
Efficient Identity-Based Encryption with

Hierarchical Key-Insulation from HIBE

Keita Emura∗ Atsushi Takayasu∗ Yohei Watanabe† ‡

September 10, 2020

Abstract

Hierarchical key-insulated identity-based encryption (HKIBE) is identity-based encryption
(IBE) that allows users to update their secret keys to achieve (hierarchical) key-exposure re-
silience, which is an important notion in practice. However, existing HKIBE constructions have
limitations in efficiency: sizes of ciphertexts and secret keys depend on the hierarchical depth.

In this paper, we first triumph over the barrier by proposing simple but effective design
methodologies to construct efficient HKIBE schemes. First, we show a generic construction
from any hierarchical IBE (HIBE) scheme that satisfies a special requirement, called MSK
evaluatability introduced by Emura et al. (ePrint, 2020). It provides several new and efficient
instantiations since most pairing-based HIBE schemes satisfy the requirement. It is worth noting
that it preserves all parameters’ sizes of the underlying HIBE scheme, and hence we obtain
several efficient HKIBE schemes under the k-linear assumption in the standard model. Since
MSK evaluatability is dedicated to pairing-based HIBE schemes, the first construction restricts
pairing-based instantiations. To realize efficient instantiation from various assumptions, we next
propose a generic construction of an HKIBE scheme from any plain HIBE scheme. It is based
on Hanaoka et al.’s HKIBE scheme (Asiacrypt 2005), and does not need any special properties.
Therefore, we obtain new efficient instantiations from various assumptions other than pairing-
oriented ones. Though the sizes of secret keys and ciphertexts are larger than those of the first
construction, it is more efficient than Hanaoka et al.’s scheme in the sense of the sizes of master
public/secret keys.

∗National Institute of Information and Communications Technology (NICT), Tokyo, Japan. {k-emura,
takayasu}@nict.go.jp

†The University of Electro-Communications, Tokyo, Japan. watanabe@uec.ac.jp
‡National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Contributions . 2
1.3 Related Work . 4

2 Preliminaries 5
2.1 Notations . 5
2.2 Hierarchical Time-Period Map Functions . 5
2.3 HIBE . 6

3 HKIBE 8
3.1 Model . 8
3.2 Security . 10

4 Generic Construction from HIBE with MSK Evaluatability 12
4.1 Construction Idea . 12
4.2 Construction . 13
4.3 Security . 14

5 Generic Construction from Plain HIBE 19
5.1 Construction Idea . 19
5.2 Construction . 20
5.3 Security . 21
5.4 Achieving CCA Security . 24

A Overview of the Bug in the Security Proof in [SW18] 33

1 Introduction

1.1 Background

Identity-based encryption (IBE) [BF01] allows us to use arbitrary strings (e.g., user names, e-
mail addresses) as users’ public keys. After earlier seminal works [BB04, Wat05], consider-
able research related to IBE has been conducted from various perspectives such as efficiency
improvements [JR13, Lew12, Wat09], weakening assumptions [DG17b], post-quantum construc-
tions [ABB10a, ABB10b, BLSV18, CHKP12], and additional security properties [BGK08, BLSV18,
BW06, BWY11, CDRW10, HHSI05]. Similar results have been obtained in the context of hierar-
chical IBE (HIBE)[GS02, HL02], which is one of the important extensions of IBE; e.g., efficiency
improvements [CW14, GCTC16, Lew12, LP19, LP20, LW10, LW11, Wat09], weakening assump-
tions [DG17a], post-quantum constructions [ABB10a, ABB10b, CHKP12], and additional security
properties [BW06, LRW11, SE13a].

According to Cisco’s report [Cis14], tens of billions of IoT devices are expected to be deployed
over the next few years. Therefore, one of the key challenges is how to make communications
over IoT devices fast and reliable. Recently, IBE is expected to be used in the IoT environments
(e.g., [AKA+19, KHA+19]) since devices’ identities (serial numbers, MAC addresses, etc.) can be set
as their public keys.1 Therefore, IoT devices can make reliable and fast communication without PKI
(i.e., without verifying public-key certificates). Another practical security requirement for robust
IoT systems is key-exposure resilience. Secure IoT systems using IBE should still be available and
guarantee a certain security level even if some devices in the system are corrupted, and their secret
keys are exposed. Particularly in the IoT setting, it is difficult to manually revoke and re-setup
corrupted IoT devices since it seems hard to detect when and which devices leak their secret keys.
Therefore, the key-exposure resilience is important in practice; it guarantees that even if some
devices (partially) leak their secret keys, the devices are still available in some sense. Thus, we
focus on the problem is how to achieve the key-exposure resilience (as efficient as possible) in the
IBE setting.

One of promising approaches to address the above problem is the key-updating approach. This
paper considers the following key-insulation mechanism [DKXY02, HHSI05]. We prepare two
kinds of secret keys depending on their roles: helper keys, stored on physically-secure devices,
and decryption keys, which are stored on weak devices that may be tampered. Ciphertexts can
be decrypted by decryption keys, which are periodically and non-interactively updated by helper
keys. This approach is suitable for the above IoT scenario (and, of course, the more standard
usage scenario) since (a) decryption keys are updated in a non-interactive way, and (b) decryption
keys can be renewed and continue to be used regardless of whether the system owner knows which
decryption keys are leaked. IBE with the key-insulation mechanism is called key-insulated IBE
(KIBE) [HHSI05], and the security which should be achieved in this approach is:

(1) even if many decryption keys are exposed, KIBE can guarantee the security of non-exposed
decryption keys;

(2) even if the helper key is exposed, no information on any decryption keys is leaked as long as
no decryption keys are exposed.

The key-insulation structure can be extended to a hierarchical one, and IBE with the hierarchical

1Attribute-based encryption (ABE) [SW05, GPSW06] provides more flexible access control than IBE and its
variants, such as wildcarded IBE [ABC+11] and wicked IBE [AKN07], though it is much less efficient. The IBE
variants are flexible enough to apply for various IoT environments [AKA+19, KHA+19].

1

key-insulated property is called hierarchical KIBE (HKIBE) [HHSI05].2 In HKIBE, helper keys are
separated into multiple levels. Helper keys can update lower-level helper keys, and the lowest-level
helper keys update decryption keys. Thus, the impact of key leakage can be significantly reduced
by storing helper keys at different levels in different devices.

Although HKIBE seems to provide practical applications as above, an efficiency issue in HKIBE
constructions remains unsolved. Hanaoka et al. [HHSI05] showed a generic construction from any
HIBE scheme. It can be instantiated from various assumptions, however essentially sacrifices sizes of
ciphertexts and decryption keys; it requires at least O(L) HIBE ciphertexts and O(L) HIBE secret
keys for the resulting ciphertexts and decryption keys, respectively, where L is the maximum depth
of hierarchical key-insulation. Therefore, even if the underlying HIBE scheme achieves compact
ciphertexts and/or secret keys, those of the resultant HKIBE scheme cannot be compact. Although
Hanaoka et al. [HHSI05] also showed a concrete HKIBE scheme from computational bilinear Diffie-
Hellman (CBDH) assumption, which is more efficient than the generic construction, it relies on
the random oracle and do not have compact parameters, in the sense that sizes of ciphertexts and
decryption keys are not constant. The work of [SW18, WS16] proposed adaptively secure HKIBE
schemes with compact ciphertexts and decryption keys from pairings; however, unfortunately, we
found a flaw in the security proofs (which we communicated to the authors).3 Thus, there are no
secure HKIBE constructions that achieve compact ciphertexts and decryption keys.

1.2 Our Contributions

In this paper, we successfully make significant progress in constructing efficient HKIBE schemes.
Specifically, we show two generic constructions of HKIBE schemes.

Generic Construction from HIBE with MSK Evaluatability. We take note of the simi-
larities in security games in HKIBE and revocable HIBE (RHIBE) [BGK08, SE13a, SE15]; unlike
standard (H)IBE, an adversary is allowed to get (a part of) a secret key of a challenge iden-
tity in both games. Based on the observation, we take a similar approach to the recent RHIBE
construction [ETW20], and propose our first construction from any HIBE scheme that satisfies
MSK evaluatability, which is the special algebraic property introduced in [ETW20]. Although the
property restricts an applicable class of HIBE schemes to our construction, most pairing-based
HIBE schemes, including most-efficient-ever ones [CG17, CW14, GCTC16], meet it. Our generic
construction provides several concrete HKIBE schemes with new features as follows.
• The first HKIBE schemes with compact ciphertexts and decryption keys from [CG17, CW14]

under the standard k-linear assumption. Note that there are no known schemes with similar
efficiency even when we ignore the adaptive security, standard assumptions, and the standard
model.4

• The first HKIBE scheme with compact master public keys in the standard model
from [GCTC16] under the k-linear assumption.

Generic Construction from Any HIBE. Our second construction aims to get rid of the special
property required in our first construction, and is a generic construction from any plain HIBE
schemes. While this construction is based on [HHSI05], it achieves compact master keys5 and does

2One may think up HIBE with the hierarchical key-insulated property. In this paper, we do not consider such an
HIBE scheme since it must be quite complicated, and there has been actually no such work.

3We give the overview of the flaw in Appendix A.
4To be precise, an instantiation from [RS14], which is a special case of [CG17], is the same as Shikata and

Watanabe’s scheme [SW18]. It means that their scheme turns out to be secure, and we successfully fix the bug in
their security proof.

5We refer to a pair of a master public and master secret keys as master keys for simplicity.

2

Table 1: A comparison between Hanaoka et al.’s generic construction and ours. “Generic HHSI05”
means the generic construction shown in [HHSI05]. Each parameter of all HKIBE schemes con-
sists of the same ingredient: a master public key pp, master secret key mk, and ciphertext ctid,t
consist of master public keys, master secret keys, and ciphertexts of the underlying HIBE scheme,

respectively, and a level-ℓ helper key hk
(ℓ)
id,Tℓ(t)

and decryption key dkid,T0(t) consist of HIBE secret
keys. Therefore, we compare the number of the ingredients that constitute each parameter. ROM
and Std. stand for the random oracle model and the standard model, respectively, and L and ℓ
denote the maximum hierarchical size and a hierarchical level, respectively. let α be the cipher-
text overhead, which mainly includes an one-time signature and its verification key, caused by the
multiple-encryption technique [DK05].

Construction |pp| |mk| |ctid,t| |hk(ℓ)
id,Tℓ(t)

| |dkid,T0(t)| Security Model Building Block Reduction
Loss

Generic HHSI05
[HHSI05]

O(L) O(L) O(L) O(L− ℓ) O(L) CCA ROM CPA-secure HIBE O(Q)

O(L) O(L) O(L) + α O(L− ℓ) O(L) CCA Std.
CPA-secure HIBE

and OTS
O(Q)

First
Construction

(§ 4)

O(1) O(1) O(1) O(1) O(1) CPA Std.
CPA-secure HIBE
w/ MSK eval.

O(QL)

O(1) O(1) O(1) O(1) O(1) CCA Std.
CCA-secure HIBE

w/ MSK eval.
O(QL)

Second
Construction

(§ 5)

O(1) O(1) O(L) O(L− ℓ) O(L) CPA Std. CPA-secure HIBE O(L)

O(1) O(1) O(L) + α O(L− ℓ) O(L) CCA Std.
CPA-secure HIBE

and OTS
O(L)

not require random oracles. We get the following concrete HKIBE schemes with new features from
the second construction.
• The first (almost) tightly and adaptively secure HKIBE scheme with compact master keys

from the k-linear assumption in the standard model from [LP19, LP20].
• The first selectively secure HKIBE scheme with compact master keys from the various as-

sumptions in the standard model: the learning with errors [ABB10a, CHKP12]; learning
from parity with noise [BLSV18]; computational Diffie-Hellman without pairing; and factor-
ing Blum integers [DG17b].

Achieving CCA Security. Although we basically consider CPA-secure HKIBE schemes, we can
easily extend them to CCA-secure schemes as follows. The first construction can be lifted to a CCA-
secure scheme by just replacing the underlying CPA-secure HIBE scheme with a CCA-secure one.
Note that since there is a well-known transformation [BCHK07] from CPA-secure HIBE schemes
to CCA-secure ones that preserve almost the same efficiency, the CCA-secure version of our first
construction achieves similar efficiency to the CPA-secure construction. We obtain a CCA-secure
version of our second construction by applying the multiple-encryption technique [DK05], which is
a well-known technique to achieve CCA security without random oracles. Note that as observed in
the HHSI05 paper [HHSI05], it is also applicable to their scheme.

Efficiency Comparison. We compare our constructions with previous schemes. Table 1 provides
efficiency comparisons between Hanaoka et al.’s generic construction [HHSI05] and our construc-
tions. Our first construction preserves all parameter sizes of the underlying HIBE scheme. Our
second construction has similar efficiency to the HHSI05 scheme but achieves constant-size mas-
ter keys. Table 2 shows concrete efficiency among existing schemes and instantiations of our first

3

Table 2: A comparison among previous CCA-secure instantiations and the CCA-secure version of
our first construction. “Concrete HHSI05” means the direct construction shown in [HHSI05]. We
compare the number of group elements that constitute each parameter in this table. Note that we
do not instantiate the underlying OTS scheme in all instantiations except for Concrete HHSI05,
and the ciphertext overhead (i.e., the OTS elements) is denoted by α as in Table 1.

Scheme |pp| |mk| |ctid,t| |hk(ℓ)
id,Tℓ(t)

| |dkid,T0(t)| Assumption

Concrete HHSI05 [HHSI05]
(in ROM)

O(1) O(L) O(L) O((L− ℓ)2) O(L2) CBDH

Generic HHSI05 [HHSI05]
+[CG17, CW14] w/ OTS

O(L2) O(L) O(L) + α O(ℓ(L− ℓ)) O(L) SXDH & OTS

Generic HHSI05 [HHSI05]
+[GCTC16] w/ OTS

O(L) O(1) O(L2) + α O((L− ℓ)2) O(L2) SXDH & OTS

SW18 [SW18] w/ OTS
(flawed)

O(L) O(1) O(1) + α O(ℓ) O(1) SXDH & OTS

First Scheme (§ 4)
+[CG17, CW14] w/ OTS

O(L) O(1) O(1) + α O(ℓ) O(1) SXDH & OTS

First Scheme (§ 4)
+[GCTC16] w/ OTS

O(1) O(1) O(L) + α O(L− ℓ) O(L) SXDH & OTS

construction, which is more efficient than our second construction. The state-of-the-art pairing-
based HIBE schemes [CG17, CW14, GCTC16] provide efficient HKIBE schemes. In particular,
the instantiation of the first construction from [CG17, CW14] is CPA-secure under the k-linear
assumption and achieves the same efficiency as the SW18 scheme [SW18] when setting k = 1, i.e.,
the symmetric external Diffie-Hellman (SXDH) assumption. We again would like to emphasize that
the security proof in [SW18] was flawed. Furthermore, the first scheme can be easily extended to
CCA-security by replacing the underlying CPA-secure HIBE scheme with CCA-secure one. Note
that, as we noted above, we know the transformation [BCHK07] for HIBE that lifts CPA security
to CCA security without sacrificing efficiency.

1.3 Related Work

The notion of key-insulated cryptography was first introduced by Dodis et al. [DKXY02]. Specifi-
cally, they formalized two kinds of key-insulated security notions: the one is weak security, which
only satisfies the condition (1) described earlier; the other is strong security, which satisfies both (1)
and (2). Bellare and Palacio [BP06] showed that weakly secure key-insulated public-key encryption
is equivalent to (a restricted form of) IBE. Thus far, the key-insulated security have been considered
in the IBE setting (with additional properties) [WLCM06, WLC+08]. The key-insulation structure
was extended to the hierarchical one by Hanaoka et al. [HHSI05], where the security captures the
strong security, and they proposed an adaptively secure HKIBE scheme both with and without
random oracles. Watanabe and Shikata [WS16] proposed an adaptively secure HKIBE scheme
with compact ciphertexts and decryption keys. Later, the same authors [SW18] found out a bug in
the security proof in [WS16] and fixed it and the corresponding construction. However, it contains
another bug in their security proof, and our proposal fixes it as mentioned earlier.

