
Fixing the Achilles Heel of E-Voting:
The Bulletin Board

Lucca Hirschi
∗

lucca.hirschi@inria.fr

Inria & LORIA

Nancy, France

Lara Schmid
∗

schmidla@inf.ethz.ch

Department of Computer Science,

ETH Zurich

Zurich, Switzerland

David Basin

basin@inf.ethz.ch

Department of Computer Science,

ETH Zurich

Zurich, Switzerland

ABSTRACT
The results of electronic elections should be verifiable so that any

cheating is detected. To support this, many protocols employ an

electronic bulletin board (BB) for publishing data that can be read

by participants and used to perform verifiability checks. We demon-

strate that the BB is itself a security-critical component that has

often been treated far too casually in previous designs and analyses.

In particular, we present novel attacks on the e-voting protocols

Helios [1], Civitas [12], and Belenios [18] that violate some of their

central security claims under realistic system assumptions. These

attacks were outside the scope of prior security analyses as their

verifiability notions assume an idealized BB.

To enable the analysis of protocols under realistic assumptions

about the BB, we introduce a new verifiability definition that is

applicable to arbitrary BBs. We identify a requirement, called final-
agreement, and formally prove that it is sufficient and, in most

cases, necessary to achieve verifiability. We then propose a BB

protocol that satisfies final-agreement under weak, realistic trust

assumptions and provide a machine-checked proof thereof. Our

protocol can be used as a replacement for existing BBs, enabling

verifiability under much weaker trust assumptions.

Note: For reproducibility, our machine-checked proofs are avail-
able at [49].

1 INTRODUCTION
Physical bulletin boards are used to publish announcements, for

example at the town hall. An electronic bulletin board, henceforth
referred to as BB, has a similar purpose, but can be accessed re-
motely, e.g., by publishing its content on a website. While BBs are

deployed in various contexts, they are particularly important for

electronic voting (e-voting) protocols.

For an e-voting protocol to be trustworthy, the participants must

be convinced that the final tally is correctly computed from all

eligible voters’ ballots. To this end, the participants must be able to

verify that all e-voting authorities behaved as specified, even when

some of them are not trustworthy. For most protocols, verifiabil-

ity is achieved by voters and auditors performing checks on data

published on a BB. In this paper, we focus on those BBs that are

used for verifiability checks, where readers read their content and

then perform checks on the data they read. For instance, voters

may check that their ballot was recorded correctly after casting it.

Moreover, any participant, e.g., voter or auditor, may check that all

ballots were processed correctly by the authorities.

∗
Both authors contributed equally to this research.

State of the art. For verifiability checks to be meaningful, the BB

must provide some guarantees, such as all participants agree on its

content. However, to the best of our knowledge, no prior work has

studied which exact (minimal) guarantees must be satisfied by a BB

for verifiability to hold. All verifiability definitions surveyed in [17]

and most e-voting protocols that are formally proven to provide ver-

ifiability [4, 18, 39] actually make the overly conservative assump-

tion of an idealized BB such as a shared memory or a broadcast chan-

nel. Some researchers regard the realization of BBs satisfying such

strong requirements as an orthogonal problem [4, 15, 18]. Thus, it is

unclear how and whether these assumptions can be met in practice.

Other researchers have proposed concrete BB designs that do

not aim to realize an idealized BB and provide too weak guarantees.

For instance, the BB in Civitas [12] is signed, Helios [1] suggests BB

contents are (re)posted by several auditors, and [24] makes use of

a Byzantine Fault Tolerant (BFT) algorithm. As we shall see, these

mechanisms fail to provide sufficiently strong guarantees for ver-

ifiability when considering realistic assumptions associated with

medium and large scale elections. We shall also see why solutions

based on distributed ledgers or blockchains are unsuitable.

As a consequence, reference implementations of the state-of-the-

art systems Helios, Civitas, and Belenios [1, 12, 18], that have been

extensively used, notably in academia (e.g., UCLouvain, Prince-
ton, ACM, IACR), use BBs with too weak guarantees. Therefore,

the centralized entity running the BB must actually be trusted for

verifiability to hold in practice. The same holds for theweb-based de-

ployments of Helios and Belenios that are currently running [5, 37].

However, this assumption is unreasonable and at odds with the re-

cent, substantial efforts to minimize the required trust assumptions

in e-voting designs and proofs [6, 15, 16].

Thus, whereas e-voting designs make too strong assumptions
about the BB, actual deployments provide too weak guarantees
for them. This mismatch and the imprecise treatment of the BB

in prior works call for a thorough analysis of the BB’s role with

respect to verifiability and raise the following questions. What is

the actual security impact of this mismatch? What requirements

must be satisfied by a BB for verifiability to hold? Can a concrete BB

protocol achieve such requirements under realistic assumptions?

Contributions. Wemake fourmain contributions. First, we demon-

strate that there is a mismatch between BB assumptions in veri-

fiability claims and proofs and actual BB realizations. This opens

even well-designed protocols to serious attacks. In particular, we

present novel attacks on the state-of-the-art voting systems He-

lios [1], Civitas [12], and Belenios [18]. We show that these systems

fail to provide verifiability (and privacy) under the threat models for

which they are claimed to be secure. As verifiability has previously

1

only been analyzed with an idealized BB, these attacks were missed

in prior formal analyses.

Second, we propose a new verifiability definition that accounts

for malicious BB behaviors and thus covers more realistic scenarios

and also captures our attacks. We base our definition on the generic

verifiability definition of [17] that subsumes all of the definitions sur-

veyed in [17], which all assume an idealized BB. However, in stark

contrast to [17], our new definition verifiability+ is also suitable for
malicious BBs. As expected, verifiability

+
does not hold for arbi-

trary BBs, which motivates our analysis of which properties of the

BB are needed for the entire e-voting system to satisfy verifiability
+
.

Third, we identify a new BB property, called Final-Agreement
(FA for short), that is weaker than conventional BB requirements,

yet sufficient to achieve verifiability
+
. FA requires that any content

read from the BB at some point in time is also contained in a dis-

tinguished final version of the BB, wherein the election result is

published. Furthermore, all readers agree on this final content. It

does not, however, impose any relation between the writes and the

reads. We show that, in most e-voting protocols, FA is the weak-

est BB requirement that suffices to achieve verifiability
+
. Also, we

prove that any protocol satisfying verifiability with an idealized

BB, satisfies verifiability
+
for a BB satisfying FA, which requires

weaker trust assumptions that can be met in practice.

Finally, we propose a BB protocol that satisfies FA. Similar to

other approaches [23, 24], we assume that the BB is implemented

using multiple peers, only some of which need to be trusted. This

is a more realistic trust assumption than assuming a single trusted

entity as required by some prior works. Also, our protocol requires

weaker trust and system assumptions than previous approaches

based on BFT (e.g., [24]). Since such proofs are subtle, we formalize

our protocol and the FA property as an event-based model and

provide a machine-checked proof that the protocol satisfies FA.
Overall, our results show that unrealistically strong BBs in ver-

ifiability proofs and designs can be replaced by our realizable BB

protocol and that verifiability is still (provably) satisfied. Our work

therefore allows one to effectively and substantially weaken the

required trust assumptions in e-voting protocols.

Outline. In Section 2, we present our system model, our threat

model, and the specification language we use. In Section 3, we re-

view some e-voting designs with their BB auditing mechanisms

and show how they can be attacked. We then propose a new verifi-

ability definition that takes such scenarios into account. We define

the FA property in Section 4 and argue why it is sufficient and, in

many cases, necessary for verifiability. We then present our BB

protocol and formally establish that it satisfies final-agreement in

Section 5. In Sections 6 and 7 we discuss related work, including

those solutions based on distributed ledgers, and draw conclusions.

2 BULLETIN BOARD (BB) MODEL
2.1 Setup, System, and Adversary Assumptions

2.1.1 Functionalities. BBs are used to publish information to a

group of readers. A BB therefore provides, at a minimum, function-

alities for writing and reading content to and from it. For many use

cases, including e-voting, the BB content is intended to reach a final

state where the final content represents the result of the process

E-Voting Authorities

Bulletin

Board

Voter Check

Auditor Check

Write
Read-nonFinal

Read-final

Figure 1: Typical setup of a BB in e-voting. The BB function-
alities are depicted by solid lines, the verifiability checks by
dotted lines, and the remaining architecture by dashed lines.

X

. . .P1 Pn

Write

Read-final

Read-nonFinal

Figure 2: System setup of our BB protocol. The BB peers are
depicted by circles, the proxy peer X by a rectangle, and the
communication channels by arrows.

that the BB tracks. For example, an election’s final content includes

the election outcome. We shall see that for e-voting, the guarantees

required when reading the final content are different from the guar-

antees required when reading non-final contents. The former guar-

antees are strictly stronger and include a strong form of agreement

between readers, whereas the latter can typically be relaxed. We

thus propose a BB where the reading functionality is split into two a
priori distinguished functionalities: Read-final for reading the BB fi-

nal content(s) and Read-nonFinal for reading any content on the BB,
including non-final ones. The third and final functionality is Write.

2.1.2 Setup. We focus on the interactions between the BB and

verifiability in e-voting. Thus, we consider BBs that are solely used

to store election-relevant data and to retrieve data to check for ver-
ifiability. Checking verifiability intuitively entails checking that all

participants followed their specification and the election’s outcome

is thus trustworthy. In this setting, it is common that writers are

voting authorities and readers are auditors and voters (or their ma-

chines), who carry out some verifiability checks on the BB content.

A typical BB architecture for e-voting is depicted in Figure 1.

2.1.3 System Assumptions and Threat Model. A concrete BB

solution must be analyzed together with appropriate system and

adversary assumptions. We discuss these next.

System Assumptions. A concrete BB can be realized by a single

role (e.g., [35]) or by several (equal or different) roles, which we call

peers, that run a protocol together (e.g., [24]). The system assump-

tions state which communication channels are available between

readers, writers, and peers.

We note that reader-interconnectivity would allow for BB so-

lutions based on BFT algorithms run by the readers, e.g., readers
cross-checking their views of the BB. However, assuming reader-

reader communication makes very strong assumptions that are

unrealistic for e-voting at scale, i.e., medium and large scale elec-

tions, where all voters can be readers. Indeed, this would require:

(1) an infrastructure such as a Public Key Infrastructure (PKI)

that voters use to identify and authenticate other genuine,

eligible voters,

(2) sufficiently many voters must be online at all times with

sufficient bandwidth and storage (the BB content can be

2

very large as it may contain large zero-knowledge proofs

(ZKP) for many voters, see Section 3.2.2), and

(3) the voters must trust their machines (voting platforms),

which must be online and highly available.
1

As such assumptions are unrealistic for voting systems, we exclude

reader-reader communication from our system model.

Since readers cannot directly communicate with each other to

synchronize their BB views, they must rely on trusted third parties,

which may be centralized or decentralized, i.e., the peers. We seek

a decentralized solution as depicted in Figure 2 that uses a parame-

terized number n of peers P1, . . . , Pn . In addition, we introduce a

distinguished entity, called the proxy peer X , which has communi-

cation channels with the readers, writers, and all peers. This setup

is more realistic than setups requiring all readers and writers to be

directly connected to all peers. Even though X is considered to be

a single entity, it can be physically replicated on different servers

to avoid a single point of failure.

Threat Model. We assume that all communication is over an

insecure network, controlled by the adversary. Additionally, some

of the participants can be malicious, i.e., the adversary knows all of

their secrets and controls them. We allow for static and dynamic

compromise, i.e., agents can be compromised before or also during

the execution. All agents that are not malicious are honest and
always follow their specification.

We denote by nm the number of BB peers Pi that are malicious

and by nh = n −nm the number of honest peers. We do not require

the proxy peer X to be honest. Because of this and our assumption

that messages can be dropped by the adversary, it is always possible

that a reader may be unable to read the BB. We will later give a

lower bound on nh that is required to achieve the BB security goals

as a function of how many messages originating from the peers

arrive at a reader (through X), hence balancing availability and

trust assumptions.

2.2 Formal Specifications in Event-B
2.2.1 Event-B Definitions. We use an event-based model based

on Event-B [9] to formally describe protocols. First, we introduce

standard notations and definitions for Event-B specifications. We

shall use standard mathematical notations and functional program-

ming concepts such as typed values, types as sets of values, ≡ for

the equality between values, and ≜ for the equality between types.

We denote by r = Lx1 = t1, . . . ,xn = tnM a record value that respec-
tively stores the value ti with the label xi , i.e., r .xi ≡ ti . For a set
S , P(S) denotes the powerset of S . · denotes vectors, and [ai]i ∈J
denotes a list of elements ai indexed by elements in J .

Definition 2.1 (Specifications). A transition system is a tuple T =

(Σ, Σ0,→), where Σ is the state space, Σ0 ⊆ Σ is the set of initial

states, and→ ∈ (Σ × Σ) is the transition relation. A behavior σ of

T is a sequence of states σ = s0.s1. . . . sn such that s0 ∈ Σ0 and
∀i ∈ [0,n), (si , si+1) ∈ →. Be(T) denotes the set of all behaviors.

A specification is defined by a set of typed state variables, which
define a set of states Σ containing values for the state variables

(which together can be seen as constituting a record), and a set

1
This is (only) problematic for e-voting protocols that assume that voters’ machines

can be compromised and that rely on specialized devices instead [6, 31, 32, 45].

of events, which define a transition relation over Σ. We denote

a state whose state variables a,b, ... have the values v1,v2, ... by
La = v1,b = v2, ..M. Events are of the form Ev(x) ≡ {(s, s ′) |G(x , s)∧

s ′.v := f (x , s)},where Ev is the event name, x are the event’s param-

eters,v are the state variables,G(x , s) is a conjunction of guards, and
s ′.v := f (x , s) is an actionwith the update function f . The guards are
first-order formulae over s .v and x and determine when the event

is enabled. If the event is enabled, the action s ′.v := f (x , s) assigns
values to state variables in the state s ′. The set of all events defines
a transition relation corresponding to applications of the events

with arbitrary event parameters. Therefore, a specification and a set

of initial states define a transition system. We assume that all speci-

fications implicitly include the event Skip() ≡ {(s, s ′) | s ′.v := s .v},
which models stuttering steps. We denote by V (S) the set of state
variables of a specification S .

Two specifications S1 and S2 can be combined into a new specifi-

cation, denoted by S1∪S2, by taking the union of the state variables,

events, and the state variables’ initial values. Note that the initial

values of the shared state variables in S1 and S2 must be equal.

