
A Fast and Compact Accelerator for
Ascon and Friends

Stefan Steinegger and Robert Primas

Graz University of Technology, Graz, Austria
first.last@iaik.tugraz.at

Abstract. Ascon-p is the core building block of Ascon, the winner
in the lightweight category of the CAESAR competition. With Isap,
another Ascon-p-based AEAD scheme is currently competing in the 2nd

round of the NIST lightweight cryptography standardization project.
In contrast to Ascon, Isap focuses on providing hardening/protection
against a large class of implementation attacks, such as DPA, DFA, SFA,
and SIFA, entirely on mode-level. Consequently, Ascon-p can be used to
realize a wide range of cryptographic computations such as authenticated
encryption, hashing, pseudorandom number generation, with or without
the need for implementation security, which makes it the perfect choice
for lightweight cryptography on embedded devices.
In this paper, we implement Ascon-p as an instruction extension for
RISC-V that is tightly coupled to the processors register file and thus
does not require any dedicated registers. This single instruction allows
us to realize all cryptographic computations that typically occur on em-
bedded devices with high performance. More concretely, with Isap and
Ascon’s family of modes for AEAD and hashing, we can perform cryp-
tographic computations with a performance of about 2 cycles/byte, or
about 4 cycles/byte if protection against fault attacks and power analysis
is desired.
As we show, our instruction extension requires only 4.7 kGE, or about
half the area of dedicated Ascon co-processor designs, and is easy to
integrate into low-end embedded devices like 32-bit ARM Cortex-M or
RISC-V microprocessors. Finally, we analyze the provided implementa-
tion security of Isap, when implemented using our instruction extension.

Keywords: authenticated encryption · ascon · isap · hardware acceleration ·
risc-v · ri5cy · cv32e40p · side-channels · fault attacks · leakage resilience

1 Introduction

Motivation. Implementation attacks such as fault attacks [4,3] or power analy-
sis [23,26,5] are among the most relevant threats for implementations of crypto-
graphic schemes. To counteract such attacks, cryptographic devices like smart
cards typically implement dedicated countermeasures, both on hardware and
algorithmic level.

2 Stefan Steinegger and Robert Primas

The most prominent examples of algorithmic countermeasures are masking
against power analysis [29,27,19], and the usage of some form of redundancy
against fault attacks [1]. Redundant computations are usually used to detect
and prevent the release of erroneous cryptographic computations, that could
otherwise be exploited with techniques like Differential Fault Attacks (DFA) [4]
or Statistical Fault Attacks (SFA) [16].

With these attacks in mind, the National Institute of Standards and Technol-
ogy (NIST) recently started an effort to standardize lightweight authenticated
encryption schemes for usage in embedded or IoT scenarios [6]. Amongst others,
the submission requirements state that the possibility of adding implementa-
tion attack countermeasures at low cost is highly desired. To meet this criteria,
many of the submitted schemes are based upon lightweight cryptographic prim-
itives, while DryGASCON [28], and Isap [9] can even give certain guarantees
against implementation attacks purely on mode-level. While DryGASCON is
based, amongst others, on a modified variant of Ascon-p, Isap can be instan-
tiated directly with Ascon-p, the core building block of Ascon. Consequently,
acceleration of Ascon-p can speed up the computations of both, Ascon and
Isap, thereby achieving speed-ups for a wide variety of symmetric cryptographic
tasks, including those that require protection from implementation attacks.

Our Contribution. In this work, we propose an instruction extension for
Ascon-p that utilizes tight integration into a processors register file to signifi-
cantly speed up various symmetric cryptographic computations at a comparably
low cost. Most notably, our instruction extension can be used for applications
with/without the need for protection against implementation attacks, simply by
choosing the appropriate AEAD mode in software.

As a proof of concept, we integrate our instruction extension into the 32-bit
RI5CY core. We provide various hardware metrics and, amongst others, show
that our accelerator can be realized with about 4.7 kGE, or about half the area
of dedicated co-processor designs.

Given this built-in acceleration for Ascon-p, we create assembly versions
of the Ascon/Isap modes that utilize our instruction extension and present
benchmarks for authenticated encryption, hashing, and pseudorandom number
generation. As we show, we achieve speed-up factors of about 50 to 80, when
compared to corresponding pure software implementations.

Finally, we discuss the provided implementation security of Isap, when im-
plemented using our accelerator.

Open Source. Our hardware design is publicly available in the following Github
repository: https://github.com/Steinegger/riscv_asconp_accelerator.

Outline. In Section 2, we cover the required background for this work: (1) the
RISC-V instruction set architecture (ISA) (2) the RI5CY core for our a proof
of concept (3) the two AEAD modes Ascon and Isap. In Section 3, we de-
scribe the design of our accelerator, its software interface, our modifications to
the RI5CY core and various hardware metrics. In Section 4 we then discuss how

https://github.com/Steinegger/riscv_asconp_accelerator

A Fast and Compact Accelerator for Ascon and Friends 3

the hardware acceleration for Ascon-p can be used to build fast software imple-
mentations for hashing, pseudorandom number generation, and authenticated
encryption, with or without protection from physical attacks and present vari-
ous performance metrics. The provided implementation security of Isap, when
implemented using our instruction extension, is analyzed in Section 5. Finally,
we conclude the paper in Section 6.

2 Background

In this section, we first give a brief introduction to the open instruction set
architecture RISC-V, and the RI5CY1 core. We then recall Ascon and Isap,
the two authenticated encryption modes that we will later use to implement
various cryptographic constructions.

2.1 RISC-V

RISC-V is a free and open-source instruction set architecture (ISA) that defines
a common interface to allow software applications to interact with the CPU
hardware. The RISC-V ISA consists of the privileged ISA [32] and the user-
level ISA [33]. The user-level ISA includes the base integer instruction set I for
the three supported address spaces 32-bit (RV32I), 64-bit (RV64I) or 128-bit
(RV128I). RV32E is an ISA extension for embedded applications, but in draft
status at the time of writing.

