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Abstract—The CAP theorem says that no blockchain can be
live under dynamic participation and safe under temporary
network partitions. To resolve this availability-finality dilemma,
we formulate a new class of flexible consensus protocols, ebb-
and-flow protocols, which support a full dynamically available
ledger in conjunction with a finalized prefix ledger. The finalized
ledger falls behind the full ledger when the network partitions but
catches up when the network heals. Gasper, the current candidate
protocol for Ethereum 2.0’s beacon chain, combines the finality
gadget Casper FFG with the LMD GHOST fork choice rule
and aims to achieve this property. However, we discovered an
attack in the standard synchronous network model, highlighting
a general difficulty with existing finality-gadget-based designs. We
present a construction of provably secure ebb-and-flow protocols
with optimal resilience. Nodes run an off-the-shelf dynamically
available protocol, take snapshots of the growing available ledger,
and input them into a separate off-the-shelf BFT protocol to
finalize a prefix. We explore connections with flexible BFT and
improve upon the state-of-the-art for that problem.

I. INTRODUCTION

A. The Availability-Finality Dilemma

Distributed consensus is a 40-year-old field. In its classical
state machine replication formulation, clients (e.g., merchants)
issue transactions (e.g., payments) to be shared with nodes
(e.g., the servers implementing a distributed payment system)
who communicate among each other via an unreliable network
and seek to reach agreement on a common ledger (e.g.,
sequence of payments). In the standard permissioned setting,
the number of nodes is assumed to be known, fixed and each
node is always awake, actively participating in the consensus
protocol. One important novelty blockchains have brought into
this field is the notion of dynamically available protocols:
consensus systems that can support an unknown number of
nodes each of which can go to sleep and awake dynamically.
Dynamic availability is a useful property of a consensus
protocol, particularly in a large-scale setting with many nodes
not all of which are active at the same time. Nakamoto’s Proof-
of-Work (PoW) longest chain protocol [2] is perhaps the first
such dynamically available consensus protocol. The amount
of mining power is varying in time and the system is live and
safe as long as less than 50% of the online hashrate belongs to
adversary miners. The longest chain design was subsequently
adapted to support dynamic availability in permissioned [3]
and Proof-of-Stake (PoS) settings [4]–[6]. Supporting dynamic
availability is more challenging in these settings. Earlier works
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need to assume all adversary nodes are awake at the beginning
[3], [6] or a trusted setup for nodes to join the network [4],
[5], but recently it has been shown that these restrictions can
be removed using verifiable delay functions [7].

One limitation of dynamically available protocols is that
they are not tolerant to network partition: when the network
partitions, honest nodes in a dynamically available protocol
will think that many nodes are asleep, continue to confirm
transactions, and thus is not safe.1 This is in contrast to per-
missioned BFT protocols designed for partially synchronous
networks, such as PBFT [8], Tendermint [9], [10], Hotstuff
[11] and Streamlet [12]. This type of protocols is the basis for
permissioned blockchains such as Libra [13], [14] and PoS
blockchains such as Algorand [15], [16]. In these protocols,
a quorum of two-thirds of the signatures of all the nodes
is required to finalize transactions, and hence is safe under
network partition. On the other hand, these protocols are not
live under dynamic availability: when many nodes are asleep,
there is not enough of a quorum for the consensus protocol
to proceed and it will get stalled. In fact, it is impossible for
any protocol to be both safe under network partition and live
under dynamic participation: individual nodes in the network
cannot distinguish between the two scenarios to act differently.
This intuition is formalized in [3] and its connection to the
CAP theorem [17] was made precise recently in [18]. In
light of this, protocol designers see themselves faced with
an availability-finality dilemma: whether to favor liveness
under dynamic participation or safety under network partition.
Hence, consensus protocols are typically classified as liveness-
favoring or safety-favoring [19].

B. Ebb-and-Flow Protocols

For inspiration on a way to resolve this dilemma, let
us revisit another important aspect of Nakamoto’s longest
chain protocol: the k-deep confirmation rule. In this protocol,
all miners work on the longest chain, but different clients
can choose different values of k to determine how deep a
block should be in the longest chain to confirm it. A client
who chooses a larger value for k is a more conservative
client, believing in a more powerful attacker or wanting
more reliability, and its ledger is a prefix of that of a more

1In this paper, network partition can equally mean a catastrophic physical
disconnection among the nodes, or perhaps a less rare situation where many
adversary nodes are not communicating with the honest nodes but building a
chain in private.
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aggressive client which chooses a smaller value of k. Hence, in
contrast to classic consensus protocols, Nakamoto’s protocol
supports multiple (nested) ledgers rather than only a single
one. This concept of flexible consensus is formalized and
further developed in [20], where different clients can make
different assumptions about the synchronicity of the network
as well as the power of the adversary.

