = K ′ · h . Otherwise, it outputs a decryption
failure symbol ⊥ .

18

Security. Security of Π is guaranteed by the following theorem. We put the
proof of Theorem 5.1 in Sec. 5.3.

Theorem 5.1. Assuming the DDH assumption holds in group G , Π is a PKE
scheme with SIM-RSOk-CPA security.

Key Length. The secret key length of Π is k + log q , where log q is deter-
mined by the security parameter λ and is independent of the parameter k . For
example, if we instantiate the scheme with an elliptic curve group and hope to
achieve a 80-bit security, then we can fix log q = 160 . In this case, the ratio of
key length to messages number k is k+log q

k = 1 + 160
k = 1 + o(1) .

5.2 SIM-RSOk-CCA Secure PKE with (Nearly) Optimal Secret
Key Length

Let λ be the security parameter and let k be a positive integer that is poly-
nomial in λ . Let Π′ = (Π′.Setup,Π′.Gen,Π′.Enc,Π′.Dec) be a SIM-RSOk-CPA
secure PKE scheme. Let E = (E.Setup,E.Gen,E.Enc,E.Dec) be a CPA-secure
PKE scheme. Let NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Verify) be a an un-
bounded simulation-sound NIZK proof for NP. In particular, we will use it to
prove the following language:

{(pp1, pk1, c1, pp2, pk2, c2) : ∃(m, r1, r2),

c1 = Π′.Enc(pp1, pk1,m; r1) ∧ c2 = E.Enc(pp2, pk2,m; r2)}

The PKE scheme Π = (Setup, Gen, Enc, Dec) works as follows:

• Setup . On input a security parameter λ , the setup algorithm computes
pp ← Π′.Setup(1λ) , p̃p ← E.Setup(1λ) and crs ← NIZK.Gen(1λ) . Also, it
generates (p̃k , s̃k) ← E.Gen(p̃p) . The public parameter for Π is PP = (pp,
crs, p̃p, p̃k) .

• Gen . On input a public parameter PP = (pp, crs, p̃p, p̃k) , the key generation
algorithm computes (pk , sk) ← Π′.Gen(pp) . The public key PK = pk and
the secret key SK = sk .

• Enc . On input a public parameter PP = (pp, crs, p̃p, p̃k) , a public key
PK = pk and a message m , the encryption algorithm first samples r,
r̃ randomly from the encryption randomness space of Π′ and E respec-
tively. Then it computes c = Π′.Enc(pp, pk ,m; r) , c̃ = E.Enc(p̃p, p̃k ,m; r̃)
and π ← NIZK.Prove(crs, (pp, pk , c, p̃p, p̃k , c̃), (m, r, r̃)) . The ciphertext is
C = (c, c̃, π) .

• Dec . On input a public parameter PP = (pp, crs, p̃p, p̃k) , a public key PK =
pk , a secret key SK = sk and a ciphertext C = (c, c̃, π) , the decryption
algorithm first checks if π is valid and aborts with a decryption failure
symbol ⊥ if it is not the case. Otherwise, it outputs m← Π′.Dec(pp, pk , sk ,
c) .

19

Security. Security of Π is guaranteed by the following theorem. We put the
proof of Theorem 5.2 in Sec. 5.4.

Theorem 5.2. If Π′ is a SIM-RSOk-CPA secure PKE scheme, E is a CPA-
secure PKE scheme and NIZK is an unbounded simulation-sound NIZK proof,
then Π is a PKE scheme with SIM-RSOk-CCA security.

Key Length. If we instantiate the underlying SIM-RSOk-CPA secure PKE
scheme Π′ with the one we constructed in Sec. 5.1, then we can obtain a
SIM-RSOk-CCA secure PKE scheme Π , where the ratio of key length to mes-
sages number k is also k+log q

k = 1 + o(1) .

5.3 Proof of Theorem 5.1

Proof. We provide the proof of Theorem 5.1 in this section.
Let K and K ′ be the random variables used in generating and decrypting

the same ciphertext (x0, x1, . . . , xk, C) respectively. It is easy to see that the
decryption algorithm can recover the correct message iff K = K ′ . As we have

K = pkw = (
∏

ı∈[0,k]

gsıı)w =
∏

ı∈[0,k]

gw·sıı =
∏

ı∈[0,k]

(gwı)sı =
∏

ı∈[0,k]

xsıı = K ′

the correctness holds.
Next, we focus on the SIM-RSOk-CPA security of Π . First, for any polyno-

mial n , any adversary A = (A1,A2,A3) , and any distinguisher D , we design
the simulator S for A , which works as in Figure 4.

Next, we prove that output of the simulator S is indistinguishable from
output of the adversary A in a real game. We argue this via defining the following
games:

• Game 0. This is the real experiment ExpRSOk−CPA−real
Π,A,n . In particular, the

challenger interacts with the adversary as follows:
1. On input a security parameter, the challenger first generates (G, q, g)←
G(1λ) and samples a0, a1, . . . ak, b

$← Zq . Then it computes gı = gaı for
ı ∈ [0, k] , h = gb , and sets PP = (G, q, g, g0, g1, . . . , gk, h) .

2. Then, for i ∈ [n] , it samples si,0
$← Zq , si,1, . . . si,k

$← {0, 1} and
computes the public key pk i =

∏
ı∈[0,k] g

si,ı
ı .

3. Next, the challenger sends PP, (pk i)i∈[n] to A and receives a distribution
M from the adversary.

4. Then, the challenger samples a matrix of messages M := (mi,j)i∈[n],j∈[k] ←
M and for each (i, j) ∈ [n]× [k] , it generates a challenge ciphertext for
mi,j as follows:

(a) Samples wi,j
$← Zq .

(b) Computes xi,j = (xi,j,0, xi,j,1, . . . , xi,j,k) = (g
wi,j

0 , g
wi,j

1 , . . . , g
wi,j

k) .
(c) Computes Ci,j = pk

wi,j

i · hmi,j .