Registers. RV32I defines a total of 32 32-bit CPU registers (x0 to x31). For
embedded applications this can be too costly, therefore, similarly to ARMv7m
microcontrollers, RV32E defines only 16 CPU registers. Conventionally, base-
instructions name up to two registers to read from and up to one register to
write to. This results in a basic register file with two read- and one write-port.

Instruction Encoding. Instructions encode information about the performed op-
eration using an opcode and involve a combination of source-, destination regis-
ters and an immediate. Immediates allow direct use of a value, that is not stored
in a register. The RISC-V ISA [33] specifies R, I, S, B, U, and J-type instruc-
tions for RV32I. They vary by having differently sized immediates and a varying
number of specified source/destination registers.

The opcode is 7 bits long, which initially restricts the number of opcodes to
128. However, to allow for more instructions, R, I, S and B-type instructions
contain a 3-bit field funct3, which further divides the opcode-space. R-type
instructions offer an additional funct7 field for further separation. The RISC-V
opcode-space clusters similar operations to have similar opcodes and leaves the
opcodes 0x0B, 0x2B, 0x5B and 0x7B for custom instructions and 0x6B, 0x57 and
0x77 unassigned to be used for future instructions.

1 https://github.com/pulp-platform/riscv

https://github.com/pulp-platform/riscv

4 Stefan Steinegger and Robert Primas

2.2 RI5CY Core

The RI5CY core2 (as of late known as CV32E40P) is a free and publicly avail-
able CPU design that implements the RV32IMFC instruction set and features
a 4-stage in-order pipeline (Instruction Fetch, Instruction Decode, Execute, and
Write-Back). It features an instruction prefetcher and is able to serve one in-
struction per cycle to the decode stage. The core performs similarly to the ARM
Cortex M4 [31] and is part of the PULP platform3, a silicon-proven ASIC design.

2.3 Ascon

Ascon is a sponge-based AEAD scheme that was selected as the primary choice
for lightweight authenticated encryption in the final portfolio of the CAESAR
competition [12]. Ascon operates on a 320-bit state that is organized into 5×64
bit lanes, and updated by the permutation Ascon-p. Ascon-p consists of 3
steps: a round constant addition, a substitution layer, and a linear layer, that
are consecutively applied on the state in each round.

Ascon’s mode describes how state and permutation can be used to build an
authenticated encryption scheme with 128-bit security, as depicted in Figure 5a.
Hereby, the number of permutation rounds a, b, as well as the used rate r, are
chosen depending on the particular Ascon instance.

The recently specified hashing functionality Ascon-Hash and
Ascon-Xof [13], as seen in Figure 5b, operate on the same permutation.
Ascon-Hash always produces 256-bit outputs, while Ascon-Xof can produce
outputs of arbitrary length. The claimed security of both schemes is 128 bit,
the choice for a and r is the same as for Ascon-128.

2.4 ISAP

Isap is a mode for authenticated encryption with a focus on providing built-in
hardening/protection against various kinds of implementation attacks. Isap was
originally published at FSE 2017 [11], and currently competes in the 2nd round
of the NIST Lightweight Cryptography project [9].

The authors propose 4 variations of Isap, however, we only focus on the
Ascon-p based instances Isap-A-128a and Isap-A-128. These differ in certain
parameter choices, where Isap-A-128a represents the recommended instance,
and Isap-A-128 is more conservative. The claimed cryptographic security of
all Isap instances is the same as for Ascon, i.e., 128 bit for confidentiality of
plaintext, as well as integrity of plaintext, associated data, and nonce.
In contrast to Ascon, Isap is a two-pass scheme that performs authenticated
encryption in an Encrypt-then-MAC manner. The main design goal of Isap is
to provide inherent protection from DPA attacks. For a more detailed discussion
of Isap’s protection against physical attacks we refer to Section 5.

2 https://github.com/pulp-platform/riscv
3 https://pulp-platform.org/

https://github.com/pulp-platform/riscv
https://pulp-platform.org/

A Fast and Compact Accelerator for Ascon and Friends 5

3 Hardware Acceleration for Ascon-p

In this section we explain the design of our Ascon-p accelerator, as well as
the integration into the RI5CY microprocessor. Section 3.1 describes the design
of the Ascon-p accelerator itself and how it can be accessed from software.
In Section 3.2 we discuss hardware modifications of the RI5CY core that are
necessary to integrate our accelerator. Finally, in Section 3.3 we present various
hardware metrics.

3.1 Design of the Ascon-p Accelerator

Typical co-processor designs, like the one in [20], represent a straight forward
way to achieve computation speed-ups in microprocessors. While dedicated co-
processors are arguably easy to integrate, they also come with certain downsides.
From an area perspective, dedicated co-processors require their own registers for
holding the cipher state which is comparably expensive on low-end microproces-
sors. From a performance perspective, moving data to and from the co-processor
requires additional cycles. This effect can be alleviated to some extend with di-
rect memory access, albeit at the expense of additional hardware for read/write
ports and memory arbitration that is typically not reported. Besides that, ded-
icated co-processors usually only support one specific cipher operation which
does not make them very flexible, and hence, leads to situations where, e.g.,
hardware support for both, AES and SHA-256 needs to be implemented.

These issues motivate our choice to implement our Ascon-p instruction ex-
tension by tightly coupling the accelerator into the register file. This way, one
can reuse the register file for holding the cipher state, thus eliminating the need
for additional registers and communication/synchronization overhead. In other
words, we only need to add the combinatorial logic of the permutation4 which
is typically the only computationally expensive building block of permutation-
based cryptographic design. The concrete AEAD mode can be implemented
purely in software and is thus flexible.