The CAP theorem says no protocol can support clients that
simultaneously want availability and finality. Inspired by the
idea of flexible consensus, we can instead seek a flexible
protocol that supports two types of clients: conservative clients
who favor finality and want to be safe under network partition,
and more aggressive clients who favor availability and want
to be live under dynamic availability. A conservative client
will only trust a finalized ledger, which is a prefix of a longer
dynamically available ledger (or, available ledger for short)
believed by a more aggressive client. The finalized ledger
falls behind the available ledger when network partitions,
but catches up when the network heals. This ebb-and-flow
property avoids a system-wide determination of availability
versus finality and instead leaves this decision to the clients.

C. Understanding Gasper

Gasper [21] is the current candidate protocol for Ethereum
2.0’s beacon chain. The Gasper protocol is complex, combin-
ing the finality gadget Casper FFG [22] with the LMD (Latest
Message Driven) GHOST fork choice rule in a handcrafted
way. One motivation for our work is to understand Gasper’s
design goals. As far as we can gather, two of its main goals
are:

1) Ability to finalize certain blocks in the blockchain [21, p.
1]. In addition to network partition tolerance, finalization
also allows accountability through slashing of protocol
violators.

2) Support of a highly available distributed ledger which
does not halt even when finality is not achieved [23],
[24], [21, Section 8.7]. Availability is a central feature of
the existing global Ethereum blockchain.

Although the sense in which Gasper aims to simultaneously
achieve these two goals is not specified in [21], we do know
from the CAP theorem that no protocol can finalize all blocks
and be a highly available ledger at the same time. Thus, we
believe that the ebb-and-flow property is a good formulation of
Gasper’s design goals. In this context, the role of the finality
gadget is to finalize a prefix of the ledger and the role of LMD
GHOST is to support availability.

In [21], Gasper’s finalized ledger is shown to be safe.
However, it is claimed to be live only under a non-standard
stochastic network delay model. Following the standards ad-
vocated by [25] for the design and analysis of blockchain
protocols, we analyzed Gasper under a standard security
model, and found it to be insecure. In particular, we discovered
a liveness attack on Gasper in the standard synchronous model
where messages can be delayed arbitrarily by the adversary
up to a known network delay bound. Moreover, because this
liveness attack is a balancing attack causing the votes to split
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Fig. 1. (a) A consensus protocol Π implementing state machine replication
receives transactions txs as inputs from the environment and outputs an
ever-increasing ordered ledger of transactions LOG. (b) A snap-and-chat
protocol produced by our construction, Πsac, receives transactions txs from
the environment and outputs two ever-increasing ledgers LOGda and LOGfin
by running a dynamically available protocol Πlc and a partially synchronous
protocol Πbft in parallel. The inputs to Πlc are environment’s transactions
but the inputs to Πbft are snapshots of the output ledger of Πlc from the
nodes’ views. The dashed line signifies that nodes use the output of Πlc as
side information in Πbft to boycott the finalization of invalid snapshots.

0

100

200

L
ed

ge
r

le
ng

th
[b

lk
s]

Enough awake |LOGfin| Awake honest nodes
Network partition |LOGda| Liveness threshold

0 500 1,000 1,500 2,000 2,500 3,000 3,500
60

65

70

75

67

Time [s]

A
w

ak
e

ho
ne

st

Fig. 2. A simulated run of an example snap-and-chat protocol (combining
longest chain and Streamlet [12]) under dynamic participation and network
partition. The lengths of the two ledgers are plotted over time. During network
partition or when few nodes are awake, the finalized ledger falls behind the
available ledger, but catches up after the network heals or when a sufficient
number of nodes wake up. See Section IV for details on the simulation setup.

between two parallel chains, this attack also denies the safety
of the available ledger even when there is no network partition.

D. A Provably Secure Construction with Optimal Resilience

In this work, we make two contributions. First we define
what an ebb-and-flow protocol is and its desired security
property. While the goals of an ebb-and-flow protocol have
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been informally discussed to motivate finality-gadget-based
designs such as Gasper and a few others (e.g., [26]), to the
best of our knowledge these informal goals have not been
translated into a mathematically defined security property.