20

S1(1λ) :

(G, q, g)← G(1λ)

For ı ∈ [0, k] :

aı
$← Zq

gı = gaı

b
$← Zq

h = gb

PP = (G, q, g, g0, g1, . . . , gk, h)

For i ∈ [n] :

s′i,0
$← Zq

For ı ∈ [k] :

s′i,ı
$← {0, 1}

pk i =
∏
ı∈[0,k] g

s′i,ı
ı

(M, s′1)← A1(PP, (pk i)i∈[n])

s = ((aı)ı∈[0,k], b, (s
′
i,ı)i∈[n],ı∈[0,k])

s1 = (s′1,PP, (pk i)i∈[n], s)

Output (M, s1)

S2(s1) :

For i ∈ [n], j ∈ [k] :

wi,j
$← Zq

If s′i,j = 1 : αi,j = 1

Otherwise : αi,j = −1

For ı ∈ [0, k] ∧ ı 6= j : xi,j,ı = g
wi,j
ı

xi,j,j = g
wi,j

j · hαi,j

xi,j = (xi,j,0, . . . , xi,j,k)

Ci,j =
∏
ı∈[0,k] x

s′i,ı
i,j,ı

CTi,j = (xi,j , Ci,j)

(I, s′2)← A2((CTi,j)i∈[n],j∈[k], s
′
1)

s2 = (s1, s
′
2)

Output (I, s2)

S3((mi,j)i∈I,j∈[k], s2) :

For i ∈ I :

For j ∈ [k] :

If mi,j = 0 : si,j = s′i,j

Otherwise: si,j = 1− s′i,j
si,0 = s′i,0 + a−1

0

∑
ı∈[k](aı · (s

′
i,ı − si,ı))

sk i = (si,ı)ı∈[0,k]

out← A3((sk i,mi,j)i∈I,j∈[k], s
′
2)

Output out

Fig. 4 The simulator S for A in proving SIM-RSOk-CPA security of Π .

(d) Sets CTi,j = (xi,j , Ci,j) .
5. Next, the challenger sends all challenge ciphertexts to A and receives a

set I ⊆ [n] from the adversary.
6. Then, the challenger sets sk i = (si,0, si,1, . . . , si,k) for i ∈ I and sends

(sk i,mi,j)i∈I,j∈[k] to A .
7. Finally, on receiving A ’s output out , the challenger outputs (M ,M,
I, out) .

• Game 1. This is identical to Game 0 except that in step 4, the challenger
computes new variables (s′i,j , αi,j)i∈[n],j∈[k] . More precisely, for i ∈ [n], j ∈
[k] , it sets s′i,j = si,j if mi,j = 0 and sets s′i,j = 1− si,j otherwise. Besides,
it sets αi,j = 1 if s′i,j = 1 and sets αi,j = −1 otherwise.

• Game 2. This is identical to Game 1 except that the challenger changes the
way to generate Ci,j . More precisely, for each i ∈ [n], j ∈ [k] , the challenger
computes Ci,j = (

∏
ı∈[0,k] x

si,ı
i,j,ı) · hmi,j .

• Game 3. This is identical to Game 2 except that the j -th element in xi,j
(i.e., xi,j,j) is generated dishonestly. More precisely, for each i ∈ [n], j ∈ [k] ,

it samples xi,j,j
$← G .

21

• Game 4. This is identical to Game 3 except that the challenger changes the
way to generate xi,j,j . More precisely, for each i ∈ [n], j ∈ [k] , it samples

x′i,j,j
$← G and computes xi,j,j = x′i,j,j · hαi,j .

• Game 5. This is identical to Game 4 except that the challenger changes the
way to generate xi,j,j . More precisely, for each i ∈ [n], j ∈ [k] , it computes
x′i,j,j = g

wi,j

j and xi,j,j = x′i,j,j · hαi,j .
• Game 6. This is identical to Game 5 except that the challenger changes the

way to generate Ci,j . More precisely, in step 4, the challenger sets s′i,0 =

si,0 + a−10

∑
ı∈[k](aı · (si,ı − s′i,ı)) and for each i ∈ [n], j ∈ [k] , it computes

Ci,j =
∏
ı∈[0,k] x

s′i,ı
i,j,ı .

• Game 7. This is identical to Game 6 except that the challenger changes the
order in generating s′i,j and si,j :

− In step 2, it samples s′i,0
$← Zq and s′i,ı

$← {0, 1} for i ∈ [n], ı ∈ [k] and

computes pk i =
∏
ı∈[0,k] g

s′i,ı
ı for i ∈ [n] .

− In step 4, for i ∈ [n], j ∈ [k] , it sets si,j = s′i,j if mi,j = 0 and sets si,j =

1 − s′i,j otherwise. Also, it sets si,0 = s′i,0 + a−10

∑
ı∈[k](aı · (s′i,ı − si,ı))

for i ∈ [n] .

Let pι be the probability that D outputs 1 when taking the output of Game
ι as input, then we have p0 = Pr[D(ExpRSOk−CPA−real

Π,A,n (λ)) = 1] . Also, it is easy
to see that output of Game 7 is exactly the output of the ideal experiment, so,
we have p7 = Pr[D(ExpRSOk−CPA−ideal

Π,S,n (λ)) = 1] . Next, we prove that p0 − p7 is
negligible via showing that pι − pι+1 is negligible for all ι ∈ [0, 6] .

Lemma 5.1. |p0 − p1| = 0 .

Proof. Game 0 and Game 1 are identical except that in Game 1, the challenger
generates some variables that are not used in this game. This will not affect the
output of the game.

Lemma 5.2. |p1 − p2| = 0 .

Proof. In Game 1 and Game 2, each Ci,j is computed in different ways. But as

pk
wi,j

i = (
∏

ı∈[0,k]

gsi,ıı)wi,j =
∏

ı∈[0,k]

gsi,ı·wi,j
ı =

∏
ı∈[0,k]

(gwi,j
ı)si,ı =

∏
ı∈[0,k]

x
si,ı
i,j,ı

the computation results are identical and thus outputs of these two games are
identically distributed.

Lemma 5.3. |p2 − p3| ≤ negl(λ) .

Proof. Indistinguishability between Game 2 and Game 3 comes from the DDH
assumption by a standard hybrid argument.

In particular, for some fixed i, j ∈ [n] × [k] , to show that xi,j,j is sampled
from two computationally indistinguishable distributions in Game 2 and Game

22

3, we consider a DDH challenge (g, g1, g2, g3) = (g, gx, gy, gz) , where z = xy or

z
$← Zq . The reduction sets gj = g1 , gwi,j = g2 , xi,j,j = g3 Then, it simulates

the view for A (as in Game 2 and Game 3) with them. Note that the exact
value of x and y is not needed in the simulation since 1) the challenger does
not use aj in both Game 2 and Game 3 and 2) without wi,j , the challenger
can compute xi,j,ı = gaı2 for ı ∈ [0, k]\{j} . It is easy to see that if z = xy ,

then xi,j,j = g
wi,j

j as in Game 2, and if z
$← Zq , then xi,j,j

$← Zq as in Game
3. Therefore, indistinguishability between Game 2 and Game 3 is guaranteed
assuming the hardness of the DDH assumption.

Lemma 5.4. |p3 − p4| = 0 .

Proof. Since in Game 3, xi,j,j
$← G , it will not change its distribution if we

additionally multiply it with hαi,j . Therefore, outputs of these two games are
identically distributed.

Lemma 5.5. |p4 − p5| ≤ negl(λ) .