Endianess. Since the RI5CY core has little-endian byte order and Ascon-p ex-
pects big-endian byte order, additional care might be necessary when loading
data word-wise that has been stored byte-wise like, e.g., character arrays. To
simplify processing of this kind of data, our accelerator can be configured to
interpret the state with swapped endianness at virtually no cost. Alternatively,
in a similar spirit as other platforms like x86 and ARM that offer efficient en-
dian swap instructions, the bitmanip extension [34] for RISC-V offers the rev8

instruction. However, since bitmanip is still in a draft version at the time of
writing, hence, rev8 not implemented on the RI5CY core, we opt to handle
potential endianness problems in our accelerator for now.

4 Our accelerator is based on Ascon’s reference hardware implementation
(https://github.com/IAIK/ascon_hardware.

https://github.com/IAIK/ascon_hardware

6 Stefan Steinegger and Robert Primas

Prefetch
Buffer

Decoder

General
Purpose

Registerfile

Ascon-p

ALU

Control and
Status

Registers

MULT

DotP Unit

Load-
Store
Unit

IF
ID

ID
EX

EX
WB

RAM/ROM
Arbiter

'2'

RAMROM

RI5CY- core

Instruction Interface Data Interface

Fig. 1: Block diagram of the RI5CY core with hardware acceleration for
Ascon-p. The blocks labelled IF ID, ID EX and EX WB refer to the registers
between the pipeline stages instruction fetch (IF), instruction decode (ID), exe-
cute (EX) and write-back (WB)

3.2 Modifications to the RI5CY Core

To extend the existing RI5CY hardware and to make the instruction available to
applications, we first design the instruction, add it to the existing opcode-space
and later to RI5CY’s decode stage. We then connect the Ascon-p accelerator
to the register file.

31 20 19 15 14 12 11 7 6 0

011 00000 000101100000ENDIANNESS|ROUNDS| ROUND_CONSTANT

immediate rs1 funct3 rd opcode

0x___0300BAscon-p

Fig. 2: Structure of our RISC-V Ascon-p instruction.

Instruction Encoding. For our Ascon-p instruction, we propose an I-type in-
struction to be used. The 12-bit immediate allows us to encode the number of
rounds with bits 10 to 8 and the 8-bit round constant with bits 7 to 0. The
remaining bit can be used to specify the endianness of the data representation
in the registers to allow for correct interpretation by the accelerator. We use
fixed registers for the operation, hence, the rd and rs of the instruction remain
unused.

Since the RI5CY core already comes with its own set of custom instructions,
large portions of the custom- and reserved opcode space are already utilized.

A Fast and Compact Accelerator for Ascon and Friends 7

Therefore, we use the previously unused opcode 0x0B with 0x3 as the funct3 for
our Ascon-p instruction. The resulting structure of our instruction is illustrated
in Figure 2.

Register Adaptations. Our accelerator re-purposes parts of the existing CPU
register file for holding the state of Ascon-p. This design choice is motivated
by the fact that CPU registers, especially on small embedded devices, are one of
the main contributing factors to the resulting hardware area. To store the full
320-bit state of Ascon-p, 10 out of the 32 available 32-bit registers are required.
Conveniently, two such registers combined can store one lane of the Ascon state
and can be directly passed to the accelerator as such. When looking at other
ISAs like RV32E or ARMv7, they only offer 16 32-bit registers, which is however
more than enough to hold the entire Ascon state and still allows to implement
the mode itself without usage of excessive amounts of write/load operations.

For a low-area design, allowing arbitrary registers to store the Ascon state
is inefficient since this would lead to a significant increase in the number of read
and write ports on the register file. Therefore, we propose using a set of fixed
registers, in our case x12 to x17 and x28 to x31, to accommodate the Ascon
state, as shown in Figure 3. Note that our choice here is to some extend arbitrary.
Our chosen registers are defined to be “caller saved” by the RISC-V calling
convention which could improve the compatibility with C code. However, when
using pure assembly implementations for the cryptographic modes, which is the
standard way of implementing cryptographic software, the choice of registers is
up to the designer.

From a hardware perspective, the only noteworthy modification here is the
addition of toggle logic that can, depending on the current instruction, switch the
input signal of 10 registers between the write port and the Ascon-p accelerator.

A
sco

n
-p

x0

x1-11

x12

x14
x15
x16
x17

x18-27

x28
x29
x30
x31

x13 Lane0

Lane1

Lane2

Lane3

Lane4

Write Port Read Ports

Fig. 3: The register file with the Ascon-p accelerator, as well as read/write ports.

8 Stefan Steinegger and Robert Primas

Decode Stage Adaptations. To make our Ascon-p instruction accessible to ap-
plications we add the opcode to the decoder. When an instruction decodes as
our Ascon-p instruction a signal enables the Ascon-p accelerator and switches
the multiplexers of our fixed set of registers seen in Figure 3 to update from the
accelerator.

As seen in Figure 1, the arithmetic logic unit (ALU) and load-store unit
forward their result to the next instruction before updating the registers. This
prevents pipeline stalls. Therefore, an instruction altering any of the 10 Ascon
state registers must not directly precede our permutation instruction. Load op-
erations to these registers must not happen in the two preceding instructions.
Alternatively, this could also be handled in and at the cost of additional hard-
ware by adapting the forwarding to directly feed into the Ascon-p accelerator,
or by stalling the pipeline for up to two cycles.

3.3 Hardware Metrics

Benchmarking Platform. We use the RI5CY core commit 528ddd4 as the basis
for our modifications. The source files are compiled by the Cadence Encounter
RTL Compiler v14.20-s064 1 and routed with NanoRoute 16.13-s045 1. The used
process is umc065LL 1P10M. We deactivate the floating-point unit in the hard-
ware design as it is not required for our evaluation. To build the benchmarking
platform, we connect the RI5CY core to a 64 kbit FSE0K A SH single-port SRAM
macro by Faraday Technology, and to a ROM (implemented as a logic vector)
that holds the executable code.