Second, we provide a construction of a class of protocols,
which we call snap-and-chat protocols, that provably satisfies
the ebb-and-flow security property with optimal resilience.
In contrast to Gasper’s handcrafted design, the snap-and-
chat construction uses an off-the-shelf dynamically available
protocol2 Πlc and an off-the-shelf partially synchronous BFT
protocol Πbft (Figure 1). Nodes execute the protocol by
executing the two sub-protocols in parallel. The Πlc sub-
protocol takes as inputs transactions txs from the environment
and outputs an ever-increasing ledger LOGlc. Over time, each
node takes snapshots of this ledger based on its own current
view, and input these snapshots into the second sub-protocol
Πbft to finalize some of the transactions. The output ledger
LOGbft of Πbft is an ordered list of such snapshots. To create
the finalized ledger LOGfin of transactions, LOGbft is flattened
(i.e., all snapshots included in LOGbft are concatenated) and
sanitized so that only the first appearance of a transaction
remains. Finally, LOGfin is prepended to LOGlc and sanitized
to form the available ledger LOGda. A simulated run of an
example snap-and-chat protocol is shown in Figure 2.

Even though honest nodes following a snap-and-chat proto-
col input snapshots of the (confirmed) ledger LOGlc into Πbft,
an adversary could, in an attempt to break safety, input an
ostensible ledger snapshot which really contains unconfirmed
transactions. This motivates the last ingredient of our con-
struction: in the Πbft sub-protocol, each honest node boycotts
the finalization of snapshots that are not confirmed in Πlc in
its view. An off-the-shelf BFT protocol needs to be modified
to implement this constraint. We show that fortunately the
required modification is minor in several example protocols,
including PBFT [8], Hotstuff [11] and Streamlet [12]. When
any of these slightly modified BFT protocols is used in
conjunction with a permissioned longest chain protocol [3]–
[5], we prove a formal security property for the resulting snap-
and-chat protocol, which is our definition of the desired goal
of an ebb-and-flow protocol.

Theorem (Informal). Consider a network environment where:
1) Communication is asynchronous until a global stabi-

lization time GST after which communication becomes
synchronous, and

2) honest nodes sleep and wake up until a global awake time
GAT after which all nodes are awake. Adversary nodes
are always awake.

Then
1) (P1 - Finality): The finalized ledger LOGfin is guaranteed

to be safe at all times, and live after max{GST,GAT},
provided that fewer than 33% of all the nodes are
adversarial.

2Longest chain protocols are representative members of this class of
protocols, hence the notation Πlc, but this class includes many other protocols
as well.
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Fig. 3. The flexible BFT protocol can simultaneously support clients who
can tolerate f adversaries in a synchronous environment and clients who can
tolerate (n−f)/2 adversaries in a partially synchronous environment, for any
f between n/3 and n/2. Thus, there is a tradeoff between the two guarantees.
The snap-and-chat protocol achieves (n/2, n/3), simultaneously optimal. No
tradeoff is necessary.

2) (P2 - Dynamic Availability): If GST = 0, the available
ledger LOGda is guaranteed to be safe and live at all
times, provided that at all times fewer than 50% of the
awake nodes are adversarial.

Note that the assumptions on the adversary are different
for the security of the two ledgers, in line with the spirit of
a flexible protocol [20]. Together, P1 and P2 say that the
finalized ledger LOGfin is safe under network partition, i.e.,
before max{GST,GAT}, and afterwards catches up with the
available ledger LOGda, which is always live and safe provided
that the majority of awake nodes is honest.

If GAT = 0, then the environment is the classical partially
synchronous network, and the ledger LOGfin has the opti-
mal resilience achievable in that environment. On the other
hand, if GST = 0 and GAT = ∞, then the environment
is a synchronous network with dynamic participation, and
the ledger LOGda has the optimal resilience achievable in
that environment. Thus, our construction achieves consistency
between the two ledgers without sacrificing the best possible
security guarantees of the individual ledgers. In that sense, our
construction achieves the ebb-and-flow property in an optimal
manner.