Proof. Similar to the proof of Lemma 5.3, indistinguishability between Game 4
and Game 5 comes from the DDH assumption by a standard hybrid argument.

Lemma 5.6. |p5 − p6| = 0 .

Proof. In Game 5 and Game 6, each Ci,j is computed in different ways. But as

(
∏

ı∈[0,k]

x
si,ı
i,j,ı) · h

mi,j

=(
∏

ı∈[0,k]

gwi,j ·si,ı
ı) · hαi,j ·si,j · hmi,j

=(gwi,j ·(
∑

ı∈[0,k] aı·si,ı)) · hαi,j ·si,j+mi,j

=(gwi,j ·(
∑

ı∈[0,k] aı·s
′
i,ı)) · hαi,j ·si,j+mi,j

=(gwi,j ·(
∑

ı∈[0,k] aı·s
′
i,ı)) · hαi,j ·s′i,j

=(
∏

ı∈[0,k]

g
wi,j ·s′i,ı
ı) · hαi,j ·s′i,j

=
∏

ı∈[0,k]

x
s′i,ı
i,j,ı

the computation results are identical and thus outputs of these two games are
identically distributed.

Here, the first and the last equalities come from the fact that xi,j,ı = g
wi,j
ı for

ı 6= j and that xi,j,j = g
wi,j

j · hαi,j . Also, the third equality comes from the fact

that s′i,0 = si,0+a−10

∑
ı∈[k](aı·(si,ı−s′i,ı)) , which implies that

∑
ı∈[0,k](aı·s′i,ı) =

23

∑
ı∈[0,k](aı · si,ı) . For the fourth equality, if mi,j = 0 , then si,j = s′i,j and

thus αi,j · si,j + 0 = αi,j · s′i,j ; if mi,j = 1 , then either si,j = 1, s′i,j = 0 or
si,j = 0, s′i,j = 1 , and in both cases, αi,j · (s′i,j − si,j) = 1 , which implies that
αi,j · si,j + 1 = αi,j · s′i,j .

Lemma 5.7. |p6 − p7| = 0 .

Proof. First, in both Game 6 and Game 7, each pk i is a random element in
G , thus the adversary’s views are identical in both games until step 4, where
(si,ı, s

′
i,ı)i∈[n],ı∈[0,k] are sampled in different ways.

In step 4, fixing the challenge messages mi,j , then in both games the random
variables (si,ı, s

′
i,ı)i∈[n],ı∈[0,k] are randomly distributed in Zq×Zq×{0, 1}2k with

the restriction that for any i ∈ [n] :{∑
ı∈[0,k](aı · s′i,ı) =

∑
ı∈[0,k](aı · si,ı) = logg pk i

∀ı ∈ [k], si,ı + s′i,ı = mi,j

Therefore, they are identically distributed and that completes the proof of Lemma
5.7.

Combining Lemma 5.1 to Lemma 5.7, we have p0 − p7 negligible and this
completes the proof.

5.4 Proof of Theorem 5.2

Proof. We provide the proof of Theorem 5.2 in this section.
Correctness of Π comes from correctness of Π′ and completeness of NIZK

directly.
Next, we focus on the SIM-RSOk-CCA security of Π . First, for any poly-

nomial n , any adversary A = (A1,A2,A3) , we define an auxiliary adversary
B for Π′ as in Figure 5. Since Π′ is a SIM-RSOk-CPA secure PKE scheme,
there exists a simulator S ′ = (S ′1,S ′2,S ′3) for B such that the output of S ′ is
indistinguishable from the output of B in a real RSOk -CPA game. Then we
define the simulator S for A as S = S ′ = (S ′1,S ′2,S ′3) .

Next, we prove that output of the simulator S is indistinguishable from
output of the adversary A in a real RSOk -CCA game. We argue this via defining
the following games:

• Game 0. This is the real experiment ExpRSOk−CCA−real
Π,A,n . In particular, the

challenger interacts with the adversary as follows:

1. On input a security parameter, the challenger first computes pp ←
Π′.Setup(1λ) , p̃p ← E.Setup(1λ) and crs ← NIZK.Gen(1λ) . Also, it
generates (p̃k , s̃k) ← E.Gen(p̃p) . Then, it sets the public parameter
PP = (pp, crs, p̃p, p̃k) .

2. Then, for i ∈ [n] , it computes (pk i, sk i)← Π′.Gen(pp) .

24

B1(pp, (pk i)i∈[n]) :

p̃p← E.Setup(1λ)

(crs, td)← NIZK.S1(1λ)

(p̃k , s̃k)← E.Gen(p̃p)

PP = (pp, crs, p̃p, p̃k)

C = ∅
(M, s′1)← ADecB

1 (PP, (pk i)i∈[n])

s1 = (s′1,PP, (pk i)i∈[n], td, s̃k)

Output (M, s1)

DecB(i, C) :

If (i, C) ∈ C: Return ⊥
Parse C = (c, c̃, π)

x = (pp, pk i, c, p̃p, p̃k , c̃)

If NIZK.Verify(crs, x, π) = 0 : Return ⊥
Return E.Dec(p̃p, p̃k , s̃k , c̃)

B2((ci,j)i∈[n],j∈[k], s1) :

For i ∈ [n], j ∈ [k] :

c̃i,j ← E.Enc(p̃p, p̃k , 0)

xi,j = (pp, pk i, ci,j , p̃p, p̃k , c̃i,j)

πi,j ← NIZK.S2(crs, td, xi,j)

Ci,j = (ci,j , c̃i,j , πi,j)

C = {(i, Ci,j) | i ∈ [n], j ∈ [k]}
(I, s′2)← ADecB

2 ((Ci,j)i∈[n],j∈[k], s
′
1)

s2 = (s1, s
′
2)

Output (I, s2)

B3((sk i,mi,j)i∈I,j∈[k], s2) :

out← ADecB
3 ((sk i,mi,j)i∈I,j∈[k], s

′
2)

Output out

Fig. 5 The adversary B for Π′ .

3. Next, the challenger sends PP, (pk i)i∈[n] to A and answers A ’s decryp-
tion oracle queries as follows:
(a) On input a pair (i, C) , where C = (c, c̃, π) , the challenger first

checks if π is valid and returns an error symbol ⊥ if π is not valid.
(b) Otherwise, it computes m← Π′.Dec(pp, pk i, sk i, c) .
(c) Finally, it returns m to A .

4. The adversary will send a distribution M to the challenger after query-
ing the decryption oracle a few times. Then, the challenger samples
a matrix of messages M := (mi,j)i∈[n],j∈[k] ← M and for each (i,
j) ∈ [n]× [k] , it generates a challenge ciphertext for mi,j as follows:
(a) Samples ri,j , r̃i,j randomly from the encryption randomness space

of Π′ and E respectively.
(b) Computes ci,j = Π′.Enc(pp, pk i,mi,j ; ri,j) .