The RI5CY core has a separated bus for data and instruction memory. How-
ever, as this is not meant to implement a Harvard architecture [30], we added
an arbitration module to allow access from the data port to the instruction
ROM. The RI5CY core incorporates an instruction prefetch buffer. Hence, for
accesses to the ROM, requests by the data port are prioritized over requests by
the prefetching, buffered instruction port.

We operate the RI5CY core at a clock frequency of 50 MHz to keep single
cycle RAM and ROM accesses with our design-flow without increasing the overall
complexity. To determine the area of the implementation, we set the ungroup-ok
attribute to false in our design-flow for the RI5CY core and the Ascon-p
accelerator. This might result in a reduced area optimization of the overall result,
however, as the modules are not ungrouped into their parent modules, more
consistent area estimates can be shown and especially prevent the RAM and
ROM modules from affecting the area numbers of the core.

Area Estimations. To evaluate the area overhead of our design, we compare
RI5CY in its base configuration against our modified design that can perform 1
round of Ascon-p within a single clock cycle. The result can be seen in Table 1
The numbers for the RI5CY core refer to the core part only, as illustrated in
Figure 1.

The unmodified RI5CY core serves as our baseline and requires 45.6 kGE.
When using 1-round Ascon-p acceleration, the overall core size increases to

A Fast and Compact Accelerator for Ascon and Friends 9

50.3kGE, with the accelerator itself making up 4.2 kGE. The remaining differ-
ence of 0.5 kGE can be attributed to the addition of multiplexers to parts of
the register file, additional instruction decoding as well as overall variations in
optimizations by the toolchain.

To put these numbers into perspective, we can refer to implementation re-
sults from Gross et al. who provide area numbers for Ascon co-processor de-
signs, with (9.4 kGE) and without (7.1 kGE) the CAESAR hardware API [21,20].
When compared to these numbers, our 1-round Ascon-p accelerator requires
only about half that area, due to the fact that we can directly operate on parts of
the register file. The authors of Isap also roughly estimate the area requirement
of a dedicated Isap co-processor to be around 12 kGE, which is also noticeable
larger than our design. Do note that our numbers also include the integration
cost of the accelerator while the other designs will likely require higher integra-
tion costs due to the additionally needed interconnected for the data exchange.

Table 1: Comparison between the RI5CY core with/without 1-round Ascon-p
accelerator (HW-A) and dedicated co-processor designs of Ascon and Isap.

Design
kGE

Standalone Integration

RI5CY base design 45.6 0
This work 4.2 0.5

Ascon co-processor [20] 7.1 ?
Ascon co-processor [18,21] 9.4 ?
Isap co-processor (estimated) [9] ≤ 12.8 ?

Critical Path. In order to determine if our proposed Ascon-p acceleration could
increase the critical path delay of the RI5CY core, we performed experiments
with modified hardware accelerator designs that can perform up to 6 rounds
of Ascon-p within one clock cycle while keeping the clock frequency constant
at 50 MHz. In these cases, the core area increases to up to 70.8 kGE with the
Ascon-p accelerator taking up to 24.7 kGE, showing a linear growth in size
for this range of configurations. Since our Ascon-p accelerator met the timing
constraints in all configuration, we conclude that the 1-round variant should not
pose any problems for clock frequencies up to about 300 MHz.

4 Performance Evaluation

In this section, we demonstrate how hardware acceleration for Ascon-p can be
used to speed up cryptographic computations in a wide variety of applications.
First, we present performance numbers for AEAD and hashing, based on Ascon.

10 Stefan Steinegger and Robert Primas

We then take a look at AEAD with protection against implementation attacks,
based on Isap.

4.1 AEAD and Hashing with Ascon

For the performance evaluation of Ascon and Ascon-Hash we focus on the
primary recommended parametrization Ascon-128 (cf. Table 4). Our accelera-
tor is configured to perform 1 permutation round per clock cycle. Our hardware
accelerated software implementations are implemented in RISC-V assembly so
we can make sure that the state is always kept in the registers x12 to x17 and
x28 to x31. Examples of the actual message processing loop are shown in Code
1 and Code 2.

Code 1 Encrypt Block Loop

1: <encrypt block start>:
2: lw t1,0(t0)
3: lw s1,4(t0)
4: xor a2,a2,t1
5: xor a3,a3,s1
6: sw a2,0(s8)
7: sw a3,4(s8)
8: ASCON-P(ROUND CONSTANT)

.

.

. 6-times

14: addi t0,t0,8
15: addi s8,s8,8
16: bgeu t2,t0, <encrypt block start>

Code 2 Absorb Block Loop

1: <absorb block start>:
2: lw t1,0(t0)
3: lw s1,4(t0)
4: xor a2,a2,t1
5: xor a3,a3,s1
6: addi t0,t0,8
7: ASCON-P(ROUND CONSTANT)

.

.

. 12-times

.

.

.

.

.

.
19: bgeu t2,t0 <absorb block start>

In our benchmarks, we consider the case of encrypting/hashing messages
of various lengths (0 bytes of associated data), as well as pseudorandom number
generation using the Xof mode. We compare our results with the efficient C
implementations from the Ascon team5, compiled with -O3, mainly due to
the lack of available RISC-V optimized implementations As shown in Table 2,
the hardware-accelerated implementations achieve speed-ups by about a factor
of 50 for Ascon and factor 80 for Ascon-Hash. At the same time, hardware
acceleration reduces the binary sizes significantly, even when compared to the
size-optimized C versions (-Os).