Another key-updating approach is forward security [CHK07], which guarantees that even if the

4

secret key is leaked, no information of previously-encrypted plaintexts is leaked by updating the
secret key by themselves. However, it is inapplicable to the IoT scenario since it only prevents the
leakage of data previously encrypted before the key leakage, and the exposed secret keys will not
be able to be used.

R(H)IBE [BGK08, SE13a] is (H)IBE with efficient revocation functionality, and has a similar
key-updating procedure and security notion to HKIBE. Each user needs to periodically update
their decryption key, and the update is successful unless the user is revoked. In the security
game, an adversary is allowed to get some decryption keys associated with a challenge identity. A
lot of constructions have been proposed in the context of RIBE [BGK08, GW19, ISW17, Lee19,
LLP17, ML19, SE13b, WES17] and RHIBE [ESY16, ETW20, KMT19, LP18, RLPL15, SE13a,
SE15, WZH+19] thus far.

Organization. In Section 2, we briefly review hierarchical time-period map functions, which
make us consistently deal with several layers of time periods in HKIBE, and HIBE with MSK
evaluatability. We give the definition of HKIBE in Section 3, and show our two generic constructions
in Sections 4 and 5, respectively.

2 Preliminaries

2.1 Notations

Let N be the set of all natural numbers. For non-negative integers a, b ∈ N with a ≤ b, we
define [a, b] := {a, a + 1, . . . , b} and [a] := [1, a]. As a special case, [a, b] = ∅ for a > b. For a
finite set S, let x ←R S denote sampling x from S uniformly at random. For a κ1-bit binary
string id1 ∈ {0, 1}κ1 and a κ2-bit binary string id2 ∈ {0, 1}κ2 , let id1∥id2 ∈ {0, 1}κ1+κ2 denote a
(κ1 + κ2)-bit concatenation of id1 and id2.

2.2 Hierarchical Time-Period Map Functions

To properly deal with key-updating functionality, we consider (discrete) time periods, which are
time spans during which a specific secret key is authorized for cryptographic operations such as
decryption or in which the secret keys may remain in effect. Let T be a set of time periods. It
is natural to consider that such a time period for key updates is related to actual time, i.e., clock
time that we usually use in our daily lives. For instance, we can set a set of time periods T as days,
say, T := {2020 Sep 1, 2020 Sep 2, . . .}. To connect time periods and actual time, we consider
time-period map functions [HHSI05]. A time-period map function T : Tact → T maps actual times
to time periods, where Tact is a (possibly countably infinite) set of actual times.

Time-period map functions can be extended so that they have a certain hierarchical structure.
Let L := poly(λ), and Tℓ for ℓ ∈ [0, L] be a finite set of time periods. We assume |TL| ≤ · · · ≤ |T1| ≤
|T0| and |TL| = 1 (i.e., TL(t) = 0 for any t) for simplicity. The reason why we consider several layers
of time periods is that in HKIBE, we consider several secret keys, called helper keys for TL, . . . , T1
and decryption keys for T0. More specifically, we consider different time intervals for the helper and
decryption keys; the helper key at the highest level (i.e., TL) is never updated, and other helper
keys are more frequently updated as the level decreases. The decryption key, which is related to
T0, is most often updated. The hierarchical version of time-period map functions for the depth L
captures this situation, and can be defined as a set of L time-period map functions TL, . . . ,T1,T0

for distinct time-period sets TL, . . . , T1, T0. We use the hierarchical time-period map functions to
mange several time periods consistently; one actual time t ∈ Tact produces an (L+ 1)-dimensional
time-period vector (tL, . . . , t1, t0) ∈ TL × · · · × T1 × T0 via the functions TL, . . . ,T1,T0. Let us give

5

an example for readers: for L = 3 and t = 2020 Sep 10 23:59, we have T3(t) = 0, T2(t) = 2020,
T1(t) = 2020 Sep, and T0(t) = 2020 Sep 10. T3 in this example indicates “no update”, and T2,
T1, and T0 capture yearly, monthly, and daily updates, respectively. For notational convenience,
we use a shortened form of time-period vectors for t ∈ Tact: T[L−1,ℓ](t) := (TL−1(t), . . . ,Tℓ(t)),
where ℓ ∈ [0, L− 1].6 Note that the order of [·] of T· is reversed compared with the order of [·]
defined in Section 2.1.

2.3 HIBE

Hierarchical Identity. Let an ℓ-dimensional identity vector IDℓ := (id1, . . . , idℓ) denote an iden-
tity at a level (or, a hierarchy depth) ℓ. In this paper, we may sometimes call IDℓ = (id1, · · · , idℓ)
and each idi a hierarchical identity and an element identity, respectively. Let I be an element-
identity space which is determined only by the security parameter λ, and therefore, a hierarchical-
identity space at level ℓ is Iℓ.

We define several notations for IDℓ = (id1, · · · , idℓ) below. For a non-negative integer k ≤ ℓ,
an k-dimensional prefix of IDℓ is denoted by ID[k] := (id1, . . . , idk). We denote by prefix+(IDℓ) :=
{ID[1], ID[2], . . . , ID[ℓ−1], IDℓ} a set of all prefixes of IDℓ and itself. We often omit the subscript from
IDℓ and simply describe ID for simplicity, and use |ID| := ℓ to denote a hierarchical level of the
hierarchical identity.

Syntax. An HIBE scheme Σ with the depth L consists of four algorithms (Init,Enc,GenSK,Dec).

• Init(1λ, L) → (MPK,MSK): given the security parameter λ and the maximum hierarchical
depth L, it outputs a master-key pair (MPK,MSK).

• Enc(MPK, ID,M)→ CID: given MPK, user’s identity ID ∈ I |ID|, and a plaintext M, it outputs
a ciphertext CID.

• GenSK(MPK, SKID′ , ID) → SKID: given MPK, a user’s secret key SKID′ , and an identity ID ∈
I |ID| s.t. ID’s parent is ID′, it outputs a secret key SKID. The second input SKID′ can be
replaced by MSK. For notational convenience, we regard SKID0 as the master secret key
(MSK) MSK.

• Dec(MPK, SKID,CID) → M: given MPK, a secret key SKID, and a ciphertext CID, it outputs
the decryption result M.

Correctness. We require that for all security parameters λ ∈ N, hierarchy lev-
els L ∈ N, (MPK,MSK) ← Init(1λ, L), identities ID ∈ I |ID|, and plaintexts M, it
holds Dec(MPK,SKID,Enc(MPK, ID,M)) = M with overwhelming probability, where SKID ←
GenSK(MPK,MSK, ID). Moreover, given SKID for any identity ID ∈ I |ID|, GenSK(MPK,MSK, ID)
and GenSK(MPK,SKID′ , ID) s.t. ID

′ ∈ prefix+(ID) are identically distributed.

Adaptive Security. Intuitively, HIBE requires that it is hard for an adversary who adaptively ob-
tains polynomially many secret keys SKID such that ID /∈ prefix+(ID⋆) to extract secret information
from CID⋆ .

More formally, let Σ be an HIBE scheme, and we consider a game between an adversary A
and the challenger C. The game is parameterized by the security parameter λ and the maximum
hierarchical depth L. The game proceeds as follows: C first runs (MPK,MSK) ← Init(1λ, L) and
gives MPK to A. A may adaptively make the following secret-key reveal query : upon a query
ID ∈ I |ID| from A, C returns SKID ← GenSK(MPK,MSK, ID) to A. A is also allowed to make the
following challenge query only once: upon a query (ID⋆,M⋆

0,M
⋆
1) from A such that |M⋆

0| = |M⋆
1|, C

6We here omit tL ∈ TL for simplicity since |TL| = 1.

6

returns C⋆
ID⋆ ← Enc(MPK, ID⋆,M⋆

b) to A, where b ←R {0, 1}. Note that A is not allowed to make
the secret-key reveal query on ID⋆ and its prefix in this game. At some point, A outputs b′ ∈ {0, 1}
as its guess for b and terminates. In this game, A’s adaptive security advantage is defined by
AdvHIBEΣ,L,A(λ) := 2 · |Pr[b′ = b]− 1/2|.

Definition 1 (CPA security for HIBE). We say that an HIBE scheme Σ with depth L satisfies
adaptive-identity CPA security (or adaptive security for brevity), if the advantage AdvHIBEΣ,L,A(λ) is
negligible for all PPT adversaries A.

The selective-identity CPA security (selective security for short) is analogously defined except
that the challenge identity ID⋆ is submitted to C at the beginning of the game, instead of the
challenge query. Furthermore, CCA security is also defined by allowing A to submit the following
decryption query: upon a query (ID,CID) (̸= (ID⋆,C⋆

ID⋆)) from A, C returns Dec(MPK,SKID,CID)
to A.

MSK Evaluatability [ETW20]. We require that an HIBE scheme used in our first construction
satisfies the MSK evaluatability, which is a special algebraic property introduced in [ETW20]. In
the following, we use a notation SKID[MSK], instead of SKID, to explicitly describe the MSK-part
of SKID, i.e., which element ofMSK is used to compute SKID.

Intuitively, MSK evaluatability has the following two properties.

(1) Anyone can sample a random element M̂SK ∈MSK, called a pseudo-MSK, whereMSK is a
space of possible master secret keys. We describe the sampling procedure as a pseudo-MSK

sampling algorithm SampMSK. Furthermore, anyone create secret keys SKID[M̂SK] for any

ID ∈ I |ID| under a pseudo-MSK M̂SK. This pseudo-MSK M̂SK is, of course, different from
the true MSK MSK with overwhelming probability.7

(2) Suppose that MSK has some algebraic structure and allows one to compute M̂SK1 · M̂SK2

and M̂SK1/M̂SK2 for any M̂SK1, M̂SK2 ∈ MSK. Note that M̂SK1 and M̂SK2 might be

the true MSK. Let SKID[M̂SK1] and SKID[M̂SK2] be HIBE secret keys for the same identity

ID ∈ I |ID| but under M̂SK1 and M̂SK2, respectively. Then, there exists an efficient algorithm

EvalMSK which merges the two secret keys into one secret key SKID[M̂SK1 · M̂SK2] (resp.,

SKID[M̂SK1/M̂SK2]) with a label mul (resp., div).

Formally, MSK evaluatability is defined as follows.

Definition 2 (MSK Evaluatability [ETW20]). Let Σ be an HIBE scheme. We say that Σ supports
MSK evaluatability if there exist algorithms SampMSK and EvalMSK:

• SampMSK(MPK) → M̂SK: This is the pseudo-MSK sampling algorithm that, given MPK,

outputs a pseudo-MSK M̂SK ∈MSK.
• EvalMSK(MPK, SKID[M̂SK1], SKID[M̂SK2], lab) → SKID[flab(M̂SK1, M̂SK2)]: This is the MSK

evaluation algorithm that, given two secret keys SKID[M̂SK1], SKID[M̂SK2] for the same ID ∈
I |ID| under M̂SK1, M̂SK2 ∈ MSK, and a label lab ∈ {mul, div}, it outputs a secret key

SKID[flab(M̂SK1, M̂SK2)], where fmul(M̂SK1, M̂SK2) = M̂SK1 · M̂SK2 and fdiv(M̂SK1, M̂SK2) =

M̂SK1/M̂SK2.

Moreover, the following two requirements are satisfied:

7Otherwise, MSK evaluatability immediately breaks the security of HIBE.

7

▷ Pseudo-MSK Indistinguishability: For any lab ∈ {mul, div} and any M̂SK ∈ MSK,
given MPK and M̂SK, the two distributions SampMSK(MPK) and flab(M̂SK, SampMSK(MPK))
are identically distributed.

▷ Evaluation Correctness: For any lab ∈ {mul, div}, any M̂SK1, M̂SK2 ∈ MSK, and any

ID ∈ I |ID|, given MPK and SKID[M̂SK1], SKID[M̂SK2], the two distributions GenSK(MPK,

flab(M̂SK1, M̂SK2), ID) and EvalMSK(MPK, SKID[M̂SK1], SKID[M̂SK2], lab) are identically dis-
tributed.

Note that most pairing-based HIBE schemes can satisfy MSK evaluatability. For example, as
noted in [ETW20], several state-of-the-art pairing-based HIBE schemes [CG17, CW14, GCTC16]
has this property. Let us give an intuition with the following abstract example. Let G1, G2, and GT

be cyclic groups (group operations in all are written in multiplicative forms) of prime-order p, and
e : G1 ×G2 → GT be a non-degenerate bilinear map. We use the implicit notation [EHK+17]: for
a ∈ Zp and generators gi ∈ Gi (i ∈ {1, 2, T}), [a]i := gai ∈ Gi, and for a vector a := (a1, . . . , ad) ∈
Zk
p, [a]i := ([a1]i, . . . , [ad]i) ∈ Gi. In several pairing-based HIBE schemes based on the k-linear

assumption (e.g., [CG17, CW14]), the MSK is in the form of [k]2 ∈ Gk+1
2 and the secret key

SKID[MSK] contains [k]2 · F(ID)r, where F : I → Gk+1
2 is a certain public function and r ∈ Zp is a

randomness. It is obvious that since anyone can compute a pseudo-MSK M̂SK := [k̂]2 for uniformly
sampled k̂ ∈ Zk+1

p , there exists the SampMSK algorithm. Moreover, it clearly satisfies pseudo-MSK

indistinguishability since even given [k]2, [k]2 · [k̂]2 = [k+ k̂]2 (or [k]2/[k̂]2 = [k− k̂]2) and [k̂]2 are
identically distributed. Furthermore, it is easy to confirm that it also provides EvalMSK: for any

M̂SK1 := [k̂1]2, M̂SK2 := [k̂2]2 ∈ Gk+1
2 , the corresponding component of SKID[M̂SK1 · M̂SK2] can be

computed as ([k̂1]2 · F(ID)r1) · ([k̂2]2 · F(ID)r1) = [k̂1 + k̂2]2 · F(ID)r1+r2 (other components can be
computed in a similar way). It is clear that the component [k̂1 + k̂2]2 · F(ID)r1+r2 is identically

distributed to a secret key directly computed by GenSK with M̂SK1 · M̂SK2.
8 Hence, it satisfies

evaluation correctness. We omit the case of the division since it is straightforward.
On the other hand, it seems difficult for HIBE schemes over pairing-free groups [DG17a] and

lattice-based HIBE schemes [ABB10a, ABB10b, CHKP12] to satisfy MSK evaluatability since they
do not have such a simple algebraic structure.

3 HKIBE

We review a definition of HKIBE based on [HHSI05, WS16, SW18] which present the most strict
security model. Please keep in mind that an identity id ∈ I in HKIBE is always a (non-hierarchical)
one-dimensional vector.

3.1 Model

There are two types of keys, i.e., helper keys and decryption keys, and they depend on an identity id

and each of the hierarchical time periods TL, . . . , T0. Every user id has a level-ℓ helper key hk
(ℓ)
id,Tℓ(t)

for ℓ = 1, 2, . . . , L and a decryption key dkid,T0(t). The upper level-(ℓ + 1) helper key hk
(ℓ+1)
id,Tℓ+1(t)

can derive a level-ℓ key update ku
(ℓ)
id,Tℓ(t)

for updating the lower level-ℓ helper key hk
(ℓ)
id,Tℓ(t′)

to be

hk
(ℓ)
id,Tℓ(t)

. Similarly, the decryption key dkid,T0(t) is updated by using a key update derived from a

8To be precise, the component [k̂1 + k̂2]2 · F(ID)r1+r2 should be re-randomized to satisfy evaluation correctness

since it requires that given SKID[M̂SK1] and SKID[M̂SK2], the two distributions are identical.