2.2.2 E-voting Protocol and BB Specification Framework. We

abstractly represent e-voting and BB protocols as Event-B specifi-

cations. Our definitions are generic and focus on the interactions

between e-voting entities, the BB entity, and verifiability checks,

and they abstract away all other interactions.

Parameterized BB Contents. For the sake of generality, we im-

pose minimal restrictions on the contents that the BB may send

and receive and we shall work with a lattice structure. Formally,

we assume given an uninterpreted set W of all possible BB con-

tents with a relation ⊑b that form a lattice whose join and meet are

respectively written as ∪b and ∩b . We also assume a bottom ele-

ment B⊥. The relation ⊑b expresses inclusion between BB contents.

The set W abstractly represents contents and does not necessarily

match with the BB’s actual internal representation. Furthermore,

W may contain partial bulletin boards, such as a single item like a

ballot. Even though our results are established for the general case,

one can work with a more intuitive instance of such a lattice: the

power set of a given setI of items that the BB contents may contain.

Namely, W := P(I), ⊑b :=⊆, ∪b := ∪, ∩b := ∩, and B⊥ := ∅.

We also assume that BB contents can be published at different

stages in time, which we denote by phases that are interpreted by

positive natural numbers and act as counters. Each B ∈ W is thus

associated with a phase, according to the function ps : W → N+

and ps(B⊥) = 1.

Our Framework, the Big Picture. We focus on the BB’s impact

on verifiability in e-voting. We therefore formalize a protocol as

the combination of two specifications, modeling the BB and the

rest of the e-voting system. We describe how these two specifica-

tions interact through specific state variables, as explained next;

see Figure 3 for a graphical presentation.

An agent A accessing the Write functionality to write some

content Bw , shown in solid, red lines in Figure 3, is modeled as Bw
being added to the set in wr (write requests). Depending on the BB

specification, the BB may then update the state variable w (writes)
by adding Bw to the corresponding set. Hence, the state variables

3

π S

A
wr

w cr

nfc

fc

Figure 3: Abstract representation of the interactions be-
tween the BB (π) and the e-voting (S) specifications using
dedicated state variables (in squares). Write actions for an
agent A are depicted with red, solid arrows and read actions
with blue, dashed arrows. Dotted arrows denote interactions
that we abstract away: respectively the construction of BB
contents fromwrites (on the left) and the sending of BB con-
tents to readers (on the right).

wr and w respectively record the write requests sent to and actually

processed by the BB.

To evaluate a verifiability check on some BB data, an agent A
can access one of the BB’s two read functionalities. We distinguish

a subset of verifiability checks, called final-only checks, that can

only be evaluated on BB contents obtained by the Read-final func-
tionality. An agent A using Read-final to retrieve some BB content

for evaluating such a verifiability check is modeled in two steps: (1)

A’s check is added to a set of check requests cr, and (2) depending on
the BB specification, the BB may process this request and provide

A with some content, which is stored with the original request

in the fc (final-checks) state variable (depicted with dashed, blue

arrows in Figure 3). Accesses to Read-nonFinal are similar, except

that the processed check requests are stored in the state variable

nfc (non-final-checks) rather than in fc.
Finally, a state variable agents, from the e-voting specification,

keeps track of all honest and malicious running agents.

Protocol and BB Specifications. We now formalize the above in

Event-B. We respectively denote by A and M the uninterpreted

sets of possible agents and messages and by C the set of possible

verifiability checks. A verifiability checkC ∈ C is a predicate of the

form C(B,x) that represents a property checked on the BB content

B ∈ W, possibly with additional data x ∈ M∗
in the checker’s

possession. We assume some Cf ⊆ C containing all the final-only

verifiability checks, and let Cnf = C\Cf . We describe verifiability

checks further in Section 3.1. The check requests recorded in cr
are of the form (C,x ,a) and denote that an agent a ∈ A wants to

read the BB, obtain some B, and check C(B,x). With this, we can

formalize the e-voting specifications explained above.

Definition 2.2 (S). An e-voting specification S is a specification

whose state variables contain: cr : P(C ×M∗ × A), wr : P(W),

and agents : P(A)×P(A). Moreover, cr andwr are initially empty

and monotonically increasing; for instance, for cr, ∀σ .s .σ ′.s ′ ∈

Be(S), s .cr ⊆ s ′.cr.

We define BB specifications similarly. The state variables fc and
nfc record checks of the form (C,x ,a,B), where B is the content that

the BB produced for some check request (C,x ,a) in cr respectively
through Read-final and Read-nonFinal.

Definition 2.3 (π). A BB specification π is a specification contain-

ing the state variables cr and wr (see Definition 2.2), fc : P(C ×

M∗ ×A ×W), nfc : P(Cnf ×M∗ ×A ×W), and w : P(W) such

that cr,wr, fc, nfc, and w are initially empty and monotonically in-

creasing. π has neither write access to cr nor to wr, i.e., their values
can only be used in guards.

For a state s , checksA(s) denotes the set of all checks that have
been actually processed (answered to) by the BB, namely {(C,x ,a) |
(C,x ,a,B) ∈ (s .fc∪s .nfc)}. For a set of checks c (e.g., nfc), we denote
by B(c) the set of all read BB contents, i.e., {B | ∃(C,x ,a,B) ∈ c}.

Example 2.4. Consider the BB specification π ide

B
defined below,

which provides the functionalities depicted in Figure 2. The specifi-

cation models an idealized BB that acts as a shared variable. That

is, it returns all previously written messages for all check requests

(RNF,RF) and is updated (Write) by all write requests, until a final

check is processed and the content is frozen.

Σ≜Lwr,w, cr, fc, nfcM
Σ0≡{Lwr,w, cr, fc, nfc = ∅M}

Write(Bw)≡ {(s, s ′) | fc = ∅ ∧ Bw ∈ s .wr ∧ s ′.w = s .w ∪ {Bw }}

Rnf(C,x ,a,B)≡ {(s, s ′) | s .w = s .wr ∧ (C,x ,a) ∈ s .cr
∧C ∈ Cnf ∧ B = ∪bs .w ∧ s ′.nfc := s .nfc ∪ {(C,x ,a,B)}}

Rf(C,x ,a,B)≡ {(s, s ′) | s .w = s .wr ∧ (C,x ,a) ∈ s .cr
∧B = ∪bs .w ∧ s ′.fc := s .fc ∪ {(C,x ,a,B)}}

Next, consider π tru

B
, which is as π ide

B
but without the guard s .w =

s .wr in the actions Rnf and Rf and without the guard Bw ∈ s .wr in
the actionWrite. π tru

B
models a trustworthy BB that has insecure

and unreliable channels with writers (w and wr can be unrelated),

but always provides readers with the previous writes and stops

accepting new writes once a final check is processed.

We define a protocol by combining an e-voting and a BB specifica-

tion, where the checks (nfc∪ fc) must correspond to check requests

(cr), that is the BB only processes checks that were requested.

Definition 2.5 (Protocol). A protocol is the union S ∪ π of an

e-voting specification S and a BB specification π . We require, more-

over, that (1) π and S only interact through cr and wr, that is
V (S)∩V (π) ⊆ {cr,wr}, and (2) ∀σ .s ∈ Be(S∪π), checksA(s) ⊆ s .cr.
We write P(S,π) for S ∪ π where these two conditions hold.

Finally, we shall define several BB properties in this paper, all of

which can be formalized as predicates.

Definition 2.6. Let T be a predicate over behaviors. For a behav-

ior σ , we write σ ⊢ T when T is satisfied on σ |Vb (i.e., σ restricted

to the state variables in Vb), where Vb = {cr,wr,w, fc, nfc}. We

require that T holds for σ = s0, where the values of the record

(s0) |Vb are empty sets. A BB specification π satisfies a predicate

T , denoted by π ⊢ T when, for all S such that P(S,π) is a protocol,
∀σ ∈ Be(P(S,π)), σ ⊢ T .

Example 2.7. The written-as-requested predicate War denotes
that all write requests were processed before reading, i.e., σ ⊢ War
when for any prefix of σ of the form σ0.s .s

′
, if s ′.nfc ∪ s ′.fc ,

s .nfc ∪ s .fc, then s .wr = s .w. Also, the read-as-written predicate

RaW denotes that read contents are identical to the previously

written contents and that no writes are made once a final check

has been processed. That is, σ ⊢ RaW when for any prefix σ0.s .s
′

4

of σ , the two following conditions hold: (1) ∀(C,x ,a,B) ∈ ((s ′.fc ∪
s ′.nfc)\(s .fc ∪ s .nfc)), B = ∪bs .w and (2) s .fc , ∅ ⇒ s ′.w = s .w.

We call a BB that satisfies RaW trustworthy. We call it idealized
if it also satisfiesWar. It is easy to see that π ide

B
(respectively π tru

B
)

from Example 2.4 is an idealized (respectively trustworthy) BB.

3 VERIFIABILITY AND THE BB
Verifiability requires that voters and auditors can verify the elec-

tion’s integrity by performing checks on data that is usually stored

on the BB. Hence, verifiability critically relies on the BB’s properties.

We investigate now the relationship between verifiability and BBs.

3.1 Defining Verifiability for Malicious BBs
We now investigate how verifiability can be formally defined in our

framework. We first explain that most prior verifiability definitions

assumed a trustworthy or even an idealized BB and we formalize

these in our framework. We then generalize verifiability by relax-

ing the restrictions on the BBs found in prior works, and allowing

malicious BBs instead.

The Big Picture. Verifiability enables voters and auditors to detect

any malicious behavior by the election authorities. The core prop-

erty is so-called end-to-end verifiability, which essentially states

that the election’s result has been correctly computed based on

all eligible voters’ votes [17, 42]. It is common to divide this into

sub-properties targeting individual steps of the election process [14,

41, 42]. For instance, Individual Verifiability (IV) states that when a

voter checks that his ballot is in the list of recorded ballots (on the

BB), then his ballot is indeed recorded correctly and will be consid-

ered in the tallying process. Universal Verifiability (UV) states that

when auditors or voters verify checks on the end result (on the BB),

such as verifying given ZKPs, then the election’s result was cor-

rectly computed from the recorded ballots. Finally, Eligibility Verifi-
ability (EV) ensures that the election’s result is only computed from

eligible voters’ votes and contains at most one vote from each voter.

More generally, verifiability states that when the verifiability

checks hold for a given execution then this execution, along with

the corresponding final BB content (including the final outcome),

meet some verifiability goal [17]. These goals can be quantitative or
qualitative. In our work, we focus on qualitative definitions in the

possibilistic setting, where agents may perform verifiability checks

and where goals are expressed with respect to the set of agents

who perform these checks. However, it should be straightforward

to generalize our results to the probabilistic case, e.g., using prob-
abilistic transition systems rather than possibilistic ones; we leave

this task as future work.

Verifiability for Honest BBs. To formally define verifiability, we first

formalize verifiability checks and goals.

Definition 3.1. A verifiability check is a predicate C : P(W ×

M∗) ∈ C. C is said to be final-only when C ∈ Cf ⊆ C. We require

that all verifiability checks that are not final-only must bemonotonic
in B, i.e., ∀B,B′,x , C(B,x) ∧ B ⊑b B

′ ⇒ C(B′,x).

Monotonicity may appear restrictive. However, as we argue next,

it only excludes verifiability checks that cannot be meaningfully

evaluated on non-final contents. Fortunately, these verifiability

checks are therefore final-only and need not be monotonic. Mono-

tonicity essentially states that a verifiability check cannot be vio-

lated by extending the BB content (e.g., adding more items). The

lack of monotonicity thus means that verifiability checks evaluated

on non-final contents or on partial contents provide no guarantees

about the final BB content containing the election outcome. For in-

stance, if re-voting is allowed, the check that at most one ballot has

been registered per voter is not monotonic, it may hold at a given

time but can later be violated when a voter re-votes. Therefore, to

provide meaningful guarantees such checks must be evaluated on

final, complete contents only and are thus final-only.

Monotonicity is typically met by IV checks, as they express that

the BB content contains specific items (like a ballot). UV must usu-

ally be checked on the final, full BB content and thus these checks

are typically final-only.

A goal’s satisfiability may depend not only on the final BB con-

tent, but also on which checks have been performed and on addi-

tional information about agents’ honesty and intended choices. We

thus define a goal as a predicate over the final BB content, the set

of all checks that have been responded to by the BB, and the sets

of honest and malicious agents that can contain static information

about them such as their intended choices.

Definition 3.2. A verifiability goal τ is a predicate over W ×

P(C ×M∗ ×A)× (A ×A) that is initially satisfied for B⊥, i.e., the
initial BB content.

We next present a generic verifiability definition that is inspired

by [17], where different verifiability notions are cast in the same

framework. All the verifiability properties analyzed in [17] are only

defined for protocols that assume an idealized or trustworthy BB

(e.g., π tru

B
or π ide

B
from Example 2.4), which we formally characterize

by the RaW predicate. For any protocol P(S,π) such that π ⊢ RaW
and for any σ .s ∈ Be(P(S,π)), we define the final BB content in s as
the union of all writes, that is finalB(s) = ∪bs .w.

Definition 3.3 (Verifiability). A protocol P(S,π) with π ⊢ RaW
provides verifiability for a verifiability goal τ when

∀σ .s ∈ Be(P(S,π)),
∧

(C,x,a,B)∈(s .fc∪s .nfc)

C(B,x)

⇒ τ (finalB(s), checksA(s), s .agents).

Note that verifiability relies on the BB in two ways. First, the veri-

fiability checks are performed on data read from the BB. Second, the

verifiability goal is evaluated with respect to the final BB content,

i.e., the final outcome on the final BB must satisfy some properties.

Whereas the read and the final BB contents are well-defined for BB

specifications satisfying RaW (through finalB(·) for the final con-
tent), this is not the case for arbitrary, possibly malicious BBs. These

BBs can, for example, provide different readers completely different

(final) BB contents, possibly unrelated to writes. Thus, the above

verifiability definition cannot be used for malicious BBs. Hence we

next propose a more generic definition thereof, called verifiability
+
.

