
Improved Attacks on sLiSCP Permutation and
Tight Bound of Limited Birthday Distinguishers

Akinori Hosoyamada1,3, María Naya-Plasencia2 and Yu Sasaki1

1 NTT Secure Platform Laboratories, Tokyo, Japan,
{akinori.hosoyamada.bh,yu.sasaki.sk}@hco.ntt.co.jp

2 Inria, Paris, France, maria.naya_plasencia@inria.fr
3 Nagoya University, Nagoya, Japan hosoyamada.akinori@nagoya-u.jp

Abstract. Limited birthday distinguishers (LBDs) are widely used tools for the
cryptanalysis of cryptographic permutations. In this paper we propose LBDs on
several variants of the sLiSCP permutation family that are building blocks of two
round 2 candidates of the NIST lightweight standardization process: Spix and SpoC.
We improve the number of rounds with respect to the previously known best results.
We improve the techniques used for solving the inbound part and we relax the output
conditions in order to extend the previous attacks.
The lower bound of the complexity of LBDs has been proved only against functions.
In this paper, we prove for the first time the bound against permutations, which
shows that the known upper bounds are tight.
Keywords: limited birthday distinguisher · sLiSCP · permutation · NIST Lightweight
cryptography · rebound attack

1 Introduction
Lightweight cryptography aims at providing an efficient cryptographic primitive on highly-
constrained devices such as sensor networks, distributed control systems, the Internet
of Things, and so on. Recently, the National Institute of Standards and Technology
(NIST) initiated a lightweight cryptography standardization process [Nat19] to select and
standardize several lightweight cryptographic algorithms. In April 2019, 56 algorithms
were announced as round 1 candidates and in August 2019, 32 algorithms were selected as
round 2 candidates. NIST had originally planned to announce about 8 round 3 candidates
in September 2020, but this announcement has been delayed a few months. Given the
situation, improved security analysis of round 2 candidates is very important.

Design of a cryptographic algorithm that simultaneously achieves high security and
lightweight implementation properties is a challenging task. A recent trend 1 is to design
a cryptographic permutation as an underlying primitive, and to build an authenticated
encryption with associated data (AEAD) with the duplex construction [BDPA11]. This
approach is also advantageous to additionally implement a cryptographic hash function
only with a small overhead. In fact, NIST reported that 49% of the round 1 candidates
and 50% of the round 2 candidates are based on a permutation [TMÇ+19].

A cryptographic permutation is expected to behave as a uniformly random permutation.
From an attacker’s position, the goal is to find a specific behavior that differs between
the target permutation and a random permutation. The attacker first specifies a certain
relationship for a set of inputs and the corresponding outputs, and then compares the
complexity, i.e. computational cost and memory amount, to find such a set for the target

1See for instance [Dae17]

mailto:{akinori.hosoyamada.bh,yu.sasaki.sk}@hco.ntt.co.jp
mailto:maria.naya_plasencia@inria.fr
mailto:hosoyamada.akinori@nagoya-u.jp

2
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

Figure 1: Step Function of sLiSCP (left) and sLiSCP-light (right) Permutations. Simeckr
w

denotes r-rounds of w-bit block Simeck.

algorithm and a randomly chosen permutation. A limited birthday distinguisher (LBD)
[GP10] is a natural application of differential cryptanalysis to permutations. The attacker
specifies a set of input differences and a set of output differences. The attacker’s goal is to
find a pair of texts that confirm both of the input and output differences.

In this paper, we provide the cryptanalysis for sLiSCP [ARH+17] and sLiSCP-light per-
mutations [ARH+18]. sLiSCP is a cryptographic permutation based on Simeck [YZS+15].
sLiSCP was designed to be used in their sponge hash function and duplex AEAD mode.
sLiSCP consists of 18 iterations of the step function that adopts a 4-branch type-2 general-
ized Feistel network (GFN) in which the size of each branch w is w ∈ {48, 64}. The whole
permutation size is 192 bits or 256 bits, which is called sLiSCP-192 and sLiSCP-256. The
step function is illustrated in the left-hand side of Fig. 1. The step function of sLiSCP-192
(resp. sLiSCP-256) computes two unkeyed 6-round Simeck48 (resp. 8-round Simeck64).

The same designers later presented a tweaked version called sLiSCP-light. The
major difference from sLiSCP is that the GFN is replaced with the partial substitution
permutation network (PSPN) [ARH+18] illustrated in the right-hand side of Fig. 1. The
recommended number of steps of sLiSCP-light was also reduced from 18 to 12.

sLiSCP-light is used as an underlying primitive of two round 2 candidates in NIST’s
standardization process. SpoC [AGH+19a] builds an AEAD scheme with the duplex-like
framework using 18-step sLiSCP-light-192 and 18-step sLiSCP-light-256 as underlying
permutations. Spix [AGH+19b] also builds an AEAD scheme with the duplex frame-
work and 18-step sLiSCP-light-256 is used to process the key material while 9-step
sLiSCP-light-256 is used to process associated data and message/ciphertext. The active
usage of sLiSCP-light shows the importance of third-party security analysis.

To the best of our knowledge, there exists only a single third-party security analysis
against sLiSCP [LSSW18] and no third-party analysis exists against sLiSCP-light. Liu et
al. [LSSW18] provided a forgery attack and a collision attack against 6-step sLiSCP in the
AEAD mode and the hash mode. In addition, a LBD was presented against 15-step sLiSCP
permutation. The designers of sLiSCP, sLiSCP-light, SpoC, and Spix also provided some
cryptanalysis for the permutation, which includes impossible differential, zero-correlation
and integral distinguishers against 9-step sLiSCP. 2

In the design document of SpoC [AGH+19a] and Spix [AGH+19b], the designers claim
that they aim to provide the evidence that 18-step sLiSCP-light is secure against various
distinguishing attacks to prove that its behavior is as close as possible to that of an ideal
permutation. Hence we believe that improving the previous permutation distinguishers for
sLiSCP and providing a new analysis on sLiSCP-light is of great interest.

Our Contributions. The contribution of this paper is twofold. First, we improve the
best known attacks against sLiSCP and present the first third-party cryptanalysis against
sLiSCP-light. Second, we prove the lower bound of the complexity to solve LBDs for a

2The authors of [ARH+17] reported a 17-round zero-sum distinguisher for sLiSCP-192 and sLiSCP-256
with very high complexities (2190 and 2255) without discussing the generic attack complexity to satisfy
the same property. Thanks to an ongoing discussion with the authors, we believe now that the generic
complexity would be better, so we are not convinced of the validity of this distinguisher.

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 3

Table 1: Comparison of the Attacks against sLiSCP and sLiSCP-light

Target Attack Steps Time Memory Reference

sLiSCP-192
ID/ZC 9 N/A N/A [ARH+17]
LBD 15 2122.7 237.7 [LSSW18]
LBD 15 2111.4 237.7 Sect. 3.2

sLiSCP-256

ID/ZC 9 N/A N/A [ARH+17]
LBD 15 2168.3 248.3 [LSSW18]
LBD 15 2149.6 248.3 Sect. 3.2
LBD 16 2154.6 248.3 Sect. 3.4

sLiSCP-light-192

integral 8 2191 N/A [AGH+19a]
zero-sum 14 2192 N/A [AGH+19a]
LBD 15 2111.4 237.7 Sect. 3.3
LBD 16 2113.0 237.7 Sect. 3.4

sLiSCP-light-256

integral 8 2255 N/A [AGH+19a, AGH+19b]
zero-sum 14 2256 N/A [AGH+19a, AGH+19b]
LBD 15 2149.6 248.3 Sect. 3.3
LBD 16 2154.6 248.3 Sect. 3.4

random permutation, showing that the current best known generic attack is actually tight.

Limited-Birthday Distinguishers against sLiSCP and sLiSCP-light. We first reduce
the complexity of the 15-step LBDs for sLiSCP, which is computed in the rebound-like
procedure [MRST09]. By carefully analyzing the computation order, we extend the number
of steps that can be covered by the inbound phase, which reduces the complexity from
2122.7 to 2111.4 for sLiSCP-192 and from 2168.3 to 2149.6 for sLiSCP-256.

Even with this complexity improvement, the attack cannot be extended to 16 steps
easily because the remaining degrees of freedom are insufficient to satisfy the differential
propagation for another round. Here, we look into the differential characteristics for
Simeck48 and Simeck64 and try to make many bits inactive by spending a small amount
of degrees of freedom. This allows us to attack 16-step sLiSCP-256 with 2154.6 cost.