8

level-1 helper key. A ciphertext ctid,t of HKIBE depends on a receiver’s identity id ∈ I and actual
time t ∈ Tact, and can be decrypted by a decryption key dkid,T0(t′) if T0(t) = T0(t

′).
Specifically, HKIBE consists of six algorithms (Setup,Encrypt,GenHK,KeyUp,Upd,Decrypt) and

proceeds as follows. First of all, the key generation center (KGC) runs Setup to generate a master-
key pair (pp,mk). Upon a request from a user id, the KGC runs GenHK to get a set of initial

helper keys (hk
(ℓ)
id,0)ℓ∈[0,L] as a secret key for id. Suppose that each helper key is stored in a

different (physically-secure) device. The level-0 helper key hk
(0)
id,t0

is used as a decryption key, and
we often write it as dkid,t0 . A plaintext M is encrypted by Encrypt with not only an identity id but
(current) time t. The resulting ciphertext, which is denoted by ctid,t, can be decrypted by Decrypt

with id’s decryption key dkid,t0 (= hk
(0)
id,t0

) if and only if t0 = T0(t). Here, we describe how to

update helper and decryption keys as follows. Suppose that the user id has (hk
(ℓ)
id,t′ℓ

)ℓ∈[0,L] and wants

to update it for t. The level-L helper key hk
(L)
id,0 is never updated, and therefore, hk

(L)
id,TL(t)

= hk
(L)
id,0

for any t ∈ Tact. For every ℓ = L − 1, . . . , 0, the user id first runs KeyUp to generate id’s level-ℓ

key update ku
(ℓ)
id,Tℓ(t)

by running KeyUp with hk
(ℓ+1)
id,Tℓ+1(t)

. The user then runs Upd with the key

update ku
(ℓ)
id,Tℓ(t)

to update id’s level-ℓ helper key hk
(ℓ)
id,t′ℓ

to hk
(ℓ)
id,Tℓ(t)

. At the end of this updating

procedure, the user obtains a decryption key dkid,T0(t) (= hk
(0)
id,T0(t)

).

Syntax. An HKIBE scheme Π consists of the six algorithms (Setup,Encrypt,GenHK,KeyUp,Upd,
Decrypt) defined as follows:
• Setup(1λ, L) → (pp,mk): This is the setup algorithm that, given the security parameter λ

and the maximum depth of the hierarchy L ∈ N, it outputs a master-key pair (pp,mk).
• Encrypt(pp, id, t,M) → ctid,t: This is the encryption algorithm that, given pp, an element
identity id ∈ I, current time t ∈ Tact, and a plaintext M ∈M, it outputs a ciphertext ctid,t.

• GenHK(pp,mk, id) → (hk
(ℓ)
id,0)ℓ∈[0,L]: This is the helper-key generation algorithm that, given

pp, mk, and an element identity id ∈ I, it outputs a set of initial helper keys (hk
(ℓ)
id,0)ℓ∈[0,L].

The level-0 helper key is also called a decryption key and set as dkid,0 := hk
(0)
id,0.

• KeyUp(pp, t, hk
(ℓ+1)
id,tℓ+1

)→ ku
(ℓ)
id,Tℓ(t)

or ⊥: This is the key update information generation algo-

rithm that, given pp, actual time t ∈ Tact, and an id’s level-(ℓ + 1) helper key hk
(ℓ+1)
id,tℓ+1

at

a time period tℓ+1 ∈ Tℓ+1, it outputs an id’s level-ℓ key update ku
(ℓ)
id,Tℓ(t)

at a time period

Tℓ(t) if tℓ+1 = Tℓ+1(t). Otherwise, it outputs ⊥.
• Upd(pp, hk

(ℓ)
id,τℓ

, ku
(ℓ)
id,tℓ

) → hk
(ℓ)
id,τℓ

: This is the helper key update algorithm that, given pp, an

id’s level-ℓ helper key hk
(ℓ)
id,τℓ

at a time period τℓ ∈ Tℓ, and an id’s level-ℓ key update ku
(ℓ)
id,tℓ

at a time period tℓ ∈ Tℓ, it outputs an updated helper key hk
(ℓ)
id,tℓ

at a time period tℓ.
• Decrypt(pp, dkid,t0 , ctid,t)→ M or ⊥: This is the decryption algorithm that, given pp, an id’s

decryption key dkid,t0 at a time period t0 ∈ T0, and a ciphertext ctid,t, it outputs M or ⊥
which indicates decryption failure.

Remark 1 (Update Frequency). For simplicity, we assume that the lower-level helper key is
more frequently updated than the upper-level helper key. Namely, several level-ℓ helper keys

hk
(ℓ)

id,Tℓ(t(1))
, . . . , hk

(ℓ)

id,Tℓ(t(m))
are updated by the same level-(ℓ + 1) helper key hk

(ℓ+1)
id,t , where

t(1), . . . , t(m) ∈ Tact and t = Tℓ+1(t
(1)) = · · · = Tℓ+1(t

(m)). This assumption of use frequency
captures actual situations: the upper level of helper keys is, the more rarely they should be used,
i.e., the more isolated they should be from the Internet.

9

Correctness. We require a ciphertext ctid,t associated with (id, t) to be properly decrypted by
a decryption key dkid,t0 for the same id and t0 = T0(t) if dkid,t0 is correctly generated from any
updating path.

More formally, for all security parameter 1λ, all hierarchical depth L ∈ N, all (pp,mk) ←
Setup(1λ, L), all M ∈ M, all id ∈ I, and all sequence (t1, . . . , tn) ∈ T n

act for arbitrary number
n = poly(λ), we consider the following experiment:

• ctid,tn ← Encrypt(pp, id, tn,M).

• (hk
(ℓ)
id,0)ℓ∈[0,L] ← GenHK(pp,mk, id).

• Let t0 := 0 for simplicity. For all j = 1, 2, . . . , n, execute the following procedures for
ℓ = L− 1, L− 2, . . . , 0:

– ku
(ℓ)
id,Tℓ(tj)

← KeyUp(pp, tj , hk
(ℓ+1)
id,Tℓ+1(tj)

).

– hk
(ℓ)
id,Tℓ(tj)

← Upd(pp, hk
(ℓ)
id,Tℓ(tj−1)

, ku
(ℓ)
id,Tℓ(tj)

).

• M′ ← Decrypt(pp, dkid,T0(tn), ctid,tn).

Definition 3 (Correctness). We say that an HKIBE scheme Π with depth L satisfies correctness,
if the probability M′ = M in the above experiment holds with overwhelming probability.

3.2 Security

Let Π be an HKIBE scheme. We consider the adaptive-identity CPA security for HKIBE (the
adaptive security for short), which is defined via a game between an adversary A and the challenger
C. The game is parameterized by the security parameter λ and the maximum hierarchical depth
L ∈ N. Intuitively, A is able to receive all helper keys as long as they are insufficient for deriving
a decryption key dkid⋆,t⋆ for the target tuple (id⋆, t⋆). The game proceeds as follows:

C first runs (pp,mk) ← Setup(1λ, L) and gives pp to A. C prepares HKList and stores all

identity/initial helper keys (id, (hk
(ℓ)
id,0)ℓ∈[0,L]) generated during the game in HKList while we will

not explicitly mention this procedure.

A may adaptively make the following four types of queries to C:

Helper-Key Generation Query: Upon a query id ∈ I from A, C checks if (id, ∗) /∈ HKList,

and returns ⊥ to A if this is not the case. Otherwise, C executes (hk
(ℓ)
id,0)ℓ∈[0,L] ←

GenHK(pp,mk, id) and returns nothing to A.

We require that all identities id appearing in the following queries (except the challenge

query) are “activated”, in the sense that (hk
(ℓ)
id,0)ℓ∈[0,L] is generated via this query and hence

(id, (hk
(ℓ)
id,0)ℓ∈[0,L]) ∈ HKList.

Initial Helper-Key Reveal Query: Until the challenge query, upon a query id ∈ I from A, C
finds (hk

(ℓ)
id,0)ℓ∈[0,L] from HKList and returns (hk

(ℓ)
id,0)ℓ∈[0,L] to A. After the challenge query,

C checks whether id ̸= id⋆ and returns ⊥ if this is not the case. Otherwise, C returns

(hk
(ℓ)
id,0)ℓ∈[0,L] to A in the same way.

Key-Insulation Query: Until the challenge query, upon a query (id, t, ℓ) ∈ I ×Tact× [0, L] from

A, C finds (hk
(ℓ)
id,0)ℓ∈[0,L] from HKList and runs

– ku
(i)
id,Ti(t)

← KeyUp(pp, t, hk
(i+1)
id,Ti+1(t)

),

– hk
(i)
id,Ti(t)

← Upd(pp, hk
(i)
id,0, ku

(i)
id,Ti(t)

),

10

for i = L− 1, . . . , ℓ to obtain hk
(ℓ)
id,Tℓ(t)

. Then, C returns hk
(ℓ)
id,Tℓ(t)

to A. After the challenge

query, when id = id⋆, C checks whether there exists the following special hierarchical level
ℓ⋆ after answering the query:

(i) hk
(ℓ⋆)
id⋆,tℓ⋆

of any tℓ⋆ ∈ Tℓ⋆ are not revealed to A. Namely, no level-ℓ⋆ helper keys have not
been revealed to A ever.

(ii) For all i ∈ [0, ℓ⋆ − 1] and all t ∈ Tact such that Ti(t) = Ti(t
⋆) holds, hk

(i)
id⋆,Ti(t)

are not
revealed to A.

If this is not the case, C returns ⊥ to A. Otherwise, C returns hk(ℓ)
id,Tℓ(t)

to A in the same way.

Challenge Query: A is allowed to make this query only once. Upon a query (id⋆, t⋆,M⋆
0,M

⋆
1)

from A such that |M⋆
0| = |M⋆

1|, C checks whether the following conditions simultaneously hold:
– A does not make the initial helper-key reveal query on id⋆.
– There is a special hierarchical level ℓ⋆ as explained in the key-insulation query.

If the conditions are not simultaneously satisfied, C returns ⊥ to A. Otherwise, C picks a
bit b ∈ {0, 1} uniformly at random, runs ct⋆id⋆,t⋆ ← Encrypt(pp, id⋆, t⋆,M⋆

b), and returns the
challenge ciphertext ct⋆id⋆,t⋆ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

The above completes the description of the game. In this game, A’s adaptive security advantage
is defined by AdvHKIBEΠ,L,A(λ) := 2 · |Pr[b′ = b]− 1/2|.

Definition 4 ([HHSI05]). We say that an HKIBE scheme Π with depth L satisfies adaptive-identity
CPA security (or adaptive security for brevity), if the advantage AdvHKIBEΠ,L,A(λ) is negligible for all
PPT adversaries A.

Why We Need the Restrictions. We briefly explain the restrictions (i) and (ii) appeared in
key-insulation query, i.e., why we need the special hierarchical level ℓ⋆. To define as strong security
as possible while preventing trivial attacks, we should allow A to make as many queries as possible
unless A can trivially create dkid⋆,T0(t⋆). As for the restriction (i), if at least one level-i helper
key for id⋆ is leaked at every level i ∈ [0, L], it also means that A can create all decryption keys
including dkid⋆,T0(t⋆). As for the restriction (ii), suppose that for some i ∈ [0, ℓ⋆ − 1], A gets

(hk
(j)
id⋆,Tj(tj)

)j∈[0,i−1] such that Tj(tj) ̸= Tj(t
⋆) for j ∈ [0, i − 1] via key-insulation queries. Then,

one helper key hk
(i)
id⋆,Ti(t)

such that Ti(t) = Ti(t
⋆) is enough for A to compute a decryption key

dkid⋆,T0(t⋆) even if A has no level-ℓ⋆ helper key hk
(ℓ⋆)
id⋆,Tℓ⋆ (t)

for any t ∈ Tact. Hence, we need the

restriction about the special level ℓ⋆ to the key-insulation query for id⋆. For the same reason, we,
of course, disallow A to make the initial helper-key reveal query for id⋆.

Selective Security and CCA Security. The selective-identity CPA security is analogously
defined. The only exception is that A should send a challenge identity and time (id⋆, t⋆) to C
before receiving a master public key pp. Moreover, CCA security is also defined by allowing A to
submit the following decryption query: upon a query (id, t, ctid,t) (̸= (id⋆, t⋆, ct⋆id⋆,t⋆)) from A, C
returns Decrypt(pp, dkid,T0(t), ctid,t) to A.

Remark 2 (Weak vs. Strong Security). The security defined above is referred to as the strong
security [DKXY02, HHSI05], which is the standard security requirement in key-insulated cryptog-
raphy in the sense that A is allowed to get helper keys at a higher level than the special level ℓ⋆. In
the weak security definition, the special level ℓ⋆ turns to the threshold level ℓ⋆. Namely, A cannot
get any helper keys at level ℓ ∈ [ℓ⋆, L]. As we claimed earlier, Bellare and Palacio’s work [BP06]
implies that any HIBE scheme can be transformed into an HKIBE scheme with weak security.

11

Level Elements 1st component 2nd component

L hk
(L)
id,TL(t)

SKid

[
MSK∏

i∈[0,L−1] M̂SKid,i

]
—

↓ delegated from id to (id,TL−1(t))

L− 1 hk
(L−1)
id,TL−1(t)

SK(id,TL−1(t))

[
MSK∏

i∈[0,L−2] M̂SKid,i

]
EvalMSK←−−−−−−−−−−−−−−−−−−−− M̂SKid,L−1

↓ delegated from (id,TL−1(t)) to (id,T[L−1,L−2](t))

· · ·
..
.

..

.
..
.

↓ delegated from (id,T[L−1,2](t)) to (id,T[L−1,1](t))

1 hk
(1)
id,T1(t)

SK(id,T[L−1,1](t))

[
MSK

M̂SKid,0

]
EvalMSK←−−−−−−−−−−−−−−−−−−−− M̂SKid,1

↓ delegated from (id,T[L−1,1](t)) to (id,T[L−1,0](t))

0 dkid,T0(t) SK(id,T[L−1,0](t))
[MSK]

EvalMSK←−−−−−−−−−−−−−−−−−−−− M̂SKid,0

CT ctid,t C(id,T[L−1,0](t))

Figure 1: The intuition of our first construction.

Remark 3 (A Variant of Security Definition). One may consider a stronger variant of our security
definition so that A can designate a derivation path of helper keys with a key-insulation query on

(id, t, ℓ); that is, A is allowed to designate how the helper key hk
(ℓ)
id,Tℓ(t)

is derived. Since such a
strong notion makes formalization complicated, we do not consider it for simplicity. Nevertheless,
our constructions satisfy such a strong definition.

4 Generic Construction from HIBE with MSK Evaluatability

We propose a generic construction of an HKIBE scheme with key-insulation depth L from an HIBE
scheme with identity depth L+ 1 supporting MSK evaluatability. We assume that I, T0, . . . , TL ⊆
Ihibe holds, where Ihibe is an element identity space of HIBE.

4.1 Construction Idea

The basic idea is quite simple: to encrypt a message M with an identity id and time t, run
the HIBE encryption algorithm Enc with M and a hierarchical identity (id,T[L−1,0](t)) (i.e.,
ctid,t := C(id,T[L−1,0](t))). Therefore, to make the decryption procedure consistent, we set a decryp-

tion key dkid,T0(t) ∈ SK(id,T[L−1,0](t)). However, if we set each helper key hk
(ℓ)
id,Tℓ(t)

:= SK(id,T[L−1,ℓ](t))

similarly, the resultant construction is the same as Bellare and Palacio’s transformation [BP06] men-
tioned in Remark 2; it does not achieve strong security. Our construction’s core spirit is that we

use L pseudo-MSKs M̂SKid,0, . . . , M̂SKid,L−1 to mask the highest-level helper key hk
(L)
id,TL(t)

and

gradually remove them with EvalMSK as the hierarchy of key-insulation levels is lowered.9 More
specifically, when executing GenHK with any id, we mask the true MSK MSK with all the pseudo-

MSKs M̂SKid,0, . . . , M̂SKid,L−1 (in the fraction form) and set the highest-level helper key hk
(L)
id,0 as

9Note that HKIBE is IBE with hierarchical key insulation, not HIBE with key insulation.

12

SKid[MSK/
∏L−1

i=0 M̂SKid,i]. Besides, for every ℓ ∈ [0, L − 1], an level-ℓ helper key hk
(ℓ)
id,tℓ

contains

the pseudo-MSK M̂SKid,ℓ and is updated in the following two steps.

(1) Run GenSK with its higher-level helper key hk
(ℓ+1)
id,tℓ+1

= SK(id,T[L−1,ℓ+1](t))[MSK/
∏ℓ

i=0 M̂SKid,i]

to obtain SK(id,T[L−1ℓ](t))[MSK/
∏ℓ

i=0 M̂SKid,i].

(2) Run EvalMSK with the obtained key SK(id,T[L−1,ℓ](t))[MSK/
∏ℓ

i=0 M̂SKid,i], the level-ℓ pseudo-

MSK M̂SKid,ℓ, and lab = mul to get SK(id,T[L−1,ℓ](t))[MSK/
∏ℓ−1

i=0 M̂SKid,i], which is set as an

updated level-ℓ helper key hk
(ℓ)
id,Tℓ(t)

.