Verifiability for Malicious BBs. Intuitively, even when the BB is

under adversarial control, we would like checks performed on the

BB contents provided by the malicious BB to guarantee that a goal

holds with respect to the final content. First, note that for this to be

well-defined, the final BB must be well-defined and unique, even for

malicious BBs. That is, we can only define verifiability for BBs that

5

Threat model BB Threat model other roles Violated properties Exploited BB weakness Fixed by FA

C.1 none none (all tellers hon.) IV, UV partial BB not on final

C.2 none none (all tellers hon.) IV inconsistent views

C.3 none tabulation tellers IV, UV no unique final

C.4 none none (all tellers hon.) IV, UV no unique final

C.5 none none (all tellers hon.) EV, privacy (CR) inconsistent views

B.1 voting server decryption trustees IV, UV no unique final

B.2 voting server none IV partial BB not on final

B.3 voting server none BB auditability −

B.4 voting server none privacy (BP) B.2 + [19]

Each attack, except B.3, violates at least one security claim from [12, 18] under the same threat model. We denote by basic threat model, the
weakest adversary considered in [12] and [18]. The 2

nd
and 3

rd
columns denote the threat model required for the attack. It shows, compared

to the basic threat model (none), which additional entities must be malicious and which entities may additionally be honest (hon.). The 4th

column denotes the properties violated by the attacks, where we distinguish two levels of privacy: ballot privacy (BP) and coercion-resistance

(CR). The last column indicates whether the attack is fixed by a BB satisfying FA, as will be introduced in Section 4.

Figure 4: Summary of attacks on Civitas [12] (C.1-C.5) and Belenios [18] (B.1-B.4) (also affecting Helios [1]).

present the same content to all readers using Read-final. We thus

define a predicate, called final-consistency (FC in short), which holds

for a behavior σ .s when |B(s .fc)| ≤ 1. That is, any BB specification

π satisfying FC never provides two final check requests with two

different BB contents. (Note that RaW strictly implies FC). For
such specifications, we define the unique final content in a state

s , denoted by finalB+(s), as either B⊥ when s .fc = ∅ (no one has

read the final BB), or Bf , where B(s .fc) = {Bf }, otherwise (when at

least one reader has read the final BB). Note that finalB+(s) may be

totally unrelated to s .wr and s .w. Given this, we define verifiability+,
which is a variant of verifiability suitable for any BB that is FC.

Definition 3.4 (Verifiability+). A protocol P(S,π) with π ⊢ FC
provides verifiability+ for a verifiability goal τ when

∀σ .s ∈ Be(P(S,π)),
∧

(C,x,a,B)∈(s .fc∪s .nfc)

C(B,x)

⇒ τ (finalB+(s), checksA(s), s .agents).

3.2 Practical Attacks with Malicious BBs
We now investigate the security impact of a malicious BB. We

present several new, practical attacks on the existing e-voting sys-

tems Helios [1], Civitas [12], and Belenios [18], where an adversary

controlling the BB can manipulate the election without being ef-

fectively detected, hence violating verifiability, even when their

respective BB auditing mechanisms are used. We emphasize that

our attacks can be carried out with respect to threat models under

which these schemes were claimed to be secure [1, 12, 18], thus

refuting these claims. We summarize our attacks, their underlying

threat models, and which property they violate in Figure 4.
2
In Sec-

tion 3.2.3, we discuss at greater length why the BB auditing mech-

anisms that have been proposed for these schemes fail to counter

these attacks. Finally, we stress that our attacks do not require the

BB to provide different readers with different election results, as

readers may have side-channels where this is broadcast (e.g., TV).
Many of our attacks and the insights we gain from them also

apply to other schemes. Our attacks demonstrate that the BB in

e-voting is often the weakest link for realistic threat scenarios,

2
We discuss additional attacks arising from a lack of agreement on initial data (e.g.,
public keys) and argue why this is an orthogonal issue in Appendix A.3.

which has been largely overlooked in the design and analyses of e-

voting protocols. For instance, Civitas [12] and Helios [1] explicitly

consider a malicious BB but greatly underestimate its impact on

security, resulting in security claims that our attacks directly refute.

The security proofs for Belenios [13] aremade under the assumption

that the BB is honest, which is too strong for most realistic deploy-

ments. Moreover, Belenios is claimed to be secure when the entity

running the BB is malicious in [18], which we also refute. Recall

that verifiability may include some form of IV, UV, and EV. As our at-

tacks fundamentally break verifiability, independently of its specific

definition, we consider it informally here and refer to [12] and [18]

for the formal definition of verifiability used in Civitas and Belenios.

3.2.1 Civitas. Civitas [2, 12] builds on JCJ [39] and is designed

to achieve coercion resistance. This means that a voter cannot prove

to the adversary whether or how he voted, even when collaborating

with the adversary. The protocol includes a supervisor, which man-

ages the BB, registration tellers that produce anonymous credentials

for voters using secret sharing, tabulation tellers (TTs) that share
the election’s secret key, and ballot boxes that collect the ballots. We

explain next the protocol, enumerating its main steps for reference.

At the protocol’s setup, (s1) the supervisor publishes the elec-

tion parameters on the BB and (s2) the registration tellers produce

private anonymous credentials for all voters and post on the BB

their public counterpart, i.e., their encryption under the election’s

public key. To vote, a voter (v1) obtains a private credential from

the registration tellers and (v2) computes a ballot containing: the

encrypted vote, the encrypted private credential, and a ZKP of well-

formedness. All encryptions are computed under the election’s

public key. The voter then (v3) sends the ballot to at least one ballot

box over an anonymous channel.

Finally, the TTs compute the tally as follows. (t1) They retrieve

the ballots from the ballot boxes and eliminate those that do not sat-

isfy well-formedness or contain duplicate credentials, using Plain-

text Equivalence Tests (PETs), (t2) they retrieve the list of authorized

(public) credentials (from (s2)) from the BB, (t3) they shuffle the

lists of authorized credentials and ballots in a mix net and only

keep the ballots whose credential is in the list of authorized creden-

tials (checked by PETs), and (t4) they decrypt the remaining ballots

6

and post the result on the BB, as well as ZKPs showing that they

followed the protocol.

It is assumed that a voter trusts his voting platform, at least one

of the ballot boxes he sends his ballot to, and at least one registra-

tion teller. Voters can verify that their votes were correctly recorded

by reading them from the BB and checking the list of ballots taken

as input by the TTs. Under these assumptions, Civitas claims to

achieve verifiability [12]. Furthermore, it is claimed that, under

the additional assumption that at least one TT is honest, coercion

resistance holds.

With respect to the BB, it is stated that the BB is an “insert-only”

storage realized by writers signing the messages they write to the

BB and the BB signing read contents. The BB is managed by the

supervisor, who is not assumed to be honest. We thus consider a

malicious supervisor and hence a malicious BB. In particular, [12,

p.6] explains that the BB can delete messages but that only avail-

ability can be attacked this way. We refute this claim by presenting

attacks that break crucial security properties, which are more crit-

ical than availability. Note that the original formal proof [39] (for

JCJ) considers an honest BB and is thus too weak to back up the

aforementioned security claims.

Attack C.1. When the TTs retrieve the credentials at Step (t2),

a malicious BB can provide them with a content from which a se-

lected voterA’s public credential has been deleted. The BB does not

delete this credential from contents sent in earlier steps, e.g., if A or

the registrar tellers retrieve the list of credentials. As a consequence,

the TTs will (silently) discard A’s ballot bA at Step (t3) since bA has

no matching authorized public credential. Even when A performs

the IV check (specified in [12]) on the final BB content, this attack

cannot be detected as bA is in the list of ballots processed by the

TTs.
3
Therefore, the announced result does not take A’s ballot into

account; however no verifiability check is violated.

This attack breaks IV and UV, as a valid recorded ballot is not

included in the tally. It can be carried out by a malicious BB (and

hence a malicious supervisor) even when all other entities are

honest. One could fix this by mandating that voters check IV on the

final content only and also check that their public credential is still

included on the BB at this point. However, this is against the so-

called Vote &Go paradigm (e.g., [8, 11, 38, 46, 50]), where after voting
and performing checks, voters must no longer observe the election

process. Thus, we advocate for using a more secure BB instead.

Attack C.2. The information published by the supervisor at Step

(s1) includes a list of ciphertextsC = (c1, . . . , cn) associatedwith the
choices vi that voters can vote for. According to [2], a voter reads

this list from the BB at step (v2) and then computes the ballot by re-

encrypting the ci corresponding to her choice vi and proves in the

well-formedness proof that the underlying ci is contained in C . At
Step (t1), the TTs also readC from the BB and (silently) discard bal-

lots that do not have a valid well-formedness proof with respect toC .
The attack C.2 exploits this as follows. When a targeted voter A

requests a BB content for casting a vote, a malicious BB can provide

A with a BB content containing a tampered list C ′ , C . As a result,
A will compute and cast a ballot (v2-v3) that will be discarded by

the TTs at step (t1) since the latter receive the (untampered) list C .

3
The list of discarded ballots remains secret to achieve coercion-resistance.

Similar to the attack C.1,A’s IV check does not detect the malicious

behavior, which constitutes an attack against IV.

Attack C.3. It is claimed that verifiability is satisfied even when

all TTs are malicious. Under such assumptions, there is no hon-

est entity authenticating the set of ballots considered for tallying.

Therefore, the TTs and the BB can defeat verifiability by showing

different final contents to different readers as explained next. The

adversary first chooses the final outcome of his choice. When a

voter or an auditor requests the BB to perform some check, the

adversary includes in the answer a set of ballots that: (i) yield the

outcome of his choice when tallied, and (ii) contain the reader’s

ballots if any.
4
From this set of ballots, the adversary computes the

tally and also includes in the answer to the reader all required proofs

showing that the chosen set of ballots leads to the chosen outcome.

Attack C.4.Due to performance issues, ballots are processed in rel-

atively small batches of voters (ca. 100), called blocks. Each ballot is

bound to a block identifier and all TTs independently compute Steps

(t2)–(t5) for each block. If there is no prior agreement on the num-

ber and on the identifiers of the blocks, the following attack breaks

IV and UV. Since the BB is supposed to show to the readers the

tallies from all block’s outcomes, it could selectively drop the results

from some specific blocks in order to obtain a final, global result

of its choice. Yet, all per-block UV checks are satisfied. A voter per-

forming an IV check can be provided with a BB content where the

voter’s block has not been dropped. Therefore, no verifiability check

detects this attack. This can be fixed by using a secure BB, like ours.

Attack C.5. Public credentials are not bound to block identifiers

but are delivered to voters by registrars upon checking inclusion

of the voters in the block. A ballot computed by a voter contains

a block identifier but no single entity is able to extract either this

identifier or the voter’s identity. This and a malicious BB allow a

coerced voter to successfully vote in a different block, which de-

feats coercion-resistance, a central goal of Civitas. We describe this

attack in detail in Appendix A.3. While this attack leaves evidence,

no specified auditing or detection mechanisms (e.g., UV checks)

can detect it. (We discuss why this matters in Section 3.2.3.)

This attack requires a malicious BB that shows inconsistent con-

tents to different e-voting authorities (registration tellers and TTs).

The BB is used here as a broadcast channel between authorities.

Even though this use case is out of the scope of this paper (we focus

on BBs used for verifiability) and will not be covered by our FA
property, the BB protocol that we will propose in Section 5 would

nevertheless prevent this attack.

3.2.2 Belenios and Helios. We now discuss Helios [1] and Bele-

nios [18, 30], which builds upon Helios. In the following, we mainly

focus on Belenios as it aims at providing strictly stronger guaran-

tees than Helios and as (slight variants of) our attacks on Belenios

also apply to Helios [1]. Belenios improves Helios by providing

voters with credentials to avoid ballot stuffing, where the adversary
adds illegitimate ballots to effect the election’s outcome. The pri-

mary goal of these changes was to achieve security under weaker

trust assumptions [16], i.e., when the ballot box is dishonest. Our

4
It might be difficult to know a reader’s identity. However, we believe the adversary

can target specific voter platforms and track their accesses with sufficiently high

probability. The attack can then be mounted by only tampering with ballots of these

voters.

7

attacks reveal that Belenios’ security still crucially relies on the

BB’s honesty. This assumption seems as strong as the ballot boxes’

honesty in the current implementation, where the BB and the ballot

box are managed by the same entity.

The main parties in Belenios are: the registrar who creates and

delivers the voters’ credentials to the voters (private part) and to

the BB (public part), the decryption trustees (DTs) who collectively

compute the shared election’s secret key, and the voting server who
maintains the BB, receives the voters’ ballots (in the ballot boxes),

and communicates with the DTs. To vote, a voter encrypts her

vote under the election’s public key, computes a ZKP that the vote

is in the allowed set of votes, and signs the ciphertext with her

(private) credential. This ballot is sent to the voting server, which

then adds it to the current BB content. When tallying, the DTs

collectively compute the election’s outcome from the ballots on

the BB as follows: they check the correctness of all ZKPs and the

ballots’ signatures, they use homomorphic encryption’s proper-

ties to aggregate all ballots and then decrypt this value, yielding

the election’s outcome, and they compute ZKPs that prove they

followed the protocol, which are all published on the BB.

Belenios’ security proofs [13] assume that the BB is a broadcast

channel, but this assumption is not always explicit and not met by

practical deployments. In particular, it is claimed in [18] that, when

the voting platform and the registrar are honest, verifiability holds,

even when the DTs and the voting server are compromised. Since

the BB is maintained by the voting server [18], we shall consider

a malicious BB and see that this claim is refuted by the attacks B.2

and B.3. [18] also considers a “degraded mode”, where a centralized

entity implements the registrar, the DTs, and the voting server, and

claims that, even when this centralized entity is malicious, IV holds.

We also refute this claim with the attack B.1.

Helios [1] also realizes the BB by a centralized web-server and

proposes that auditors can repost data from the BB so that voters

can check that their ballot was considered by the auditors. This is

against the Vote & Go paradigm discussed earlier; we will discuss

why this technique fails in practice in Section 3.2.3.

Attack B.1. When the BB and all DTs are malicious, an attack

very similar to the attack C.3 violates IV and UV.

Attack B.2. We now consider a much weaker and more realistic

threat model where a threshold or all of the DTs are honest but the

BB is malicious. In this scenario, at most one valid final BB outcome

can be produced, as this is authenticated by the DTs. Therefore,

all readers that successfully perform UV checks see the same BB

content. However, this is not true for the IV checks. When a voter

reads the BB to perform an IV check, the BB may provide her with

content that contains her ballot but then drop this ballot when

displaying the set of ballots to the DTs.