(c) Computes c̃i,j = E.Enc(p̃p, p̃k ,mi,j ; r̃i,j) .

(d) Computes πi,j ← NIZK.Prove(crs, (pp, pk i, ci,j , p̃p, p̃k , c̃i,j), (mi,j , ri,j ,
r̃i,j)) .

(e) Sets Ci,j = (ci,j , c̃i,j , πi,j) .
5. Next, the challenger sends all challenge ciphertexts to A and answers
A ’s decryption oracle queries as follows:
(a) On input a pair (i, C) , the challenger first checks if C = Ci,j for

some j ∈ [k] . It returns ⊥ if this is the case.
(b) Otherwise, the challenger parses C = (c, c̃, π) and checks if π is

valid. It returns an error symbol ⊥ if π is not valid.
(c) Otherwise, it computes m← Π′.Dec(pp, pk i, sk i, c) .
(d) Finally, it returns m to A .

25

6. The adversary will send a set I ⊆ [n] to the challenger after query-
ing the decryption oracle a few times. Then, the challenger sends (ski,
mi,j)i∈I,j∈[k] to A . The challenger will answer A ’s decryption queries
exactly as in step 5.

7. Finally, on receiving A ’s output out , the challenger outputs (M ,M,
I, out) .

• Game 1. This is identical to Game 0 except that when generating the com-
mon reference string and proofs, the challenger uses the simulator of NIZK
instead of generating them honestly. More precisely, in the first step, the
challenger computes (crs, td) ← NIZK.S1(1λ) and in step 4, the challenger
computes πi,j ← NIZK.S2(crs, td, (pp, pk i, ci,j , p̃p, p̃k , c̃i,j)) .

• Game 2. This is identical to Game 1 except that the challenger changes
the way to generate challenge ciphertexts. More precisely, for each i ∈ [n],
j ∈ [k] , the challenger computes c̃i,j ← E.Enc(p̃p, p̃k , 0) .

• Game 3. This is identical to Game 2 except that the challenger changes the
way to answer decryption queries. More precisely, for a ciphertext (c, c̃, π) ,
it returns E.Dec(p̃p, p̃k , s̃k , c̃) in the last step of the decryption oracle.

• Game 4. In Game 4, the challenger proceeds as follows:
1. (M, s1)← S ′1(1λ)
2. M := (mi,j)i∈[n],j∈[k] ←M
3. (I, s2)← S ′2(s1)
4. out← S ′3((mi,j)i∈I,j∈[k], s2)
5. Return (M ,M, I, out)

Let pα be the probability that D outputs 1 when taking the output of Game
α as input, then we have

p0 = Pr[D(ExpRSOk−CCA−real
Π,A,n (λ)) = 1]

Besides, we can view Game 4 as the ideal experiment ExpRSOk−CCA−ideal
Π,S,n (recall

that S = S ′ = (S ′1,S ′2,S ′3)), so we have

p4 = Pr[D(ExpRSOk−CCA−ideal
Π,S,n (λ)) = 1]

Next, we prove that p0 − p4 is negligible via showing that pα − pα+1 is
negligible for all α ∈ [0, 3] .

Lemma 5.8. |p0 − p1| ≤ negl(λ) .

Proof. This comes from the unbounded zero-knowledge property of NIZK di-
rectly.

Lemma 5.9. |p1 − p2| ≤ negl(λ) .

Proof. This comes from the CPA-security of E directly.

Lemma 5.10. |p2 − p3| ≤ negl(λ) .

26

Proof. This comes from the fact that for any ciphertext (c, c̃, π) with a valid
π , E.Dec(p̃p, p̃k , s̃k , c̃) = Π′.Dec(pp, pk i, sk i, c) with all but negligible probabil-
ity, which is guaranteed by the unbounded simulation-soundness of NIZK and
correctness of Π′ and E .

Lemma 5.11. |p3 − p4| ≤ negl(λ) .

Proof. It is easy to see that output of Game 3 is exactly the output of experiment
ExpRSOk−CPA−real

Π′,B,n (since A ’s view in Game 3 is identical to its view in the

experiment ExpRSOk−CPA−real
Π′,B,n when invoked by B), thus we have

p3 = Pr[D(ExpRSOk−CPA−real
Π′,B,n (λ)) = 1]

Also, we can view Game 4 as the ideal experiment ExpRSOk−CPA−ideal
Π′,S′,n , so we

have

p4 = Pr[D(ExpRSOk−CPA−ideal
Π′,S′,n (λ)) = 1]

Therefore, lemma 5.11 comes from the SIM-RSOk-CPA security of Π′ directly.

Combining Lemma 5.8 to Lemma 5.11, we have p0 − p4 negligible and this
completes the proof.

6 Conclusion

In this work, we initiate the study of receiver selective opening security for PKE
schemes in the multi-challenge setting. Several interesting open questions remain.

First, our impossibility results only work in either the non-programmable
random oracle model or the auxiliary input model. It is interesting to see if we
can achieve the impossibility results in the standard model without auxiliary in-
put. Another interesting direction is to explore the relation between PKE scheme
with RSOk security and some related notions, e.g., (receiver) non-committing
encryption, hash proof system, etc. Besides, one may note that in our construc-
tions of RSOk secure PKE schemes, the ciphertexts sizes grow linearly with k .
It will be an interesting future work to construct a RSOk secure PKE scheme
with constant-size ciphertexts. Finally, in this work, we mainly focus on the fea-
sibility of achieving RSOk secure PKE schemes and it will also be interesting
to construct practical PKE schemes with RSOk security.

Acknowledgement. We appreciate the anonymous reviewers for their valu-
able comments. Part of this work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 61922036, 61702125, 61802078, 61972332,
U1636205, 61632020), the Research Grant Council of Hong Kong (Grant No.
25206317), and the Major Innovation Project of Science and Technology of Shan-
dong Province (Grant No. 2018CXGC0702).

27

References

[BDWY12] Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott Yilek.
Standard security does not imply security against selective-
opening. In EUROCRYPT, pages 645–662. Springer, 2012.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive
zero-knowledge and its applications. In STOC, pages 103–112.
ACM, 1988.

[BHK12] Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. On def-
initions of selective opening security. In PKC, pages 522–539.
Springer, 2012.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and
impossibility results for encryption and commitment secure under
selective opening. In EUROCRYPT, pages 1–35. Springer, 2009.

[BL17] Xavier Boyen and Qinyi Li. All-but-many lossy trapdoor func-
tions from lattices and applications. In CRYPTO, pages 298–331.
Springer, 2017.