For sLiSCP-light, the designers of Spix and SpoC argued that the best known
distinguisher is a zero-sum distinguisher with a start-from-the-middle approach, which
works up to 14 steps but requires data and time complexities equal to that of the exhaustive
search. Although the designers of Spix and SpoC cited the work by Liu et al. [LSSW18], no
word is given on the possibility of applying the LBDs on sLiSCP to sLiSCP-light. In this
paper we formally claim, for the first time, that 16-step sLiSCP-light can be attacked,
using a similar procedure to the one on sLiSCP. Besides, the replacement of the Feistel
network of sLiSCP with the partial SPN allows us to attack 16 steps of sLiSCP-light-192
with a complexity of 2113.0. The comparison of the attack complexities is given in Table 1.

Tight Lower Bound for the Limited-Birthday Problem. We show that the upper bound
given by the known best algorithm on the limited birthday problem for a random permu-
tation is asymptotically tight.

As we mentioned before, the goal of a LBD is to find a pair of texts that confirm both
of the input and output differences that are specified by the attacker. More precisely, the
limited birthday problem on an n-bit permutation P and closed subsets ∆in, ∆out is the
problem of finding a tuple (X,X ′, Y, Y ′) such that P (X) = Y , P (X ′) = Y ′, X ⊕X ′ ∈ ∆in,

4
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

and Y ⊕ Y ′ ∈ ∆out. Here, a non-empty subset ∆ ⊂ {0, 1}n is closed if and only if
X⊕Y ∈ ∆ for all X,Y ∈ ∆. An algorithm to solve the problem is called a limited-birthday
distinguisher (LBD), or simply distinguisher.

The known best distinguisher to solve the problem when P is a random permutation is

max
{

min
{√

2n

|∆out|
,

√
2n

|∆in|

}
,

2n+1

|∆out| · |∆in|

}
, (1)

which was shown by Gilbert and Peyrin [GP10].
LBDs on permutations are claimed to be valid attacks when their complexity is less

than (1). Although the lower bound for a random function was proven by Iwamoto et
al [IPS13]3, no such a formal proof is known for a random permutation. In this paper, we
for the first time give a formal proof that (1) is actually the (asymptotically) tight bound
to solve the limited-birthday problem on a random permutation. More precisely, we prove
the following theorem.

Theorem 1 (Lower bound for the limited-birthday problem, informal). When P is a
random permutation, to solve the limited-birthday problem with a probability greater than
1/2,

1
4 ·max

{
min

{√
2n

|∆out|
,

√
2n

|∆in|

}
,

2n

|∆out| · |∆in|

}
(2)

queries to P or P−1 are required.

This theorem strengthens the rationale of validity of various LBDs including those
in previous works such as [GP10], and our attacks on sLiSCP and sLiSCP-light (The
complexities of all of our new attacks are smaller than the lower bound for a random
permutation in (2)).

The proof of Theorem 1 is more complex than the proof for the lower bound on a
random function by Iwamoto et al. since we have to deal with queries to both of P and
P−1. To achieve the lower bound that is the complex combination of “max” and “min”,
and is quite close to the upper bound (1), we introduce a technical parameter in our proof.

Paper Outline. sLiSCP permutation family and LBD will be introduced in section 2.
New LBDs for sLiSCP permutation family will be shown in section 3. A proof of the lower
bound of LBD will be shown in section 4. We will conclude this paper in section 5.

2 Preliminaries
2.1 Specification of sLiSCP

An input to the permutation is first divided into four w-bit words, where w = 48 for
sLiSCP-192 and w = 64 for sLiSCP-256. Let (X0

0 , X
1
0 , X

2
0 , X

3
0) be the input to the

permutation. This value is updated by iteratively computing the following step function
shown in the left-hand side of Fig. 1 for i = 0, 1, . . . , 17.

xi+1
0 = xi

1, xi+1
1 = xi

2 ⊕ Simeckr
w(xi

3)⊕ sci, xi+1
2 = xi

3, xi+1
3 = xi

0 ⊕ Simeckr
w(xi

1)⊕ sc′i,

where Simeckr
w is an r rounds of w-bit block Simeck, called Simeck box, described in the

following paragraph and sci and sc′i are step-dependent constants.

3The lower bound for a random function is O

(
max

{√
2n+1
|∆out|

, 2n+1

|∆out|·|∆in|

})
.

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 5

<<< 5

<<< 1

∧

𝑟𝑐𝑖

24 𝑜𝑟 3224 𝑜𝑟 32

Figure 2: Round Function of Simeck.

Specification of Simeck Box. Simeck [YZS+15] is a block cipher based on Simon
[BSS+13]. Although Simeck supports various block sizes, only 48-bit block version called
Simeck48 and 64-bit version called Simeck64 are adopted in sLiSCP and sLiSCP-light.
Moreover, a key is replaced with a constant to convert Simeck into a keyless permutation.

Let m ∈ {24, 32} be the word size such that 2m is a block size. The 2m-bit input value
is divided into two m-bit values L0‖R0. Then the following is computed for i = 1, 2, . . . , r
where r is 6 and 8 for Simeck48 and Simeck64, respectively.

Li = Ri−1 ⊕ (Li−1 ∧ Li−1 ≪ 5)⊕ Li−1 ≪ 1⊕ rci, Ri = Li−1,

where rci is the round constant generated by an LFSR that is initialized with sci or sc′i.
Since the constant does not impact to our analysis, we omit the details. The diagram of
the round function of Simeck is illustrated in Fig. 2.

2.2 Specification of sLiSCP-light

sLiSCP-light is a tweaked design of sLiSCP. The major difference from sLiSCP is a step
function and the number of steps to be computed. Let (X0

0 , X
1
0 , X

2
0 , X

3
0) be the input

to the permutation. This value is updated by iteratively computing the following step
function shown in the right-hand side of Fig. 1 for i = 0, 1, . . . , 11.

xi+1
0 = Simeckr

w(xi
1), xi+1

1 = xi
2 ⊕ Simeckr

w(xi
3)⊕ sc2i+1,

xi+1
2 = Simeckr

w(xi
3), xi+1

3 = xi
0 ⊕ Simeckr

w(xi
1)⊕ sc2i.

sLiSCP-light is used as an underlying primitive of two NIST second-round candidates
SpoC [AGH+19a] and Spix [AGH+19b]. Though the original number of steps is 12, the
number of steps for the instantiations in those two designs is either 9 or 18.

2.3 Limited-Birthday Problem
The limited-birthday problem on a permutation P is the problem defined as follows4.

Definition 1 (The limited-birthday problem on permutation). Let P be an n-bit permu-
tation, and ∆in, ∆out be (non-empty) closed subsets of {0, 1}n. For the limited-birthday
problem on the permutation P , the goal of the adversary is to generate a quadruple of
n-bit strings (X,X ′, Y, Y ′) such that P (X) = Y and P (X ′) = Y ′ and X ⊕X ′ ∈ ∆in and
Y ⊕ Y ′ ∈ ∆out.

The complexity of the best known attack to solve the limited-birthday problem on a
random permutation [GP10] is

max
{

min
{√

2n

|∆out|
,

√
2n

|∆in|

}
,

2n+1

|∆out| · |∆in|

}
. (3)

4This definition follows the one for a (random) function by Iwamoto et al. [IPS13].

6
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

0 0 0 𝛼

0 0 0 𝛼

𝛽 ← 𝛼

𝛼𝛽
𝛼 ← 𝛽

𝛼𝛽 𝛼
𝛽 ← 𝛼𝛽 ← 𝛼

𝛼𝛽𝛼
𝛼 ← 𝛽

𝛼𝛽
𝛽 ← 𝛼

𝛼

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

0 0 0 𝛽

0 0 0 𝛽

𝛽
𝛼

𝛼𝛼

𝛼𝛽 𝛽 𝛽
𝛼

𝛼
𝛽

𝛼
𝛽

𝛼
𝛽

𝛼
𝛽

𝛼𝛼𝛽

𝛼𝛽

𝛽

Figure 3: Left: 6-Round Iterative Differential Trail for Original sLiSCP. Right: 6-Round
Iterative Differential Trail for sLiSCP-light.

3 Improved LBD against sLiSCP

We revisit the previous 15-step attack on sLiSCP in Sect. 3.1. We show how to improve
its complexity for sLiSCP in Sect. 3.2. Applications to sLiSCP-light are then discussed
in Sect. 3.3. We finally present the attacks on 16 steps in Sect. 3.4 and Sect. 3.5.