E. Flexible BFT Revisited

P1 and P2 together with prefix consistency provide flexible
consensus. Our mathematical formulation of the ebb-and-flow
property can be viewed as going beyond that of Flexible
BFT [20] in two ways. First, [20] focuses on synchronicity
assumptions and we bring dynamic participation as a new
client belief into the story. Second, the formulation in [20]
requires consistency between ledgers of two clients only when
their assumptions are both correct, but we require prefix
consistency between the ledgers in all circumstances. In that
sense, the flexibility our formulation offers is closer in nature
to the flexibility offered by Nakamoto’s longest chain protocol.
Prefix consistency under all circumstances is crucial, e.g., for
cryptocurrencies, where eventually all clients, no matter their
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beliefs, should converge on a unique ledger, a single version
of history to settle disputes regarding ‘who owns what’.

But even for the formulation considered in [20], our con-
struction provides a different solution and offers stronger
security guarantees than the white-box construction in [20].
More specifically, the flexible BFT protocol in [20] can si-
multaneously support clients who can tolerate n/2 adversaries
in a synchronous environment and clients who can tolerate a
fraction of n/4 adversaries in a partially synchronous environ-
ment. Since a synchronous environment is a special case of
the dynamic participation environment (by setting GAT = 0),
our construction improves the security guarantees to simulta-
neously support clients who can tolerate n/2 adversaries in
a synchronous environment and clients who can tolerate n/3
adversaries in a partially synchronous environment. Consistent
with the optimality of our construction, these guarantees
cannot be improved further (see Figure 3).

It is also insightful to compare our results with those
of [27], which designed a randomized Byzantine agreement
protocol secure under both a synchronous and an asynchronous
environment. The dashed line in Figure 3 shows the tradeoff
between the resiliences the protocol can support in the two
environments, and this tradeoff is proved to be optimal. Note
that this protocol is not a flexible protocol, since a single
value has to be agreed upon regardless of which of the two
environments one is in. Thus, the gap between the resilience
achieved by the snap-and-chat protocol and the protocol in
[27] can be interpreted as the value of flexibility. Interestingly,
the protocol in [27] is also constructed by the composition of
two sub-protocols, but in contrast to the construction of snap-
and-chat protocols, the two sub-protocols are not off-the-shelf,
but are constructed tailored to the problem at hand.

F. Outline

The remainder of this manuscript is structured as follows.
First, we present a balancing attack on Gasper in Section II,
demonstrating that Gasper is not secure. Section III formulates
the ebb-and-flow security property, describes the construction
of snap-and-chat protocols in detail and proves that they satisfy
the ebb-and-flow security property with optimal resilience.
We show the results of simulation experiments providing an
insight into the behavior of snap-and-chat protocols in Sec-
tion IV. In Section V-A, we compare the design of snap-and-
chat protocols and finality gadgets. We conclude the paper with
how to transfer our results to the PoW setting in Section V-B
and an overview of features beyond security provided out-of-
the-box by snap-and-chat protocols in Section V-C.

II. A BALANCING ATTACK ON GASPER

Gasper [21] is the current proposal for Ethereum 2.0’s
beacon chain. In the following, we exhibit a liveness attack
against Gasper in the synchronous network model.3 What is
more, the attack leads to loss of safety for the underlying
dynamically available ledger. Thus, Gasper is not secure in the

3Source code of a simulation of the attack (discussed in Appendix A-C)
can be found at: https://github.com/tse-group/gasper-attack.

synchronous network model and does not provide a resolution
to the availability-finality dilemma.

Our attack uses that under synchrony, network delay is
adversarial (rather than merely stochastic, as was analyzed
in [21]). Considering, e.g., state-sponsored adversaries or ma-
licious network providers, at least some degree of adversarial
network delay cannot be ruled out. Furthermore, the synchrony
model with adversarial delay is a well-established baseline
model for which many secure protocols are known.

Gasper is a vote-based PoS protocol which combines Casper
FFG [22] with a committee-based blockchain block proposal
mechanism where the fork (i.e., the tip of the chain to propose
new blocks on or vote for) is chosen using the ‘greedy heaviest
observed sub-tree’ (GHOST) rule under the ‘latest message
driven’ (LMD) paradigm, i.e., taking into consideration only
the most recent vote per validator. A Gasper vote consists
of two parts, a GHOST vote and a Casper FFG vote. While
details of Gasper preclude the vanilla bouncing attack [28]–
[30] on the Casper FFG layer, Gasper is vulnerable to a similar
balancing attack on the GHOST layer.