This would be noticed if each voter also checked that the BB

content considered in her IV check matches the BB content that

is (correctly) processed by the DTs (e.g., through an additional UV

check). However, this is not desirable as, in practice, voters may not

want to come back after the election’s end (Vote & Go). Moreover,

this is unrealistic as voters do not have the computational power,

bandwidth, or memory to perform the full UV checks. For instance,

checking the integrity of the ballot box requires downloading and

storing more than 400MB of data, even assuming only 20,000 ballots.

Finally, it seems anyway that Belenios only requires voters to check

that their ballots are in the ballot box. As explained above, this does

not yield IV, even when such IV checks are performed by all voters

on the final BB content.

We conclude that in its current state, Belenios deployments fail

to provide IV when the voting server is malicious, and so does

Helios. Using a secure BB instead, as we suggest later, would fix

this problem for both protocols.

Attack B.3. When discussing the BB in practice, [18] acknowl-

edges that the current implementation as a web page (delivered

by the voting server) yields the requirement for “enough parties

[to] monitor [the BB], so that it is consistent.” The monitoring

tools that are proposed (i) check ⊑b between two snapshots and

(ii) verify all signatures and ZKPs in a BB content. However, such

BB monitoring and auditing is insufficient. If auditing tools only

verify that the successive local views on the BB are append-only,

this does not guarantee any agreement on the BB contents obtained

by different readers. To avoid this, one could require that readers

are interconnected and exchange their BB views. However, such

a requirement is not specified in [18] and is also impractical, as

explained in Section 2.1.3.

Attack B.4. It has recently been shown [19] that a lack of IV

violates ballot privacy. That is, a malicious ballot box or BB can

modify or drop all ballots except the one of Alice before tallying to

learn Alice’s vote. Our conclusion that an insecure BB violates IV

therefore implies that it also violates privacy. Thus, a secure BB is

necessary not only for verifiability but also for privacy.

3.2.3 Why do BB auditing techniques fail? Even though Civitas

signs BB contents and Belenios allows each reader to check that BB

contents are onlymonotonically increasing, readers would still have

to compare all the contents they read with other readers to actually

detect any BB misbehavior. However, as we argued in Section 2.1.3,

such reader-reader communication is unrealistic. Regarding He-

lios, we argued that its re-posting mechanism violates the Vote &
Go paradigm as it requires all voters to store their ballots, wait

for the election’s end, and find their ballot in the auditors’ posted

lists. Moreover, it essentially boils down to auditors acting as BB

peers signing final contents, except that the informal presentation

from [1] implies that all auditors must be trusted.

For designing systems with realistically workable end-to-end

verifiability, the assumptions regarding the voters and their actions

must also be realistic (e.g., no reader-reader communication, Vote

& Go, download of a reasonable amount of data). Indeed, relying

on the voters to perform non user-friendly, time-consuming, or

complex IV checks results in insufficiently many voters actually

performing these checks correctly, which compromises the elec-

tion’s verifiability in practice.
5
Moreover, the protocol itself must

include a precise specification of these actions, in particular the

verifiability checks and their timing. (This is, for example, not the

case in both Helios and Belenios UI, where it is proposed to the

voters to perform IV checks right after casting the ballot, even

though, in theory, they could also re-check after the election’s end.)

Finally, even though BB misbehavior may leave some evidence, it

could remain undetected if dedicated and explicit auditing mecha-

nisms are not specified and actually carried out. This is analogous

5
See footnote in Section 6.2 for a concrete example.

8

to vulnerabilities that can remain unnoticed and exploitable, even

though their exploitation may leave evidence.

4 FINAL-AGREEMENT (FA)
Our attacks demonstrate that it is crucial to consider a realistic

BB model when making security claims. In particular, instead of

considering honest BBs, system designers should assume BBs pro-

viding requirements that can be met in practice under realistic trust

assumptions. We next introduce such a BB requirement, which is

achievable in practice under weak trust assumptions (as shown in

Section 5), but nevertheless is sufficient for verifiability.

4.1 Definition
We have already explained in Section 3.1 that verifiability can only

be meaningfully defined if there is one well-defined final BB, i.e.,

the BB must satisfy FC. Requiring FC also prevents the attacks C.3,

C.4, and B.1 from Section 3.2. Additionally, the attacks C.1 and B.2

show that a BB that can drop items between non-final reads and

final reads has dramatic security consequences. For example, if a

voter checks that his ballot is recorded on the BB right after voting

(Vote & Go), she must be sure that her ballot is still included in

the final BB content. Otherwise, such checks on intermediate BB

contents provide no guarantee (see e.g., attack B.2). We thus define

a BB requirement stating that, in addition to FC, a BB must ensure

that all non-final BB contents shown to readers are included in

the final BB content (with respect to ⊑b). These two requirements

together also prevent attacks based on the BB showing inconsistent

contents to different readers (see attack C.2). We lift ⊑b to sets of BB

contents as follows: Bs ⊑b Bs
′
when ∀B ∈ Bs, ∃B′ ∈ Bs

′, B ⊑b B
′
.

Definition 4.1. Final-agreement (FA) holds for σ .s when (i) σ .s ⊢
FC and (ii) s .fc = ∅ ∨ B(s .nfc) ⊑b B(s .fc).

Note that FA neither provides guarantees with respect to the order

of data on the BB, relates the successive BB contents that have been

read through different accesses to Read-nonFinal, nor relates the
writes and the reads. Nevertheless, if a BB with FA was used by

Helios, Civitas, and Belenios, then all the attacks in Figure 4 except

C.5 would be prevented, as shown in the Figure’s last column.

We discuss next FA in e-voting and refer to Appendix A.4 for a

presentation of other scenarios for which FA is also suitable.

4.2 FA in E-voting
We show next that any protocol satisfying Definition 3.3 (verifia-

bility) with an idealized BB, as proven in many prior works, also

satisfies Definition 3.4 (verifiability
+
under a malicious BB) pro-

vided that the BB satisfies FA. Additionally, we prove the converse
for a large class of checks and goals: it is impossible to achieve

Definition 3.4 with a BB that does not satisfy FA.

4.2.1 FA is Sufficient for Verifiability. Recall π ide

B
and π tru

B
from

Example 2.4. These respectively model a BB acting as a shared vari-

able and one that is similar, except that the channels from writers

to the BB are insecure and unreliable. We show that FA is a suffi-

cient BB requirement for verifiability by proving that any protocol

satisfying verifiability with π ide

B
or π tru

B
also satisfies verifiability

with any, possibly malicious BB π , provided that π ⊢ FA.

First, we relate verifiability under π tru

B
with verifiability

+
under

π . Second, we relate verifiability under π ide

B
with verifiability

+
un-

der π with the additional assumptions that (i) writers check that

their messages have been received by the BB π (through an inclu-

sion verifiability check), and (ii) write requests are authenticated

and, thus, the verifiability checks and goal are insensitive to ma-

licious write requests. We formally define these assumptions and

prove the following theorem in Appendix A.

Theorem 4.2. Let S be an e-voting specification, τ a verifiability
goal, and π be an arbitrary BB specification, which can, in particular,
specify a malicious BB. We assume that P(S,π ide

B
), P(S,π tru

B
), and

P(S,π) are protocols.
(1)When P(S,π tru

B
) provides verifiability for τ and π ⊢ FA, then

P(S,π) provides verifiability+ for τ .
(2)When P(S,π ide

B
) provides verifiability forτ , π ⊢ FA, and P(S,π)

checks all writes and authenticates write requests, then P(S,π) pro-
vides verifiability+ for τ .

In practice, this means that prior results established with respect

to a trustworthy or an idealized BB can directly be lifted to the more

realistic setting where the BB is only assumed to provide FA, which
in turn can be realized under weak trust assumptions (see Section 5).

For instance, Belenios [13] assumed an idealized BB and Alethea [4]

assumed a trustworthy BB. The formal definition and security claim

of verifiability for Civitas originate from [39] and also assume an

idealized BB. Hence, our results allowweaker, more realistic trust as-

sumptions than those currently used for existing e-voting schemes.

4.2.2 Necessity of FA for Verifiability. Next, we explain intu-

itively in which cases FA is also necessary for verifiability
+
and we

refer to Appendix A.2 for more details and a formalization of our

assumptions and results.

There are protocols, such as CHvote [33], that do not utilize a

BB and for which verifiability relies instead on so-called verification
codes (see Appendix A.2). For such protocols, FA is (obviously) not

necessary for verifiability. For those protocols where verifiability

relies on a BB, we have already argued that FA (i) is necessary, as

otherwise the final BB relevant for defining the goal is not well-

defined. A protocol can specify checks that are critical in that the

goal can only hold when such checks are satisfied, but it might

also specify checks that are noncritical, that is the goal can hold

even if these checks are violated. For the latter, verifiability can

be satisfied even if the BB contents read for these checks do not

satisfy any condition. Loosely speaking, we show in Appendix A.2

that FA (ii) is necessary for critical checks evaluated on partial,

non-final BB contents. This implies that FA is necessary for many

realistic scenarios, for example for all protocols that specify critical

IV checks that can be performed any time after vote casting.

5 A PROTOCOL FOR ACHIEVING FA
We now present our BB protocol satisfying FA that could replace

existing BBs, which all require stronger trust assumptions. We start

by presenting our design rationale.

5.1 Design Rationale
Recall our system assumptions from Section 2.1.3: there is one

proxy peer X and n BB peers P1, . . . Pn , of which nh are honest.

9

We assume that each peer Pi has a private signing key ski and all

readers know the peers’ public verification keys pk
1
, . . . , pkn .

Our protocol works as follows. Each peer locally stores its current

BB view. When peers receive write requests with new content

(forwarded by X), they update their BB views accordingly and sign

the updated content. These signed contents are collected again byX .

When a reader reads the BB, she only accepts the read content when

she also receives sufficiently many peers’ signatures on this content.

5.1.1 Trust Assumptions vs. Availability Trade-off. We could re-

quire that readers only accept BB contents when they obtain all
peers’ signatures on this content. However, successful reads would

then only be possible if all peers are online, respond, and no re-

sponse is lost on the insecure network. In practice, these availability

assumptions are likely too strong. Therefore, we consider a fixed

threshold γ ∈ [1,n] and state that a reader can read a BB content

when he receives valid signatures on this content from at least γ
peers. We will later give a tight lower bound on γ for FA to be satis-

fied, which depends on the number nh of honest peers. Intuitively,

this bound ensures that when two readers each read a BB content,

the two underlying sets of peers who signed the contents share at

least one honest peer. This honest peer ensures that the two readers

obtained consistent BB contents due to the signing policies that the

honest peers follow, which we specify next.

5.1.2 BB Peers’ Policies. We require that peers only update their

BB viewwith new contents that extend their previous views. That is,

they only update B to B
′
if B ⊑b B

′
. In our protocol, this holds as up-

dates are of the form B
′ = B∪b Bw , where Bw is the written content.

To achieve FA (i), the peers must sign at most one final BB. Oth-

erwise, two readers obtaining a signature from the same honest BB

peer, may disagree on the final, signed content. To enforce this pol-

icy, we use the notion of phases from Section 2.2.2, which denote the

different stages when the BB is updated. In particular, we assume

that there is a pre-defined, agreed upon final phase pf ∈ N+. We

then require that the readers only accept BB contents whose phase

is pf when using Read-final. To ensure that peers sign at most one

BB content with phase pf , our protocol specifies that, when a peer

obtains a final content, it updates its view, and afterwards neither

accepts further updates nor signs other contents than his view.

Recall that, when performing non-final checks, readers may only

read a partial BB content, i.e., a part of the current BB’s content. For
example, to check IV, a voter need not retrieve the full BB content,

but can just read his ballot to check that it is contained on the BB. As

long as the BB content is not final, peers may sign any partial con-

tentBj of their current viewB, i.e.,Bj ⊑b B. Due to themonotonicity

(w.r.t. ⊑b) of the successive BB updates, this locally implies FA (ii).

Based on these policies, honest peers locally enforce FA, i.e., FA
holds from each peer’s perspective. This and the correct choice of

γ , which entails that two readers always have an honest peer in

common for each read, ensures FA globally.

5.1.3 Partial BB Contents. For the above policy on partial con-

tents to be useful in practice, it must be defined what partial BB

contents are valid and how to compute them. We introduce an

uninterpreted set L whose elements label contents according to a

function partial defined next.

Definition 5.1 (Partial BB Contents). Let partial : W → (L 7→

W) be a function that computes from a BB content a set of par-

tial BB contents indexed by a subset of L, which we can write

as partial(B) = [Bl]l ∈L for some L ⊆ L. We sometimes consider

partial(B) as a subset ofW. We assume given a distinguished label

f ∈ L corresponding to final contents and we assume that ∀B ∈ W,

partial(B)(f) = B. We additionally assume that ∀B ∈ W,B′ ∈

partial(B), B′ ⊑b B.

In e-voting, L typically includes the voters’ identities and, given

an identity, partial returns the content associated with this identity

(e.g., the voter’s ballot). Note that the peers must agree on partial
for the readers to be able to read partial contents with a reasonable

success rate, but FA does not rely on this assumption.

5.2 Generic Protocol
As explained above, the peers sign different (partial) BB contents.

We assume that the proxy X stores these signatures in a database

DB. Entries in DB have the form (P ,p, l ,σ), where σ is peer P ’s
signature on a BB content labeled with l ∈ L, with phase p ∈ N+.
The function getSig(DB,p, l) retrieves fromDB all σi from entries

(Pi ,p, l ,σi), i.e., all the stored signatures for the phase p and the la-

bel l . Using these functions, we next describe our protocol in terms

of three sub-protocols forWrite, Read-nonFinal, and Read-final.
BB-Write, depicted in Figure 5, is the sub-protocol for writing

to the BB. As the specification is uniform for all peers, we only

describe it for one peer P . Upon receiving a new written content,

P updates its local view B, computes B’s partial contents (Bl) using

partial, and signs each of them. How such a batch of signatures

can be efficiently computed (e.g., using hash-trees) is left to more

concrete system designs. Note that when the local view B is final,

P only signs the full content B, labeled f ∈ L, thereby enforcing the

policy presented in Section 5.1.2. All signatures produced are then

sent to X , who stores them in DB.

Figure 6 depicts the sub-protocol BB-Read-NF for reading a non-
final BB content. To request the partial content labeled by l ∈ L at

phase p, a reader sends the pair (p, l) to the proxy X . X retrieves

from DB all existing signatures for this phase and label, where

I lp ⊆ [1,n] denotes the peer indices for which such a signatures

exists, andX sends them back to the reader. The reader then tries to

find a sufficiently large set (of size at leastγ) of peers’ signatures that
are all valid and that all sign the same content Bk whose phase is p.
If this is the case, the BB content Bk is considered to be successfully

read and can be used to evaluate some verifiability check.