3.1 Previous Analysis on sLiSCP

Liu et al. [LSSW18] analyzed the differential properties of the sLiSCP permutation and
presented a 15-step distinguisher for sLiSCP-192 and sLiSCP-256. They first focused on
a 6-step iterative differential characteristic that maps a difference (0, 0, 0, α) to a difference
(0, 0, 0, α). This includes four differential propagations of α → β and two differential
propagations of β → α through 6-round (resp. 8-round) Simeck48 (resp. Simeck64). The
6-round iterative characteristic is shown in the left-hand side of Fig. 3.

Liu et al. then searched for the choice of α and β that has the maximum characteristic
probability for α→ β and β → α taking into account the weight that α→ β occurs twice
more frequently than β → α. Such differential properties are summarized in Table 2.

Finally, Liu et al. built a 15-step differential characteristic and proposed to find a pair
satisfying the characteristic using the rebound attack framework [MRST09, LMS+15], in
which the attacker first efficiently finds paired values to satisfy the propagation for the
middle steps (inbound phase), and then propagate the pairs backwards and forwards to
probabilistically satisfy the characteristic (outbound phase).

Previous Inbound Phase for Three Steps. To explain our improvement, the previous
procedure of the inbound phase needs to be explained more precisely. Liu et al. focused

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 7

Table 2: Differential Property of Simeck for 6-Round Iterative Characteristic [LSSW18].

Target Differential Mask Probability
Characteristic Differential

Simeck6
48

014000‖020000→ 014000‖008000 2−12 2−11.3

014000‖008000→ 014000‖020000 2−26 2−21.8

Simeck8
64

08800000‖00000000→ 00800000‖00000000 2−22 2−18.7

00800000‖00000000→ 08800000‖00000000 2−22 2−18.7

Simeck8
64

00000000‖80000000→ 00000000‖80000008 2−22 2−18.7

00000000‖80000008→ 00000000‖80000000 2−22 2−18.7

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝛼𝛽
𝛼 ← 𝛽

𝛼
𝛽 ← 𝛼𝛽 ← 𝛼

𝛼 ← 𝛽

𝛼𝛽

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝛼

𝛽 ← 𝛼

𝛼 ← 𝛽

𝛽 ← 𝛼𝛽 ← 𝛼

𝛼 ← 𝛽

𝛼𝛽

Figure 4: Left: Previous 3-Step Inbound Procedure for sLiSCP. Right: Improved 4-Step
Inbound Procedure for sLiSCP. In the previous procedure, four active Simeck boxes are
fixed independently, while in the new procedure, fixing three active Simeck boxes (red)
will fix another one (blue), and an additional one (black) can be fixed independently.

on four active Simeck boxes in three middle steps, which is shown in the left-hand side of
Fig. 4. For each active Simeck box, paired values satisfying the differential propagation
are exhaustively searched, which is performed with 4× 248 or 4× 264 computations. Any
combination of the solutions from four Simeck boxes will fix the entire 192-bit or 256-bit
state. In Fig. 4, paired values for red lines are fully determined by fixing paired values of
four active Simeck boxes. The black lines can be directly computed from the red ones.

The combined number of solutions for four active Simeck boxes is 2125.8 and 2182.8 for
sLiSCP-192 and sLiSCP-256, respectively. Then the characteristic were extended so that
the probability of the outbound phase is higher than this number of solutions. As shown
in the left-hand side of Fig. 9 in the supplementary material A, 12 steps were added for
the outbound phase that can be satisfied with probability 2−122.7 and 2−168.3.

3.2 Improving Complexity of 15-Step Attacks on sLiSCP

We present an improved procedure for the inbound phase, which covers four middle steps.
Intuitively, this improvement on its own does not increase the number of paired values

8
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

that satisfy the full characteristic, hence the number of attacked steps does not increase in
a straight-forward analysis. Instead, the procedure to find the paired values will be more
sophisticated (another stage is introduced for the divide-and-conquer approach), which
improves the attack complexity as it allows to reduce the outbound part. The new inbound
procedure is illustrated in the right-hand side of Fig. 4, which is explained as follows.

1. We exhaustively search for the paired values satisfying the differential propagation
for three Simeck boxes; the right-hand side of the first step, the left-hand side of the
inbound step, and the left-hand side of the fourth step (in red).

2. We take any combination of the solutions from those three Simeck boxes, which fixes
the paired values for another active Simeck box in the right-hand side of the third
step (in blue). Then we check whether the differential propagation of this Simeck
box is satisfied or not, which filters out wrong pairs at this stage.

3. Independently from these fixed parts, we exhaustively search for the paired values
for the left-hand side of the second step (in black). Any combination of the solutions
for the first four Simeck boxes (red and blue) and the last Simeck box (black) fixes
the entire state. Then, the state is propagated to the outbound part to satisfy the
15-step trail shown in the left-hand side of Fig. 9 in the supplementary material A.

Complexity Analysis for sLiSCP-256. Step 1 requires to test 264 inputs for each Simeck
box. Because the probability is 2−18.7 for both of α → β and β → α, the number of
obtained solutions will be 264−18.7 = 245.3 for each Simeck box. Time complexity of this
step is 3× 264 and a memory to store 3× 245.3 values are required.

Step 2 requires to test 245.3×3 = 2135.9 values. The power of the filter is 2−18.7, hence
we will obtain 2117.2 solutions. The time complexity of this step is 2135.9 and a memory to
store 2117.2 values would be required a priori.

The precomputation of Step 3 requires 264, which is not the bottleneck. We have 245.3

for this Simeck box (black) and 2117.2 solutions from the previous step (red and blue).
Hence, we can generate up to 2117.2+45.3 = 2162.5 solutions from four inbound steps.

In the outbound phase in Fig. 9, we need to control 1 active Simeck box for the first
2 steps and 6 active Simeck boxes from steps 7 - 14, which is satisfied with probability
2−18.7×8 = 2−149.6. The last step contains 1 active Simeck box, but we do not control it.
In the end, after trying 2149.6 solutions of the inbound phase, we will have a pair whose
input difference is of the form (β, α, 0, 0) and output difference is of the form (0, ∗, α, 0),
where α and β are shown in Table 2 and ∗ denotes any difference.

The complexity to find such a pair for a random permutation is given by the limited
birthday problem. The size of the input and output differences are 1 and 264, respectively,
the generic attack complexity in Eq. (1) is 2256+1/(1 · 264) = 2193 and the lower bound in
Eq. (2) is 2190. Thus the distinguisher finds a non-ideal property of 15-step sLiSCP-256.

The first remark is that the previous attack complexity is 2168.3 and our new attack
complexity is 2149.6. The improved attack factor is 218.7. The improvement clearly comes
from the inclusion of one more active Simeck box in the inbound phase.

The second remark is that the required memory of 2117.2 for Step 2 can be omitted by
performing Step 3 (the exhaustive search of the active Simeck box should be finished in
advance) as soon as a solution is generated in Step 2 from the tables of the red values.
Hence the required memory is 4× 245.3 = 247.3; three are for Step 1 and one is for Step 3.

Complexity Analysis for sLiSCP-192. The analysis is almost the same as sLiSCP-256
but it is a bit more complicated because the probabilities for α → β and β → α are
different; the former is 2−11.3 and the latter is 2−21.8 as shown in Table 2.

Step 1 requires to test 248 inputs for each Simeck box. For two of them with α→ β,
we will obtain 248−11.3 = 236.7 solutions. For one of them with β → α, we will obtain

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 9

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟 𝑆𝑖𝑚𝑒𝑐𝑘𝑤

𝑟

0 0 0 𝛽

𝛼𝛼

𝛼𝛽 𝛽

𝛼𝛼𝛽

𝛼𝛽

𝛽

𝛼𝛽

𝛽

𝛼

Figure 5: 4-Step Inbound Procedure for sLiSCP-light.

248−21.8 = 226.2 solutions. Time complexity of this step is 3× 248 and a memory to store
2× 236.7 values are required.

Step 2 requires to test 236.7+36.7+26.2 = 299.6 values. The power of the filter is 2−11.3,
hence we will obtain 288.3 solutions. Time complexity of this step is 299.6. Similarly to the
case of sLiSCP-256, a memory to store 288.3 values can be omitted by testing the filtered
solutions on the fly thanks to the smaller previous lists.

The precomputation of Step 3 is not the bottleneck. We have 248−21.8 = 226.2 solutions
for this Simeck box (black) and 288.3 solutions from the previous step (red and blue).
Hence, we can generate up to 288.3+26.2 = 2114.5 solutions from the inbound phase.