In the end, the mask is entirely removed at the lowest level, i.e., dkid,T0(t) ∈ SK(id,T[L−1,0](t))[MSK].
We illustrate the idea in Figure 1. As can be seen above, all the masks cannot be removed unless
an adversary gets secret keys at all levels; the adversary is not allowed to do so due to the security
definition (i.e., there exists a special level ℓ⋆ that the adversary cannot access).

4.2 Construction

Our HKIBE scheme Π = (Setup,Encrypt,GenHK,KeyUp,Upd,Decrypt) from an HIBE scheme Σ =
(Init,Enc,GenSK,Dec,SampMSK,EvalMSK) is as follows.

• Setup(1λ, L) → (pp,mk): Run (MPK,MSK) ← Init(1λ, L + 1), then output pp := MPK and
mk := MSK.

• Encrypt(pp, id, t,M)→ ctid,t: Parse pp = MPK. Run

· C(id,T[L−1,0](t)) ← Enc(MPK, (id,T[L−1,0](t)),M)

and output ctid,t := C(id,T[L−1,0](t)).

• GenHK(pp,mk, id) → (hk
(ℓ)
id,0)ℓ∈[0,L]: Parse pp = MPK and mk = MSK. First, compute

M̂SKid,ℓ ← SampMSK(MPK) for ℓ ∈ [0, L− 1]. Then, for ℓ ∈ [0, L], run

SKid

[
MSK∏

i∈[0,L−1] M̂SKid,i

]
← GenSK

(
MPK, MSK∏

i∈[0,L−1] M̂SKid,i

, id

)
if ℓ = L,

SK(id,T[L−1,ℓ](0))

[
MSK∏

i∈[0,ℓ−1] M̂SKid,i

]
← GenSK

(
MPK, MSK∏

i∈[0,ℓ−1] M̂SKid,i

, (id,T[L−1,ℓ](0))

)
if ℓ ∈ [L− 1],

SK(id,T[L−1,0](0))[MSK]← GenSK
(
MPK,MSK, (id,T[L−1,0](0))

)
if ℓ = 0.

Note that without loss of generality, we assume 0 ∈ Tact to describe initial helper keys simply.

Output (hk
(ℓ)
id,0)ℓ∈[0,L], where

– hk
(L)
id,0 := SKid

[
MSK∏

i∈[0,L−1] M̂SKid,i

]
,

– hk
(ℓ)
id,0 :=

(
M̂SKid,ℓ, SK(id,T[L−1,ℓ](0))

[
MSK∏

i∈[0,ℓ−1] M̂SKid,i

])
for ℓ ∈ [L− 1].

– hk
(0)
id,0(= dkid,0) :=

(
M̂SKid,0,SK(id,T[L−1,0](0))

)
.

• KeyUp(pp, t, hk
(ℓ+1)
id,tℓ+1

)→ ku
(ℓ)
id,Tℓ(t)

or ⊥: If tℓ+1 ̸= Tℓ+1(t), output ⊥. Otherwise, parse

▷ pp = MPK

13

▷ hk
(ℓ+1)
id,tℓ+1

=

(
M̂SKid,ℓ+1, SK(id,T[L−1,ℓ+1](t))

[
MSK∏

i∈[0,ℓ] M̂SKid,i

])
.

Run

· SK(id,T[L−1,ℓ](t))

[
MSK∏

i∈[0,ℓ] M̂SKid,i

]
← GenSK

(
MPK,SK(id,T[L−1,ℓ+1](t))

[
MSK∏

i∈[0,ℓ] M̂SKid,i

]
,
(
id,T[L−1,ℓ](t)

))
,

and output ku
(ℓ)
id,Tℓ(t)

= SK(id,T[L−1,ℓ](t))

[
MSK∏

i∈[0,ℓ] M̂SKid,i

]
.

• Upd(pp, hk
(ℓ)
id,τℓ

, ku
(ℓ)
id,tℓ

)→ hk
(ℓ)
id,tℓ

: Suppose τℓ = Tℓ(t) and tℓ = Tℓ(t
′). Parse

▷ pp = MPK,

▷ hk
(ℓ)
id,τℓ

=

(
M̂SKid,ℓ,SK(id,T[L−1,ℓ](t))

[
MSK∏

i∈[0,ℓ−1] M̂SKid,i

])
,

▷ ku
(ℓ)
id,tℓ

= SK(id,T[L−1,ℓ](t
′))

[
MSK∏

i∈[0,ℓ] M̂SKid,i

]
.

Run

· SK(id,T[L−1,ℓ](t
′))

[
M̂SKid,ℓ

]
← GenSK

(
MPK, M̂SKid,ℓ,

(
id,T[L−1,ℓ](t

′)
))

,

· SK(id,T[L−1,ℓ](t
′))

[
MSK∏

i∈[0,ℓ−1] M̂SKid,i

]
← EvalMSK

(
MPK,SK(id,T[L−1,ℓ](t

′))

[
MSK∏

i∈[0,ℓ] M̂SKid,i

]
,SK(id,T[L−1,ℓ](t

′))

[
M̂SKid,ℓ

]
, mul

)
,

Output hk
(ℓ)
id,tℓ

:=

(
M̂SKid,ℓ,SK(id,T[L−1,ℓ](t

′))

[
MSK∏

i∈[0,ℓ−1] M̂SKid,i

])
.

As the special case for ℓ = 0, hk
(0)
id,t0

:= (M̂SKid,0,SK(id,T[L−1,0](t
′))).

• Decrypt(pp, dkid,T0(t), ctid,t)→ M: Parse

▷ pp = MPK,

▷ dkid,T0(t) = hk
(0)
id,T0(t)

= (M̂SKid,0, SK(id,T[L−1,0](t))),

▷ ctid,t = C(id,T[L−1,0](t)).
Run and output

– M← Dec(MPK, SK(id,T[L−1,0](t)),C(id,T[L−1,0](t))).

Correctness. Thanks to the evaluation correctness of MSK evaluatability, decryption keys of our
HKIBE scheme follow the same distributions as those of the underlying HIBE scheme; hence, the
correctness of our HKIBE scheme readily follows from that of the underlying HIBE scheme.

4.3 Security

The security of the HKIBE scheme is reduced to from that of the underlying HIBE scheme sup-
porting MSK evaluatability.

Theorem 1. If the underlying HIBE scheme with hierarchical depth L + 1 supporting MSK
evaluatability satisfies adaptive security, then the above HKIBE scheme with hierarchical depth
L also satisfies adaptive security. Specifically, if there exists an adversary A to break adap-
tive security of the above HKIBE scheme with advantage AdvHKIBEΠ,L,A(λ), then there exists a re-
duction algorithm B to break adaptive security of the underlying HIBE scheme with advantage
AdvHIBEΣ,L+1,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(QL), where Q denotes the number of helper-key generation queries.

14

Proof Overview. First of all, we divide A’s attack strategy into L + 1 types with respect to a
special hierarchical level ℓ⋆ ∈ [0, L] defined in the key-insulation query. Let Aℓ⋆ be an adversary
A that makes key-insulation queries so that there exists a special level ℓ⋆. Since this covers all
the possible strategies, the proof against a fixed Aℓ⋆ is sufficient for a proof against A of a general
strategy with Θ(L) reduction loss.

Now, we use Aℓ⋆ as a building block and construct a reduction algorithm Bℓ⋆ against the
underlying HIBE scheme. The main observation is that Bℓ⋆ can answer all Aℓ⋆ ’s queries by making
HIBE secret-key reveal queries for the corresponding identity, say, (id,T[L−1,ℓ](t)), as long as it
holds

(id,T[L−1,ℓ](t)) /∈ prefix+((id⋆,T[L−1,0](t
⋆))) (1)

even without the knowledge of the challenge tuple (id⋆, t⋆). Obviously, Bℓ⋆ answers all queries
for id (̸= id⋆) by making HIBE secret-key reveal queries since such a case always satisfies the
condition (1). Therefore, the challenge is how Bℓ⋆ answers Aℓ⋆ ’s queries for id⋆, which might not

meet the condition (1). Roughly speaking, we look at the MSK-part of (hk
(ℓ)
id⋆,0)ℓ∈[0,L] differently:

In the construction, for every ℓ ∈ [0, L], the MSK-part of hk
(ℓ)
id⋆,0 is MSK/

∏
i∈[0,ℓ−1] M̂SKid⋆,i, where

M̂SKid⋆,0, . . . , M̂SKid⋆,L−1 are pseudo-MSKs for id⋆. In this proof, Bℓ⋆ samples a level-ℓ pseudo-

MSK M̂SKid⋆,ℓ for ℓ ∈ [0, L] \ {ℓ⋆}. Note that M̂SKid⋆,L is picked instead of M̂SKid⋆,ℓ⋆ . Then,

Bℓ⋆ (implicitly) sets M̂SKid⋆,ℓ⋆ := MSK/
∏

i∈[0,L]\{ℓ⋆} M̂SKid⋆,i. All the above pseudo-MSKs are
properly distributed. A key-insulation query (id⋆, t, ℓ) that contradicts the condition (1) satisfies
Tℓ(t) = Tℓ(t

⋆) and ℓ ∈ [ℓ⋆ + 1, L] since a query that satisfies Tℓ(t) = Tℓ(t
⋆) is not allowed for

ℓ ∈ [0, ℓ⋆ − 1] by definition. Indeed, Bℓ⋆ can answer such a query since the corresponding helper

key hk
(ℓ)
id⋆,Tℓ(t)

can be computed with only the above pseudo-MSKs by Bℓ⋆ itself. In particular, the
distribution of the helper keys is identically distributed as that of helper keys created as in the
construction thanks to pseudo-MSK indistinguishability in Def. 2. Note that Aℓ⋆ does not make
any key-insulation query for ℓ⋆ by definition. On the other hand, a key-insulation query (id⋆, t, ℓ)
for ℓ ∈ [0, ℓ⋆ − 1] such that Tℓ(t) ̸= Tℓ(t

⋆) satisfies the condition (1). Therefore, Bℓ⋆ makes an
HIBE secret-key reveal query on (id⋆,T[L−1,ℓ](t)) to get SK(id⋆,T[L−1,ℓ](t))[MSK], and runs EvalMSK

to return hk
(ℓ)
id⋆,Tℓ to Aℓ⋆ . The output is properly distributed thanks to the evaluation correctness

in Def. 2.
The above simulation can be done only when Bℓ⋆ knows id⋆ (i.e., selective security). Nonethe-

less, it is applicable even to adaptive security by guessing when the target identity id⋆ is queried at
the beginning of the game: let idq be an identity on which Aℓ⋆ makes q-th helper-key generation
query, and Bℓ⋆ first guesses the number Q⋆ ∈ [Q] such that idQ⋆ = id⋆ with Θ(Q) reduction
loss.10 Then, Bℓ⋆ sets the pseudo-MSKs for idQ⋆ as above, instead of id⋆, although it will turn out
idQ⋆ = id⋆ after the challenge query.

Theorem 1. We formally describe the proof as follows. As above, let Bℓ⋆ be a reduction algorithm
against the underlying HIBE scheme. We show how to construct Bℓ⋆ by using Aℓ⋆ as follows. First
of all, please keep in mind that Bℓ⋆ will set

(id⋆,T[L−1,0](t
⋆))

10Strictly speaking, we have to consider the case of Q⋆ = 0, which means the adversary never makes a helper-key
generation query (and the corresponding queries) on id⋆. Since we can consider such an adversary as AL+1 and give
a proof in a similar way, we omit the proof.

15

as the challenge identity in the HIBE security game. Therefore, Bℓ⋆ does not make HIBE secret-key
reveal queries on the challenge identity itself and its prefix identities during the game. At first,
Bℓ⋆ is given an HIBE’s master public key MPK from an HIBE challenger C. Then, Bℓ⋆ initializes
HKList = ∅ and sends pp := MPK to an HKIBE adversary Aℓ⋆ .

Let idq be an identity on which Aℓ⋆ makes a q-th helper-key generation query. Then, Bℓ⋆
guesses the number Q⋆ ∈ [Q] such that idQ⋆ = id⋆. If the guess is incorrect, Bℓ⋆ outputs a random
bit and aborts the game. The guess is correct with probability 1/Q. In the following, we assume
that the guess is correct.

Bℓ⋆ answers Aℓ⋆ ’s queries by interacting with C as follows:

Helper-Key Generation Query: Upon a query idq from Aℓ⋆ , Bℓ⋆ checks if (id, ·) /∈ HKList

holds, and returns ⊥ to Aℓ⋆ if this is not the case. Otherwise, Bℓ⋆ proceeds as follows:

Case for q ̸= Q⋆: Bℓ⋆ makes secret-key reveal queries on ((idq,T[L−1,ℓ](0)))ℓ∈[0,L] and receives
(SK(idq ,T[L−1,ℓ](0)))ℓ∈[0,L].

11 Bℓ⋆ runs

– M̂SKidq ,ℓ ← SampMSK(MPK) for ℓ ∈ [0, L− 1]
Then, for ℓ ∈ [1, L], Bℓ⋆ executes

– SK(idq ,T[L−1,ℓ](0))

[∏
i∈[0,ℓ−1] M̂SKidq ,i

]
← GenSK(MPK,

∏
i∈[0,ℓ−1] M̂SKidq ,i,

(idq,T[L−1,ℓ](0))),

– SK(idq ,T[L−1,ℓ](0))

[
MSK∏

i∈[0,ℓ−1] M̂SKidq,i

]
← EvalMSK(MPK,SK(idq ,T[L−1,ℓ](0)),SK(idq ,T[L−1,ℓ](0))

[∏
i∈[0,ℓ−1] M̂SKidq ,i

]
, div),

and stores an initial helper key (idq, (hk
(ℓ)
idq ,0

)ℓ∈[0,L]) in HKList, where

– hk
(L)
idq ,0

:= SKidq

[
MSK∏

i∈[0,L−1] M̂SKidq,i

]
,

– hk
(ℓ)
idq ,0

:=

(
M̂SKidq ,ℓ, SK(idq ,T[L−1,ℓ](0))

[
MSK∏

i∈[0,ℓ−1] M̂SKidq,i

])
for ℓ ∈ [0, L− 1].

Observe that the helper keys created by Bℓ⋆ are properly distributed as follows: For every

ℓ ∈ [1, L], SK(idq ,T[L−1,ℓ](0))

[
MSK/

∏
i∈[0,L−1] M̂SKidq ,i

]
, which is the component of the level-ℓ

helper key hk
(ℓ)
idq ,0

, is created by running

– SK(idq ,T[L−1,ℓ](0))

[
MSK∏

i∈[0,L−1] M̂SKidq,i

]
← GenSK

(
MPK, MSK∏

i∈[0,L−1] M̂SKidq,i

, (idq,T[L−1,ℓ](0))

)
,

in the construction while Bℓ⋆ runs EvalMSK algorithm in the reduction. Thanks to the

evaluation correctness in Def. 2, the both of SK(idq ,T[L−1,ℓ](0))[MSK/
∏

i∈[0,L−1] M̂SKidq ,i] follow

the same distribution. Note that the case for ℓ = 0 (i.e., SK(idq ,T[L−1,0](0))) is the same
procedure as in the construction.

Case for q = Q⋆: Bℓ⋆ runs

– M̂SKidQ⋆ ,ℓ ← SampMSK(MPK) for ℓ ∈ [0, L] \ {ℓ⋆},

– SK(idQ⋆ ,T[L−1,ℓ](0))

[∏
i∈[ℓ,L] M̂SKidQ⋆ ,i

]
← GenSK

(
MPK,

∏
i∈[ℓ,L] M̂SKidQ⋆ ,i, (idQ⋆ ,T[L−1,ℓ](0))

)
for ℓ ∈ [ℓ⋆ + 1, L],

11In the following, we use (id,T[L−1,L](t)) as the alternative expression of id for compact notation. Similarly, we

suppose
∏

i∈[0,−1] M̂SKid,i := 1.