The sub-protocol BB-Read-F for reading a final BB is similar to

BB-Read-NF, except that no label l need be sent by the reader in

the first message, as only the full BB is signed for the final phase,

and X uses getSig(DB,pf , f) to retrieve all signatures on the full,

final BB contents.

5.2.1 Threshold γ . For our protocol to satisfy FA, γ must be

chosen such that γ > n −
nh
2
. Indeed, this bound ensures that any

two readers obtained at least one signature from the same honest

peer. We formally prove this and that the bound is tight (FA is

violated otherwise) in Appendix B.1.

5.2.2 Availability. If too few peers agree on the content to sign,

for example when X sends them different contents Bw , then there

10

DB

X
sk,B
P

Bw Bw

If ps(B) = pf abort
B := B ∪b Bw
If ps(B) = pf then

σf := sign(B, sk), L := {f}
else [Bl]l ∈L := partial(B)

∀l ∈ L, σl := sign(Bl , sk)[σl]l ∈L

∀l ∈ L : DB := DB ∪ (P , ps(Bl), l ,σl)

Figure 5: The sub-protocol BB-Write. When the proxy X re-
ceives a write request with Bw , it forwards it to all peers,
which we only describe for one peer P . Here, sk and B respec-
tively denote P ’s signing key and P ’s current view of the BB
content. Initially B := B⊥. sign(m, sk) denotes the signature
ofm under the signing key sk and DB stores all signatures.

DB

X
γ , [pki]i ∈[1,n], p ∈ N\{pf }, l ∈ L

R

(p, l)

[σi]i ∈I lp
= getSig(DB,p, l) [σi]i ∈I lp

If find I ⊆ I lp such that |I | ≥ γ

and ∃k ∈ I ,∀i ∈ I ,
- SigVer(σi , pki) succeeds,
- Bi = Bk , and ps(Bi) = p
then Read-nonFinal(Bk)

Figure 6: The sub-protocol BB-Read-NF for reading non-
final BB contents. SigVer(σ , pk) denotes the verification of the
signature σ with the verification key pk. Upon receiving a
request for a content labeled l at phase p , pf , the proxy X
retrieves all peers’ signatures for this label and phase using
getSig. From these, the reader then tries to find sufficiently
many matching signatures.

is no hope for the readers to obtain sufficiently many matching

signatures and they cannot read any content. Note that this is an

availability issue and not a violation of verifiability. We stress that

this is a general problem: to provide a certain level of availability,

any protocol relies on some system assumptions that might not be

relevant for security, such as reliable communication channels.

In practice, a BB should provide both security and availability.

To enhance availability, one could combine our protocol with the

ideas of prior BB protocols, which provide better availability but

insufficient guarantees for verifiability (see Section 6): e.g.,wewould
omit X and, similarly to [24], connect the readers with all peers

who could run a BFT algorithm at each writing request to agree on

a BB content before signing it.

5.3 Using our BB for E-voting
For e-voting, our protocol could, for example, be instantiated as

follows. The readers could be instantiated by voters and auditors,

the BB peers by independent parties, such as political parties and

NGOs, and the proxy peer by a (possibly replicated) e-voting web-

server as it need not be trusted. The partial BBs could consist of

BBs containing only information associated with one voter, labeled

by the voters’ identities, and of the final BB, labeled by the distin-

guished label f. Authorities could publish the received ballots right

after their reception using Write and voters could use BB-Read-NF
to read the partial BB containing their ballot and perform an IV

check. Also, at the election’s end, auditors can use BB-Read-F to

read the final BB and perform all required UV checks.

5.3.1 Consequences for Verifiability. As FA requires trusting

some peers and verifiability requires FA (Section 4.2.2), we can con-

clude that verifiability requires trust. Looking at the bigger picture,

this is at odds with some prior works claiming that verifiability

can be achieved with no trust assumptions at all [28] or no trust

assumptions with respect to the BB [16, 18].

Due to the trust assumptions required for FA, another interesting
insight is that UV checks can be outsourced to the BB peers. That is,
even if voters could perform UV checks themselves, they would

need to trust some external entities such as BB peers. Therefore,

as any entity can carry out UV checks, it is possible to leave these

checks to the peers. This does not require more trust assumptions

than those needed anyway. The same holds for EV checks. Our

analysis allows to draw this conclusion as we are explicit about the

BB requirements and the necessary trust assumptions. Delegating

the UV checks also has the practical advantage that voters need not

download the large amount of data required for these checks. This

enhances flexibility in how the voters access the BB, for example it

enables the use of specialized trusted devices as discussed next.

5.3.2 Practical Considerations. In practice, voters must trust

their machines to achieve any guarantees. We explain in Appen-

dix B.2 that our protocol can be used in settings where this trust

is put in specialized devices [4, 6, 31, 32, 45], which have limited

capabilities and connectivity. Moreover, we address in Appendix B.2

that our BB peers are distributed servers that must be online during
the election process. We explain that this assumption might be im-

practical for low-stake elections and discuss the resulting trade-offs.

5.4 Security Analysis
We use TLA+ [43] to specify our protocol and FA and formally

establish that the former satisfies the latter. TLA+ has a rich spec-

ification language [9] based on Temporal Logic of Actions (TLA)

and Zermelo-Fraenkel set theory with choice (ZFC) that we use to

encode our specifications. Our protocol model is as generic as possi-

ble and we make few assumptions about the adversary. Namely, the

adversary is only forbidden to forge the nh honest peers’ signatures

but can sign any content for the other peers, block messages, choose

the written contents, and control X . For the sake of generality, we

make strictly fewer assumptions aboutW, ⊑b , and partial than pre-
sented in this paper. Using the embedded proof system TLAPS [21],

we prove that our protocol satisfies FA. We first establish key invari-

ants of our protocol: namely that FA is locally enforced by honest

peers and that any read content is associated with at least γ signa-

tures. We prove the property stated in Section 5.2.1 and establish

that FA is an invariant of our protocol. All our specifications and

machine-checked proofs (ca. 800 L.o.C. in total) can be found at [49].

11

6 RELATEDWORK
There has been extensive prior work on both voting and on BB-like

designs in the broad sense (consensus algorithms, distributed ledger

technology, etc.). Here we focus on the most relevant related work

and we refer the interested reader to Appendix C for further details.

6.1 BB Realizations
6.1.1 Realizations Based on BFT Algorithms. [24] designed for

the poll-site voting scheme vVote [22, 23] a distributed BB proto-

col, later improved in [40]. The main differences to our work are

(1) the security properties that are aimed for, which do not explicitly

include an agreement among the readers, and (2) the consensus

mechanism that is leveraged, namely a BFT algorithm that requires

strictly stronger trust and system assumptions than our protocol.

The emphasis of the algorithm of [24, 40] is on (i) reaching an agree-

ment among sufficiently many BB peers before they jointly sign a

content and on (ii) providing writers with a “receipt” that should

give assurance that the written item will be part of the next content.

(i) is achieved through a lightweight BFT algorithm run among

peers and a threshold signature scheme, which is also used to sign

the written items for producing the receipts (ii). Their requirements

are not formally related to verifiability in e-voting and are too weak

for verifiability as there is no agreement on the final content. As is

standard for BFT, the protocol meets the specified properties when

at least
2n
3

out of the n peers are honest and available. We show

next that this is a strictly stronger trust assumption than ours.

A peer may be available or not, and orthogonally, may be honest

or not. We denote by na the number of available peers and by

nh,a the number of honest and available peers. Also, let γ be the

number of matching signatures needed for a reader to accept a new

content. Our protocol requires (i)nh > 2(n−γ)while BFT consensus

protocols run by the BB peers, e.g., the one from [24], require (ii)

γ > 2n
3

(by construction) and nh,a >
2n
3

(trust assumption). We

formally establish in Appendix C.2 that (i) is strictly weaker
6
than

(ii). Our protocol requires weaker assumptions as it achieves a

weaker consensus property between the BB peers.

6.1.2 Distributed Ledger-based Realizations. Some researchers

have proposed BBs and even e-voting realizations embedded in

distributed ledgers [27, 44, 48, 51, 52]. Most proposals utilize permis-

sionless ledgers (e.g., Bitcoin or Ethereum). Thus readers, including

voters, must either run a full node or trust external full nodes (third

parties). The former involves too strong system and threat assump-

tions regarding the voters, concerning their availability, bandwidth,

storage, and trust in their voting platform (see Section 2.1.3), which

is also supported by [34]. Moreover, as is standard with distributed

ledgers, both types of solutions crucially rely on economic incen-

tives, which are hard to quantify for elections. Finally, although

such technologies are supposed to provide decentralization, they

are often centralized in practice due to pools [29]. [36] surveys
such shortcomings and draws similar conclusions. Other solutions

leverage permissioned ledgers where a few distinguished nodes

establish a consensus on data that can be publicly accessed by all

6E.g., for n = 12, γ = 10, and nh = 5, our solution only requires 5 out of 12 peers to

be honest as opposed to 9 out of 12 for BFT. Note that γ can be greater than nh since

nh only counts the amount of peers that we must trust to be honest, and not the peers
that actually behave honestly, which can be higher and can depend on the reader.

other nodes. This boils down to the BFT solutions discussed in

Section 6.1.1. Finally, one may use permissioned ledgers but with

all e-voting participants acting as full nodes. Readers would then

have to run full nodes, which is impractical as argued above.

6.1.3 [35]. Heather and Lundin present another BB protocol

that is often cited as a potential BB solution for e-voting schemes [25,

46, 47]. The stated properties do not include any agreement among

readers and thus do not exclude the attacks from Section 3.2. Also,

the protocol’s decentralized variant is only proposed for improving

robustness and still requires that all peers are trusted.

6.2 BBs in E-Voting Protocols
Most e-voting protocols state insufficient requirements for the BB.

Some others state wrongly – or with insufficient precision – how

such requirements can be met.

For example, the JCJ e-voting protocol [39] does not mention

how the BB is realized and just assumes a universally accessible
memory that all agents can write to in an append-only manner.

Alethea [4] assumes that the BB is realized by a single trusted entity

that sends the content correctly and consistently to all readers. See

Section 3.2 for Civitas [12], Belenios [18], and Helios [1]. Prêt à
Voter [25], which is not a remote but a poll-site scheme, does not

specify an explicit BB and refers to [35] instead (see Section 6.1.3).

Building on [25], vVote [22, 23] (also poll-site) makes use of [24] for

its private BB, to which the voters have no access, and assumes a

public BB, corresponding to our BB, that is an authenticated pub-

lic broadcast channel with memory. To realize the latter, vVote
proposes to use radio or newspapers to broadcast (hashes of) the

BB contents. This violates Vote & Go and requests the voters to

cross-check information from different media.
7 Scantegrity [10]

only states the append-only property of the BB and no agreement

property with respect to the final BB, which is too weak to entail

FA. The authors of [16] identify that a malicious BB could perform

ballot stuffing before tallying and break verifiability this way and

claim that an honest registrar suffices to prevent this misbehavior.

Formally, they consider verifiability under malicious ballot boxes

but still consider a BB that provides a broadcast channel whose

content is partially under adversarial control. In particular, their

“dishonest bulletin board” does not cover the attacks described in

Section 3.2. Finally, [28] claims to achieve unconditional verifia-

bility using an append-only BB. Their proof implicitly relies on

readers having direct access to a trustworthy, centralized BB via

an oracle call, which contradicts the claim that no trust is required.

7 CONCLUSION
We propose a BB property (FA) that is sufficiently strong to achieve

verifiability in e-voting and sufficiently weak that it can be achieved

by practical BB realizations under weak trust assumptions. We also

provide a concrete BB protocol and formally prove that it satisfies

FA. Our protocol could be deployed in existing e-voting schemes to

replace the current insecure BBs that constitute e-voting’s Achilles

7
[7] reports on a user study about vVote in the Victorian state election that reveals that

only 13% of the voters have accessed the BB to perform the IV check. In that particular

case, they claim that this yields a security margin of 95% (chances of cheating detection).

Considering that only a fraction of these voters would additional cross-check the hash

(say 25%), this results in worrying security margins (50%).

12

heel. Hence, our work can significantly weaken the required trust

assumptions of entire e-voting systems.

Our work raises several interesting follow-up research ques-

tions. First, to account for malicious BBs, we adapted the definition

of verifiability. Whereas we focused on possibilistic verifiability

notions, our modifications appear generic and we speculate that

one can similarly adapt probabilistic definitions. Second, our BB

protocol requires that independent BB peers are available during

elections, which is challenging and costly to deploy in practice.

For low-stake elections, where a weaker threat model is suitable

and the deployment costs are more critical, a simpler BB protocol

may be preferable. We plan to investigate this trade-off between

stronger threat assumptions versus weaker system assumptions in

future work.

ACKNOWLEDGMENTS
We would like to thank Stephan Merz for his highly valuable help

regarding TLA+ specifications and proofs.

A VERIFIABILITY, FA, ATTACKS
A.1 FA is Sufficient for Verifiability
This section is dedicated to the proof of Theorem 4.2.

Lemma A.1. Let S be an e-voting specification, τ a verifiability
goal, and π be an arbitrary BB specification, which can notably specify
a malicious BB. We assume that P(S,π tru

B
) and P(S,π) are protocols.

When P(S,π tru

B
) provides verifiability for τ and π ⊢ FA, then P(S,π)

provides verifiability+ for τ .

Proof. Let σ .s be a behavior of P(S,π) such that

∧(C,x,a,B)∈(s .fc∪s .nfc)C(B,x). Note that since π ⊢ FA and P(S,π) is a
protocol, σ .s satisfies FA and thus FC too. We establish

τ (finalB+(σ), checksA(s), s .agents).
Since σ .s ⊢ FA, either (i) B(s .fc) = ∅ or (ii) B(s .fc) = {Bf }.