The probability of the outbound phase in Fig. 9 is 26×−11.3+2×−21.8 = 2−111.4. After
trying 2111.4 pairs, we will have a pair whose input difference is of the form (β, α, 0, 0) and
whose output difference is of the form (0, ∗, α, 0).

The generic complexity for a random permutation is 2192+1/(1·248) = 2145 and the lower
bound is 2145. Hence the distinguisher finds a non-ideal property of 15-step sLiSCP-192.

3.3 Application to 15-step LBD for sLiSCP-light

The distinguishers in the previous subsection apply to sLiSCP, while two NIST second round
candidates Spix [AGH+19b] and SpoC [AGH+19a] are based on sLiSCP-light. According
to the designers, the best distinguisher for sLiSCP-light is a zero-sum distinguisher for
14 steps. The designers of Spix and SpoC cited the work by Liu et al. [LSSW18] but did
not mention the possibility of applying the rebound attack on sLiSCP to sLiSCP-light.
Here we formally claim for the first time, that 15-step sLiSCP-light can be attacked by
using a similar procedure to the one on sLiSCP.

Our analysis starts from the 6-step iterative differential characteristic for the partial
SPN in sLiSCP-light. The diagram of the differential propagation is illustrated in the
right-hand of Fig. 3. The difference (0, 0, 0, β) will be mapped to itself after 6 steps by
going through four active Simeck boxes with the differential propagation α→ β and two
active Simeck boxes with β → α. Hence, the efficiency of the 6-step trail as well as the
best choice of α and β are the same as the ones for sLiSCP.

Our inbound phase that covers four steps of sLiSCP can also be applied to sLiSCP-light,
which is illustrated in Fig. 5. We will omit the details that were already explained in
the previous distinguishers. Intuitively, we first precompute all the solutions for three

10
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

active Simeck boxes highlighted in red. Any combination uniquely determines the paired
values for another active Simeck box highlighted in blue. Finally, we can freely choose the
solution for another Simeck box highlighted in black.

The extension for the outbound phase is straightforward. The 15-step trail is given
in Fig. 9 in supplementary material A. It includes six active Simeck box with differential
propagation α → β, two active Simeck box with β → α, and one uncontrolled active
Simeck box in the last step. The only difference is the form of the output difference, that
is (0, ∗, ∗, 0). Note that ∗ is unknown but must be identical for two branches, hence the
size of the possible output differences remains the same as the size for sLiSCP.

As a result, 15-step sLiSCP-light can be attacked in a similar way as sLiSCP. The
complexity is 2111.4 computational cost and 238.7 memory amount for sLiSCP-light-192,
and 2168.3 computational cost and 247.3 memory amount for sLiSCP-light-256.

3.4 16 Steps Attacks against sLiSCP-256

The attack in the previous section cannot be extended to 16 steps easily from the following
reason. The inbound phase can generate up to 2114.5 (resp. 2162.5) solutions for sLiSCP-192
(resp. for sLiSCP-256), while the probability of the outbound phase of the 15-step attack
is 2−111.4 (resp. 2−149.6). The remaining degrees of freedom is only 23.1 (resp. 212.9), which
is not sufficient to satisfy one more active Simeck box.

Overall Idea. To extend the trail to 16 steps, we will have one more active Simeck
box. We exploit the remaining degrees of freedom to control the differential propagation
only partially. The input difference for the 16-step sLiSCP distinguisher is unchanged,
(β, α, 0, 0), while the output differences becomes (γ, α, 0, ∗), where γ is partially controlled,
i.e. a few bits of γ are inactive. Depending on the number of inactive bits in γ, the
dedicated attack can be faster than the generic attack. Fig. 6 illustrates how to extend by
one step the 15-step distinguisher. For the sake of completeness, the entire 16-step trail is
shown in Fig. 10 in supplementary material B.

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟

0 0 0 𝛼

𝛾 ← 𝛼

𝛼𝛾
∗ ← 𝛾

𝛼𝛾 ∗

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟

0 0 0 𝛼

∗ ← 𝛼

𝛼∗0 0

0

Figure 6: Left: the Last Step of the 15-Step Attack for sLiSCP. Right: the Last Two Steps
of the 16-Step Attack for sLiSCP. Several inactive bit positions are specified for γ.

3.4.1 Analysis for sLiSCP-256

The differential probability for α→ β is 2−18.7, but we only have 212.9 degrees of freedom
left. To evaluate the impact of partially controlling the propagation, we look into the
details of the differential characteristic with the highest probability.

For sLiSCP-256, as shown in Table 2, there are two kinds of the differential masks:
(wt(α),wt(β)) = (2, 1) or (1, 2), where wt denotes the Hamming weight. Only with a limited
amount of degrees of freedom, it is more advantageous for an attacker when the probability

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 11

of the propagation in early rounds is higher. Thus we set α ← 0080000‖0000000 and
β ← 0880000‖0000000. This characteristic can be satisfied with probability 2−22. The
breakdown for each round is given in the left-hand side of Table 3.

Table 3: Differential Propagation for 8-Round Simeck64

Step Differential Mask probability Step Differential Mask probability
00800000 00000000 00800000 00000000

1 01000000 00800000 2−2 1 01000000 00800000 2−2

2 02800000 01000000 2−2 2 02800000 01000000 2−2

3 04000000 02800000 2−4 3 04000000 02800000 2−4

4 0a800000 04000000 2−2 4 0a800000 04000000 2−2

5 01000000 0a800000 2−6 5 1b000000 0a800000 2−3

6 08800000 01000000 2−2 6 7f800000 1b000000 1
7 00000000 08800000 2−4 7 ff80000f 7f800000 1
8 08800000 00000000 1 8 ff8001ff ff80000f 1

Partially Controlled Differential Characteristic. The analysis of the propagation where
we partially control the differential propagation of Simeck64 is shown in the right-hand
side of Table 3. We have 212.9 degrees of freedom remaining. The analysis here assumes
that the differential propagation follows the characteristic up to 2−13 (this is a temporary
assumption, we will later discuss its validity), and the analysis for the full diffusion is
applied to the remaining rounds. In the right-hand side of Table 3, from round 6, ‘0’
denotes the inactive bits and ‘1’ denotes the bits that may or may not have a difference.
As can be seen in the table, we have 33 inactive bits after 8 rounds.

Differential Probability / Validity of the Assumption. The analysis in the previous
paragraph is based on two assumptions. The first assumption is too optimistic for the
attacker in which the propagation follows the characteristic up to probability 2−13, while
we only have 212.9 degrees of freedom. The second assumption is too pessimistic for
the attacker in which the analysis from round 6 follows the full diffusion. Note that
the full diffusion analysis is the worst-case scenario for the attacker because it usually
corresponds to the situation where active AND gates always produce the difference. Indeed,
this probability is the same as the situation where active AND gates always stop the
difference. We also need to consider the differential probability, namely, even if the
differential propagation does not follow the characteristic up to 2−13, the target 33 bits
can be inactive. Namely, the bit-wise differential form of γ = γL‖γR can be as follows.

γL = **** **** *000 0000 0000 000* **** ****

γR = **** **** *000 0000 0000 0000 0000 ****

The simplest way to evaluate the precise probability to satisfy γ is to perform an
experiment, i.e. we choose many 64-bit values x and process x and x ⊕ α with 8-round
Simeck64 to calculate the probability that the target 33 bits are inactive. In our experiment,
we took 1 million choices of x uniformly at random and 33 target bits became inactive for
32,501 choices. Hence, the probability is 2−4.94. This implies that we do not need to use
213 degrees of freedom to make those 33 bits inactive, but only 25 degrees are sufficient.

Complexity Evaluation. The attack will spend 25 more degrees of freedom than the
15-step attack. Hence, the computational cost of the 16-step attack is 2149.6+5.0 = 2154.6.
The required memory amount is 247.3.

12
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

The generic attack complexity for a random permutation in Eq. (1) is 2256+1/(1 ·
264+(64−33)) = 2162 because the input difference is fixed and the output difference (γ, α, 0, ∗)
can be chosen from 295 choices. The lower bound in Eq. (2) is 2159. Hence our attack
finds the non-ideal property of 16-step sLiSCP-256.

3.4.2 Remarks for sLiSCP-192

For sLiSCP-192, we only have 23.1 degrees of freedom remaining and to control the
differential characteristic for 6-round Simeck48 is difficult. Currently we have not found
any valid distinguishers on 16-steps sLiSCP-192. We experimentally confirmed that the
partial control of Simeck48 could work up to 5 rounds, but could not work for 6 rounds.