4.2 AEAD with ISAP

When deriving performance numbers for Isap, we mainly refer to the parame-
terization of Isap-A-128a (cf. Table 5), since it is recommended over the more
conservative Isap-A-128 instance by the designers. We do, however, state con-
crete performance numbers for both variants in Table 3. The runtime of Isap is
comprised of the re-keying function IsapRk, as well as the processing of message
blocks in IsapEnc and IsapMac. Since Isap is an Encrypt-then-MAC scheme

5 https://github.com/ascon/ascon-c

https://github.com/ascon/ascon-c

A Fast and Compact Accelerator for Ascon and Friends 11

Table 2: Runtime and code size comparison of Ascon, Ascon-Hash and
Ascon-XOF, with/without 1-round Ascon-p hardware acceleration (HW-A)

Implementations
Cycles/Byte

Binary Size (B)
64 B 1536 B long

Ascon-C (-O3) 162.0 100.8 106.5 11 716
Ascon-C (-Os) 248.5 171.6 168.3 2 104
Ascon-ASM + HW-A 4.2 2.2 2.1 888

AsconHash-C (-O3) 306.9 208.0 203.8 20 244
AsconHash-C (-Os) 423.3 268.0 261.3 1528
AsconHash-ASM + HW-A 4.6 2.6 2.5 484

AsconXOF-ASM + HW-A 4.0 2.3 2.3 484

that calls IsapRk both during IsapEnc and IsapMac, the runtime of IsapRk
needs to be counted twice (see Figure 6a).

IsapRk. The runtime of IsapRk is independent of the message length and, thus,
can be considered as a constant factor whose performance impact diminishes
with increasing message length. Nevertheless, for shorter messages, the runtime
of IsapRk dominates due to the rather expensive bit-wise absorption of the
128-bit value Y (see Figure 6a). IsapRk requires 12 permutation rounds for
initialization, 127 rounds for absorbing Y , and another 12 rounds for squeezing
the session key K? [10]. This amounts to 151 permutation rounds per invocation
of IsapRk, hence 302 (2× 151) permutation rounds in total. Since IsapRk has
a noticeable effect on the processing of short messages, we opted to use partial
loop unrolling to achieve a good trade-off between code size and runtime. More
concretely, we grab one byte of Y and then unroll the code for absorbing these
8 bits individually. With this method, we can reduce the runtime of processing
one bit to 5 cycles or 690 cycles for absorbing all 128 bit (5.4 cycles/bit). In
total, the initialization of Isap requires slightly less than 1 600 cycles.

IsapEnc and IsapMac. Determining the runtime of IsapEnc and IsapMac is
easier as we can simply refer to the numbers from Ascon and Ascon-Hash. The
runtime of encrypting a message block is equivalent to Ascon (see Figure 6b),
i.e., 6 rounds (15 cycles) per message block. The runtime to authenticate a
message block is the same as for Ascon-Hash (see Figure 6c), i.e., 12 rounds
(18 cycles) per message block.

Comparison. Table 3 contains runtimes for encrypting messages of various
lengths and 0 bytes of associated data. As expected, the runtime of shorter
64 byte messages is affected by the comparably slow initialization. However,
the effect of the initialization diminishes with increasing message length and
approaches a performance of 4.2 and 5.0 cycles/byte for Isap-A-128a and
Isap-A-128 respectively. Given the provided protection from implementation

12 Stefan Steinegger and Robert Primas

attacks (cf. Section 5), the performance penalty of about factor 2, compared to
Ascon and for somewhat longer messages, is comparably low. Also note that
the binary size of Isap is lower, even when compared to the unprotected and
size-optimized version of Ascon-C.

Table 3: Runtime and code size comparison of Isap, with 1-round Ascon-p
hardware acceleration (HW-A).

Isap Instances
Cycles/Byte

Binary Size (B)
64 B 1 536 B long

ISAP-A-128a-ASM + HW-A 29.1 5.2 4.2 1 844
ISAP-A-128-ASM + HW-A 73.6 7.7 5.0 2 552

5 Implementation Security of ISAP

In this section we first briefly discuss the provided security of the Isap mode
against implementation attacks such as DPA/DFA/SFA/SIFA. We then provide
a more detailed discussion of Isap’s SPA security when hardware acceleration
for Ascon-p is used.

5.1 Differential Fault Analyis (DFA)

DFA attacks exploit the difference between results of repeated executions of
cryptographic computations, with and without fault injection. During authen-
ticated encryption, fresh nonces ensure that the session keys K∗

A and K∗
E are

unique for each encryption, which prevents DFA attacks.
In the case of authenticated decryption, the attacker can perform multiple

queries with the same ciphertext/nonce/tag, and thus force a repeated decryp-
tion of constant inputs with the same key. Since tag verification in Isap happens
before decryption, a DFA on the encryption phase of IsapEnc is, in principle,
possible. However, when following a similar attack strategy as shown by Luo
et al. [24] for Keccak-based MAC constructions, targeting IsapEnc alone is
not sufficient since the long term key is only used within IsapRk. IsapRk by
itself can also not be directly attacked since the attacker never gets to see any
direct output. A multi-fault strategy, as outlined in [15], is still possible but
requires roughly the quadratic amount of faulted decryptions, when compared
to the numbers reported in [24], and more importantly, precise combinations of
multiple fault injections, both in terms of timing and location.

5.2 Differential Power Analysis (DPA)

One of the main design goals of Isap is inherent protection from side-channel at-
tacks, such as DPA. This is achieved through the usage of the leakage-resilient re-

A Fast and Compact Accelerator for Ascon and Friends 13

keying function IsapRk (see Figure 6a) that derives unique session keys K∗ for
encryption/authentication from the long term key K and the nonce N . IsapRk
can be viewed as a sponge variant of the classical GGM construction [17]. By
limiting the rate rB during the absorption of Y , one can reduce the number of
possible inputs to a permutation call to 2, which renders classical DPA attacks
impractical.