In case (i), finalB+(s) = B⊥ by the definition of finalB+ and thus

τ (finalB+(s), checksA(s), s .agents) holds by the definition of τ . We

next establish τ (finalB+(s), checksA(s), s .agents) for case (ii) (where
finalB+(s) = Bf). The outline of the proof is as follows: (1) We

first prove that all checks performed in σ .s also hold on the final

content finalB+(s). (2) We build a behavior σf .sf ∈ Be(P(S,π tru

B
)),

similar to σ .s , where checks are performed on final contents only

and such that finalB+(s) = finalB(sf). (3) We prove that the ver-

ifiability hypothesis together with (1) and (2) imply

τ (finalB(sf), checksA(sf), sf .agents). (4) We relate satisfaction of

τ before and after the transformation (2) to conclude.

(1) Since π ⊢ FA and P(S,π) is a protocol, B(s .nfc) ⊑b B(s .fc) =
{Bf }. Since π is a BB specification, one has that ∀(C,x ,a,B) ∈

s .nfc, C ∈ Cnf , i.e., C is non-final. By the monotonicity of non-

final verifiability checks, ∀(C,x ,a,B) ∈ s .nfc, C(Bf ,x) holds since
B ⊑b Bf and C(B,x) holds. We have also established above that

B(s .fc) = {Bf }. Thus, ∀(C,x ,a,B) ∈ s .fc, C(Bf ,x) holds since B =
Bf and C(B,x) holds. Therefore,

∧
(C,x,a,B)∈(s .fc∪s .nfc)C(Bf ,x),

where Bf = finalB+(s).

(2) We prove that there is a behavior σf .sf ∈ Be(P(S,π tru

B
))

where:

• (a) finalB(sf) = finalB+(s),

• (b) ∀(C,x ,a,B) ∈ (sf .fc ∪ sf .nfc), B = finalB+(s),
• (c)

∧
(C,x,a,B)∈(sf .fc∪sf .nfc)C(B,x),

• (d) checksA(sf) = checksA(s), and
• (e) sf .agents = s .agents.

We build σ 0

f .s
0

f .sw .σr ∈ Be(P(S,π tru

B
)) from σ .s ∈ Be(P(S,π)) as

follows. First, any action from S is left unchanged and any ac-

tion from π is replaced by Skip(). We obtain this way a behavior

σ 0

f .s
0

f ∈ Be(P(S,π tru

B
)). We now complete this behavior as follows:

(1) we trigger the action Write with Bw := Bf that yields a state

sw and then (2) for any (C,x ,a) ∈ sw .cr ∩ checksA(s), we trig-

ger a RF action (see Example 2.4) that adds (C,x ,a,∪bs .w) to the

state variable s ′.fc, where s ′ is the current state. Note that for

any such state s ′, s ′.w = sw .w = {Bf } and ∪bsw .w = Bf . Since

all guards are satisfied, we obtain σ 0

f .s
0

f .sw .σr ∈ Be(P(S,π tru

B
)).

Let sf be the last state of σr . We now establish (†) : sf .fc =
{(C,x ,a,Bf) | (C,x ,a) ∈ checksA(s)}. By the definition of a proto-

col, one has that checksA(s) ⊆ s .cr. By construction, s .cr = sw .cr
and thus sw .cr ∩ checksA(s) = checksA(s). Finally, † follows from
the construction of σr .

(†) entails (b) as sf .nfc is empty by construction, and (d). We

have that sf .w = sw .w = {Bf } and thus finalB(sf) = Bf , hence

(a). (c) follows from (†) and (1). (e) is by construction as the actions

triggered by S remained unchanged.

(3) By (2), (2)(c) and by hypothesis, it holds that

τ (finalB(sf), checksA(sf), sf .agents).

(4) The equations (2)(a), (2)(d), and (2)(e) imply

τ (finalB(sf), checksA(sf), sf .agents) =⇒
τ (finalB+(s), checksA(s), s .agents).

This and (3) entail τ (finalB+(s), checksA(s), s .agents) concluding
the proof. □

Lemma A.5, corresponding to the second part of Theorem 4.2,

relies on extra assumptions, which we define next. We first define

a predicate WrF that requires FC and that all write requests are

included in the (unique) final BB content.

Definition A.2. WrF is such that σ .s ⊢ WrF if, and only if, (σ .s ⊢
FC and s .fc = ∅ ∨ (∀Bx ∈ s .wr, Bx ⊑b finalB+(s))).

Definition A.3. Let P(S,π) be a protocol. Let Cin(B,Bx) be the

non-final, monotonic verifiability check that holds if, and only

if, Bx ⊑b B. We say that P(S,π) checks all writes when the two

following conditions hold:

(1) ∀σ .s ∈ Be(P(S,π)),Bw ∈ s .wr, ∃a ∈ A,

(Cin,Bw ,a) ∈ s .cr and
(2) ∀σ .s ∈ Be(P(S,π)), s0 ∈ σ , (Cin,Bw ,a) ∈ s0.cr,

s .fc , ∅ ⇒ ∃B ∈ W, (Cin,Bw ,a,B) ∈ (s .nfc ∪ s .fc).

Intuitively, (1) holds when each write request is followed by a

check of inclusion in the current BB and (2) implies that such checks

are processed by the BB, at least after the first final read. These

properties can be enforced by a BB providing the BB content Bx ,

acting as a receipt that the write request has been taken into ac-

count. Intuitively, write actions must then be considered completed

only when the corresponding verifiability check of inclusion has

been completed. Writers are expected to abort and complain if such

a receipt is not delivered.

13

We now show that for a protocol that satisfies FA, checking all
writes enforcesWrF.

Property 1. Let P(S,π) be a protocol that checks all writes and
that satisfies FA. For any behavior σ .s ∈ Be(P(S,π)), if∧

(C,x,a,B)∈(s .fc∪s .nfc)C(B,x), then σ .s ⊢ WrF.

Proof. Note that since σ .s ⊢ FA, σ .s ⊢ FC. Thus, if s .fc = ∅,

then σ .s ⊢ WrF holds. Otherwise, as σ .s ⊢ FC, there exists some

Bf ∈ W such that finalB+ = Bf . Let Bw ∈ wr. By hypothesis,

there exists a ∈ A such that (Cin,Bw ,a) ∈ s .cr. Since fc , ∅, there

exists some B ∈ W such that (Cin,Bw ,a,B) ∈ (s .nfc ∪ s .fc). Since∧
(C,x,a,B)∈(s .fc∪s .nfc)C(B,x), then Cin(B,Bw) and thus Bw ⊑b B.

By FA, one has that B ⊑b Bf . By the transitivity of ⊑b , we conclude

that Bw ⊑b Bf = finalB+(s). □

Definition A.4. Let P(S,π) be a protocol and τ a verifiability goal.

We say that P(S,π) and τ authenticate write requests when τ and

verifiability checks in S are insensitive to BB contents that have

been maliciously extended, i.e., contents that are not included in

the union of all write requests. Formally, this holds when for any

behavior σ .s ∈ Be(P(S,π)) and BB content B ∈ B(s .fc ∪ s .nfc), the
following conditions hold:

(1) τ (B ∩b (∪bs .wr), checkA(s), s .agents) ⇒
τ (B, checkA(s), s .agents) (verifiability cannot be violated

by adding malicious data; i.e., not in ∪bs .wr),
(2) ∀(C,x ,a) ∈ s .cr, C(B,x) ⇒ C(B ∩b (∪bs .wr),x) (checkers

cannot be tricked into validating a verifiability check only

due to malicious data).

In practice, S can enforce these two properties by authenticat-

ing write requests so that unauthenticated additional data that a

malicious BBmay add to the BB contents does not impact the verifia-

bility checks and the verifiability goal. That is τ is stable by addition

of unauthenticated data (i.e., not in ∪bs .wr) and verifiability checks
are stable by removal of unauthenticated data.

For instance, for an UV check, we should ensure that the ballots

that are tallied are authenticated by the writers (e.g., the voters)
so that fake but unauthenticated ballots are recognized as such

by checkers and are thus irrelevant for the evaluation of verifia-

bility checks and goals. Here, authentication is crucial to prevent

ballot stuffing. This is exactly the primary improvement of Bele-

nios [16, 18] over Helios.

Lemma A.5. Let S be an e-voting specification, τ a verifiability
goal, and π be an arbitrary BB specification, which can notably specify
a malicious BB. We assume that P(S,π ide

B
) and P(S,π) are protocols.

When P(S,π ide

B
) provides verifiability for τ , π ⊢ FA, P(S,π) checks

all writes, and P(S,π) and τ authenticate write requests, then P(S,π)
provides verifiability+ for τ .

Proof. Let σ .s be a behavior of P(S,π) where∧
(C,x,a,B)∈(s .fc∪s .nfc)C(B,x). Since π ⊢ FA and P(S,π) is a proto-

col, σ .s satisfies FA and thus FC too. We establish

τ (finalB+(σ), checksA(s), s .agents).
Since σ .s ⊢ FA, either (i) B(s .fc) = ∅ or (ii) B(s .fc) = {Bf }.

In case (i), finalB+(s) = B⊥ by the definition of finalB+ and thus

τ (finalB+(s), checksA(s), s .agents) holds by the definition of a veri-

fiability goal. We next establish τ (finalB+(s), checksA(s), s .agents)

for case (ii) (where finalB+(s) = Bf). We adopt a similar proof struc-

ture to the one of Lemma A.1, except that π ide

B
has more guards

than π tru

B
and the behavior of P(S,π ide

B
) we shall build from σ .s in

(3) will be different.

(1) Since π ⊢ FA and P(S,π) is a protocol, B(s .nfc) ⊑b B(s .fc) =
{Bf }. Since π is a BB specification, then ∀(C,x ,a,B) ∈ s .nfc, C ∈

Cnf , i.e., C is non-final. By the monotonicity of non-final verifi-

ability checks, ∀(C,x ,a,B) ∈ s .nfc, C(Bf ,x) since B ⊑b Bf and

C(B,x) holds. We have also established above that B(s .fc) = {Bf }.

Thus, ∀(C,x ,a,B) ∈ s .fc, C(Bf ,x) holds since B = Bf and C(B,x)
holds. Therefore,

∧
(C,x,a,B)∈(s .fc∪s .nfc)C(Bf ,x) holds, where Bf =

finalB+(s).

(2) We now establish that the final BB content Bf contains all

write requests. We let B
i
f := ∪bs .wr and we shall establish that

B
i
f ⊑b Bf . First note that Property 1 implies σ .s ⊢ WrF, which

yields ∀Bw ∈ s .wr, Bw ⊑b Bf since s .fc , ∅. By the algebraic

properties of a lattice, B
i
f ⊑b Bf , which yields Bf ∩b B

i
f = B

i
f .

Since P(S,π) and τ authenticate write requests, we have that (1)

implies

∧
(C,x,a,B)∈(s .fc∪s .nfc)C(B

i
f ,x).

(3)We now prove that there is a behavior σf .sf ∈ Be(P(S,π ide

B
))

for which

• (a) finalB(sf) = B
i
f ,

• (b) ∀(C,x ,a,B) ∈ (sf .fc ∪ sf .nfc), B = B
i
f ,

• (c)

∧
(C,x,a,B)∈(sf .fc∪sf .nfc)C(B,x),

• (d) checksA(sf) = checksA(s), and
• (e) sf .agents = s .agents.

We build σ 0

f .s
0

f .σw .sw .σr ∈ Be(P(S,π ide

B
)) from σ .s ∈ Be(P(S,π))

as follows. First of all, any action from S is left unchanged and

any action from π is replaced by Skip(). We obtain this way a be-

havior σ 0

f .s
0

f ∈ Be(P(S,π ide

B
)). Next, we complete this behavior

as follows. First, for any B ∈ s0f .wr = s .wr, we trigger the ac-

tion Write with Bw := B that yields a series of state σw .sw . Note
that sw .wr = sw .w and sw .wr = s0f .wr = s .wr. Second, for any

(C,x ,a) ∈ sw .cr ∩ checksA(s), we trigger an RF action (see Exam-

ple 2.4) that adds (C,x ,a,∪bs
′.w) to the state variable s ′.fc, where

s ′ is the current state. Note that for any such state s ′, s ′.w = s ′.wr =
sw .w = s .wr. Therefore, ∪bs

′.w = B
i
f . Since all guards of π

ide

B
hold,

we obtain σ 0

f .s
0

f .σw .sw .σr ∈ Be(P(S,π ide

B
)). Let sf be the last state

of σr . Note that finalB(sf) = ∪bsf .w = B
i
f and hence (a) holds. We

now establish (†) : sf .fc = {(C,x ,a,Bif) | (C,x ,a) ∈ checksA(s)}.

By the definition of a protocol, checksA(s) ⊆ s .cr. By construction,

s .cr = sw .cr and thus sw .cr ∩ checksA(s) = checksA(s). Finally, †
follows from the construction of σr and the aforementioned invari-

ants. (†) entails (b) and (d). (c) follows from (†) and (2). (e) is by

construction as the actions triggered by S remained unchanged.

(4) By (3)(c) and by hypothesis, it holds that

τ (finalB(sf), checksA(sf), sf .agents).

(5) Finally, (3)(a,d,e), (4), and Bf ∩b (∪bs .wr) = B
i
f (2) imply

τ (finalB+(s) ∩ (∪bs .wr), checksA(s), s .agents). Since P(S,π) and τ

14

authenticate all writes, it then holds that

τ (finalB+(s), checksA(s), s .agents) concluding the proof. □

Lemmas A.1 and A.5 imply Theorem 4.2.

A.2 FA is Necessary for Verifiability
In Section 4.2.2, we informally argued in which cases FA is neces-
sary for verifiability

+
. We now elaborate on this. Recall that we

distinguished critical checks, which must be satisfied for the goal

to hold, and noncritical checks.

First, we have argued that some e-voting protocols achieve verifi-

ability independently of any BB content. For example, CHvote [33]

only relies on verification codes to achieve verifiability. Such codes

are initially only known to the voters and can be computed for a

ballot only if sufficiently many authorities collaborate. Therefore,

if a voter receives a valid code for her ballot, she knows that her

ballot has been received by the required amount of authorities.

Thus, when at least one of the involved authorities is trusted, she

also knows that her ballot will be counted in the tally. This way,

CHvote provides IV without relying on a BB. We thus concentrate

in the following on protocols that use a BB to achieve verifiability.

We have argued that FA (i) is necessary, as otherwise the final BB

relevant for the stated goal is not well-defined. In practice, without

this guarantee, attacks such as C.3, C.4, or B.1 from Section 3.2 are

possible, where each reader requesting a final content is provided

with an adversary-chosen content, tailored to this reader to satisfy

his checks.