3.5 16 Steps Attacks against sLiSCP-light-192 and sLiSCP-light-256

The extension to 16 steps can be similarly applied to sLiSCP-light, however there is a
certain difference due to the usage of the different network. As shown in the right-hand side
of Fig. 9, the last step of the 15-step attack includes a differential propagation with β → α.
If the same strategy as sLiSCP is applied, we need to partially control this propagation.
For Simeck48, the probability for β → α is much smaller than one for α→ β, hence it is
not a good strategy to partially control the last step of the 15-step attack. To avoid this
problem, we extend the 15-step trail in backwards, and partially control the difference in
the first step of the 15-step attack. The diagram of the extended steps is given in Fig. 7.

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟

0

0 0 0 𝛽

𝛾
𝛽

𝛼
𝛽

𝛼𝛾𝛽

𝛼𝛽

𝛽

𝑆𝑖𝑚𝑒𝑐𝑘𝑤
𝑟

0 0 0 𝛽

𝛼
𝛽

𝛼𝛽

𝛽

0 0

Figure 7: Left: the First Step of the 15-Step Attack for sLiSCP-light. Right: the First
Two Steps of the 16-Step Attack for sLiSCP-light.

3.5.1 Peeling off the Last Round

We point out that Simeck round function has the property that the difference after the
first round or before the last round can be computed from the input or the output without
knowing the key value. This is because the key is directly added to the Feistel network,
which is different from traditional designs in which the key is added inside a so-called
F -function. To be more precise, let Il‖Ir be the input to the Simeck permutation. Then an
attacker can compute the difference after the first round by ir⊕(il ≪ 1)⊕(il∧(il ≪ 5))‖il,
which is independent of the secret-key/fixed-constant value.

Moreover, the network of sLiSCP-light helps an attacker to exploit this property. As
shown in Fig. 7, the partially controlled Simeck box is located in the first step, and the
input to the entire permutation (with difference γ) is directly used to compute this Simeck
box. Hence, the attacker who only has an access to the input and the output of the entire

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 13

permutation can actually compute the difference after 1 Simeck round. Note that it is not
the case with sLiSCP. As shown in Fig. 6, the output of the partially controlled Simeck
box is masked by an internal state due to the Feistel network. Hence, an attacker who only
has an access to the output of the entire construction cannot compute 1 Simeck round.

3.5.2 Analysis for sLiSCP-light-192

We only have 23.1 degrees of freedom remaining. The differential characteristic probability
for 6-round Simeck48 is 2−12 and the propagation where the characteristic is satisfied up
to 2−4 are given in Table 4.

Table 4: Differential Propagation for 6-Round or 5-Round Simeck48 Inverse

Step Differential Mask probability Step Differential Mask probability
6 014000 020000 2−4 6 ****** ****** 1
5 008000 014000 2−2 5 08c000 19c001 1
4 004000 008000 2−2 4 004000 08c000 1
3 000000 004000 1 3 000000 004000 1
2 004000 000000 2−2 2 004000 000000 2−2

1 008000 004000 2−2 1 008000 004000 2−2

014000 008000 014000 008000

As a result of our experiments, we fixed the inactive bit positions as bit positions
4 to 13 in both sides of the network, namely 20 inactive bits in total. To evaluate the
differential probability by the experiment, we took 1 million values and 20 target bits
became inactive for 346,403 times. Hence, the probability is 2−1.53. This implies that we
only need 21.6 degrees of freedom compared to the 15-step attack. The computational cost
of the 16-step attack is 2111.4+1.6 = 2113.0. The required memory amount is 237.7.

The generic attack complexity for a random permutation in Eq. (1) is 2192+1/(1 ·
248+(48−20)) = 2117 and the lower bound in Eq. (2) is 2114. Hence our attack finds a
non-ideal property for 16-step sLiSCP-light-192.

Towards More than Experimental Verification. The above attacks used the differential
probability obtained by the experiments. Here, we discuss if there exist other methods to
validate the obtained probability. Note that what we want to evaluate is different from the
standard differential probability, i.e. summing up probabilities of all the trails that map
a fixed input difference to a fixed output difference. In our setting, the input difference
to the inverse of Simeck is fixed, but for the output difference, only several inactive bit
positions are fixed. In case of sLiSCP-192, inactive 20-bit positions are fixed, in other
words, the output differences can be any of 248−20 = 228 choices. Evaluating differential
probability for such a case is not an easy task.

We approach this probability with MILP-based evaluation. For the input, we gave a
condition for each bit to specify whether each bit is active or not. For the output, we gave
a condition only for the target bits to set them inactive. The MILP solver found that the
maximum characteristic probability to make the target 20 bits inactive is 2−8. Hence, we
added the condition that the probability of the trail is 2−X , where X = 8, 9, 10, · · · and
counted the number of characteristics for each X. The results are given in Table 5.

Table 5 shows that Y distinct characteristics with probability X were found by MILP.
As X becomes smaller, Y becomes bigger. We stopped this evaluation when the number
of characteristics reached 10 million. The sum of the probability of all the characteristics
up to 2−29 is 2−1.916 ≈ 2−2.0. We still have some gap to reach 2−1.6, however we believe

14
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

Table 5: Evaluation of Differential Probability with MILP. MILP found Y distinct
characteristics with probability X, and its contribution is calculated by XY .

X Y logXY X Y logXY X Y logXY X Y logXY
2−8 4 -6.000 2−14 224 -6.193 2−20 13128 -6.320 2−26 767468 -6.450
2−9 0 0 2−15 352 -6.541 2−21 19096 -6.780 2−27 1825772 -6.200
2−10 32 -5.000 2−16 860 -6.252 2−22 36780 -6.833 2−28 4013000 -6.064
2−11 32 -6.000 2−17 2144 -5.934 2−23 64240 -7.029 2−29 8144700 -6.043
2−12 20 -7.678 2−18 4796 -5.772 2−24 138384 -6.922
2−13 4 -11.000 2−19 6988 -6.229 2−25 340008 -6.625

that this analysis provides better understanding of the differential probability obtained by
our experiments.

3.5.3 Analysis for sLiSCP-light-256

16 steps of sLiSCP-light-256 can be attacked in the same procedure but the analysis
can be much simpler because the probabilities for α → β and β → α are identical in
Simeck64 (Table 2). Hence 16-step sLiSCP-light-256 can be attacked in the same way as
sLiSCP-256, which requires a computational cost of 2153.6 and memory amount of 247.3.

4 Tight Lower Bound for the Limited-Birthday Problem
In previous works, LBDs on permutations are claimed to be valid distinguishers when their
complexity is less than the one given by (3). For a random permutation, the complexity
(3) has been considered to be the best because

1. we don’t know of any algorithm that solves the limited-birthday problem on a random
permutation with a complexity smaller than (3), and

2. on the limited-birthday problem on a random function F , the complexity
max

{√
2n+1

|∆out| ,
2n+1

|∆out|·|∆in|

}
is proven to be tight [IPS13].

The above two evidences strongly indicate that (3) will be the tight bound to solve the
limited-birthday problem on a random permutation. However, to strengthen the rationale
of validity of LBDs on concrete permutations, it is highly desirable to give a formal proof
that (3) is the tight bound for a random permutation. Although many works have been
done on LBDs on permutations, there does not exist any previous work that gives such a
formal proof.

We for the first time provide a formal proof showing that (3) is actually the (asymptot-
ically) tight bound to solve the limited-birthday problem on a random permutation.

When the attack target is a random permutation, the limited-birthday problem can
be reformalized as the game GA such that an adversary A has access to the oracles P
and P−1, where P is a random permutation, and A wins if it outputs a quadruple of
n-bit strings (Xfin, X

′
fin, Yfin, Y

′
fin) such that Xfin ⊕ X ′fin ∈ ∆in and Yfin ⊕ Y ′fin ∈ ∆out and

P (Xfin) = Yfin and P (X ′fin) = Y ′fin. Let GA ⇒ 1 denote the event that A wins the game
GA. The formal description of GA is given in Fig. 8.

The following theorem shows that (3) is asymptotically the tight bound of the number
of queries to solve the limited-birthday problem on a random permutation.