5.3 Statistical (Ineffective) Fault Attacks (SFA/SIFA)

SFA and SIFA are fault attack techniques that, in contrast to DFA, are applica-
ble to many AEAD schemes, including online/single-pass variants, and without
assumptions such as nonce repetition or release of unverified plaintext. These at-
tacks are especially interesting since it was shown that they are also applicable to
(higher-oreder) masked implementations, whereas SIFA can even work in cases
where masking is combined with typical fault countermeasure techniques [8].

Both attacks have in common that they require the attacker to call a certain
cryptographic building block (e.g. permutation) with varying inputs. In prin-
ciple, SFA is applicable whenever AEAD schemes perform a final key addition
before generating an output [7], which is not the case in Isap. SIFA, on the other
side, can be used in the initialization phase of almost all AEAD schemes, simi-
larly to as shown for the Keccak-based AEAD schemes Ketje and Keyak [14].
However, in the case of Isap, the 1-bit rate during IsapRk limits the number
of inputs per permutation call to 2 and thus severely limits the capabilities of
SIFA which usually requires a couple hundred calls with varying inputs [14].

5.4 Simple Power Analysis (SPA)

Simple Power Analysis (SPA) describes a class of power analysis attacks that,
in contrast to DPA, can work in scenarios where the attacker is limited to ob-
serving power traces of cryptographic computations with constant inputs [5].
Consequently, SPA attacks are, in principle, applicable to Isap and thus require
a more thorough discussion. For simplicity, we focus on the authenticated de-
cryption procedure of Isap, including the re-keying IsapRk, but excluding the
tag verification within IsapMac. In this scenario, the attacker is in control of
the nonce N and can directly observe the outputs of the computation (the later
is not the case in IsapMac).

When arguing about SPA protection of Isap’s long term key K, we can first
take a look at mode-level properties of Isap’s decryption procedure, which is
depicted in Figure 4. Since K is only used during IsapRk, which by itself is
hard-to-invert, an attacker is forced to target IsapRk directly. Within IsapRk,
we can observe that different parts of the computation leak different amounts of
information, depending on the number of bits that are processed in parallel. In
general, when looking at permutation-based cryptographic designs, the sizes of
the rate r and the capacity c naturally reflect how much information about the
state an attacker is allowed to learn, without gaining any noticeable advantage in
performing state recoveries. Intuitively, side-channel information decreases the

14 Stefan Steinegger and Robert Primas

more data is processed concurrently. For example, as shown by Medwed et al., a
simple AES-based GGM construction can be broken on an 8-bit microcontroller
using template attacks [25]. While the 32-bit RI5CY core should already provide
noticeably better SPA protection, there still exist a few works that show that SPA
attacks on 16 or 32-bit implementations could be successful [22,2]. Nevertheless,
we do expect leakage stemming from the processing of 320 bits in parallel, i.e.
during the usage of the Ascon-p accelerator, to be very hard to exploit 6.

Given this, and the fact that Isap uses r ≤ 64 and c ≥ 256, we can see
in Figure 4 that, after the initial state setup, there is no point in time where
the attacker can observe meaningful leakage (indicated in green/yellow) of state
chunks that are larger than r. In other words, the Ascon-p accelerator ensures
that leakage of at least c bits of the state is hard to exploit (red), which should
render classical SPA-based state recovery attacks impractical. This leaves the
initial state setup phase as the only lucrative SPA attack target. In the follow-
ing, we take a closer look at this state setup phase and estimate the amount
of information about K that an attacker could learn there under reasonable
assumptions.

rBK

IV

N0 N127

N

Ci Mi

p p p p

KE
*

cB
cB cE

rB rE

KE

ISAPRK ISAPENC
State

Setup

Fig. 4: Authenticated decryption of Isap: SPA leakage when utilizing hardware
acceleration for Ascon-p. Green values are public (or leak fully), orange values
create some leakage in 32-bit chunks, red values result in hard to exploit leakage6.

Entropy Loss of K during State Setup. The state setup consists of 10 load oper-
ations that move the initial state from RAM into the respective CPU registers.
In other words, an attacker can observe the leakage of K, when split into the four
32-bit chunks K0 . . .K3 while all other values are public. If we further assume
an observable leakage that corresponds to the noise-free Hamming weight (HW)
of each Ki, thereby essentially simulating the case of averaged power traces on

6 Given, e.g., a de-capped chip, high resolution EM probes, and averaged power mea-
surements, it could be possible to still gain usable SPA leakage. If such powerful
attackers are a concern, we recommend using hiding/shuffling in the Ascon-p accel-
erator and in software.

A Fast and Compact Accelerator for Ascon and Friends 15

a typical 32-bit microprocessor [22], we can estimate the entropy loss of K as
follows:

First, we need to find the probability that a uniformly chosen Ki has a certain
HW x. Since the number of 32-bit values with HW = x is exactly

(
32
x

)
, we can

calculate p(HW(Ki) = x) simply as
(
32
x

)
/232. The corresponding entropy loss

of knowing x = HW(Ki) is then 32 − log2

(
32
x

)
. To give two concrete examples,

p(HW(Ki) = 0) is 1/232 with entropy loss of 32 bits, while p(HW(Ki) = 16) is
0.14 with entropy loss of 2.83 bits.

If we now want to determine the maximum entropy loss of the entire 128-bit
key K, while ignoring unrealistic events, we need to consider a combined event
that consists of the individual and independent leakage events for K0 . . .K3.
Their combined probability is simply the product of the individual probabilities,
while their combined entropy loss is summed up.

Finally, we can fix a certain probability and search for the maximum entropy
loss among all combined events with at least that probability. More concretely, if
we are interested in cases with, e.g., a combined probability above 1/106 (1/109)
we can derive that an attacker cannot learn more than 20 (30) bits of K. If
we oppose these results with the fact that K has a total entropy of 128 bits,
we can conclude that, under our assumptions, the probability of learning any
meaningful amount of information about K is negligible.