16

and stores a part of an initial helper key (idQ⋆ , (hk
(ℓ)
idQ⋆ ,0)ℓ∈[ℓ⋆+1,L], (M̂SKidQ⋆ ,ℓ)ℓ∈[0,ℓ⋆]) in

HKList, where

– hk
(ℓ)
idQ⋆ ,0 :=

(
M̂SKidQ⋆ ,ℓ,SK(idQ⋆ ,T[L−1,ℓ](0))

[∏
i∈[ℓ,L] M̂SKidQ⋆ ,i

])
for ℓ ∈ [ℓ⋆ + 1, L],

Bℓ⋆ does not create the rest of the initial helper key (hk
(ℓ)
id⋆,0)ℓ∈[0,ℓ⋆] at this point, and on

key-insulation query, helper keys for any t ∈ Tact and ℓ ∈ [0, ℓ⋆− 1] will be computed directly
from the pseudo-MSKs, not the corresponding initial helper keys.

We show that the level-ℓ helper keys for ℓ ∈ [ℓ⋆ + 1, L] and the pseudo-MSKs created above
and are properly distributed as follows. Since the above procedure is the same as that of the
construction if ℓ⋆ = L, we consider the case for ℓ⋆ ̸= L. In the case, Bℓ⋆ implicitly sets

– M̂SKidQ⋆ ,ℓ = M̂SKidQ⋆ ,ℓ for ℓ ∈ [0, L] \ {ℓ⋆},

– M̂SKidQ⋆ ,ℓ⋆ = MSK∏
i∈[0,L]\{ℓ⋆} M̂SKidQ⋆,i

.

Case for ℓ ∈ [0, ℓ⋆ − 1]: The level-ℓ pseudo-MSK MSKidQ⋆ ,ℓ = M̂SKidQ⋆ ,ℓ is created in the
same way as the construction by running SampMSK algorithm.

Case for ℓ⋆: The level-ℓ⋆ pseudo-MSK M̂SKidQ⋆ ,ℓ⋆ is created by running SampMSK algo-

rithm in the construction (i.e., M̂SKidQ⋆ ,ℓ⋆ is the output of SampMSK). In the reduction,

we assume that the level-ℓ⋆ pseudo-MSK is M̂SKidQ⋆ ,ℓ⋆ = MSK/
∏

i∈[0,L−1]\{ℓ⋆} M̂SKidQ⋆ ,i

although Bℓ⋆ does not compute it explicitly. Thanks to the pseudo-MSK indistinguisha-

bility in Def. 2, the level-ℓ⋆ pseudo-MSK M̂SKidQ⋆ ,ℓ⋆ follows the same distribution as the
construction.

Case for ℓ ∈ [ℓ⋆ + 1, L]: First of all, the main component

SKidQ⋆ [MSK/
∏

i∈[0,L−1] M̂SKidQ⋆ ,i] of level-L helper key hk
(L)
idQ⋆ ,0 is created by

∗ SKidQ⋆

[
MSK∏

i∈[0,L−1] M̂SKidQ⋆,i

]
← GenSK

(
MPK, MSK∏

i∈[0,L−1] M̂SKidQ⋆,i

, idQ⋆

)
in the construction. The difference between the construction and the reduction is that
the MSK-part MSK/

∏
i∈[0,L−1] M̂SKidQ⋆ ,i is replaced by the pseudo-MSK M̂SKidQ⋆ ,L.

Observe that

MSK∏
i∈[0,L−1] M̂SKidQ⋆ ,i

=
MSK

M̂SKidQ⋆ ,ℓ⋆ ·
∏

i∈[0,L−1]\{ℓ⋆} M̂SKidQ⋆ ,i

=
MSK

(MSK/
∏

i∈[0,L]\{ℓ⋆} M̂SKidQ⋆ ,i) ·
∏

i∈[0,L−1]\{ℓ⋆} M̂SKidQ⋆ ,i

= M̂SKidQ⋆ ,L.

Therefore, thanks to the evaluation correctness in Def. 2, the level-L helper key follows
the same distribution as in the construction. Similarly, for ℓ ∈ [ℓ⋆ + 1, L − 1] the main

component of level-ℓ helper key hk
(ℓ)
idQ⋆ ,0 is SKidQ⋆ [MSK/

∏
i∈[0,ℓ−1] M̂SKidQ⋆ ,i] in the

construction, and its MSK-part is replaced with
∏

i∈[ℓ,L] M̂SKidQ⋆ ,i in the reduction. It is
easy to see that the level-ℓ helper key follows the same distribution as in the construction
thanks to the evaluation correctness in Def. 2.

Initial Helper-Key Reveal Queries: Upon a query idq from Aℓ⋆ , Bℓ⋆ finds (hk
(ℓ)
idq ,0

)ℓ∈[0,L] from

HKList and returns (hk
(ℓ)
idq ,0

)ℓ∈[0,L] to Aℓ⋆ . Bℓ⋆ can answer all Aℓ⋆ ’s queries since Aℓ⋆ does not make
the query on id⋆ (= idQ⋆) due to the restriction in the query.

17

Key-Insulation Query: Upon a query (idq, t, ℓ) from Aℓ⋆ , Bℓ⋆ proceeds as follows:

Case for idq ̸= idQ⋆ : Bℓ⋆ finds the initial helper keys (hk
(ℓ)
idq ,0

)ℓ∈[0,L] from HKList and creates

hk
(ℓ)
idq ,Tℓ(t)

in the same way as the construction.

Case for idq = idQ⋆ : Due to the Type-ℓ⋆ strategy and the restriction on the special level ℓ⋆, Aℓ⋆

does not make any key-insulation queries on ℓ = ℓ⋆. Bℓ⋆ finds a part of the initial helper key

((hk
(ℓ)
idQ⋆ ,0)ℓ∈[ℓ⋆+1,L], (M̂SKidQ⋆ ,ℓ)ℓ∈[0,ℓ⋆]) from HKList and performs as follows:

Level-ℓ for ℓ ∈ [ℓ⋆ + 1, L]: Bℓ⋆ creates hk
(ℓ)
idQ⋆ ,Tℓ(t)

in the same way as the construction.

Level-ℓ for ℓ ∈ [0, ℓ⋆ − 1]: Bℓ⋆ first makes an HIBE secret-key reveal query on

(idQ⋆ ,T[L−1,ℓ](t)) and receives SK(idQ⋆ ,T[L−1,ℓ](t)) from C. Then, Bℓ⋆ uses (M̂SKidQ⋆ ,i)i∈[0,ℓ−1]
to run

– SK(idQ⋆ ,T[L−1,ℓ](t))

[∏
i∈[0,ℓ−1] M̂SKidQ⋆ ,i

]
← GenSK(MPK,

∏
i∈[0,ℓ−1] M̂SKidQ⋆ ,i, (idQ⋆ ,T[L−1,ℓ](t))),

– SK(idQ⋆ ,T[L−1,ℓ](t))

[
MSK∏

i∈[0,ℓ−1] M̂SKidQ⋆,i

]
← EvalMSK(MPK, SK(idQ⋆ ,T[L−1,ℓ](t)),SK(idQ⋆ ,T[L−1,ℓ](t))

[∏
i∈[0,ℓ−1] M̂SKidQ⋆ ,i

]
,

div).

Finally, Bℓ⋆ returns

hk
(ℓ)
idQ⋆ ,t =

M̂SKidQ⋆ ,ℓ,SK(idQ⋆ ,T[L−1,ℓ](t))

 MSK∏
i∈[0,ℓ−1] M̂SKidQ⋆ ,i

to Aℓ⋆ . Observe that the level-ℓ helper key is properly distributed thanks to the evaluation
correctness in Def. 2.

Challenge Query: Upon a query (id⋆, t⋆,M⋆
0,M

⋆
1) from Aℓ⋆ such that |M⋆

0| = |M⋆
1|, Bℓ⋆

makes a challenge query on ((id⋆,T[L−1,0](t
⋆)),M⋆

0,M
⋆
1) and receives an HIBE challenge cipher-

text C(id⋆,T[L−1,0](t
⋆)). Then, Bℓ⋆ sends an HKIBE challenge ciphertext ctid⋆,t⋆ := C(id⋆,T[L−1,0](t

⋆))

to Aℓ⋆ .

Observe that C(id⋆,T[L−1,0](t
⋆)) is created in the same way as the construction.

After Bℓ⋆ receives a bit b′ from Aℓ⋆ , Bℓ⋆ sends C β′ := b′ as its own guess.

The above completes the description of Bℓ⋆ . Observe that Bℓ⋆ can make all A’s queries with C.
Bℓ⋆ makes the HIBE challenge query on

(id⋆,T[L−1,0](t
⋆)),

while Bℓ⋆ makes HIBE secret-key reveal queries on the following identity idq (q ∈ [Q]):

• For all q ∈ [Q]\{Q⋆}, we have idq /∈ prefix+((id⋆,T[L−1,0](t
⋆))). Therefore, Bℓ⋆ can make the

HIBE secret-key reveal queries on (idq,T[L−1,ℓ](0))ℓ∈[0,L] for the helper-key generation query
on idq (if Bℓ⋆ ’s guess of the number Q⋆ is correct).

• For q = Q⋆ (i.e., idq = idQ⋆ = id⋆), Aℓ⋆ might make a key-insulation query on
(idQ⋆ ,T[L−1,ℓ](t)) for t ∈ Tact and ℓ ∈ [0, ℓ⋆ − 1]. Bℓ⋆ can make the HIBE secret-key genera-
tion query on (idQ⋆ ,T[L−1,ℓ](t)) since it holds (idQ⋆ ,T[L−1,ℓ](t)) /∈ prefix+((id⋆,T[L−1,0](t

⋆)))
due to the restriction on the special level ℓ⋆.12

12For ℓ ∈ [ℓ⋆ + 1, L], Bℓ⋆ can respond to the key-insulation query by itself since hk
(ℓ)

id,Tℓ(t)
does not contain the

true-MSK.

18

As we already observed, Bℓ⋆ perfectly simulates the adaptive security game against Aℓ⋆ with proba-
bility 1/Q. Since the probability that β′ is a correct guess is the same as that of b′, Bℓ⋆ ’s advantage
is AdvHKIBEΠ,L,Aℓ⋆

(λ) = Q · AdvHIBEΣ,L+1,Bℓ⋆ (λ).

Therefore, B’s advantage against A of general attack strategy is AdvHKIBEΠ,L+1,A(λ) =
∑

ℓ⋆∈[0,L]Q ·
AdvHKIBEΠ,L,Aℓ⋆

(λ) ≤ Q(L+ 1) · AdvHIBEΣ,L,B(λ).

If the underlying HIBE scheme is selectively secure, our HKIBE scheme then satisfies selective
security. Similarly, if the underlying HIBE scheme is CCA-secure, our HKIBE scheme meets CCA
security. We omit the proofs since they can be done in the same manner as Theorem 1.

Corollary 1. If the underlying HIBE scheme with hierarchical depth L+1 supporting MSK evalu-
atability satisfies selective security, then the above HKIBE scheme with hierarchical depth L also sat-
isfies selective security. Specifically, if there exists an adversary A to break selective security of our
HKIBE scheme with advantage AdvHKIBEΠ,L,A(λ), then there exists a reduction algorithm B to break se-

lective security of the underlying HIBE scheme with advantage AdvHIBEΣ,L+1,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(L).

Corollary 2. If the underlying HIBE scheme with hierarchical depth L+ 1 supporting MSK eval-
uatability satisfies (adaptive) CCA security, then the above HKIBE scheme with hierarchical depth
L also satisfies (adaptive) CCA security. Specifically, if there exists an adversary A to break
adaptive CCA security of our HKIBE scheme with advantage AdvHKIBEΠ,L,A(λ), then there exists a re-
duction algorithm B to break adaptive CCA security of the underlying HIBE scheme with advantage
AdvHIBEΣ,L+1,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(QL).

5 Generic Construction from Plain HIBE

We provide a generic construction of an HKIBE scheme with depth L from any plain HIBE scheme
with depth L+1. This construction is based on Hanaoka et al.’s HKIBE scheme [HHSI05], and can
be easily extended to an adaptive-identity CCA secure scheme (see Section 5.4). We suppose that
the first ⌈log(L+1)⌉ bits of each identity of our HKIBE scheme is used for indicating the hierarchical
level ℓ, and the rest expresses the identity (i.e., ℓ∥id ∈ Ihibe ≈ [0, L]× I). For instance, if the bit-
length of identities in the underlying HIBE scheme is 256 bits and L = 250 (i.e., ⌈log(L+1)⌉ = 8),
then the identity in our HKIBE scheme is 248 bits.

5.1 Construction Idea

The aim of our second construction is to get rid of MSK evaluatability from the first construction
while keeping the security. The basic idea is to employ an (L + 1)-out-of-(L + 1) secret sharing
scheme for plaintexts, where as the first construction employs it for MSK-parts of helper keys.
Specifically, this construction’s core spirit is that a ciphertext ctid,t consists of L + 1 HIBE ci-
phertexts ((C(ℓ∥id,T[ℓ−1,0](t))ℓ∈[L],C0∥id), where the first L ciphertexts are encryptions of uniformly

random pseudo-plaintexts (Mℓ)ℓ∈[L] and the last ciphertext is an encryption of the plaintext masked
with all pseudo-plaintexts M

⊕
ℓ∈[L]Mℓ. The plaintext and all pseudo-plaintexts can be viewed as

shares of an (L+ 1)-out-of-(L+ 1) secret sharing scheme. We design the scheme so that each user
id can decrypt a ciphertext ctid,t only if the user is able to decrypt all the L+1 HIBE ciphertexts.
Indeed, the similar design concept is employed in the HHSI05 scheme [HHSI05]. However, our
design requires only one HIBE scheme with the hierarchical depth L+1 while the HHSI05 scheme
consists of L+1 HIBE schemes for the different depth ℓ ∈ [L+1]. This design improvement makes
master public/secret keys be constant sizes.

19

Level Elements
Components

1st 2nd · · · L-th (L+ 1)-th

L hk
(L)
id,TL(t)

SKL∥id — · · · — —

↓ delegated from L∥id to (L∥id,TL−1(t))

L− 1 hk
(L−1)
id,TL−1(t)

SK(L∥id,TL−1(t))
SKL−1∥id · · · — —

↓ ↓ delegated from L− 1∥id to (L− 1∥id,TL−2(t))

...
...

...
...

↓ ↓ · · ·

1 hk
(1)
id,T1(t)

SK(L∥id,T[L−1,1](t))
SK(L−1∥id,T[L−2,1](t))

· · · SK1∥id —

↓ ↓ · · · ↓

0 dkid,T0(t) SK(L∥id,T[L−1,0](t))
SK(L−1∥id,T[L−2,0](t))

· · · SK(1∥id,T0(t)) SK0∥id

CT ctid,t C(L∥id,T[L−1,0](t))
C(L−1∥id,T[L−2,0](t))

· · · C(1∥id,T0(t)) C0∥id

M M ML ML−1 · · · M1 M
⊕L

i=1 Mi

Figure 2: The intuition of our second construction.

We illustrate the overview in Figure 2. As mentioned above, we consider L+1 hierarchical iden-
tities for ciphertexts in the underlying HIBE scheme: (L∥id,T[L−1,0](t)), (L − 1∥id,T[L−2,0](t)),
. . ., (1∥id,T0(t)), and 0∥id. Obviously, each ciphertext C(ℓ∥id,T[ℓ−1,0](t)) of ctid,t can be de-

crypted by SK(ℓ∥id,T[ℓ−1,0](t)) of dkid,T0(t) for ℓ ∈ [0, L].13 Each helper key hk
(ℓ)
id,Tℓ(t)

includes L − ℓ

HIBE secret keys (SKj∥id,T[j−1,ℓ](t))j∈[ℓ+1,L], which are delegated from their upper-level helper keys

(SKj∥id,T[j−1,ℓ+1](t))j∈[ℓ+1,L], and a new HIBE secret key SKℓ∥id. Since there exists a special level ℓ⋆

such that no level-ℓ⋆ helper keys are compromised, an adversary does not have SKℓ⋆∥id. In addition
to this, the adversary cannot obtain any secret keys which can derive SK(ℓ⋆∥id,T[ℓ⋆,0](t

⋆)) due to the
restriction in the security game, the adversary cannot decrypt the challenge ciphertext.

5.2 Construction

Our HKIBE scheme Π = (Setup,Encrypt,GenHK,KeyUp,Upd,Decrypt) from a plain HIBE scheme
Σ = (Init,Enc,GenSK,Dec) is as follows.

• Setup(1λ, L) → (pp,mk): Run (MPK,MSK) ← Init(1λ, L + 1) and output pp := MPK and
mk := MSK.