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 15

Game GA
(Xfin, X

′
fin, Yfin, Y

′
fin)← AP,P−1

if P (Xfin) = Yfin, P (X ′fin) = Y ′fin, Xfin ⊕X ′fin ∈ ∆in, and Yfin ⊕ Y ′fin ∈ ∆out
return 1

else
return 0

Procedure P (X)
if (X,Y) ∈ LP for some Y
return Y

else
Y

$←− {0, 1}n \ LY

LX ← LX ∪ {X}, LY ← LY ∪ {Y }, LP ← LP ∪ {(X,Y)}
return Y

Procedure P−1(Y)
if (X,Y) ∈ LP for some X
return X

else
X

$←− {0, 1}n \ LX

LX ← LX ∪ {X}, LY ← LY ∪ {Y }, LP ← LP ∪ {(X,Y)}
return X

Figure 8: The gameGA that defines the limited birthday problem on a random permutation
P . The lists LX , LY , and LP are set to be empty at the beginning of the game.

Theorem 2. When n ≥ 5, to win the game GA with a probability that is greater than 1/2,
A has to make at least

1
4 ·max

{
min

{√
2n

|∆out|
,

√
2n

|∆in|

}
,

2n

|∆out| · |∆in|

}
(4)

queries to P and P−1.

We first provide intuition of our proof for the theorem, and then describe the formal
proof. Let I and O denote the integers such that |∆in| = 2I and |∆out| = 2O.

Proof intuition. Let A be an adversary. For simplicity, we assume that A stores a
pair (X,Y) into a list L at each query to P or P−1. When A queries X to P , A stores
(X,P (X)) into L. When A queries Y to P−1, A stores (P−1(Y), Y) into L. Intuitively,
at each query, A tries its best to obtain a new pair (X,Y) such that X ⊕X ′ ∈ ∆in and
Y ⊕ Y ′ ∈ ∆out for some existing pair (X ′, Y ′) in L.

Without loss of generality we can assume that I ≤ O. Then, min
{√

2n

|∆out| ,
√

2n

|∆in|

}
=√

2n

|∆out| = 2(n−O)/2 holds. Roughly speaking, the best strategy for A at the i-th query is
to perform the following procedure:

1. Choose the largest possible subset S ⊂ L such that X ′ ⊕ X ′′ ∈ ∆in for all
(X ′, Y ′), (X ′′, Y ′′) ∈ S, and |S| is large.

2. Choose a (fresh) X such that X ⊕X ′ ∈ ∆in holds for all (X ′, Y ′) ∈ S.

16
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

3. Query X to P , expecting that Y = P (X) happens to satisfy the condition Y ⊕ Y ′′ ∈
∆out for some (X ′′, Y ′′) ∈ S.

Intuitively, we can assume that A performs the above procedure at every query. Let pi

be the probability that “Y = P (X) happens to satisfy the condition Y ⊕ Y ′′ ∈ ∆out for
some (X ′′, Y ′′) ∈ S” in Step 3 of the above procedure is satisfied at the i-th query (i.e., pi

is the probability that A wins the game at the i-th query). For each pair (X ′′, Y ′′) in S,
the probability that Y = P (X) happens to satisfy the condition Y ⊕ Y ′′ ∈ ∆out is about
|∆out|/2n = 2n−O. Hence, roughly speaking,

pi ≤ (the number of possible values of Y ′′)/2n−O

= |S|/2n−O ≤ min {|L|, |∆in|} /2n−O = min
{
i, 2I

}
/2n−O

holds. In particular, the probability pAwins that A wins the game is upper bounded as

pAwins ≤
∑

1≤i≤q

pi ≤
∑

1≤i≤q

pq ≤ q ·min
{
q, 2I

}
/2n−O.

In what follows, we show the contrapositive statement of the proposition. That is, we
show that, if q is smaller than (4), then pAwins ≤ 1/2 holds. We consider two separate
cases depending on whether 2I +O > n− 2.

Suppose that 2I+O > n−2. In this case, q < 1
4 ·max

{
min

{√
2n

|∆in| ,
√

2n

|∆out|

}
, 2n

|∆out|·|∆in|

}
=

1
4 ·
√

2n

|∆out| = 1
4 · 2

(n−O)/2 holds (recall that we are assuming I ≤ O). In addition,
2(n−O)/2 ≤ 2I holds, which implies that min

{
q, 2I

}
= q holds. Therefore pAwins is upper

bounded as pAwins ≤ q · min
{
q, 2I

}
/2n−O = q2/2n−O ≤

(1
42(n−O)/2)2 /2n−O = 1/16.

Hence pAwins ≤ 1/2 holds and the contrapositive statement of the proposition holds when
2I +O > n− 2.

Next, suppose that 2I + O ≤ n − 2. In this case, q < 1
4 · max

{
min

{√
2n

|∆in| ,√
2n

|∆out|

}
, 2n

|∆out|·|∆in|

}
= 1

4 ·
2n

|∆out|·|∆in| = 1
4 · 2

n−I−O holds (recall that we are assuming
I ≤ O). If q is relatively small (i.e., q ≤ 2I), pAwins is upper bounded as pAwins ≤
q · min

{
q, 2I

}
/2n−O = q2/2n−O ≤ 22I/2n−O ≤ 1

4 since now we are assuming 2I +
O ≤ n − 2. In addition, if q is relatively large (q > 2I), pAwins is upper bounded as
pAwins ≤ q ·min

{
q, 2I

}
/2n−O = q · 2I/2n−O ≤

(1
4 · 2

n−I−O
)
· 2I/2n−O = 1/4. Therefore

pAwins ≤ 1/2 holds and the contrapositive statement also holds when 2I +O ≤ n− 2.

Formal proof. Based on the above intuition, we provide a formal proof of the theorem.
Let GA ⇒ 1 denote the event that A wins the game GA. To show the theorem, we first
show the following lemma.

Lemma 1. Let A be an adversary that makes at most q queries to P and P−1 in total.
If I ≤ O, then

Pr
[
GA ⇒ 1

]
≤

{
2n

2n−q+1 ·
q2

2n−O + 3
2n−q if q ≤ 2I ,

2n

2n−q+1 ·
q

2n−I−O + 3
2n−q if q ≥ 2I ,

holds. If O ≤ I, then

Pr
[
GA ⇒ 1

]
≤

{
2n

2n−q+1 ·
q2

2n−I + 3
2n−q if q ≤ 2O,

2n

2n−q+1 ·
q

2n−I−O + 3
2n−q if q ≥ 2O,

holds.

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 17

Proof. We show the claim in the case I ≤ O. The claim in the case O ≤ I can be shown
in the same way.

First, without loss of generality we can assume the followings:

1. A is a deterministic algorithm.

2. ∆in =
{
α||0n−I

∣∣α ∈ {0, 1}I
}
and ∆out =

{
β||0n−O

∣∣β ∈ {0, 1}O
}
.

3. A does not query X to P if

(a) A has already queried X to P before, or
(b) A queried Y to P−1 for some Y before and got P−1(Y) = X as the response.

4. A does not query Y to P−1 if

(a) A has already queried Y to P−1 before, or
(b) A queried X to P for some X before and got P (X) = Y as the response.

Let (Xfin, X
′
fin, Yfin, Y

′
fin) denote the final output of A, and (Xi, Yi) denote the i-th element

in LP (i.e. (Xi, Yi) is added to LP when A makes the i-th query). Let XL
i and XR

i be the
most significant I bits and the least significant (n− I) bits of Xi, respectively. Let Y L

i and
Y R

i be the most significant O bits and the least significant (n−O) bits of Yi, respectively.
Let colli be the event that Xj ⊕Xk ∈ ∆in and Yj ⊕ Yk ∈ ∆out for some j < k ≤ i.

Then we have that

Pr
[
GA ⇒ 1

]
≤ Pr

[
GA ⇒ 1 ∧ ¬collq

]
+ Pr

[
GA ⇒ 1 ∧ collq

]
= Pr

[
GA ⇒ 1

∣∣¬collq
]
· Pr [¬collq] + Pr

[
GA ⇒ 1

∣∣collq
]
· Pr [collq]

≤ Pr
[
GA ⇒ 1

∣∣¬collq
]

+ Pr [collq]
≤ Pr

[
GA ⇒ 1

∣∣¬collq
]

+ (Pr [collq ∧ ¬collq−1] + Pr [collq ∧ collq−1])
= Pr

[
GA ⇒ 1

∣∣¬collq
]

+ Pr [collq|¬collq−1] · Pr [¬collq−1] + Pr [collq−1]
≤ Pr

[
GA ⇒ 1

∣∣¬collq
]

+ Pr [collq|¬collq−1] + Pr [collq−1]

≤ · · · ≤ Pr
[
GA ⇒ 1

∣∣¬collq
]

+
∑

1≤i≤q

Pr [colli|¬colli−1] (5)

holds, where we denote Pr [coll1] by “Pr [coll1|¬coll0]”, by abuse of notation.