Further Increasing SPA Protection. As discussed in the previous section, hard-
ware acceleration for Ascon-p alone can already significantly increase the SPA
protection of Isap’s software implementations. Nevertheless, further simple steps
can still be taken to additionally harden the implementation against SPA attacks.

For once, software shuffling/hiding during IsapRk’s state setup helps to re-
duce the amount of averaging an attacker can perform, thereby essentially de-
creasing the signal-to-noise ratio of power measurements.

And secondly, instead of using K and IV during IsapRk’s state setup, one
could also opt for storing the equivalent 320-bit key KE instead (cf. Figure 4).
In this case, KE (=initial state of IsapRk) would be entirely yellow and thus
not contain any values that are known by the attacker.

6 Conclusion

In this paper, we presented an instruction extension for Ascon-p that allows
us to significantly speed up a variety of cryptographic computations that are
typically needed on embedded devices at low cost. More concretely, with Isap
and Ascon’s family of cryptographic modes, we can perform authenticated en-
cryption, hashing, and pseudorandom number generation with a performance of
about 2 cycles/byte, or about 4 cycles/byte if implementation security is desired.

When using Isap, protection/hardening against implementation attacks such
as DPA/DFA/SIFA is already provided on mode-level. We additionally analyze
the case of SPA protection which is significantly increased thanks to Ascon-p
acceleration. As a proof of concept, we integrated our accelerator into the 32-bit
RI5CY core and present various hardware/performance metrics.

16 Stefan Steinegger and Robert Primas

Acknowledgments

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402), the Austrian Research Promotion Agency (FFG)
via the K-project DeSSnet, which is funded in the context of COMET – Com-
petence Centers for Excellent Technologies by BMVIT, BMWFW, Styria and
Carinthia, and the Austrian Research Promotion Agency (FFG) via the project
ESPRESSO, which is funded by the province of Styria and the Business Promo-
tion Agencies of Styria and Carinthia.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

2. Bellizia, D., Bronchain, O., Cassiers, G., Grosso, V., Guo, C., Momin, C., Pereira,
O., Peters, T., Standaert, F.: Mode-level vs. implementation-level physical secu-
rity in symmetric cryptography: A practical guide through the leakage-resistance
jungle. IACR Cryptol. ePrint Arch. 2020, 211 (2020)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
CRYPTO. Lecture Notes in Computer Science, vol. 1294, pp. 513–525. Springer
(1997)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: EUROCRYPT. Lecture Notes
in Computer Science, vol. 1233, pp. 37–51. Springer (1997)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES. Lecture Notes in
Computer Science, vol. 2523, pp. 13–28. Springer (2002)

6. Committee, N.L.: Nist lightweight cryptography project (2019), https://csrc.

nist.gov/Projects/lightweight-cryptography/

7. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: ASIACRYPT (1).
Lecture Notes in Computer Science, vol. 10031, pp. 369–395 (2016)

8. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

9. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B.,
Primas, R., Unterluggauer, T.: ISAP v2.0. Submission to the NIST
Lightweight Crypto Competition (2019), https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/

isap-spec-round2.pdf

10. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas,
R., Unterluggauer, T.: Isap v2.0. IACR Transactions on Symmetric Cryptology
2020(S1), 390–416 (Jun 2020). https://doi.org/10.13154/tosc.v2020.iS1.390-416,
https://tosc.iacr.org/index.php/ToSC/article/view/8625

11. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

https://csrc.nist.gov/Projects/lightweight-cryptography/
https://csrc.nist.gov/Projects/lightweight-cryptography/
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://tosc.iacr.org/index.php/ToSC/article/view/8625

A Fast and Compact Accelerator for Ascon and Friends 17

12. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to the CAESAR Competition (2016), https://ascon.iaik.tugraz.at/files/

asconv12.pdf

13. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2.
Submission to the NIST Lightweight Crypto Competition (2019),
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf

14. Dobraunig, C., Mangard, S., Mendel, F., Primas, R.: Fault attacks on nonce-based
authenticated encryption: Application to keyak and ketje. In: SAC. Lecture Notes
in Computer Science, vol. 11349, pp. 257–277. Springer (2018)

15. Dobraunig, C., Mennink, B., Primas, R.: Exploring the golden mean between leak-
age and fault resilience and practice. Cryptology ePrint Archive, Report 2020/200
(2020), https://eprint.iacr.org/2020/200

16. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: FDTC. pp. 108–118. IEEE Computer Society (2013)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

18. Groß, H.: Caesar hacrdware api reference implementation, https:

//github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_

0_3/ASCON_ASCON, https://github.com/IAIK/ascon_hardware/tree/master/

caesar_hardware_api_v_1_0_3/ASCON_ASCON (accessed 12/2019)
19. Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-

mentation with arbitrary protection order. In: CT-RSA. Lecture Notes in Com-
puter Science, vol. 10159, pp. 95–112. Springer (2017)

20. Groß, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Suit up! - made-to-measure
hardware implementations of ASCON. In: DSD. pp. 645–652. IEEE Computer
Society (2015)

21. IAIK: Ascon 128 implementations, https://web.archive.org/web/

20200107135835/https://ascon.iaik.tugraz.at/implementations.html,
https://web.archive.org/web/20200107135835/https://ascon.iaik.tugraz.

at/implementations.html (accessed 01/2020)
22. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR

Transactions on Cryptographic Hardware and Embedded Systems 2020(3), 243–
268 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.243-268, https://tches.
iacr.org/index.php/TCHES/article/view/8590

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO. Lecture
Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999)

24. Luo, P., Fei, Y., Zhang, L., Ding, A.A.: Differential fault analysis of SHA-3 under
relaxed fault models. J. Hardware and Systems Security 1(2), 156–172 (2017)