• Encrypt(pp, id, t,M)→ ctid,t: Parse pp = MPK. Sample Mℓ ←RM for ℓ ∈ [L] and run

· C(ℓ∥id,T[ℓ−1,0](t)) ← Enc(MPK, (ℓ∥id,T[ℓ−1,0]),Mℓ) for ℓ ∈ [0, L],

then output ctid,t := (C(ℓ∥id,T[ℓ−1,0]))ℓ∈[0,L].

• GenHK(pp,mk, id)→ (hk
(0)
id,0)ℓ∈[0,L]: Parse pp = MPK andmk = MSK. For ℓ ∈ [0, L], compute

hk
(ℓ)
id,0 := (SK(i∥id,T[i−1,ℓ](0)))i∈[ℓ,L] as follows: for i ∈ [ℓ, L], run

· SK(i∥id,T[i−1,0](0)) ← GenSK(MPK,SKi∥id, (i∥id,T[i−1,0](0))).

13(0∥id,T[−1,0](t)) here means 0∥id. The rest of this paper follows from this notation for notational simplicity.
Similarly, (ℓ∥id,T[ℓ−1,ℓ](t)) means ℓ∥id for any ℓ ∈ [L].

20

Output (hk
(ℓ)
id,0)ℓ∈[0,L].

• KeyUp(pp, t, hk
(ℓ+1)
id,tℓ+1

)→ ku
(ℓ)
id,Tℓ(t)

or ⊥: Output ⊥ if tℓ+1 ̸= Tℓ+1(t). Otherwise, parse

▷ pp = MPK,

▷ hk
(ℓ+1)
id,tℓ+1

= (SK(i∥id,T[i−1,ℓ+1](t)))i∈[ℓ+1,L].
Run

· SK(i∥id,T[i−1,ℓ](t)) ← GenSK(MPK,SK(i∥id,T[i−1,ℓ+1](t)), (i∥id,T[i−1,ℓ](t))) for i ∈ [ℓ+ 1, L]

and output ku
(ℓ)
id,Tℓ(t)

:= (SK(i∥id,T[i−1,ℓ](t)))i∈[ℓ+1,L].

• Upd(pp, hk
(ℓ)
id,τℓ

, ku
(ℓ)
id,tℓ

)→ hk
(ℓ)
id,tℓ

: Suppose τℓ = Tℓ(t) and tℓ = Tℓ(t
′). Parse

▷ hk
(ℓ)
id,τℓ

= (SK(i∥id,T[i−1,ℓ](t)))i∈[ℓ,L],

▷ ku
(ℓ)
id,tℓ

= (SK(i∥id,T[i−1,ℓ](t
′)))i∈[ℓ+1,L].

Output hk
(ℓ)
id,tℓ

:= (SKℓ∥id, (SK(i∥id,T[i−1,ℓ](t
′)))i∈[ℓ+1,L]) = (SK(i∥id,T[i−1,ℓ](t

′)))i∈[ℓ,L].

• Decrypt(pp, dkid,T0(t), ctid,t)→ M: Parse

▷ pp = MPK,

▷ dkid,T0(t) = hk
(0)
id,T0(t)

= (SK(ℓ∥id,T[ℓ−1,0](t)))ℓ∈[0,L],

▷ ctid,t = (C(ℓ∥id,T[ℓ−1,0](t)))ℓ∈[0,L].

For ℓ ∈ [L], run

· Mℓ ← Dec(MPK,SK(ℓ∥id,T[ℓ−1,0](t)),C(ℓ∥id,T[ℓ−1,0](t))),
Output

– M = Dec(MPK,SK0∥id,C0∥id)
⊕

ℓ∈[L]Mℓ.

Correctness. Since ciphertexts and decryption keys of our HKIBE scheme consists of those the
underlying HIBE scheme, the correctness of the HKIBE scheme readily follows from that of the
underlying HIBE scheme.

5.3 Security

The security of the HKIBE scheme is reduced to from that of the underlying HIBE scheme.

Theorem 2. If the underlying HIBE scheme with hierarchical depth L + 1 satisfies the adaptive
security, the above HKIBE scheme with hierarchical depth L also satisfies the adaptive security.
Specifically, if there exists an adversary A to break the adaptive security of the above HKIBE
scheme with advantage AdvHKIBEΠ,L,A(λ), then there exists a reduction algorithm B to break the adaptive

security of the underlying HIBE scheme with advantage AdvHIBEΣ,L+1,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(L).

Proof Overview. In the proof, we divide A’s attack strategy into L+ 1 types and define Aℓ⋆ for
every ℓ⋆ ∈ [0, L] as in the proof of Theorem 1 with Θ(L) reduction loss. We show the proof against
Aℓ⋆ for fixed ℓ⋆.

We use Aℓ⋆ as a building block and construct a reduction algorithm Bℓ⋆ against the underlying
(plain) HIBE scheme. The challenge ciphertext for (id⋆, t⋆) includes L + 1 HIBE ciphertexts
C⋆
(L∥id⋆,T[L−1,0](t

⋆)), . . . ,C
⋆
0∥id⋆ , and one of them should be the HIBE challenge ciphertext to reduce

to adaptive security of the underlying HIBE scheme. Since Aℓ⋆ does not make any key-insulation
queries for (id⋆, t, ℓ⋆), Bℓ⋆ submits

(ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆)),

21

as the HIBE challenge identity. Therefore, Bℓ⋆ can answer all Aℓ⋆ ’s key-insulation queries,
say, (id, t, ℓ), by making HIBE secret-key reveal queries for the corresponding identities ((j∥id,
T[j−1,ℓ](t)))j∈[ℓ,L] as long as it holds

(j∥id,T[j−1,ℓ](t)) /∈ prefix+((ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆))) for all j ∈ [ℓ, L], (2)

even without the knowledge of the challenge tuple (id⋆, t⋆). Since Bℓ⋆ can obtain all HIBE secret
keys such that (ℓ, id) ̸= (ℓ⋆, id⋆) via HIBE secret-key generation queries, the condition (2) can be
more specific:

(ℓ⋆∥id⋆,T[ℓ⋆−1,ℓ](t)) /∈ prefix+((ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆))). (3)

Therefore, we should care only about the key-insulation query (id⋆, t, ℓ) that produces

(ℓ⋆∥id⋆,T[ℓ⋆−1,ℓ](t)). In the construction, only level-ℓ helper keys hk
(ℓ)
id⋆,Tℓ(t)

for ℓ ∈ [0, ℓ⋆] in-

clude HIBE secret keys for (ℓ⋆∥id⋆,T[ℓ⋆−1,ℓ](t)). All possible Aℓ⋆ ’s queries that contradict the
condition (3) are:

• the initial helper-key reveal query on id⋆;

• the key-insulation query on (id⋆, t, ℓ⋆) for any t ∈ Tact;
• the key-insulation query on (id⋆, t, ℓ) for any t ∈ Tact and any ℓ ∈ [0, ℓ⋆ − 1] such that
T[ℓ⋆−1,ℓ](t) = T[ℓ⋆−1,ℓ](t

⋆).

However, all the above queries are not allowed in the security game (see Definition 4). Thus, the
condition (3) always holds for all Aℓ⋆ ’s queries.

The remaining challenge is how Bℓ⋆ embeds the challenge plaintexts (M⋆
0,M

⋆
1) into HIBE chal-

lenge ciphertext on (ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆)). Roughly speaking, we look at the pseudo-plaintexts of

the challenge ciphertext differently: In the construction, for every ℓ ∈ [L], the HIBE ciphertext on
(ℓ∥id⋆,T[ℓ−1,0](t

⋆)) is an encryption of a level-ℓ pseudo-plaintext Mℓ ←R M and that on 0∥id⋆ is
an encryption of M

⊕
ℓ∈[L]Mℓ. In the reduction Bℓ⋆ sets each plaintext as follows:

• For ℓ ∈ [0, L] \ {ℓ⋆}, Bℓ⋆ randomly chooses a level-ℓ pseudo-plaintext M̂ℓ and sets an HIBE
ciphertext on (ℓ∥id⋆,T[ℓ−1,0](t

⋆)) is an encryption of M̂ℓ. Similarly, Bℓ⋆ randomly chooses a

level-0 pseudo-plaintext M̂0 and sets an HIBE ciphertext on 0∥id⋆ is an encryption of M̂0.

• Bℓ⋆ (implicitly) sets HIBE challenge ciphertext on (ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆)) is an encryption of

M⋆
b

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ.

All the above pseudo-plaintexts are properly distributed.

Theorem 2. We formally describe the proof as follows. Let Bℓ⋆ be a reduction algorithm against
the underlying HIBE scheme. We show how to construct Bℓ⋆ by using Aℓ⋆ as follows. At first,
Bℓ⋆ is given an HIBE’s master public key MPK from an HIBE challenger C. Then, Bℓ⋆ initializes
HKList = ∅ and sends pp := MPK to an HKIBE adversary Aℓ⋆ .

Bℓ⋆ answers Aℓ⋆ ’s queries by interacting with C as follows:
Helper-Key Generation Query: Upon a query id from Aℓ⋆ , Bℓ⋆ checks if (id, ·) /∈ HKList, and

returns ⊥ to Aℓ⋆ if this is not the case. Otherwise, Bℓ⋆ makes an HIBE secret-key query on
ℓ∥id for ℓ ∈ [0, L]\{ℓ⋆} to C, receives (SKℓ∥id)ℓ∈[0,L]\{ℓ⋆}, and stores a part of an initial helper
key (id, (SKℓ∥id)ℓ∈[0,L]\{ℓ⋆}) in HKList. Clearly, the part of the helper keys (SKℓ∥id)ℓ∈[0,L]\{ℓ⋆}
are created in the same way as the construction.

22

Initial Helper-Key Reveal Queries: Upon a query id from Aℓ⋆ , Bℓ⋆ finds (SKℓ∥id)ℓ∈[0,L]\{ℓ⋆}
from HKList. Bℓ⋆ retrieves SKℓ⋆∥id if HKList also contains it.14 If not, Bℓ⋆ makes an
HIBE secret-key reveal query on ℓ⋆∥id to get SKℓ⋆∥id and stores it in HKList together with

(SKℓ∥id)ℓ∈[0,L]\{ℓ⋆}. Then, Bℓ⋆ creates (hk
(ℓ)
id,0)ℓ∈[0,L] by using (SKℓ∥id)ℓ∈[0,L] as in the con-

struction, and returns it to Aℓ⋆ . It is obvious that hk
(ℓ⋆)
id,0 is created in the same way as the

construction.

Key-Insulation Query: Upon a query (id, t, ℓ), Bℓ⋆ makes all HIBE secret-key reveal queries

for hk
(ℓ)
id,Tℓ(t)

, i.e., queries on ((i∥id,T[i−1,ℓ](t)))i∈[ℓ,L] to get (SK(i∥id,T[i−1,ℓ](t)))i∈[ℓ,L]. Finally,

Bℓ⋆ returns hk
(ℓ)
id,Tℓ(t)

:= (SK(i∥id,T[i−1,ℓ](t)))i∈[ℓ,L] to Aℓ⋆ . It is obvious that the helper key is
properly distributed thanks to the correctness of the underlying HIBE scheme.

Challenge Query: Upon a query (id⋆, t⋆,M⋆
0,M

⋆
1) from Aℓ⋆ , Bℓ⋆ samples M̂ℓ ←R M

for ℓ ∈ [0, L] \ {ℓ⋆} and makes an HIBE challenge query on ((ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆)),

M⋆
0

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ,M

⋆
1

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ), and receives an HIBE challenge ciphertext

C⋆
(ℓ⋆∥id⋆,T[ℓ⋆−1,0](t

⋆)). Then, Bℓ⋆ runs

– C⋆
(ℓ∥id⋆,T[ℓ−1,0](t

⋆)) ← Enc(MPK, (ℓ∥id⋆,T[ℓ−1,0](t
⋆)), M̂ℓ) for ℓ ∈ [0, L] \ {ℓ⋆},

and returns (C⋆
(ℓ∥id⋆,T[ℓ−1,0](t

⋆)))ℓ∈[0,L] to Aℓ⋆ as an HKIBE challenge ciphertext.

Observe that the challenge ciphertext is properly distributed by implicitly setting

– Mℓ = M̂ℓ for ℓ ∈ [0, L] \ {ℓ⋆},
– Mℓ⋆ = M⋆

b

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ,

where b←R {0, 1}. Level-ℓ pseudo-plaintext Mℓ = M̂ℓ for ℓ ∈ [L] \ {ℓ⋆} is created in the same
way as the construction. Since the level-0 pseudo-plaintext M̂0 is uniformly distributed over
the message space of the underlying HIBE scheme, the distribution ofMℓ⋆ is independent ofM

⋆
b

and (M̂ℓ)ℓ∈[L]\{ℓ⋆}, and uniformly random in the HIBE message space as in the construction.
Therefore, the distribution of (C⋆

(ℓ∥id⋆,T[ℓ−1,0](t
⋆)))ℓ∈[L]is identical to that in the construction.

C⋆
0∥id⋆ is an encryption of M⋆

b

⊕
ℓ∈[L]Mℓ in the construction while it is an encryption of M̂0 in

the reduction. Since

M⋆
b

⊕
ℓ∈[L]

Mℓ = M⋆
b ⊕Mℓ⋆

⊕
ℓ∈[L]\{ℓ⋆}

Mℓ = M⋆
b ⊕M⋆

b

⊕
ℓ∈[0,L]\{ℓ⋆}

M̂ℓ

⊕
ℓ∈[L]\{ℓ⋆}

M̂ℓ = M̂0

holds, the distribution of C⋆
0∥id⋆ is the same as that of the construction.

After Bℓ⋆ receives b′ from Aℓ⋆ , Bℓ⋆ returns β′ ← b′ as its own guess to C.

The above completes the description of Bℓ⋆ . Observe that Bℓ⋆ can make all A’s queries with C.
Bℓ⋆ makes the HIBE challenge query on

(ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆)),

while Bℓ⋆ can make HIBE secret-key reveal queries in any case for the following reasons.

• The initial helper-key reveal query on id.

Case for id ̸= id⋆: It is obvious that Bℓ⋆ can make HIBE secret-key reveal queries on ℓ∥id
for every ℓ ∈ [0, L].

14It depends on whether id has been used for key-insulation query.

23

Case for id = id⋆: This query is not allowed in the game.

• The key-insulation query on (id, t, ℓ).

Case for id ̸= id⋆: Bℓ⋆ can make HIBE secret-key reveal queries to return hk
(ℓ)
id,Tℓ(t)

.

Case for id = id⋆: We take look at the following three cases.

Case for ℓ ∈ [ℓ⋆ + 1, L]: In this case, hk
(ℓ)
id⋆,Tℓ(t)

does not include any HIBE secret key

SK(ℓ⋆∥id⋆,T[ℓ⋆−1,ℓ](t)), which violates the condition (3), by the construction. Therefore,

Bℓ⋆ can make HIBE secret-key reveal queries on ℓ∥id and (i∥id,T[i−1,ℓ](t)) for every
i ∈ [ℓ+ 1, L].

Case for ℓ = ℓ⋆: This case never occurs due to the restriction on ℓ⋆.

Case for ℓ ∈ [0, ℓ⋆ − 1]: Since it always holds Tℓ(t) ̸= Tℓ(t
⋆) due to the restriction on

ℓ⋆, and it means that such a query always meets the condition (3). Bℓ⋆ can make
HIBE secret-key reveal queries on ℓ∥id and (i∥id,T[i−1,ℓ](t)) for every i ∈ [ℓ+1, L].

As we already observed, Bℓ⋆ perfectly simulates the adaptive security game against Aℓ⋆ . Since
the probability that β′ is a correct guess is the same as that of b′, Bℓ⋆ ’s advantage is AdvHKIBEΠ,L,Aℓ⋆

(λ) =

AdvHIBEΣ,L+1,Bℓ⋆ (λ). Therefore, B’s advantage against A of general attack strategy is AdvHKIBEΠ,L,A(λ) =∑
ℓ⋆∈[0,L] Adv

HKIBE
Π,L,Aℓ⋆

(λ) = (L+ 1) · AdvHIBEΣ,L+1,B(λ).

As in the first construction, if the underlying HIBE scheme is selectively secure, our HKIBE
scheme then satisfies selective security. We omit the proof since it can be done in the same manner
as Theorem 2.