Upper bounding the term
∑

1≤i≤q Pr [colli|¬colli−1] in (5).
Suppose that A’s i-th query is made to P (but not to P−1). If XR

i 6= XR
j for all

j < i, Pr [colli|¬colli−1] = 0. If there exist indices 1 ≤ j1 < · · · < js < i such that
XR

i = XR
j1

= XR
j2

= · · · = XR
js

and XR
i 6= XR

j′ holds for all j′ ∈ {1, . . . , i− 1} \ {j1, . . . , js},

Pr [colli|¬colli−1]
= Pr

[
Y R

i = Y R
jk

for some 1 ≤ k ≤ s
∣∣¬colli−1

]
=
∑

1≤k≤s

Pr
[
Y R

i = Y R
jk

∣∣¬colli−1
]

≤
∑

1≤k≤s

(
The number of possible values for (Yi)L under the condition (Yi)R = Y R

jk

)
(The number of possible values for Yi)

≤
∑

1≤k≤s

2O − 1
2n − (i− 1) ≤

min{2I − 1, i− 1}(2O − 1)
2n − (i− 1)

18
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

holds (we used the property s ≤ min{2I − 1, i− 1} for the last inequality). Similarly, if
A’s i-th query is made to P−1, we can show that

Pr [colli|¬colli−1] ≤ min{2O − 1, i− 1}(2I − 1)
2n − (i− 1)

holds. Therefore we have

Pr [colli|¬colli−1] ≤
max

{
min{2I − 1, i− 1}(2O − 1),min{2O − 1, i− 1}(2I − 1)

}
2n − (i− 1)

=
{ (i−1)(2O−1)

2n−(i−1) if i ≤ 2I ,
(2I−1)(2O−1)

2n−(i−1) if i ≥ 2I .

(Recall that now we are assuming that 2I ≤ 2O holds.) Hence

∑
1≤i≤q

Pr [colli|¬colli−1] ≤
{

2n

2n−q+1 ·
q2

2n−O if q ≤ 2I ,
2n

2n−q+1 ·
q

2n−I−O if q ≥ 2I ,
(6)

follows.

Upper bounding the term Pr
[
GA ⇒ 1

∣∣¬collq
]

in (5).
Let bad1, bad2, and bad3 be the events that GA ⇒ 1 holds (A wins the game GA) and

1. (Xfin, Yfin) 6∈ LP , (X ′fin, Y
′

fin) ∈ LP ,

2. (Xfin, Yfin) ∈ LP , (X ′fin, Y
′

fin) 6∈ LP , and

3. (Xfin, Yfin) 6∈ LP , (X ′fin, Y
′

fin) 6∈ LP

hold just after A outputs the final output (Xfin, X
′
fin, Yfin, Y

′
fin), respectively. Then

Pr
[
GA ⇒ 1

∣∣¬collq
]

=
∑

1≤i≤3
Pr [badi|¬collq] (7)

holds.
Now we have that

Pr [bad1|¬collq] ≤ Pr [P (Xfin) = Yfin|(Xfin, Yfin) 6∈ LP] ≤ 1
2n − q

(8)

holds. Similarly,

Pr [bad2|¬collq] ≤ 1
2n − q

, and Pr [bad3|¬collq] ≤ 1
2n − q

(9)

hold.
From (7), (8), and (9),

Pr
[
GA ⇒ 1

∣∣¬collq
]
≤ 3

2n − q
(10)

follows.
The claim of the proposition (in the case I ≤ O) follows from (5), (6), and (10).

Next, we show the following proposition. To achieve the lower bound that is the
complex combination of “max” and “min” and quite close to the known best upper bound,
we introduce a technical parameter c.

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 19

Proposition 1. Let c be a positive number such that c ≤ n. If A makes at most

q ≤ max
{

min
{

2(n−O)/2−c/2, 2(n−I)/2−c/2
}
, 2n−(I+O)−c

}
,

queries,
Pr
[
GA ⇒ 1

]
≤ 2n

2n − q + 1 ·
1
2c

+ 3
2n − q

holds.

Proof. We show the claim of the proposition when I ≤ O. The claim for I ≥ O can be shown
in the same way. LetQ(n, c, I, O) := max

{
min

{
2(n−O)/2−c/2, 2(n−I)/2−c/2} , 2n−(I+O)−c

}
.

We consider two cases depending on whether 2I +O ≥ n− c or 2I +O ≤ n− c. Note
that I ≤ O is equivalent to

min
{

2(n−O)/2−c/2, 2(n−I)/2−c/2
}

= 2(n−O)/2−c/2,

and 2I +O ≥ n− c is equivalent to

max
{

2(n−O)/2−c/2, 2n−(I+O)−c
}

= 2(n−O)/2−c/2.

Case I: I ≤ O and 2I +O ≥ n− c.
In this case, q ≤ Q(n, c, I, O) = 2(n−O)/2−c/2 ≤ 2I holds. Hence

Pr
[
GA ⇒ 1

]
≤ 2n

2n − q + 1 ·
q2

2n−O
+ 3

2n − q
≤ 2n

2n − q + 1 ·
1
2c

+ 3
2n − q

follows from Lemma 1.

Case II: I ≤ O and 2I +O ≤ n− c.
In this case, q ≤ Q(n, c, I, O) = 2n−(I+O)−c holds. If q ≤ 2I holds,

Pr
[
GA ⇒ 1

]
≤ 2n

2n − q + 1 ·
q2

2n−O
+ 3

2n − q
≤ 2n

2n − q + 1 ·
1

2n−(2I+O) + 3
2n − q

≤ 2n

2n − q + 1 ·
1
2c

+ 3
2n − q

follows from Lemma 1. In addition, if 2I ≤ q holds,

Pr
[
GA ⇒ 1

]
≤ 2n

2n − q + 1 ·
q

2n−(I+O) + 3
2n − q

≤ 2n

2n − q + 1 ·
1
2c

+ 3
2n − q

(11)

follows from Lemma 1. Therefore the claim of the proposition also holds when I ≤ O and
2I +O ≤ n− c.

of Theorem 2. We show the contrapositive statement. Suppose that the number of
queries q made by A is less than max

{
min

{
2(n−O)/2, 2(n−I)/2} , 2n−(I+O)} /4. Then

q < max
{

min
{

2(n−O)/2−c/2, 2(n−I)/2−c/2} , 2n−(I+O)−c
}
holds, where we put c = 2. Since

max
{

min
{

2(n−O)/2−c/2, 2(n−I)/2−c/2} , 2n−(I+O)−c
}
≤ 2n−2 holds,

Pr[GA ⇒ 1] ≤ 2n

2n − q + 1 ·
1
4 + 3

2n − q
≤ 2n

2n − 2n−2 + 1 ·
1
4 + 3

2n − 2n−2 ≤
1
2

follows from Proposition 1 when n ≥ 5.

20
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

5 Conclusion
We can identify three main results in this paper:

1. Improved cryptanalysis results: First, we have showed improved attacks against
sLiSCP-192, sLiSCP-256, sLiSCP-light-192 and sLiSCP-light-256. We could
increase the highest number of attack rounds in the three latter ones. Though no
attack on the full round primitives is presented, our results allow to better determine
and understand the security margin of the related primitives, in particular of Spix
and SpoC, two 2-round candidates of the NIST lightweight standardization process.

2. From a generalized point of view: To achieve the previous results, we improved the
part solving the inbound phase from the previous applied rebound attacks, showing
once again (as was done for instance in [Nay11]) that this phase is very technical.
Our new results provide some hints on how to improve the inbound phase in previous
attacks: the order of building the lists to merge needs to be carefully chosen so that
the highest possible number of rounds can be included in the inbound phase. For
that, it seems a good idea to merge first the parts that have a lower number of
solutions. Also, on-the-fly computations often allow to reduce the memory needs. The
outbound can sometimes also be extended by relaxing the input-output conditions
studying the technical properties of the round functions. An interesting further work
would be to study if an automatic tool could provide the best LBD, like see for
instance [STW+14]. For example, we evaluated the differential probability of the
partially controlled trails by the experiments, but we also tried to evaluate it with
MILP. An efficient method to solve this problem would be an interesting direction.

3. Finally, we were able to prove for the first time that the bound of limited birthday
distinguishers on random permutations is asymptotically tight, which is a very
important result in order to asses the actual impact of the permutation distinguishers
published in the literature.