25. Medwed, M., Standaert, F., Joux, A.: Towards super-exponential side-channel se-
curity with efficient leakage-resilient prfs. In: CHES. Lecture Notes in Computer
Science, vol. 7428, pp. 193–212. Springer (2012)

26. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: E-smart. Lecture Notes in Computer Sci-
ence, vol. 2140, pp. 200–210. Springer (2001)

27. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 9215,
pp. 764–783. Springer (2015)

28. Riou, S.: Drygascon. Submission to the NIST Lightweight Crypto
Competition (2019), https://csrc.nist.gov/CSRC/media/Projects/

https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://eprint.iacr.org/2020/200
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://web.archive.org/web/20200107135835/https://ascon.iaik.tugraz.at/implementations.html
https://web.archive.org/web/20200107135835/https://ascon.iaik.tugraz.at/implementations.html
https://web.archive.org/web/20200107135835/https://ascon.iaik.tugraz.at/implementations.html
https://web.archive.org/web/20200107135835/https://ascon.iaik.tugraz.at/implementations.html
https://doi.org/10.13154/tches.v2020.i3.243-268
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/drygascon-spec-round2.pdf

18 Stefan Steinegger and Robert Primas

lightweight-cryptography/documents/round-2/spec-doc-rnd2/

drygascon-spec-round2.pdf

29. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: CHES.
Lecture Notes in Computer Science, vol. 6225, pp. 413–427. Springer (2010)

30. Schuiki, F., team, P.: The parallel ultra low power platform (2019), https:

//web.archive.org/web/20191219152925/https://pulp-platform.org/docs/

HC31_T7_Pulp.pdf, https://web.archive.org/web/20191219152925/https:

//pulp-platform.org/docs/HC31_T7_Pulp.pdf (accessed 12/2019)
31. Traber, A., Zaruba, F., Stucki, S., Pullini, A., GermainHaugou, Fla-

mand, E., Gürkaynak, F.K., Benini, L.: Pulpino: A small single-core
risc-v soc (2016), https://web.archive.org/web/20200103103911/https:

//riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf,
https://web.archive.org/web/20200103103911/https://riscv.org/

wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf (accessed
01/2020)

32. Waterman, A., Asanović, K.: The risc-v instruction set manual, volume ii: Priv-
ileged architecture, document version 20190608-priv-msu-ratified (2019), https:

//riscv.org/specifications/privileged-isa/, rISC-V Foundation, https://

riscv.org/specifications/privileged-isa/ (accessed 12/2019)
33. Waterman, E.A., Asanović, K.: The risc-v instruction set manual, vol-

ume i: User-level isa, document version 2019121 (2019), https://riscv.org/

specifications/, https://riscv.org/specifications/ (accessed 12/2019)
34. Wolf, E.C.: Risc-v bitmanip (bit manipulation) extension, document version

0.92, https://github.com/riscv/riscv-bitmanip, https://github.com/riscv/
riscv-bitmanip (accessed 12/2019)

A Ascon

Table 4: Parameterization of Ascon instances.

Name
Security level Bit size of Rounds

k n r a b

Ascon-128 128 320 64 12 6
Ascon-128a 128 320 128 12 8

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/drygascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/drygascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/drygascon-spec-round2.pdf
https://web.archive.org/web/20191219152925/https://pulp-platform.org/docs/HC31_T7_Pulp.pdf
https://web.archive.org/web/20191219152925/https://pulp-platform.org/docs/HC31_T7_Pulp.pdf
https://web.archive.org/web/20191219152925/https://pulp-platform.org/docs/HC31_T7_Pulp.pdf
https://web.archive.org/web/20191219152925/https://pulp-platform.org/docs/HC31_T7_Pulp.pdf
https://web.archive.org/web/20191219152925/https://pulp-platform.org/docs/HC31_T7_Pulp.pdf
https://web.archive.org/web/20200103103911/https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://web.archive.org/web/20200103103911/https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://web.archive.org/web/20200103103911/https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://web.archive.org/web/20200103103911/https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/
https://riscv.org/specifications/
https://riscv.org/specifications/
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip

A Fast and Compact Accelerator for Ascon and Friends 19

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗‖1

P1C1

r

c
pb

Pt−1Ct−1
r

c
pb

Plaintext

PtCt

r

c

K‖0∗

pa

Finalization

K

T

128

(a) Ascon: Authenticated encryption based on Ascon-p.

IV‖0∗

pa

Initialization

M1
r

pa
c

Ms
r

pa
c

Absorb Message

H1

r

pa
c

Hd`/re
r

pa
c

Squeeze Tag

(b) Ascon-Hash/Ascon-Xof: Hashing functional-
ity with fixed/arbitrary output length, based on
Ascon-p.

Fig. 5: Ascon’s family of modes for AEAD and hashing.

B ISAP

Table 5: Parametrization of Isap instances based on Ascon-p.

Name
Security level Bit size of Rounds

k n rH rB sH sB sE sK

Isap-A-128a 128 320 64 1 12 1 6 12
Isap-A-128 128 320 64 1 12 12 12 12

20 Stefan Steinegger and Robert Primas

K ‖ IV

pk

Initialize

Yi
rb

pb
cb

Re-keying

Yw
rb

cb

pk

K∗

z

Squeeze

(a) IsapRk, with (IV, z) =
(IVKE , n−k) in IsapEnc and
(IV, z) = (IVKA, k) in IsapMac

N
k

IsapRk

K(IVke, n−k)
k

K∗
en−k

Initialize

pe

Mi Ci

rh

ch

Encrypt Plaintext

pe

Mt Ct

≤ rh

(b) IsapEnc

(c) IsapMac

Fig. 6: Isap authenticated encryption

	A Fast and Compact Accelerator forAscon and Friends