We now turn to the FA (ii) requirement. While the verifiabil-

ity attacks C.1 and B.2 rely on violations of this requirement, the

requirement is not always necessary to achieve verifiability. For

instance, if all checks are final-only, this requirement is of no use.

However, we next argue that under reasonable assumptions about

the verifiability checks and goal, the requirement (ii) is necessary

for verifiability to hold. IV checks are typical examples satisfying

these assumptions. (Independently of this, note that one can always

consider someC and τ that, together, exactly check FA (ii), in which

case verifiability implies FA (ii).)

We say that a check isminimal in its BB contents, when the total-

ity of the BB content that has been read to evaluate the verifiability

check is actually needed for the check to hold. Also, we say that

a protocol can postpone reads when it can wait until reaching the

final phase before the critical checks are performed. We show that

FA (ii) is necessary for checks that are critical, minimal, and used

in protocols that can postpone reads. The result implies that FA is

necessary for many realistic scenarios, for example for all protocols

that specify critical IV checks that can be performed at any time

after vote casting. Now, we first formalize these assumptions.

We say that B is minimal for C,x when: C(B,x) holds but for
any B

′ ∈ W, if B ̸⊑b B
′
, then C(B′,x) does not hold. For a pro-

tocol P(S,π), we say that a verifiability check C is critical for a
verifiability goal τ when there is no execution σ .s ∈ Be(P(S,π))
and (C,x ,a,B) ∈ (s .nfc ∪ s .fc) such that C(B,x) does not hold but

τ (finalB+(s), checksA(s), s .agents) does hold. Finally, we say that a

protocol P(S,π), such that π satisfies FC, can postpone reads when
any processed check can always be processed later using the final

BB content
8
; formally when for any σ .s ∈ Be(P(S,π)), (C,x ,a,B) ∈

s .nfc, and Bf ∈ B(s .fc), there exists a σ ′.s ′ ∈ Be(P(S,π)) such
that: (s ′.nfc ∪ s ′.fc) = (s .nfc ∪ s .fc)\{(C,x ,a,B)} ∪ {(C,x ,a,Bf)},

finalB+(s ′) = finalB+(s), and s ′.agents = s .agents.
Under these assumptions on some protocol P(S,π), verifiability

goal τ and check C , we formally prove that if there is an execu-

tion σ .s ∈ Be(P(S,π)) whose processed checks hold and a check

(C,x ,a,B) ∈ s .nfc such that FA (ii) is violated for B; i.e., B ̸⊑b Bf
where Bf ∈ B(s .fc)), then P(S,π) does not provide verifiability

for τ .

Theorem A.6. Let P(S,π) be a protocol that can postpone reads

and such that π ⊢ FC. Let σ .s ∈ Be(P(s,π)) and (C,x ,a,B) ∈ s .nfc
such that B(s .fc) = {Bf } and B ̸⊑b Bf , B is minimal for C,x , C
is critical for τ , and

∧
(C ′,x ′,a′,B′)∈(s .fc∪s .nfc)C

′(B′,x ′) holds. Then,
P(S,π) does not provide verifiability+ for τ .

Proof sketch. Assume given σ .s , (C,x ,a,B), and Bf as above.

We assume that P(S,π) provides verifiability+ for τ ; thus by hy-

pothesis (0) τ (finalB+(s), checksA(s), s .agents) holds, and derive a

contradiction. Since Bf ∈ B(s .fc) and P(S,π) can postpone reads,

(C,x ,a,B) can be postponed, which yields an execution σ ′.s ′ ∈

Be(P(S,π)) such that (i) (s ′.nfc∪s ′.fc) = (s .nfc∪s .fc)\{(C,x ,a,B)}∪
{(C,x ,a,Bf)}, (ii) finalB

+(s ′) = finalB+(s), and (iii) s ′.agents =
s .agents. We now prove that the execution σ ′.s ′ contradicts the fact
that C is critical for τ . By the minimality of B for C,x and by B ̸⊑b
Bf , we have that (iv)C(Bf ,x) does not hold. However, (v) τ holds for

σ ′.s ′ since we have by (0) that τ (finalB+(s), checksA(s), s .agents)
holds and finalB+(s ′) = Bf = finalB+(s) by (ii), checksA(s ′) =
checksA(s) by (i), and s ′.agents = s .agents by (iii). Therefore, (iv)

and (v) contradict the fact that C is critical for τ . □

A.3 Attacks
Continuing attack C.5 from Section 3.2.1. We assume that all enti-

ties proceed on a block-basis and that a malicious BB may redirect

public credentials intended for a certain block to another block.

Indeed, the specification only specifies that the registration tellers

should sign such write requests to the BB, but not in the context

of a specific block. A malicious BB and a coerced voter A could

thus attack coercion-resistance as follows: when computing her

ballot bA, A binds bA to an adversary-chosen block identifier b ′,
instead of the block identifier b that is bound to her credential (b
is the block where A is registered, according to the registration

tellers). A then casts her vote to the ballot boxes in the context of

the block b ′. The BB then provides the TTs for the block b ′ with a

content where A’s public credential has been added. Therefore, A’s
vote will be counted in block b ′, although she was registered for b,
breaking some form of EV. Moreover, by choosing b ′ appropriately,
the adversary can introduce a bias in the result in this block and

thus learn A’s vote by adapting the attack of [20]. This way, the

adversary can determine if coerced voters behaved as requested.

Although this attack leaves some traces, they are currently nei-

ther detected by the verifiability checks nor by the auditing mech-

anisms. Indeed, because the malicious BB has added A’s public
credential to the list of credentials for the block b ′ and because

8
In practice, this may be because the initial check request (in cr) originating from an

entity (specified in S) has been postponed.

15

the TTs will sign this list and post it on the BB, the registrars

could theoretically detect this attack by finding in the list a public

credential they have not seen in the context of the block b ′. As
discussed in Section 3.2.3, we believe this detection remains purely

theoretical until dedicated verifiability checks are specified that can

detect such an attack in practice. Hence we suggest to mandate the

registrars to check the final BB content and check that the list of

public credentials for each block corresponds to voters eligible in

the corresponding block.

Problems at Setup. We describe an additional attack that is en-

abled by an insecure BB. In Civitas, a malicious supervisor could,

at Step (s1), publish public keys that belong to the adversary rather

than to the legitimate tellers. The adversary could then imperson-

ate all tellers and violate verifiability and privacy. A similar attack

can also be mounted on Belenios. These attacks boil down to the

problem of bootstrapping a PKI, which we consider orthogonal to

the problem we address in this paper. In particular, a solution to this

problem does not directly solve the BB problem, which is illustrated

by the other attacks that are possible even when all public keys are

authenticated correctly. In other words, the former needs a static

agreement (on the keys) while the BB needs a dynamic agreement

(on the evolving contents).

A.4 Other Scenarios where Final-Agreement is
Sufficient

Although our work is primarily motivated by e-voting, there are

other scenarios where FA is sufficient and sometimes necessary.

First, BBs providing FA can be safely used in sealed-bid auctions,
where all bidders submit bids without knowing the other bids. For

example, the bidders can submit a bid by writing a commitment

thereof on the BB and, after a known deadline, write the information

to open their commitment, too. By non-final checks, the bidders

can verify that their bid was included. FA ensures that such checks

still hold on the final BB and that all bidders agree on the auction’s

final outcome.

Another use case where BBs satisfying FA are useful is for collect-

ing signatures for an (online) petition [35]. Usually, some number of

signatures must be collected by a deadline, which defines when the

BB should be considered final. Everyone can useWrite to send their
signature to the BB, check using Read-nonFinal that their signature
is considered, and check the final result using Read-final. By FA, it
is guaranteed that all checked signatures are still included in the

final BB and that all readers agree on the final content.

However, in general, FA does not enforce any ordering between

the writes and the reads or between successive reads. This excludes

using a BB that only satisfies FA for system logs, general auctions,

discussion boards, etc. Note that even if time stamps were used,

the BB could still globally drop selected messages, which is critical

in some scenarios, such as for secure logs. In such cases, stronger

requirements and thus more costly BBs are needed.

B OUR BULLETIN BOARD PROTOCOL
B.1 Threshold γ
We claimed in Section 5.2 that the threshold γ in our protocol

ensures that for any two readers, the intersection of the set of

signatures that were verified contains one honest peer. We now

prove this claim. Let I = [1,n]. Let I1 ⊆ I and I2 ⊆ I be the sets
of peers whose signatures matched and were verified in a read

by reader R1 and R2, respectively. By our protocol design, it holds

that |I1 |, |I2 | ≥ γ . Assuming γ satisfies γ > n −
nh
2
, we establish

that |I1 ∩ I2 | > n − nh ; i.e., the intersection is strictly larger than

the number of dishonest peers and thus contains an honest peer.

It holds that |I1 | + |I2 | − |I1 ∩ I2 | = |I1 ∪ I2 |. Since I1 ∪ I2 ⊆ I ,
one has |I1 ∪ I2 | ≤ n and thus |I1 ∩ I2 | ≥ |I1 | + |I2 | − n ≥ 2γ − n.
The hypothesis γ > n −

nh
2

then yields 2γ − n > n − nh . Hence
|I1 ∩ I2 | > n − nh .

We now prove that this bound is tight. That is, ifγ ≤ n− nh
2
, then

we can build I1, I2 as above, whose intersection does not include

any honest peer. If n ≥ 2γ then one can choose I1, I2 with an empty

intersection, which concludes the proof. Otherwise, n < 2γ . Since
nh
2

≤ n−γ , it follows that nh
2
< γ and thus ⌈

nh
2
⌉ ≤ γ . Thus, one can

choose I1 of size γ , containing exactly ⌈
nh
2
⌉ honest peers. Let Ih ⊆ I

be the set of all honest peers. We note that |I1 ∩ Ih | = ⌈
nh
2
⌉ ≤ n −γ .

Therefore |I\(I1 ∩ Ih)| ≥ γ . One can thus choose I2 := I\(I1 ∩ Ih),
which satisfies |I2 | ≥ γ and I1 ∩ I2 ∩ Ih = ∅.

If such I1, I2 exist, our protocol does not satisfy FA as X (or the

malicious network) can send different contents to the peers in I1
and I2. When two readers R1 and R2 read the BB, X can send the

signatures from the peers in Ii to the reader Ri , for i ∈ {1, 2}, which

results in R1 and R2 accepting inconsistent BB contents, e.g., distinct
final contents hence violating FA.

B.2 Practical Considerations
We provide details for the practical considerations mentioned in

Section 5.3.2.

B.2.1 Trusted Devices. In practice, voters are humans who rely

on their platforms (e.g., laptops) to read the BB and maybe even

to perform some cryptographic checks [3]. Thus, FA, verifiability,
and also privacy only hold when the platform is honest. Instead of

trusting general purpose platforms, some e-voting protocols [4, 6,

31, 32, 45] prefer to trust specialized devices. As such devices have

limited capabilities and network connectivity, their attack surface

is smaller and thus trusting them is more realistic than trusting the

platforms.

In such a setting, our BB protocol can still be used. The read

requests can be entered by the voter on the platform and the proxy’s

answers can be relayed by the platform to the device. The trusted

device can then perform all the required checks, including those

from the BB protocol and possibly IV checks, and display the result

to the voter.

As the communication channels to the device are limited by

assumption, their realization must be considered carefully in terms

of usability and feasibility. For instance, requiring voters to copy

all BB peer’s signatures manually from the platform to the device

is not usable. Alternatively, messages can be relayed on specific

digital channels, such as by Bluetooth, USB cables, or by the device

scanning some QR codes on the platform’s display. Whereas these

options are more usable than manual copying, the bandwidth is

still limited. For example, a QR code can only contain roughly 9

signatures [26] (for 256-bits payloads, e.g., hashed ballots). More

16

generally, fetching the full final BB content as needed for perform-

ing UV or EV checks is very likely impractical. However, as we have

explained in Section 5.3.1, the UV and EV checks can be outsourced

to external auditors and thus voters must only use their devices

to check IV. Furthermore, our protocol allows readers to read only

partial BB contents. The combination of these mechanisms makes

the use of semi-online specialized devices practical in our protocol.

B.2.2 Online BB Peers. We have argued that assuming

distributed online servers, the BB peers, might be too strong a

system assumption for small-scale elections.

We point out that some e-voting protocols already rely on dis-

tributed online servers for realizing other entities in the system.

For instance in Civitas [12], the ballot boxes are distributed entities

that must be online during the election. For such e-voting protocols,

no additional system assumptions and thus extra costs are required

to realize our BB protocol.

Other protocols do not currently use such an architecture. For

instance, Belenios [18] makes use of distributed peers for tallying

and possibly for the Registrar which only have to be online and

perform computations at specific times. As it takes less effort for

the administrators to run such entities than running our BB peers

which need to be (almost) always online, our protocol could neg-

atively impact the usability and deployment cost of Belenios and

other similar protocols.

While we argued that our assumptions are suitable for large

scale, high stake elections, for low stake elections, e.g., the election
of board members in a company, strictly weaker adversaries could

cover all realistic threat scenarios. In such settings, one may want

to prioritize weakening the system assumptions over strengthening

the adversary model, as the available or feasible infrastructure is

limited. For instance, a malicious but cautious BB could meet FA
without relying on distributed online entities. We leave the inves-

tigation of such trade-offs between security under strong threat

models versus less costly architectures as future work.

B.2.3 Privacy. In the above solution, when voters retrieve a par-

tial content, the proxy peer learns their ballot. However, we stress

that this does not mean that the proxy peer learn its content, i.e.,
intended vote. Therefore, ballot privacy is not impacted. Moreover,

in our adversary model the adversary controls the network and

learns this (non critical) information anyway when the ballot is cast.

In use cases where this could still be a concern, alternative setups

must be used together with an instantiation of our protocol where

partial contents contain the information associated with several

voters (thus increasing the size of anonymity sets) or where our pro-

tocol is used together with techniques such as private information

retrieval.

C RELATEDWORK
C.1 Existing BB Requirements in E-voting
As explained in Section 6, many prior works require the BB to pro-

vide the properties of authenticity, append-only, and/or availability.
Append-only denotes that items cannot be erased from the BB con-

tent over time, which can be defined with respect to one reader’s

BB view or with respect to many readers’ views. In the latter case,

append-only enforces some form of agreement on BB contents

among readers. This is not the case, however, when append-only

is defined with respect to one reader, that is B1 ⊑b B2, when a

reader reads B1 and later B2. Even the combination of authenticity,
availability, and this notion of append-only does not entail FA and

is thus insufficient to achieve verifiability in many cases (see Sec-

tion 4.2.2). Moreover, all of the attacks presented in Section 3.2 can

still be carried out by a BB satisfying all three of these properties.