[BO13] Mihir Bellare and Adam ONeill. Semantically-secure functional
encryption: Possibility results, impossibility results and the quest
for a general definition. In CANS, pages 218–234. Springer, 2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In TCC, pages 253–273. Springer, 2011.

[CDSMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck
Wee. Improved non-committing encryption with applications to
adaptively secure protocols. In ASIACRYPT, pages 287–302.
Springer, 2009.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adap-
tively secure multi-party computation. In STOC, pages 639–648,
1996.

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure,
non-interactive public-key encryption. In TCC, pages 150–168.
Springer, 2005.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryp-
tosystem provably secure against adaptive chosen ciphertext at-
tack. In CRYPTO, pages 13–25. Springer, 1998.

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing
encryption schemes based on a general complexity assumption. In
CRYPTO, pages 432–450. Springer, 2000.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stock-
meyer. Magic functions. In FOCS, pages 523–534. IEEE, 1999.

[FHKW10] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. En-
cryption schemes secure against chosen-ciphertext selective open-
ing attacks. In EUROCRYPT, pages 381–402. Springer, 2010.

[HJKS15] Felix Heuer, Tibor Jager, Eike Kiltz, and Sven Schäge. On the se-
lective opening security of practical public-key encryption schemes.
In PKC, pages 27–51. Springer, 2015.

28

[HKM+ 18] Keisuke Hara, Fuyuki Kitagawa, Takahiro Matsuda, Goichiro
Hanaoka, and Keisuke Tanaka. Simulation-based receiver selective
opening CCA secure PKE from standard computational assump-
tions. In SCN, pages 140–159. Springer, 2018.

[HLC+ 19] Zhengan Huang, Junzuo Lai, Wenbin Chen, Man Ho Au, Zhen
Peng, and Jin Li. Simulation-based selective opening security for
receivers under chosen-ciphertext attacks. DCC, 87(6):1345–1371,
2019.

[HLOV11] Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien
Vergnaud. Lossy encryption: Constructions from general assump-
tions and efficient selective opening chosen ciphertext security. In
ASIACRYPT, pages 70–88. Springer, 2011.

[HLQ13] Zhengan Huang, Shengli Liu, and Baodong Qin. Sender-
equivocable encryption schemes secure against chosen-ciphertext
attacks revisited. In PKC, pages 369–385. Springer, 2013.

[Hof12] Dennis Hofheinz. All-but-many lossy trapdoor functions. In EU-
ROCRYPT, pages 209–227. Springer, 2012.

[HP16] Felix Heuer and Bertram Poettering. Selective opening security
from simulatable data encapsulation. In ASIACRYPT, pages 248–
277. Springer, 2016.

[HPW15] Carmit Hazay, Arpita Patra, and Bogdan Warinschi. Selective
opening security for receivers. In ASIACRYPT, pages 443–469.
Springer, 2015.

[HR14] Dennis Hofheinz and Andy Rupp. Standard versus selective open-
ing security: separation and equivalence results. In TCC, pages
591–615. Springer, 2014.

[HRW16] Dennis Hofheinz, Vanishree Rao, and Daniel Wichs. Standard se-
curity does not imply indistinguishability under selective opening.
In TCC, pages 121–145. Springer, 2016.

[JLL16] Dingding Jia, Xianhui Lu, and Bao Li. Receiver selective opening
security from indistinguishability obfuscation. In INDOCRYPT,
pages 393–410. Springer, 2016.

[JLL17] Dingding Jia, Xianhui Lu, and Bao Li. Constructions secure
against receiver selective opening and chosen ciphertext attacks.
In CT-RSA, pages 417–431. Springer, 2017.

[KT18] Fuyuki Kitagawa and Keisuke Tanaka. Key dependent message
security and receiver selective opening security for identity-based
encryption. In PKC, pages 32–61. Springer, 2018.

[LLHG18] Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu. Tightly SIM-SO-
CCA secure public key encryption from standard assumptions. In
PKC, pages 62–92. Springer, 2018.

[LP15] Shengli Liu and Kenneth G. Paterson. Simulation-based selective
opening CCA security for PKE from key encapsulation mecha-
nisms. In PKC, pages 3–26. Springer, 2015.

[LSSS17] Benôıt Libert, Amin Sakzad, Damien Stehlé, and Ron Stein-
feld. All-but-many lossy trapdoor functions and selective opening

29

chosen-ciphertext security from LWE. In CRYPTO, pages 332–
364. Springer, 2017.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from com-
plexity theoretic proofs: The non-committing encryption case. In
CRYPTO, pages 111–126. Springer, 2002.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably
secure against chosen ciphertext attacks. In STOC, pages 427–
437. ACM, 1990.

[ORV14] Rafail Ostrovsky, Vanishree Rao, and Ivan Visconti. On selective-
opening attacks against encryption schemes. In SCN, pages 578–
597. Springer, 2014.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and
adaptive chosen-ciphertext security. In FOCS, pages 543–553.
IEEE, 1999.

A Deterred Proofs

A.1 Proof of Theorem 4.1

Proof. We provide the proof of Theorem 4.1 in this section.
Correctness of Π comes from correctness of E and completeness of NIZK

directly. Next, we focus on the SIM-RSOk-CCA security of Π .
First, for any polynomial n , any adversary A = (A1,A2,A3) , and any

distinguisher D , we design the simulator S for A , which works as in Figure 6.
Next, we prove that output of the simulator S is indistinguishable from the

output of the adversary in a real game. We argue this via defining the following
games:

• Game 0. This is the real experiment ExpRSOk−CCA−real
Π,A,n . In particular, the

challenger interacts with the adversary as follows:

1. On input a security parameter, the challenger first computes pp ←
E.Setup(1λ) and crs← NIZK.Gen(1λ) , and sets PP = (pp, crs) .

2. Then, for i ∈ [n], ı ∈ [k],  ∈ {0, 1} , it computes (pki,(ı,), ski,(ı,)) ←
E.Gen(pp) . Also, it samples si,1, . . . , si,k

$← {0, 1} for i ∈ [n] and sets
PKi = (pki,(ı,))ı∈[k],∈{0,1} .

3. Next, the challenger sends PP, (PKi)i∈[n] to A and answers A ’s de-
cryption oracle queries as follows:

(a) On input a pair (i, C) , where C = ((cı,)ı∈[k],∈{0,1}, π) , the chal-
lenger first checks if π is valid and returns an error symbol ⊥ if π
is not valid.

(b) Otherwise, it computes pı = E.Dec(pp, pki,(ı,si,ı), ski,(ı,si,ı), cı,si,ı) for
ı ∈ [k] and computes m = p1 ⊕ . . .⊕ pk .

(c) Finally, it returns m to A .