Recall that Gasper proceeds in epochs which are further
subdivided into C slots each. For simplicity, let C divide n so
that every slot has a committee of size n/C. For each epoch,
a random permutation of all n validators assigns validators
to slots’ committees and designates a proposer per slot. Per
slot, the proposer produces a new block extending the tip
determined by the fork choice rule HLMD(G) executed in
local view G (see [21, Algorithm 4.2]). Then, each validator
of the slot’s committee decides what block to vote for using
HLMD(G) in local view G.

For the Casper FFG layer, a block can only become finalized
if two-thirds of validators vote for it. The attacker aims to keep
honest validators split between two options (‘left’ and ‘right’
chain, see Figure 4) indefinitely, so that neither option ever
gets two-thirds votes and thus no block ever gets finalized.
Key technique to maintain this split is that some adversarial
validators (‘swayers’ in Figure 4) withhold their votes and
release them only at specific times and to specific subsets of
honest nodes in order to influence the fork choice of honest
nodes and thus steer which honest nodes vote ‘left’/‘right’.

The basic idea of the attack is as follows (for a detailed
description, see Appendix A and [31]). The adversary waits
for an opportune epoch to kick-start the attack. An epoch
is opportune if the proposer in the first slot is adversarial,
and in every slot of the epoch there are enough (six suffice;
explained in detail in Appendix A-B) adversarial validators to
fulfill certain tasks in the attack (see a©– d© in Figure 4). In
particular in the regime of many validators (n → ∞), the
probability that a particular epoch is opportune is roughly
f/n (see Appendix A-C). Note that for n large, any positive
fraction f/n of adversarial nodes suffices to mount the attack,
with the first opportune epoch occurring after n/f epochs on
average. For ease of exposition, let epoch 0 be opportune.

The adversarial proposer of slot 0 equivocates and produces
two conflicting blocks (‘left’ and ‘right’) which it reveals to
two suitably chosen equal-sized subsets of the committee. One

https://github.com/tse-group/gasper-attack
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Fig. 4. Two chains, ‘left’ ( ... ) and ‘right’ ( ... ), are built during the attack.
Honest and adversarial validators in a slot’s committee are depicted by and
, respectively. a© In slot 0 the proposer needs to be adversarial ( ). b© In

every slot i of epoch 0 the adversary recruits two ‘swayers’ whose votes (
votes ‘left’, votes ‘right’) in epoch 0 are withheld and released during
slot C+i in epoch 1 to sway ( ) honest validators. (For comprehensibility,
most votes and sway influences are omitted.) c© Similarly, in every slot i of
epoch 0 the adversary recruits two ‘swayers’ whose votes in slot i are withheld
and released during slot i+1 to sway honest validators. d© If in some slot of
epoch 0 the number of honest validators is odd, then the adversary recruits a
‘filler’ ( ) which behaves like an honest validator from thereon. Thus, during
epoch 0 every committee has an even number of honestly voting validators.

subset votes ‘left’, the other subset votes ‘right’ – a tie. The
adversary selectively releases withheld votes from slot 0 to
split validators of slot 1 into two equal-sized groups, one which
sees ‘left’ as leading and votes for it, and one which sees
‘right’ as leading and votes for it – still a tie. The adversary
continues this strategy to maintain the tie throughout epoch 0.

During epoch 1, the adversary selectively releases additional
withheld votes from epoch 0 to keep splitting validators into
two groups, one of which sees ‘left’ as leading and votes ‘left’,
the other sees ‘right’ as leading and votes ‘right’. Note that
these groups now do not have to be equal in size. It suffices
for the adversary to release withheld votes selectively so as to
reaffirm honest validators in their illusion that whatever chain
they previously voted for happens to still be leading, so that
they renew their vote. Due to the LMD paradigm of Gasper’s
fork choice rule, only the most recent vote per validator counts
and thus the effective vote tally remains unchanged. At the end
of epoch 1 there are still two chains with equally many votes
and thus neither gets finalized.

For epoch 2 and beyond the adversary repeats its actions of
epoch 1. Note that the validators whose withheld epoch 0 votes
the adversary used to sway honest validators in epoch 1 have
themselves not voted in epoch 1 yet. Thus, during epoch 2 the
adversary selectively releases votes from epoch 1 to maintain
the tie between the two chains. This continues indefinitely.