In contrast, FA provides weaker guarantees to the readers than

a broadcast channel. First, FA does not require the readers to agree

on non-final contents and does not guarantee any order of the

data on the BB. Second, most broadcast channel definitions entail

termination, which is a form of availability requiring that eventually
every BB reader decides on some value for the BB content. In contrast,

FA solely focuses on security (see Section 5.2.2). We believe that it is

important to identify the minimal requirements for security in order

to better understand the trade-off between security and availability.

C.2 Threshold Comparison to BFT algorithms
Our protocol requires (i) nh > 2(n − γ) while BFT consensus pro-

tocols run by the BB peers such (e.g., [24]), require (ii) γ > 2n
3

(by

construction) and nh,a >
2n
3
(trust assumption). We now show that

our trust assumptions (i) are strictly weaker than (ii).

First, we show that (ii) implies (i). From γ > 2n
3
, it follows that

2γ > 4n
3
. Therefore,

2n − 2γ < 2n −
4n

3

=
2n

3

< nh,a ≤ nh .

Second, we show by a counterexample that in general the converse

is false. Let n = 12,γ = 10, and nh = 5. Then, (i) holds as 5 > 2(12−

10) = 4. However, (ii) does not hold as the statement 5 > 2∗12
3
= 8

is false. In this context, our solution only requires 5 out of 12 peers

to be honest, while BFTs require trusting at least 9 out of 12 peers

to be honest.

REFERENCES
[1] Ben Adida. 2008. Helios: Web-based Open-audit Voting. In Conference on Security

Symposium. USENIX Association, 335–348. http://dl.acm.org/citation.cfm?id=

1496711.1496734

[2] Michael R Clarkson Stephen Chong Andrew and C Myers. 2007. Civitas: Toward

a Secure Voting System. Computing and Information Science Technical Report TR
2081 (2007).

[3] David Basin, Sasa Radomirovic, and Michael Schlaepfer. 2015. A Complete

Characterization of Secure Human-Server Communication. In Computer Security
Foundations Symposium (CSF). IEEE, 199–213.

[4] David Basin, Saša Radomirovic, and Lara Schmid. 2018. Alethea: A Provably

Secure Random Sample Voting Protocol. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF). IEEE, 283–297.

[5] Belenios website 2020. https://belenios.loria.fr/admin. (2020). Accessed: 2020-01-

18.

[6] Sergiu Bursuc, Constantin-Cătălin Drăgan, and Steve Kremer. 2019. Private votes

on untrusted platforms: models, attacks and provable scheme. In Proceedings of
the 4th IEEE European Symposium on Security and Privacy (EuroS&P’19). IEEE,
Stockholm, Sweden.

[7] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan,

Steve Schneider, Vanessa Teague, Roland Wen, Zhe Xia, and Sriramkrishnan

Srinivasan. 2012. Using Prêt à Voter in Victorian State Elections. In Electronic
Voting Technology Workshop.

[8] Craig Burton, Chris Culnane, and Steve Schneider. 2015. Secure and verifiable

electronic voting in practice: the use of vvote in the victorian state election.

arXiv preprint arXiv:1504.07098 (2015).
[9] Dominique Cansell and Dominique Mery. 2006. Tutorial on the event-based B

method. https://cel.archives-ouvertes.fr/inria-00092846. (2006).

[10] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc,

Alan Sherman, and Poorvi Vora. 2008. Scantegrity: End-to-End Voter-Verifiable

17

http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dl.acm.org/citation.cfm?id=1496711.1496734
https://belenios.loria.fr/admin
https://cel.archives-ouvertes.fr/inria-00092846

Optical-Scan Voting. IEEE Security Privacy 6, 3 (May 2008), 40–46. https://doi.

org/10.1109/MSP.2008.70

[11] Sherman SM Chow, Joseph K Liu, and Duncan SWong. 2008. Robust Receipt-Free

Election System with Ballot Secrecy and Verifiability.. In NDSS, Vol. 8. 81–94.
[12] Michael R Clarkson, Stephen Chong, and Andrew CMyers. 2008. Civitas: Toward

a Secure Voting System. In Security and Privacy, 2008. SP 2008. IEEE Symposium
on. IEEE, 354–368.

[13] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, and Bog-

dan Warinschi. 2018. Machine-checked proofs for electronic voting: privacy

and verifiability for Belenios. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF). IEEE, 298–312.

[14] Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maffei, and Cyrille

Wiedling. 2015. Type-Based Verification of Electronic Voting Protocols. In Prin-
ciples of Security and Trust. Springer Berlin Heidelberg, Berlin, Heidelberg, 303–

323.

[15] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. 2019. BeleniosVS:

Secrecy and Verifiability against a Corrupted Voting Device. In 32nd Computer
Security Foundations Symposium (CSF). IEEE.

[16] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.

2014. Election Verifiability for Helios under Weaker Trust Assumptions. In

European Symposium on Research in Computer Security. Springer, 327–344.
[17] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Mueller, and Tomasz

Truderung. 2016. Sok: Verifiability notions for e-voting protocols. In Symposium
on Security and Privacy (SP). IEEE, 779–798.

[18] Véronique Cortier, Pierrick Gaudry, and Stephane Glondu. 2019. Belenios: a

simple private and verifiable electronic voting system. In Foundations of Security,
Protocols, and Equational Reasoning. Springer, 214–238.

[19] Véronique Cortier and Joseph Lallemand. 2018. Voting: You Can’t Have Privacy

without Individual Verifiability. In Conference on Computer and Communications
Security. ACM, 53–66.

[20] Véronique Cortier and Ben Smyth. 2013. Attacking and fixing Helios: An analysis

of ballot secrecy. Journal of Computer Security 21, 1 (2013), 89–148.

[21] Denis Cousineau, DamienDoligez, Leslie Lamport, StephanMerz, Daniel Ricketts,

and Hernán Vanzetto. 2012. TLA+ proofs. In International Symposium on Formal
Methods. Springer, 147–154.

[22] Chris Culnane, Peter YA Ryan, Steve A Schneider, and Vanessa Teague. 2015.

vVote: A Verifiable Voting System. ACM Transactions on Information and System
Security (TISSEC) 18, 1 (2015), 3:1–3:30.

[23] Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague. 2014.

vVote: a Verifiable Voting System (version 4.0). CoRR abs/1404.6822 (2014).

arXiv:1404.6822 http://arxiv.org/abs/1404.6822

[24] Chris Culnane and Steve Schneider. 2014. A Peered Bulletin Board for Robust

Use in Verifiable Voting Systems. CoRR abs/1401.4151 (2014). arXiv:1401.4151

http://arxiv.org/abs/1401.4151

[25] Denise Demirel, Maria Henning, Jeroen van de Graaf, Peter YA Ryan, and Jo-

hannes Buchmann. 2013. Prêt à Voter Providing Everlasting Privacy. In E-Voting
and Identify. Springer Berlin Heidelberg, Berlin, Heidelberg, 156–175.

[26] Riccardo Focardi, Flaminia L Luccio, and Heider AM Wahsheh. 2018. Usable

cryptographic QR codes. In 2018 IEEE International Conference on Industrial
Technology (ICIT). IEEE, 1664–1669.

[27] Follow my vote company: Blockchain voting 2020. https://followmyvote.com/

blockchain-voting-the-end-to-end-process/. (2020). Accessed: 2020-01-18.

[28] Gina Gallegos-Garcia, Vincenzo Iovino, Alfredo Rial, Peter B Roenne, and Pe-

ter YA Ryan. 2016. (Universal) Unconditional Verifiability in E-Voting without

Trusted Parties. arXiv preprint arXiv:1610.06343 (2016).
[29] Arthur Gervais, Ghassan Karame, Srdjan Capkun, and Vedran Capkun. 2014.

Is Bitcoin a Decentralized Currency? IEEE Security Privacy 12, 3 (2014), 54–60.

https://doi.org/10.1109/MSP.2014.49

[30] Stéphane Glondu. 2019. Belenios specification. Version 1.6. http://www.belenios.
org/ specification.pdf (2019).

[31] Gurchetan S Grewal, Mark D Ryan, Liqun Chen, and Michael R Clarkson. 2015.

Du-vote: Remote electronic voting with untrusted computers. In Computer Secu-
rity Foundations Symposium. IEEE, 155–169.

[32] Rolf Haenni and Reto E Koenig. 2014. Voting over the Internet on an Insecure

Platform. In Design, Development, and Use of Secure Electronic Voting Systems.
IGI Global, 62–75.

[33] Rolf Haenni, Reto E Koenig, Philipp Locher, and Eric Dubuis. 2017. CHVote

System Specification (Version 3.0). IACR Cryptology ePrint Archive 2017 (2017),
325.

[34] Severin Hauser and Rolf Haenni. 2019. Modeling a Bulletin Board Service

Based on Broadcast Channels with Memory. In Financial Cryptography and Data
Security. Springer Berlin Heidelberg, 232–246.

[35] James Heather and David Lundin. 2009. The Append-Only Web Bulletin Board.

In Formal Aspects in Security and Trust. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 242–256.

[36] Sven Heiberg, Ivo Kubjas, Janno Siim, and Jan Willemson. 2018. On trade-offs

of applying block chains for electronic voting bulletin boards. E-Vote-ID 2018

(2018), 259.

[37] Helios website 2020. https://vote.heliosvoting.org/. (2020). Accessed: 2020-01-18.

[38] Martin Hirt and Kazue Sako. 2000. Efficient receipt-free voting based on homo-

morphic encryption. In International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 539–556.

[39] Ari Juels, Dario Catalano, and Markus Jakobsson. 2010. Coercion-resistant

Electronic Elections. In Towards Trustworthy Elections. Springer-Verlag, 37–63.
[40] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas

Zacharias. 2018. On the Security Properties of e-Voting Bulletin Boards. In

Security and Cryptography for Networks. 505–523.
[41] Steve Kremer, Mark Ryan, and Ben Smyth. 2010. Election Verifiability in Elec-

tronic Voting Protocols. In Computer Security – ESORICS 2010. Springer Berlin
Heidelberg, Berlin, Heidelberg, 389–404.

[42] Ralf Kusters, Tomasz Truderung, and Andreas Vogt. 2012. Clash attacks on the

verifiability of e-voting systems. In 2012 IEEE Symposium on Security and Privacy.
IEEE, 395–409.

[43] Leslie Lamport. 2015. The TLA+ hyperbook. (2015). https://lamport.

azurewebsites.net/tla/hyperbook.html.

[44] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. 2017. A smart contract

for boardroom voting with maximum voter privacy. In International Conference
on Financial Cryptography and Data Security. Springer, 357–375.

[45] Stephan Neumann and Melanie Volkamer. 2012. Civitas and the real world:

problems and solutions from a practical point of view. In International Conference
on Availability, Reliability and Security. IEEE, 180–185.

[46] Peter YA Ryan, David Bismark, James A Heather, Steve A Schneider, and Zhe Xia.

2009. Prêt à Voter: a Voter-Verifiable Voting System. Transactions on Information
Forensics and Security 4, 4 (2009), 662–673.

[47] Peter YA Ryan, Peter B Rønne, and Vincenzo Iovino. 2016. Selene: Voting with

transparent verifiability and coercion-mitigation. In International Conference on
Financial Cryptography and Data Security. Springer, 176–192.

[48] Pavel Tarasov and Hitesh Tewari. 2017. Internet Voting Using Zcash. IACR
Cryptology ePrint Archive 2017 (2017), 585.

[49] TLA+ proofs 2020. https://drive.google.com/drive/folders/

1SDTTDCUd1p11UwBYHrn4nGTd-TGTQcp7. (2020). Accessed: 2020-01-18.

[50] Nan Yang and Jeremy Clark. 2017. Practical governmental voting with uncondi-

tional integrity and privacy. In International Conference on Financial Cryptography
and Data Security. Springer, 434–449.

[51] Bin Yu, Joseph K Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba, and

Man Ho Au. 2018. Platform-independent secure blockchain-based voting system.

In International Conference on Information Security. Springer, 369–386.
[52] Zhichao Zhao and T-HHubert Chan. 2015. How to vote privately using bitcoin. In

International Conference on Information and Communications Security. Springer,
82–96.

18

https://doi.org/10.1109/MSP.2008.70
https://doi.org/10.1109/MSP.2008.70
http://arxiv.org/abs/1404.6822
http://arxiv.org/abs/1404.6822
http://arxiv.org/abs/1401.4151
http://arxiv.org/abs/1401.4151
https://followmyvote.com/blockchain-voting-the-end-to-end-process/
https://followmyvote.com/blockchain-voting-the-end-to-end-process/
https://doi.org/10.1109/MSP.2014.49
http://www.belenios.org/specification.pdf
http://www.belenios.org/specification.pdf
https://vote.heliosvoting.org/
https://lamport.azurewebsites.net/tla/hyperbook.html
https://lamport.azurewebsites.net/tla/hyperbook.html
https://drive.google.com/drive/folders/1SDTTDCUd1p11UwBYHrn4nGTd-TGTQcp7
https://drive.google.com/drive/folders/1SDTTDCUd1p11UwBYHrn4nGTd-TGTQcp7

	Abstract
	1 Introduction
	2 Bulletin Board (BB) Model
	2.1 Setup, System, and Adversary Assumptions
	2.2 Formal Specifications in Event-B

	3 Verifiability and the BB
	3.1 Defining Verifiability for Malicious BBs
	3.2 Practical Attacks with Malicious BBs

	4 Final-Agreement (FA)
	4.1 Definition
	4.2 FA in E-voting

	5 A Protocol for Achieving FA
	5.1 Design Rationale
	5.2 Generic Protocol
	5.3 Using our BB for E-voting
	5.4 Security Analysis

	6 Related Work
	6.1 BB Realizations
	6.2 BBs in E-Voting Protocols

	7 Conclusion
	A Verifiability, FA, Attacks
	A.1 FA is Sufficient for Verifiability
	A.2 FA is Necessary for Verifiability
	A.3 Attacks
	A.4 Other Scenarios where Final-Agreement is Sufficient

	B Our Bulletin Board Protocol
	B.1 Threshold
	B.2 Practical Considerations

	C Related Work
	C.1 Existing BB Requirements in E-voting
	C.2 Threshold Comparison to BFT algorithms

	References