30

S1(1λ) :

pp← E.Setup(1λ)

(crs, td)← NIZK.S1(1λ)

PP = (pp, crs)

C = ∅
For i ∈ [n] :

For ı ∈ [k],  ∈ {0, 1} :

(pki,(ı,), ski,(ı,))← E.Gen(pp)

PKi = (pki,(ı,))ı∈[k],∈{0,1}

(M, s′1)← ADecS
1 (PP, (PKi)i∈[n])

s = (td, (ski,(ı,))i∈[n],ı∈[k],∈{0,1})

s1 = (s′1,PP, (PKi)i∈[n], s)

Output (M, s1)

DecS(i, C) :

If (i, C) ∈ C: Return ⊥
Parse C = ((cı,)ı∈[k],∈{0,1}, π)

x = (pp, (pki,(ı,), cı,)ı∈[k],∈{0,1})

If NIZK.Verify(crs, x, π) = 0 :

Return ⊥
For ı ∈ [k] :

pı = E.Dec(pp, pki,(ı,0), ski,(ı,0), cı,0)

m = p1 ⊕ . . .⊕ pk
Return m

S2(s1) :

For i ∈ [n], j ∈ [k] :

For ı ∈ [k] ∧ ı 6= j :

pi,j,ı
$← {0, 1}

c(i,j),(ı,0) ← E.Enc(pp, pki,(ı,0), pi,j,ı)

c(i,j),(ı,1) ← E.Enc(pp, pki,(ı,1), pi,j,ı)

pi,j,j
$← {0, 1}

c(i,j),(j,0) ← E.Enc(pp, pki,(j,0), pi,j,j)

c(i,j),(j,1) ← E.Enc(pp, pki,(j,1), 1− pi,j,k)

xi,j = (pp, (pki,(ı,), c(i,j),(ı,))ı∈[k],∈{0,1})

πi,j ← NIZK.S2(crs, td, xi,j)

Ci,j = ((c(i,j),(ı,))ı∈[k],∈{0,1}, πi,j)

C = {(i, Ci,j) | i ∈ [n], j ∈ [k]}
(I, s′2)← ADecS

2 ((Ci,j)i∈[n],j∈[k], s
′
1)

s2 = (s1, s
′
2, (p(i,j),(ı))i∈[n],j∈[k],ı∈[k])

Output (I, s2)

S3((mi,j)i∈I,j∈[k], s2) :

For i ∈ I :

For j ∈ [k] :

si,j = mi,j ⊕ pi,j,1 ⊕ pi,j,2 . . .⊕ pi,j,k
SKi = (si,ı, ski,(ı,si,ı))ı∈[k]

out← ADecS
3 ((SKi,mi,j)i∈I,j∈[k], s

′
2)

Output out

Fig. 6 The simulator S for A in proving SIM-RSOk-CCA security of Π .

4. The adversary will send a distribution M to the challenger after query-
ing the decryption oracle a few times. Then, the challenger samples
a matrix of messages M := (mi,j)i∈[n],j∈[k] ← M and for each (i,
j) ∈ [n]× [k] , it generates a challenge ciphertext for mi,j as follows:
(a) Samples pi,j,ı ← {0, 1} for each ı ∈ [k] and ı 6= j .
(b) Computes pi,j,j = (

⊕
ı∈[k]∧ı6=j pi,j,ı)⊕mi,j .

(c) For ı ∈ [k],  ∈ {0, 1} , samples r(i,j),(ı,) randomly from the ran-
domness space of E , and computes c(i,j),(ı,) = E.Enc(pp, pki,(ı,),
pi,j,ı; r(i,j),(ı,)) .

(d) Computes πi,j ← NIZK.Prove(crs, (pp, (pki,(ı,), c(i,j),(ı,))ı∈[k],∈{0,1}),
((pi,j,ı, r(i,j),(ı,))ı∈[k],∈{0,1})) .

(e) Sets Ci,j = ((c(i,j),(ı,))ı∈[k],∈{0,1}, πi,j) .
5. Next, the challenger sends all challenge ciphertexts to A and answers
A ’s decryption oracle queries as follows:
(a) On input a pair (i, C) , the challenger first checks if C = Ci,j for

some j ∈ [k] . It returns ⊥ if this is the case.

31

(b) Otherwise, the challenger parses C = ((cı,)ı∈[k],∈{0,1}, π) and checks
if π is valid. It returns an error symbol ⊥ if π is not valid.

(c) Otherwise, it computes pı = E.Dec(pp, pki,(ı,si,ı), ski,(ı,si,ı), cı,si,ı) for
ı ∈ [k] and computes m = p1 ⊕ . . .⊕ pk .

(d) Finally, it returns m to A .
6. The adversary will send a set I ⊆ [n] to the challenger after querying

the decryption oracle a few times. Then, the challenger sets SKi =
(si,ı, ski,(ı,si,ı))ı∈[k] for i ∈ I and sends (SKi,mi,j)i∈I,j∈[k] to A . The
challenger will answer A ’s decryption queries exactly as in step 5.

7. Finally, on receiving A ’s output out , the challenger outputs (M ,M,
I, out) .

• Game 1. This is identical to Game 0 except that when generating the com-
mon reference string and proofs, the challenger uses the simulator of NIZK
instead of generating them honestly. More precisely, in the first step, the
challenger computes (crs, td) ← NIZK.S1(1λ) and in step 4, the challenger
computes πi,j ← NIZK.S2(crs, td, (pp, (pki,(ı,), c(i,j),(ı,))ı∈[k],∈{0,1})) .

• Game 2. This is identical to Game 1 except that the challenger changes
the way to generate challenge ciphertexts. More precisely, for each i ∈ [n],
j ∈ [k] , the challenger computes c(i,j),(j,1−si,j) ← E.Enc(pp, pki,(j,1−si,j),
1−pi,j,j) . That is to say, let p′i,j,j = mi,j⊕(

⊕
ı∈[k]∧ı6=j pi,j,ı)⊕si,j , then the

challenger computes c(i,j),(j,0) ← E.Enc(pp, pki,(j,0), p
′
i,j,j) and c(i,j),(j,1) ←

E.Enc(pp, pki,(j,1), 1− p′i,j,k) for each i ∈ [n], j ∈ [k] .
• Game 3. This is identical to Game 2 except that the challenger changes the

way to answer decryption queries. More precisely, it will use ski,(ı,0) instead
of ski,(ı,si,ı) when answering decryption queries.

• Game 4. This is identical to Game 3 except that the challenger changes the
way to generate challenge ciphertexts and answer the opening query. More
precisely:

1. When generating the challenge ciphertexts (in step 4), it samples p′i,j,j
$←

{0, 1} and computes c(i,j),(j,0) ← E.Enc(pp, pki,(j,0), p
′
i,j,j) and c(i,j),(j,1) ←

E.Enc(pp, pki,(j,1), 1− p′i,j,k) for each i ∈ [n], j ∈ [k] .
2. The challenger does not sample si,j in the first step and when answering

the opening query (in step 6), it sets si,j = mi,j⊕(
⊕

ı∈[k]∧ı6=j pi,j,ı)⊕p′i,j,j
for i ∈ I, j ∈ [k] .