References
[AGH+19a] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar Mandal,

Mridul Nandi, and Raghvendra Rohit. SpoC: An Authenticated Cipher
Submission to the NIST LWC Competition. Submitted to NIST Lightweight
Standardization Process, 2019.

[AGH+19b] Riham AlTawy, Guang Gong, Morgan He, Kalikinkar Mandal, and Raghven-
dra Rohit. Spix: An Authenticated Cipher Submission to the NIST LWC
Competition. Submitted to NIST Lightweight Standardization Process, 2019.

[ARH+17] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong. sLiSCP: Simeck-Based Permutations
for Lightweight Sponge Cryptographic Primitives. In Carlisle Adams and
Jan Camenisch, editors, Selected Areas in Cryptography - SAC 2017 - 24th
International Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised
Selected Papers, volume 10719 of Lecture Notes in Computer Science, pages
129–150. Springer, 2017.

[ARH+18] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong. SLISCP-light: Towards Hardware Opti-
mized Sponge-specific Cryptographic Permutations. ACM Trans. Embedded
Comput. Syst., 17(4):81:1–81:26, 2018.

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 21

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -
18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer
Science, pages 320–337. Springer, 2011.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.

[Dae17] Joan Daemen. Innovations in permutation-based encryption and/or authenti-
cation. 2017. Invited talk.

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved
attacks for aes-like permutations. In Seokhie Hong and Tetsu Iwata, editors,
Fast Software Encryption, 17th International Workshop, FSE 2010, Seoul,
Korea, February 7-10, 2010, Revised Selected Papers, volume 6147 of Lecture
Notes in Computer Science, pages 365–383. Springer, 2010.

[IPS13] Mitsugu Iwamoto, Thomas Peyrin, and Yu Sasaki. Limited-birthday distin-
guishers for hash functions - collisions beyond the birthday bound can be
meaningful. In Kazue Sako and Palash Sarkar, editors, Advances in Cryp-
tology - ASIACRYPT 2013 - 19th International Conference on the Theory
and Application of Cryptology and Information Security, Bengaluru, India,
December 1-5, 2013, Proceedings, Part II, volume 8270 of Lecture Notes in
Computer Science, pages 504–523. Springer, 2013.

[LMS+15] Mario Lamberger, Florian Mendel, Martin Schläffer, Christian Rechberger, and
Vincent Rijmen. The rebound attack and subspace distinguishers: Application
to whirlpool. J. Cryptology, 28(2):257–296, 2015.

[LSSW18] Yunwen Liu, Yu Sasaki, Ling Song, and Gaoli Wang. Cryptanalysis of reduced
sliscp permutation in sponge-hash and duplex-ae modes. In Carlos Cid and
Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018
- 25th International Conference, Calgary, AB, Canada, August 15-17, 2018,
Revised Selected Papers, volume 11349 of Lecture Notes in Computer Science,
pages 92–114. Springer, 2018.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced whirlpool and grøstl. In Orr
Dunkelman, editor, Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers,
volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer,
2009.

[Nat19] National Institute of Standards and Technology. Lightweight Cryptography
(LWC) Standardization project, 2019. https://csrc.nist.gov/projects/
lightweight-cryptography.

[Nay11] María Naya-Plasencia. How to improve rebound attacks. In Phillip Rogaway,
editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, vol-
ume 6841 of Lecture Notes in Computer Science, pages 188–205. Springer,
2011.

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

22
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

[STW+14] Yu Sasaki, Yuuki Tokushige, Lei Wang, Mitsugu Iwamoto, and Kazuo Ohta.
An automated evaluation tool for improved rebound attack: New distinguish-
ers and proposals of shiftbytes parameters for grøstl. In Josh Benaloh, editor,
Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA
Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings,
volume 8366 of Lecture Notes in Computer Science, pages 424–443. Springer,
2014.

[TMÇ+19] Meltem Sönmez Turan, Kerry McKay, Çagdas Çalik, Donghoon Chang,
and Lawrence Bassham. Status Report on the First Round of the NIST
Lightweight Cryptography Standardization Process. https://csrc.nist.
gov/publications/detail/nistir/8268/final, 2019.

[YZS+15] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang
Gong. The simeck family of lightweight block ciphers. In Tim Güneysu and
Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems -
CHES 2015 - 17th International Workshop, Saint-Malo, France, September
13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science,
pages 307–329. Springer, 2015.

https://csrc.nist.gov/publications/detail/nistir/8268/final
https://csrc.nist.gov/publications/detail/nistir/8268/final

Akinori Hosoyamada, María Naya-Plasencia and Yu Sasaki 23

A 15-Round Trail for sLiSCP and sLiSCP-light

𝐼

𝐼𝐼

𝐼 𝐼

𝐼𝐼

𝐼

𝛼

𝛼

𝛼𝛽

𝛼𝛽 𝛼

𝛼𝛽𝛼

𝛼𝛽

𝛼

𝐼

𝐼𝐼

𝐼 𝐼

𝐼𝐼

𝐼

𝛼

𝛼𝛽

𝛼𝛽 𝛼

𝛼𝛽𝛼

𝛼𝛽

𝛼

(𝐼)

𝐼

0 0

𝛼∗

𝛼𝛽

00

𝐼𝐼

𝐼

𝐼 𝐼𝐼

𝐼

𝐼

𝛼𝛼

𝛼𝛽 𝛽

𝛼𝛼𝛽

𝛼𝛽

𝛽

𝐼𝐼

𝐼

𝐼 𝐼𝐼

𝐼

𝐼

𝛼𝛼

𝛼𝛽 𝛽

𝛼𝛼𝛽

𝛼𝛽

𝛽

(𝐼𝐼)

𝐼

∗∗

𝛼𝛽

𝛽

00

00

𝛽

𝛽

𝛽

Figure 9: Left: 15-Round Distinguisher for sLiSCP. Right: 15-Round Distinguisher for
sLiSCP-light. I and II denote the differential propagation α→ β and β → α, respectively.
(·) denote that the differential propagation is not controlled, hence the output difference
is unpredictable. The gray dotted line and block broken line are the border between the
inbound and outbound phases in the previous work and our work, respectively.

24
Improved Attacks on sLiSCP Permutation and Tight Bound of Limited Birthday

Distinguishers

B 16-Step Trails Extended from 15-Step Trails

𝐼

𝐼𝐼

𝐼 𝐼

𝐼𝐼

𝐼

𝛼

𝛼

𝛼𝛽

𝛼𝛽 𝛼

𝛼𝛽𝛼

𝛼𝛽

𝛼

𝐼

𝐼𝐼

𝐼 𝐼

𝐼𝐼

𝐼

𝛼

𝛼𝛽

𝛼𝛽 𝛼

𝛼𝛽𝛼

𝛼𝛽

𝛼

𝐼𝑝𝑎𝑟𝑡

𝐼

0 0

𝛼𝛾

𝛼𝛽

𝐼𝐼

𝐼

𝐼 𝐼𝐼

𝐼

𝐼

𝛼𝛼

𝛼𝛽 𝛽

𝛼𝛼𝛽

𝛼𝛽

𝛽

𝐼𝐼

𝐼

𝐼 𝐼𝐼

𝐼

𝐼

𝛼𝛼

𝛼𝛽 𝛽

𝛼𝛼𝛽

𝛼𝛽

𝛽

(𝐼𝐼)

𝐼

∗∗

𝛼𝛽

𝛽

00

𝛽

𝛽

𝛽

0𝛼 ∗𝛾

(𝐼𝐼)

𝐼𝑝𝑎𝑟𝑡

𝛾𝛽 0𝛼

Figure 10: Left: 16-Step Distinguisher for sLiSCP with the Last Step Extended. Right:
Extended 16-Step Distinguisher for sLiSCP-light with the First Step Extended. Both
contain 1 partially controlled active Simeck box denoted by ‘Ipart .’

	Introduction
	Preliminaries
	Specification of sLiSCP
	Specification of sLiSCP-light
	Limited-Birthday Problem

	Improved LBD against sLiSCP
	Previous Analysis on sLiSCP
	Improving Complexity of 15-Step Attacks on sLiSCP
	Application to 15-step LBD for sLiSCP-light
	16 Steps Attacks against sLiSCP-256
	16 Steps Attacks against sLiSCP-light-192 and sLiSCP-light-256

	Tight Lower Bound for the Limited-Birthday Problem
	Conclusion
	15-Round Trail for sLiSCP and sLiSCP-light
	16-Step Trails Extended from 15-Step Trails