Corollary 3. If the underlying HIBE scheme with hierarchical depth L + 1 satisfies selective se-
curity, then the above HKIBE scheme with hierarchical depth L also satisfies selective security.
Specifically, if there exists an adversary A to break selective security of our HKIBE scheme with
advantage AdvHKIBEΠ,L,A(λ), then there exists a reduction algorithm B to break selective security of the

underlying HIBE scheme with advantage AdvHIBEΣ,L+1,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(L).

5.4 Achieving CCA Security

Unlike the first construction, we cannot obtain a CCA-secure construction by just replacing the
underlying CPA-secure HIBE scheme with CCA-secure ones. The reason is that the second con-
struction require L + 1 HIBE ciphertexts for each HKIBE ciphertext, while the ciphertext of
the first construction consists of only one HIBE ciphertext. In other words, there is the fol-
lowing trivial attack: an adversary A replaces C⋆

0∥id⋆ of the challenge ciphertext ct⋆id⋆,t⋆ with

Enc(MPK, 0∥id⋆, 0|M⋆
0|) (the modified challenge ciphertext is denoted by ct′id⋆,t⋆), makes a decryp-

tion query on (id⋆, t⋆, ct′id⋆,t⋆), and receives
⊕

ℓ∈[L]Mℓ. Similarly, A replaces C⋆
(ℓ∥id⋆,T[ℓ−1,0])

of

ct⋆id⋆,t⋆ with Enc(MPK, (ℓ∥id⋆,T[ℓ−1,0]), 0
|M⋆

0|) (the modified challenge ciphertext is denoted by
ct′′id⋆,t⋆), makes a decryption query on (id⋆, t⋆, ct′′id⋆,t⋆), and receives M⋆

b

⊕
ℓ∈[L]Mℓ. Therefore,

A can get M⋆
b and win the game with probability one.

As in [HHSI05], we adopt the well-known multiple encryption approach [DK05] to achieve CCA
security.

One-Time Signature (OTS). An OTS scheme Γ consists of three algorithms (SSetup, Sign,Vrfy).

• SSetup(1λ)→ (sigk, verk): given the security parameter λ, it outputs a key pair (sigk, verk).

• Sign(sigk,M)→ σ: given the signing key sigk and a message M, it outputs a signature σ.

24

• Vrfy(verk,M, σ)→ ⊤ or ⊥: given the verification key verk, a message M, and its signature σ,
it outputs ⊤, which indicates “acceptance”, or ⊥, which indicates “rejection”.

We require that for all security parameters λ, (sigk, verk)← SSetup(1λ), and messages M, it holds
Vrfy(verk,M,Sign(sigk,M)) = ⊤ with overwhelming probability.

We define a security notion for OTS. Let Γ be an OTS scheme, and we consider a game between
an adversary F and the challenger C. The game is parameterized by the security parameter λ.
The game proceeds as follows: C first runs (sigk, verk) ← SSetup(1λ) and gives verk to A. F is
allowed to make the signature generation query only once: upon a query M from F , C returns
σ ← Sign(sigk,M) to A. F outputs (M⋆, σ⋆) and terminates. In this game, F ’s adaptive security
advantage is defined by AdvOTSΓ,F (λ) := Pr[Vrfy(verk,M⋆, σ⋆)→ ⊤∧ (M⋆, σ⋆) ̸= (M, σ)].

Definition 5 (Strong Unforgeability). We say that an OTS scheme Γ satisfies strong unforgeabil-
ity, if the advantage AdvOTSΓ,F (λ) is negligible for all PPT adversaries F .

Construction. First of all, we change the maximum hierarchy depth L+1 of the underlying HIBE
scheme to L + 2. We then modify the Encrypt and Decrypt algorithms of the second construction
as follows.
• Encrypt(pp, id, t,M)→ ctid,t: Parse pp = MPK. Generate (sigk, verk)← SSetup(1λ). Sample
Mℓ ←RM for ℓ ∈ [L] and run

· C(ℓ∥id,T[ℓ−1,0](t),verk) ← Enc(MPK, (ℓ∥id,T[ℓ−1,0], verk),Mℓ) for ℓ ∈ [L],

· C(0∥id,verk) ← Enc(MPK, (0∥id, verk),M
⊕

ℓ∈[L]Mℓ),

· σ ← Sign(sigk, (C(ℓ∥id,T[ℓ−1,0],verk))ℓ∈[0,L]),

then output ctid,t := ((C(ℓ∥id,T[ℓ−1,0],verk))ℓ∈[0,L], σ, verk). Here, (0∥id,T[−1,0], verk) means

(0∥id, verk).
• Decrypt(pp, dkid,T0(t), ctid,t)→ M: Parse

▷ pp = MPK,

▷ dkid,T0(t) = hk
(0)
id,T0(t)

= ((SK(ℓ∥id,T[ℓ−1,0](t)))ℓ∈[0,L]),

▷ ctid,t = ((C(ℓ∥id,T[ℓ−1,0],verk))ℓ∈[0,L], σ, verk).

Compute Vrfy(verk, (C(ℓ∥id,T[ℓ−1,0],verk))ℓ∈[0,L], σ). If the output is ⊥, then output ⊥. Other-

wise, for ℓ ∈ [L], run

· SK(ℓ∥id,T[ℓ−1,0](t),verk) ← GenSK(MPK, SK(ℓ∥id,T[ℓ−1,0](t)), (ℓ∥id,T[ℓ−1,0](t), verk)),

· Mℓ ← Dec(MPK,SK(ℓ∥id,T[ℓ−1,0](t),verk),C(ℓ∥id,T[ℓ−1,0](t),verk)),

Compute SK(0∥id,verk) ← GenSK(MPK,SK0∥id, (0∥id, verk)). Output

· M = Dec(MPK,SK(0∥id,verk),C(0∥id,verk))
⊕

ℓ∈[L]Mℓ.

Rest of the algorithms are the same as those of the CPA-secure construction.

Theorem 3. If the underlying HIBE scheme with hierarchical depth L + 2 satisfies (adaptive-
identity) CCA security and the underlying OTS scheme satisfies strong unforgeability, then the above
HKIBE scheme with hierarchical depth L also satisfies (adaptive-identity) CCA security. Specifi-
cally, if there exists an adversary A to break adaptive-identity CCA security of our HKIBE scheme
with advantage AdvHKIBEΠ,L,A(λ), then there exists a reduction algorithm B to break adaptive-identity

CCA security of the underlying HIBE scheme with advantage AdvHIBEΣ,L+2,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(L)
or a reduction algorithm F to break strong unforgeability of the underlying OTS scheme with ad-
vantage AdvOTSΓ,F (λ) ≥ AdvHKIBEΠ,L,A(λ).

25

Proof. First of all, we consider two types of adversaries A:
▷ A makes at least one decryption query (id, t, ctid,t) that includes valid verk⋆, which is a
challenge verification key generated at the beginning of the game.15 Here, “valid” verk⋆

means verk⋆ such that it holds Vrfy(verk⋆, (C(ℓ∥id,T[ℓ−1,0](t),verk
⋆))ℓ∈[0,L], σ) = ⊤, where ctid,t =

((C(ℓ∥id,T[ℓ−1,0](t),verk
⋆))ℓ∈[0,L], verk

⋆, σ) is a ciphertext of the decryption query.

▷ A does not make any decryption query (id, t, ctid,t) that includes valid verk⋆.

If A is the former type, we can construct a reduction algorithm F against the underlying OTS
scheme. Otherwise, i.e., if A is the latter type, we can construct a reduction algorithm B against
the underlying HIBE scheme. The rest of the proof follows from the following Lemmas 1 and 2.

Lemma 1. If there exists an adversary A to break adaptive-identity CCA security of our HKIBE
scheme with advantage AdvHKIBEΠ,L,A(λ) and A makes at least one decryption query that includes valid
verk⋆, then there exists a reduction algorithm F to break strong unforgeability of the underlying
OTS scheme with advantage AdvOTSΓ,F (λ) ≥ AdvHKIBEΠ,L,A(λ).

Proof. At first, F is given a challenge verification key verk⋆ from an OTS challenger C, and computes
(MPK,MSK)← Init(1λ, L+2). Then, F initializes HKList = ∅ and sends pp := MPK to an HKIBE
adversary A. F can answer all helper-key generation queries, initial helper-key reveal queries,
key-insulation queries, and decryption queries since F has MSK. We here explicitly describe the
challenge query.

Challenge Query: Upon a query (id⋆, t⋆,M⋆
0,M

⋆
1) from A, F samples b←R {0, 1} and M̂ℓ ←RM

for ℓ ∈ [L] and runs

– C⋆
(ℓ∥id⋆,T[ℓ−1,0](t

⋆),verk⋆) ← Enc(MPK, (ℓ∥id⋆,T[ℓ−1,0](t
⋆), verk⋆), M̂ℓ) for ℓ ∈ [L],

– C⋆
(0∥id⋆,verk⋆) ← Enc(MPK, (0∥id⋆, verk⋆),Mb

⊕
ℓ∈[L] M̂ℓ).

F then makes a signature generation query (C⋆
(ℓ∥id⋆,T[ℓ−1,0](t

⋆),verk⋆))ℓ∈[0,L] and receives σ⋆. F
returns ((C⋆

(ℓ∥id⋆,T[ℓ−1,0](t
⋆),verk⋆))ℓ∈[0,L], verk

⋆, σ⋆) to A.

At some point, A makes a decryption query (id, t, ctid,t) such that

Vrfy(verk⋆, (C(ℓ∥id,T[ℓ−1,0](t),verk
⋆))ℓ∈[0,L], σ) = ⊤,

where ctid,t = ((C(ℓ∥id,T[ℓ−1,0](t),verk
⋆))ℓ∈[0,L], verk

⋆, σ). F then outputs ((C(ℓ∥id,T[ℓ−1,0](t),verk
⋆))ℓ∈[0,L],

σ) as a forgery and terminates the game. Due to the restriction on decryption query, it holds

((C(ℓ∥id,T[ℓ−1,0](t),verk
⋆))ℓ∈[0,L], verk

⋆, σ) ̸= ((C⋆
(ℓ∥id⋆,T[ℓ−1,0](t

⋆),verk⋆))ℓ∈[0,L], verk
⋆, σ⋆).

Hence, F breaks strong unforgeability of the underlying OTS scheme, and we have AdvHKIBEΠ,L,A(λ) ≤
AdvOTSΓ,F (λ) if A queries at least one decryption query that includes valid verk⋆.

Lemma 2. If there exists an adversary A to break adaptive-identity CCA security of our HKIBE
scheme with advantage AdvHKIBEΠ,L,A(λ) and A does not make any decryption query that includes valid
verk⋆, then there exists a reduction algorithm B to break adaptive-identity CCA security of the
underlying HIBE scheme with advantage AdvHIBEΣ,L+2,B(λ) ≥ AdvHKIBEΠ,L,A(λ)/Θ(L).

15To be precise, it should be generated at the challenge phase. However, the original security game and the game
where verk⋆ is generated at the beginning of the game are identical from the viewpoint of Aℓ⋆ . Therefore, we here
consider the latter game.

26

Proof. We can prove this theorem in the same manner as Theorem 2. We divide A’s attack strategy
into L+ 1 types (with Θ(L) reduction loss), and show the proof against A of the Type-ℓ⋆ strategy
(denoted by Aℓ⋆) for fixed ℓ⋆. Let Bℓ⋆ be a reduction algorithm against the underlying HIBE
scheme. We show how to construct Bℓ⋆ by using Aℓ⋆ that does not make any decryption query that
includes valid verk⋆.

At first, Bℓ⋆ is given an HIBE’s master public key MPK from an HIBE challenger C, and
computes (sigk⋆, verk⋆)← SSetup(1λ). Then, Bℓ⋆ initializes HKList = ∅ and sends pp := MPK to an
HKIBE adversary Aℓ⋆ . Bℓ⋆ can answer all queries except for decryption and challenge queries in
the same way as in the proof of Theorem 2. Therefore, we here describe how to answer decryption
queries (that does not include valid verk⋆) and challenge query.
Decryption Query: Upon a query (id, t, ctid,t) fromAℓ⋆ , Bℓ⋆ checks the following two conditions:

▷ (id, ·) /∈ HKList,

▷ Vrfy(verk, (C(ℓ∥id,T[ℓ−1,0](t),verk))ℓ∈[0,L], σ) = ⊥,
where ctid,t = ((C(ℓ∥id,T[ℓ−1,0](t),verk))ℓ∈[0,L], verk, σ). If at least one condition holds, Bℓ⋆ returns
⊥. Otherwise, Bℓ⋆ makes HIBE secret key queries on (0∥id, verk) and (ℓ∥id,T[ℓ−1,0](t), verk)
for ℓ ∈ [L], and obtains SK(0∥id,verk) and SK(ℓ∥id,T[ℓ−1,0](t),verk) for ℓ ∈ [L]. From the assumption

that Aℓ⋆ never makes any decryption queries that include valid verk⋆, verk ̸= verk⋆ holds.
Therefore, Bℓ⋆ can get the corresponding HIBE secret keys even if (id, t) = (id⋆, t⋆) for any
decryption queries. Bℓ⋆ then runs

· Mℓ ← Dec(MPK,SK(ℓ∥id,T[ℓ−1,0](t),verk),C(ℓ∥id,T[ℓ−1,0](t),verk)) for ℓ ∈ [L],

· M := Dec(MPK,SK(0∥id,verk),C(0∥id,verk))
⊕

ℓ∈[L]Mℓ.
Bℓ⋆ returns M to Aℓ⋆ .

Challenge Query: Upon a query (id⋆, t⋆,M⋆
0,M

⋆
1) from Aℓ⋆ , Bℓ⋆ samples M̂ℓ ←R M

for ℓ ∈ [0, L] \ {ℓ⋆} and makes an HIBE challenge query on ((ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆),

verk⋆),M⋆
0

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ,M

⋆
1

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ), and receives an HIBE challenge ciphertext

C(ℓ⋆∥id⋆,T[ℓ⋆−1,0](t
⋆),verk⋆). Then, Bℓ⋆ runs

– C(ℓ∥id⋆,T[ℓ−1,0](t
⋆),verk⋆) ← Enc(MPK, (ℓ∥id⋆,T[ℓ−1,0](t

⋆), verk⋆), M̂ℓ) for ℓ ∈ [0, L] \ {ℓ⋆},
– σ⋆ ← Sign(sigk⋆, (C(ℓ∥id⋆,T[ℓ−1,0](t

⋆),verk⋆))ℓ∈[0,L]).

Finally, Bℓ⋆ returns ((C(ℓ∥id⋆,T[ℓ−1,0](t
⋆),verk⋆))ℓ∈[0,L], σ

⋆, verk⋆) to Aℓ⋆ as an HKIBE challenge
ciphertext.
Based on the same observation as in Theorem 2, the challenge ciphertext is properly dis-
tributed by implicitly setting

– Mℓ = M̂ℓ for ℓ ∈ [0, L] \ {ℓ⋆},
– Mℓ⋆ = M⋆

b

⊕
ℓ∈[0,L]\{ℓ⋆} M̂ℓ for b ∈ {0, 1}.

After Bℓ⋆ receives b′ from Aℓ⋆ , Bℓ⋆ returns β′ := b′ as its own guess to C.
As we already observed, Bℓ⋆ perfectly simulates the adaptive security game against Aℓ⋆ . Since

the probability that β′ is a correct guess is the same as that of b′, Bℓ⋆ ’s advantage is AdvHKIBEΠ,L,Aℓ⋆
(λ) =

AdvHIBEΣ,L+2,Bℓ⋆ (λ) if Aℓ⋆ does not query any decryption query that includes valid verk⋆. Thus, we set

B := (B0, . . . ,BL) and have AdvHKIBEΠ,L,A(λ) =
∑

ℓ⋆∈[0,L] Adv
HKIBE
Π,L,Aℓ⋆

(λ) ≤
∑

ℓ⋆∈[0,L] Adv
HIBE
Σ,L+2,Bℓ⋆ (λ) =

(L+ 1) · AdvHIBEΣ,L+2,B(λ).

Proof of Theorem 3. Taken together, we have AdvHKIBEΠ,L,A(λ) ≤ (L+1) ·AdvHIBEΣ,L+1,B(λ)+AdvOTSΓ,F (λ).