Let pα be the probability that D outputs 1 when taking the output of Game
α as input, then we have p0 = Pr[D(ExpRSOk−CCA−real

Π,A,n (λ)) = 1] . Also, it is easy
to see that output of Game 4 is exactly the output of the ideal experiment, so,
we have p4 = Pr[D(ExpRSOk−CCA−ideal

Π,S,n (λ)) = 1] . Next, we prove that p0 − p4 is
negligible via showing that pα − pα+1 is negligible for all α ∈ [0, 3] .

Lemma A.1. |p0 − p1| ≤ negl(λ) .

Proof. This comes from the unbounded zero-knowledge property of NIZK di-
rectly.

Lemma A.2. |p1 − p2| ≤ negl(λ) .

32

Proof. In Game 1 and Game 2, the challenger will use ski,(ı,si,ı) to answer de-
cryption queries and the key opening query. So, for all i ∈ [n], ı ∈ [k] , ski,(ı,1−si,ı)
is hidden from the view of the adversary. Therefore, from the CPA security
of E , we have indistinguishability between E.Enc(pp, pki,(j,1−si,j), pi,j,j) and
E.Enc(pp, pki,(j,1−si,j), 1 − pi,j,j) , and as a result, indistinguishability between
Game 1 and Game 2 follows.

Lemma A.3. |p2 − p3| ≤ negl(λ) .

Proof. This comes from the unbounded simulation-soundness of NIZK and the
correctness of E straightforwardly.

Lemma A.4. |p3 − p4| = 0 .

Proof. The only difference between Game 3 and Game 4 is the order for gener-
ating some variables and it is easy to see that the view of A is identical in both
games.

Combining Lemma A.1 to Lemma A.4, we have p0 − p4 negligible and this
completes the proof.

A.2 Proof of Theorem 4.2

Proof. In this section, we provide the proof of Theorem 4.2. The proof is similar
to the proof of Theorem 3.1.

We prove that there exists a PPT adversary A = (A1,A2,A3) , a PPT
distinguisher D , a polynomial n , and a non-negligible ε that for any PPT
simulator S = (S1,S2,S3) ,

|Pr[D(Exp
RSOk+1−CPA−real
Π,A,n (λ)) = 1]− Pr[D(Exp

RSOk+1−CPA−ideal
Π,S,n (λ)) = 1]| ≥ ε

Before presenting our main proof, we first show that for any public key PK
of Π , there are at most 2k different valid secret keys for PK . To show this, we
define an algorithm Ver for Π as follows:
• Ver. On input a public parameter PP = (pp, crs) , a public key PK =

(pkı,)ı∈[k],∈{0,1} and a secret key SK = (sı, skı)ı∈[k] , the verification al-
gorithm computes bı = E.Ver(pp, pkı,sı , skı) for each ı ∈ [k] and outputs∧
ı∈[k] bı .

Lemma A.5. Let PP← Setup(1λ) and (PK,SK)← Gen(PP) , then Pr[Ver(PP,
PK, SK) = 1] = 1 .

Proof. This comes from the verification correctness of E directly.

Lemma A.6. For any PP and for any PK , |{SK | Ver(PP, PK, SK) = 1}| ≤
2k .

33

Proof. First, for any PP , PK and for any fixed s∗ = (s∗1, . . . , s
∗
k) , due to the

key uniqueness of E , there is at most one secret key SK satisfying 1) SK = (s∗ı ,
skı)ı∈[k] and 2) Ver(PP, PK, SK) = 1 simultaneously. Besides, as s∗ is a k -bit

string, there are only 2k different s∗ . Therefore, the number of SK that satisfies
Ver(PP, PK, SK) = 1 is at most 2k .

Now, we are ready to show our main proof. Let H : {0, 1}∗ → {0, 1}h be a
hash function, which is modeled as a non-programmable random oracle. Let PP ,
PK and C be the public parameters set, the public key space and the ciphertext
space of Π respectively. Also, let a = dlog |PP |e , b = dlog |PK |e , c = dlog |C |e
and let κ = a+ b+ c(k + 1) + 2 .

First, we define A and D as in Figure 7. Also, we define n = h + 1 and
ε = 1/(4κ) .

Next, fixing any PPT simulator S = (S1,S2,S3) 10, let

δ = Pr[D(Exp
RSOk+1−CPA−ideal
Π,S,n (λ)) = 1]

Note that Pr[D(Exp
RSOk+1−CPA−real
Π,A,n (λ)) = 1] is negligible due to the correctness

and the verification correctness of Π , therefore, it is sufficient to show that δ
is notably larger than ε . Concretely, we will argue that δ ≥ 1/(2κ) in the
remaining part of the proof.

To lower bound δ , we consider an auxiliary experiment ExpΠ,S,D,n,k,κ de-
fined in Figure 8 and analyze the distribution of its output.

Lemma A.7. Pr[ExpΠ,S,D,n,k,κ = 0] ≤ 1/4 .

Proof. Assume the experiment outputs 0. First, we have M = Un(k+1) , thus,
for each ι ∈ [κ], i ∈ [n], j ∈ [k + 1] , mι

i,j is sampled uniformly at random
from {0, 1} . Also, we know that n ∈ I and for ι ∈ [κ] and j ∈ [k + 1] , we
set PKι = PKι

n , Cιj = Cιn,j , SKι = SKι
n , and mι

j = mι
n,j . Moreover, we

have (PPι−1, (PKι−1, Cι−1j)j∈[k+1]) = (PPι, (PKι, Cιj)j∈[k+1]) for all ι ∈ [n]
and thus we can write PPι as PP , PKι as PK and Cιj as Cj . Besides, we
have Ver(PP, PK, SKι) = 1 and from Lemma A.6, we can conclude that for
any fixed PP and PK , there exist at most 2k different SKι that satisfies this
condition. Finally, for all ι ∈ [κ] and j ∈ [k + 1] , mι

j = Dec(PP, PK, SKι, Cj) .
Next, we analyze the probability that all above requirements are satisfied.
First, fix any tuple (PP, PK,C = (C1, . . . , Ck+1),SK = (SK1, . . . , SKκ)) ,

which is not necessary the output of the simulator, then we have

Pr[∀ι ∈ [κ], j ∈ [k + 1],mι
j = Dec(PP, PK, SKι, Cj)] =

1

2κ(k+1)

where the probability is taken over the random choice of each mι
j .

10 Here, w.l.o.g., we assume that S2 and S3 are deterministic. This will not restrict
the power of S since we can feed coins for S2 and S3 to S1 and require S1 (and
S2) to put coins for S2 and S3 (resp. S3) in its outputted state s1 (resp. s2).

34

A1(PP, (PKi)i∈[n]) :

M = Un(k+1)

s1 = (PP, (PKi)i∈[n])

Output (M, s1)

A2((Ci,j)i∈[n],j∈[k+1], s1) :

t = H(PP, (PKi, Ci,j)i∈[n],j∈[k+1])

I = {i | i ∈ [h] ∧ t[i] = 1} ∪ {n}
s2 = (s1, (Ci,j)i∈[n],j∈[k+1])

Output (I, s2)

A3((SKi,mi,j)i∈I,j∈[k+1], s2) :

out = (s2, (SKi)i∈I)

Output out

D((mi,j)i∈[n],j∈[k+1],M, I, out) :

If M 6= Un(k+1) : Output 1

(PP, (PKi, Ci,j)i∈[n],j∈[k+1], (SKi)i∈I) = out

t = H(PP, (PKi, Ci,j)i∈[n],j∈[k+1])

I′ = {i | i ∈ [h] ∧ t[i] = 1} ∪ {n}
If I 6= I′ : Output 1

(m′i,j = Dec(PP, PKi, SKi, Ci,j))i∈I,j∈[k+1]

For i ∈ I, j ∈ [k + 1] :

If mi,j 6= m′i,j : Output 1

For i ∈ [n] :

If Ver(PP, PKi, SKi) = 0 : Output 1

Output 0

Fig. 7 The adversary A and D in attacking SIM-RSOk+1-CPA security of Π . Here,
we abuse the notation of Un(k+1) to denote the description of an algorithm that outputs
uniform n(k + 1) -bit string and assume that this description is hardwired in both A
and D .

ExpΠ,S,D,n,k,κ :

(M, s1)← S1(1λ) ; (I, s2) = S2(s1)

For ι ∈ [1, κ] :

(mι
i,j)i∈[n],j∈[k+1] ←M ; outι = S3((mι

i,j)i∈I,j∈[k+1], s2)

If D((mι
i,j)i∈[n],j∈[k+1],M, I, outι) = 1 : Output 1

For ι ∈ [2, κ] :

Parse outι = (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k+1], (SK

ι
i)i∈I)

If (PPι−1, (PKι−1
i , Cι−1

i,j)i∈[n],j∈[k+1]) 6= (PPι, (PKι
i , C

ι
i,j)i∈[n],j∈[k+1]) :

Output 2

Output 0

Fig. 8 The auxiliary experiment ExpΠ,S,D,n,k,κ .

Next, we only fix PP , PK and C = (C1, . . . , Ck+1) and allow the simulator
to choose SK . As for fixed PP and PK , each SKι can only be chosen from
a set of at most 2k elements, we have

Pr[∃SK : (∀ι ∈ [κ], Ver(PP, PK, SKι) = 1)∧

(∀ι ∈ [κ], j ∈ [k + 1],mι
j = Dec(PP, PK, SKι, Cj))] ≤

2κ·k

2κ(k+1)
=

1

2κ

35

Finally, as the total possible ways to choose PP , PK and C = (C1, . . . ,
Ck+1) does not exceed 2a+b+c(k+1) = 2κ−2 , we have

Pr[∃PP, PK,C,SK : (∀ι ∈ [κ], Ver(PP, PK, SKι) = 1)∧

(∀ι ∈ [κ], j ∈ [k + 1],mι
j = Dec(PP, PK, SKι, Cj))] ≤

2κ−2

2κ
=

1

4

Therefore, the probability that the auxiliary experiment ExpΠ,S,D,n,k,κ out-
puts 0 does not exceed 1/4 .

Lemma A.8. Pr[ExpΠ,S,D,n,k,κ = 1] ≤ κ · δ .

Proof. First, note that randomness of the experiment ExpΠ,S,D,n,k,κ comes from
two parts, namely, randomness of the simulator S (denoted as ρ here) and
randomness used in sampling mι

i,j . Let P be the randomness space of S . Let

f(ρ) = Pr


(M, s1)← S1(1λ; ρ);

(I, s2) = S2(s1);

M := (mi,j)i∈[n],j∈[k+1] ←M;

out = S3((mi,j)i∈I,j∈[k+1], s2);

: D(M ,M, I, out) = 1


where the probability is taken over the random choice of each M . Then, we
have

Pr[ExpΠ,S,D,n,k,κ = 1] =
∑
ρ

$←P

1

P
· (1− (1− f(ρ))κ) ≤

∑
ρ

$←P

1

P
· κ · f(ρ) = κ · δ

where the second inequality comes from the Bernoulli’s inequality.

Lemma A.9. Pr[ExpΠ,S,D,n,k,κ = 2] ≤ 1/4 .

Proof. This comes from the collision resistant property of the non-programmable
random oracle, which is a random function whose output is not controlled by
the simulator.

Assuming that H has been queried (either by the adversary, the distinguisher
or the simulator) Q times, where Q is a polynomial. Then the probability that

there exists two distinct queries x1, x2 s.t. H(x1) = H(x2) does not exceed Q2

2h
,

which is negligible.
However, if the experiment outputs 2 with a non-negligible probability (e.g.,

1/4), then, via running the experiment, one can find ι ∈ [κ] that

1) (PPι−1, (PKι−1
i , Cι−1i,j)i∈[n],j∈[k+1]) 6= (PPι, (PKι

i , C
ι
i,j)i∈[n],j∈[k+1])

2) H(PPι−1, (PKι−1
i , Cι−1i,j)i∈[n],j∈[k+1]) = H(PPι, (PKι

i , C
ι
i,j)i∈[n],j∈[k+1]) =

(t1, . . . , th) , where ti = 1 iff i ∈ I (otherwise, the experiment will output 1)

with a non-negligible probability, which makes a contradiction.

Finally, combining Lemma A.7 to Lemma A.9, we have

1 ≤ 1/4 + κ · δ + 1/4

which implies δ ≥ 1
2κ and this completes the proof.

36

	Possibility and Impossibility Results for Receiver Selective Opening Secure PKE in the Multi-Challenge Setting
	Introduction
	Our Results
	Technical Overview
	Related Works
	Roadmap

	Preliminaries
	Assumptions and Cryptographic Primitives
	PKE with RSOk Security

	Lower Bound for PKE with RSOk Security
	RSOk Security RSOk+1 Security
	RSOk Secure PKE with (Nearly) Optimal Secret Key Length
	SIM-RSOk-CPA Secure PKE with (Nearly) Optimal Secret Key Length
	SIM-RSOk-CCA Secure PKE with (Nearly) Optimal Secret Key Length
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	Conclusion
	Deterred Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2