27

Acknowledgments: This work is supported by JST CREST Grant Number JPMJCR14D6, JSPS
KAKENHI Grant Number JP17K12697, JP18H05289, and MEXT Leading Initiative for Excellent
Young Researchers.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 6110 of Lecture Notes in Computer Science, pages 553–572.
Springer, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, Advances
in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, volume 6223 of
Lecture Notes in Computer Science, pages 98–115. Springer, 2010.

[ABC+11] Michel Abdalla, James Birkett, Dario Catalano, Alexander W. Dent, John Malone-Lee,
Gregory Neven, Jacob C. N. Schuldt, and Nigel P. Smart. Wildcarded identity-based
encryption. J. Cryptology, 24(1):42–82, 2011.

[AKA+19] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb,
Hyung-Sin Kim, David E. Culler, and Raluca Ada Popa. WAVE: A decentralized
authorization framework with transitive delegation. In 28th USENIX Security Sympo-
sium, USENIX Security’19, pages 1375–1392, Santa Clara, CA, August 2019. USENIX
Association.

[AKN07] Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key delegation for hi-
erarchical identity-based encryption. In Joachim Biskup and Javier López, editors,
Computer Security - ESORICS 2007, 12th European Symposium On Research In Com-
puter Security, Proceedings, volume 4734 of Lecture Notes in Computer Science, pages
139–154. Springer, 2007.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 223–238. Springer, 2004.

[BCHK07] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen ciphertext security from identity
based encryption. SIAM Journal on Computing, 36(5):1301–1328, 2007.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2001.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption
with efficient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
Proceedings of the 2008 ACM Conference on Computer and Communications Security,
CCS 2008, pages 417–426. ACM, 2008.

28

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
pages 535–564, Cham, 2018. Springer International Publishing.

[BP06] Mihir Bellare and Adriana Palacio. Protecting against key-exposure: strongly key-
insulated encryption with optimal threshold. Appl. Algebra Eng. Commun. Comput.,
16(6):379–396, 2006.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryp-
tion (without random oracles). In Cynthia Dwork, editor, Advances in Cryptology
– CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 290–307.
Springer Berlin Heidelberg, 2006.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against
selective opening attack. In Yuval Ishai, editor, Theory of Cryptography, TCC 2011,
volume 6597 of LNCS, pages 235–252. Springer Berlin Heidelberg, 2011.

[CDRW10] Sherman S.M. Chow, Yevgeniy Dodis, Yannis Rouselakis, and Brent Waters. Practical
leakage-resilient identity-based encryption from simple assumptions. In ACM Confer-
ence on Computer and Communications Security, CCS 2010, CCS ’10, pages 152–161,
New York, NY, USA, 2010. ACM.

[CG17] Jie Chen and Junqing Gong. ABE with tag made easy - concise framework and new
instantiations in prime-order groups. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security. Proceedings, Part II,
volume 10625 of Lecture Notes in Computer Science, pages 35–65. Springer, 2017.

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. Journal of Cryptology, 20(3):265–294, Jul 2007.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012.

[Cis14] The internet of things reference model. Technical report, Cisco, 2014.

[CW14] Jie Chen and Hoeteck Wee. Dual system groups and its applications - compact HIBE
and more. IACR Cryptology ePrint Archive, 2014:265, 2014.

[DG17a] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th International
Conference, TCC 2017, volume 10677 of Lecture Notes in Computer Science, pages
372–408. Springer, 2017.

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, volume 10401 of
Lecture Notes in Computer Science, pages 537–569. Springer, 2017.

[DK05] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple encryption.
In Joe Kilian, editor, Theory of Cryptography, volume 3378, pages 188–209. Springer
Berlin Heidelberg, 2005.

29

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In Lars R. Knudsen, editor, Advances in Cryptology - EURO-
CRYPT 2002, International Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 2332 of Lecture Notes in Computer Science, pages 65–82.
Springer, 2002.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis Villar. An
algebraic framework for Diffie-Hellman assumptions. J. Cryptology, 30(1):242–288,
2017.

[ESY16] Keita Emura, Jae Hong Seo, and Taek-Young Youn. Semi-generic transformation of
revocable hierarchical identity-based encryption and its DBDH instantiation. IEICE
Transactions, 99-A(1):83–91, 2016.

[ETW20] Keita Emura, Atsushi Takayasu, and Yohei Watanabe. Adaptively secure revocable
hierarchical ibe from k-linear assumption. IACR Cryptology ePrint Archive, 2020:886,
2020.

[GCTC16] Junqing Gong, Zhenfu Cao, Shaohua Tang, and Jie Chen. Extended dual system group
and shorter unbounded hierarchical identity based encryption. Des. Codes Cryptogra-
phy, 80(3):525–559, 2016.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS ’06, pages 89–98, New
York, NY, USA, 2006. Association for Computing Machinery.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566. Springer Berlin Heidelberg, 2002.

[GW19] Aijun Ge and Puwen Wei. Identity-based broadcast encryption with efficient revoca-
tion. In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 -
22nd IACR International Conference on Practice and Theory of Public-Key Cryptog-
raphy, Proceedings, Part I, volume 11442 of Lecture Notes in Computer Science, pages
405–435. Springer, 2019.

[HHSI05] Yumiko Hanaoka, Goichiro Hanaoka, Junji Shikata, and Hideki Imai. Identity-based
hierarchical strongly key-insulated encryption and its application. In Bimal K. Roy,
editor, Advances in Cryptology - ASIACRYPT 2005, 11th International Conference
on the Theory and Application of Cryptology and Information Security, Proceedings,
volume 3788 of Lecture Notes in Computer Science, pages 495–514. Springer, 2005.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Lars R. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, pages 466–
481, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[ISW17] Yuu Ishida, Junji Shikata, and Yohei Watanabe. CCA-secure revocable identity-based
encryption schemes with decryption key exposure resistance. IJACT, 3(3):288–311,
2017.

30

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear
subspaces. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASI-
ACRYPT 2013 - 19th International Conference on the Theory and Application of Cryp-
tology and Information Security, volume 8269 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2013.

[KHA+19] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E.
Culler. JEDI: Many-to-many end-to-end encryption and key delegation for IoT. In 28th
USENIX Security Symposium, USENIX Security 19, pages 1519–1536, Santa Clara,
CA, August 2019. USENIX Association.

[KMT19] Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu. Lattice-based revoca-
ble (hierarchical) IBE with decryption key exposure resistance. In Dongdai Lin and
Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part II,
volume 11443 of Lecture Notes in Computer Science, pages 441–471. Springer, 2019.

[Lee19] Kwangsu Lee. A generic construction for revocable identity-based encryption with
subset difference methods. IACR Cryptology ePrint Archive, 2019:798, 2019.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 318–335. Springer, 2012.

[LLP17] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based
encryption via subset difference methods. Des. Codes Cryptography, 85(1):39–76, 2017.

[LP18] Kwangsu Lee and Seunghwan Park. Revocable hierarchical identity-based encryption
with shorter private keys and update keys. Des. Codes Cryptography, 86(10):2407–2440,
2018.

[LP19] Roman Langrehr and Jiaxin Pan. Tightly secure hierarchical identity-based encryption.
In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd
IACR International Conference on Practice and Theory of Public-Key Cryptography,
Proceedings, Part I, volume 11442 of Lecture Notes in Computer Science, pages 436–
465. Springer, 2019.

[LP20] Roman Langrehr and Jiaxin Pan. Hierarchical identity-based encryption with tight
multi-challenge security. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020, pages 153–183, Cham,
2020. Springer International Publishing.

[LRW11] Allison Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage resilience
through dual system encryption. In Yuval Ishai, editor, Theory of Cryptography, volume
6597 of Lecture Notes in Computer Science, pages 70–88. Springer Berlin Heidelberg,
2011.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, Theory of

31

Cryptography, 7th Theory of Cryptography Conference, TCC 2010, volume 5978 of
Lecture Notes in Computer Science, pages 455–479. Springer, 2010.

[LW11] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryp-
tion. In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Proceedings, volume 6632 of Lecture Notes in Computer Science,
pages 547–567. Springer, 2011.

[ML19] Xuecheng Ma and Dongdai Lin. Generic constructions of revocable identity-based en-
cryption. In Zhe Liu and Moti Yung, editors, Information Security and Cryptology -
15th International Conference, Inscrypt 2019, volume 12020 of Lecture Notes in Com-
puter Science, pages 381–396. Springer, 2019.

[RLPL15] Geumsook Ryu, Kwangsu Lee, Seunghwan Park, and Dong Hoon Lee. Unbounded
hierarchical identity-based encryption with efficient revocation. In Howon Kim and
Dooho Choi, editors, Information Security Applications - 16th International Work-
shop, WISA 2015, volume 9503 of Lecture Notes in Computer Science, pages 122–133.
Springer, 2015.

[RS14] Somindu C. Ramanna and Palash Sarkar. Efficient (anonymous) compact HIBE from
standard assumptions. In Sherman S. M. Chow, Joseph K. Liu, Lucas Chi Kwong Hui,
and Siu-Ming Yiu, editors, Provable Security - 8th International Conference, ProvSec
2014. Proceedings, volume 8782 of Lecture Notes in Computer Science, pages 243–258.
Springer, 2014.

[SE13a] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation
functionalities in identity-based encryption. In Ed Dawson, editor, Topics in Cryptology
- CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, volume 7779
of Lecture Notes in Computer Science, pages 343–358. Springer, 2013.

[SE13b] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Se-
curity model and construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public-Key Cryptography - PKC 2013 - 16th International Conference on Practice
and Theory in Public-Key Cryptography. Proceedings, volume 7778 of Lecture Notes
in Computer Science, pages 216–234. Springer, 2013.

[SE15] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption:
History-free update, security against insiders, and short ciphertexts. In Kaisa Nyberg,
editor, Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, volume 9048 of Lecture Notes in Computer Science, pages 106–123.
Springer, 2015.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 457–473. Springer Berlin Heidelberg, 2005.

[SW18] Junji Shikata and Yohei Watanabe. Identity-based encryption with hierarchical key-
insulation in the standard model. Designs, Codes and Cryptography, Jun 2018.

32

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, volume
3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference. Proceedings, volume 5677 of Lecture
Notes in Computer Science, pages 619–636. Springer, 2009.

[WES17] Yohei Watanabe, Keita Emura, and Jae Hong Seo. New revocable IBE in prime-order
groups: Adaptively secure, decryption key exposure resistant, and with short public
parameters. In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 -
The Cryptographers’ Track at the RSA Conference 2017. Proceedings, volume 10159 of
Lecture Notes in Computer Science, pages 432–449. Springer, 2017.

[WLC+08] Jian Weng, Shengli Liu, Kefei Chen, Dong Zheng, and Weidong Qiu. Identity-based
threshold key-insulated encryption without random oracles. In Tal Malkin, editor, Top-
ics in Cryptology - CT-RSA 2008, The Cryptographers’ Track at the RSA Conference
2008, Proceedings, volume 4964 of Lecture Notes in Computer Science, pages 203–220.
Springer, 2008.

[WLCM06] Jian Weng, Shengli Liu, Kefei Chen, and Changshe Ma. Identity-based parallel key-
insulated encryption without random oracles: Security notions and construction. In
Rana Barua and Tanja Lange, editors, Progress in Cryptology - INDOCRYPT 2006, 7th
International Conference on Cryptology in India, Proceedings, volume 4329 of Lecture
Notes in Computer Science, pages 409–423. Springer, 2006.

[WS16] Yohei Watanabe and Junji Shikata. Identity-based hierarchical key-insulated encryp-
tion without random oracles. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano,
and Bo-Yin Yang, editors, Public-Key Cryptography - PKC 2016 - 19th IACR Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Proceedings,
Part I, volume 9614 of Lecture Notes in Computer Science, pages 255–279. Springer,
2016.

[WZH+19] ShixiongWang, Juanyang Zhang, Jingnan He, HuaxiongWang, and Chao Li. Simplified
revocable hierarchical identity-based encryption from lattices. In Yi Mu, Robert H.
Deng, and Xinyi Huang, editors, Cryptology and Network Security - 18th International
Conference, CANS 2019, Fuzhou, China, October 25-27, 2019, Proceedings, volume
11829 of Lecture Notes in Computer Science, pages 99–119. Springer, 2019.

A Overview of the Bug in the Security Proof in [SW18]

The SW18 scheme [SW18] is flawed due to improper handling of dual system encryption [Wat09].
We start from the basic concept of the dual system encryption and observe the bug in the security
proof in [SW18]. Note that the earlier version [WS16] also contains the same bug. We follow the
notations and terminologies used in the main body.

Dual System Encryption. Dual system encryption is one of the well-known techniques to
prove adaptive security of plain HIBE, and utilizes two kinds of distributions for ciphertexts and

33

secret keys. One is distributions that appear in a construction, called the normal distribution,
and the other is distributions that only appear in the security proof, called the semi-functional
distribution. Although normal secret keys can decrypt both normal and semi-functional ciphertexts,
semi-functional secret keys cannot decrypt semi-functional ciphertexts. During the security proof,
we first change a challenge ciphertext to be semi-functional, then change all secret keys queried by
an adversary to be semi-functional one by one. Essentially, the reason why the changes succeed is
that, in plain HIBE, the adversary is not allowed to query the challenge identity or its ancestors.
Since the adversary completely loses decryption capability after the changes, it is easy to replace
the underlying plaintext of the challenge ciphertext with a random one without being noticed by
the adversary.

The Overview of the Bug. To the authors’ credit, the SW18 scheme is the same as our first
construction instantiated by [RS14]. It means that the flaw is due to the proof methodology they
employed, not their construction. The proof of [SW18] employs dual system encryption in a näıve
manner; the challenge ciphertext is first changed to be semi-functional, then all helper keys and
decryption keys are changed to be semi-functional one by one. However, the latter changes failed in
the sense that the changed keys do not distribute properly as the authors expected or an adversary
is able to detect the changes. What is essential here is that the HKIBE adversary is allowed to
make key-insulation queries on the challenge identity id⋆, whereas the HIBE adversary does not
make any secret-key reveal queries on ID⋆. We explain the details below.

HIBE Proof Using Dual System Encryption. If the adversary is allowed to make a query on
the prefix of the challenge identity, the simulation fails since the randomness of the secret key
for the query would be correlated to the randomness of the challenge ciphertext. Nevertheless,
such a query is not allowed during the security game. Therefore, the dual system encryption
goes through since the reduction algorithm does not need to create and reveal information
on ID⋆ except for the challenge ciphertext CID⋆ ; the randomness for CID⋆ is independent of
randomness for any secret keys from the viewpoint of the adversary.

Proof of [SW18]. The HKIBE challenge ciphertext ctid⋆,t⋆ can be regarded as a ciphertext for
(id⋆,T[L−1,0](t

⋆)) in the HIBE scheme proposed by [RS14]. The randomness of the challenge
ciphertext ctid⋆,t⋆ := C(id⋆,T[L−1,0](t

⋆)) is correlated to the randomness of level-ℓ helper keys

hk
(ℓ)
id,Tℓ(t)

for the key-insulation query on (id⋆, t, ℓ) such that ℓ > ℓ⋆. This is due to the

form of hk
(ℓ)
id,Tℓ(t)

: roughly speaking, the level-ℓ helper key hk
(ℓ)
id,Tℓ(t)

is the HIBE secret key

of [RS14] for a hierarchical identity (id,T[L−1,ℓ](t)) masked with a random group element.
The adversary is allowed to make the key-insulation query (id⋆, t⋆, ℓ (> ℓ⋆)), and hence
can obtain the HIBE secret key of [RS14] for a hierarchical identity (id⋆,T[L−1,ℓ](t

⋆)) ∈
prefix+((id⋆,T[L−1,0](t

⋆))) (with a random mask). As mentioned above, in the standard
HIBE game, a query on such a hierarchical identity, i.e., the prefix of the challenge identity,
is not allowed and spoils dual system encryption. The authors seemed to expect that the

random mask of hk
(ℓ)
id⋆,Tℓ(t⋆)

would help to resolve the issue, however, it does not; the query
still leads to the correlation. Thus, the simulation fails when the adversary obtains both

ctid⋆,t⋆ and hk
(ℓ)
id⋆,Tℓ(t⋆)

for ℓ ∈ [ℓ⋆ + 1, L].

34