Thus, Gasper is not live in the synchronous model. Fur-
thermore, the block proposal mechanism is rendered unsafe
by the modified fork choice rule as the chosen fork flip-flops
between ‘left’ and ‘right’. Since Gasper does not satisfy the
desired ebb-and-flow security property, we next introduce a
provably secure family of ebb-and-flow protocols.

III. OPTIMAL EBB-AND-FLOW PROTOCOLS

In this section, we formulate precisely the ebb-and-flow
security property, present the construction of snap-and-chat
protocols, and show that snap-and-chat protocols achieve
the ebb-and-flow property with optimal resilience. For the
construction, we build state machine replication protocols
Πsac (snap-and-chat protocols) by composing a dynamically
available longest-chain protocol [3]–[5], [32] as Πlc with a
partially synchronous BFT protocol [8], [11], [12] as Πbft.

The focus of this paper is on the permissioned setting.
The resulting permissioned protocol can be viewed as a core
around which a full PoS protocol can be built, much like
Sleepy [3] is the permissioned core of the PoS protocol
SnowWhite [4]. To build a full PoS protocol, issues such as
stake grinding [4], [6] have to be considered. Snap-and-chat
protocols can also be used in a hybrid PoS-PoW setting, where
validators run the BFT sub-protocol and miners power the
dynamically available sub-protocol (see Section V-B). These
are topics for future work.

A. Model and Formulation

The execution model of Πsac inherits the cryptographic
assumptions and primitives used in [3], [11], [12]. The cor-
nerstones of the model are:
• There are in total n nodes numbered from 1 thru n.
• Time proceeds in slots. Nodes have synchronized clocks.4

• There is a public-key infrastructure and each node is
equipped with a unique cryptographic identity.

• There is a random oracle, which serves as the source of
randomness in our construction.

• The adversary is a probabilistic poly-time algorithm.
Corruption: Before the protocol execution starts, the adver-

sary gets to corrupt (up to) f nodes, then called adversarial.
Adversarial nodes surrender their internal state to the adversary
and can deviate from the protocol arbitrarily (Byzantine faults)
under the adversary’s control. The remaining (n − f) nodes
are honest and follow the protocol as specified.

Networking: Nodes can send each other messages which
arrive with a certain delay controlled by the adversary, subject
to constraints elaborated below.

4Bounded clock offsets can be captured as part of the network delay.
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Sleeping: The adversary chooses, for every time slot and
honest node, whether the node is awake or asleep in that slot,
subject to constraints elaborated below. An honest node that
is awake in a slot executes the protocol faithfully in that slot.
An honest node that is asleep in a slot does not execute the
protocol in that slot, and messages that would have arrived in
that slot are queued and delivered in the first slot in which the
node is awake again. Adversarial nodes are always awake.

Using the features above, dynamic participation in the
permissioned setting can be modelled, where all nodes’ cryp-
tographic identities are common knowledge but honest nodes
do not know which nodes are awake or asleep at any given
time. Thus, the permissioned nature and dynamic participation
represent two orthogonal aspects of the environment.

As building blocks for the environment adopted for ebb-and-
flow protocols, recall that in a traditional synchronous network,
messages sent by honest nodes arrive within a known finite
delay bound. In a partially synchronous network [33], initially,
messages can be delayed arbitrarily. After some time, the
network turns synchronous. Thus, partial synchrony models
a network with a period of partition followed by synchrony.
Although in reality, multiple such periods of (a-)synchrony
could alternate, we follow the long-standing practice in the
BFT literature and study only a single such transition.

Now, recall the informal Theorem of Section I-D. The
theorem provides two sets of security guarantees, labelled
as P1 and P2, for the finalized and available ledgers. These
guarantees are stated under two sets of assumptions on the
environment Z and the adversary A. The assumptions model
a partially synchronous network and a synchronous network
with dynamic participation, respectively.

(A1(β),Z1) formalizes the model of P1, a partially syn-
chronous network under dynamic participation, with respect
to the fraction β of adversary nodes:

• A1 corrupts f = βn nodes.
• Before a global stabilization time GST, A1 can delay

network messages arbitrarily. After GST, A1 is required
to deliver all messages sent between honest nodes in
at most ∆ slots. GST is chosen by A1, unknown to
the honest nodes, and can be a causal function of the
randomness in the protocol.

• Before a global awake time GAT, A1 determines which
honest nodes are awake/asleep and when. After GAT, all
honest nodes are awake.5 GAT is chosen by A1, unknown
to the honest nodes and can be a causal function of the
randomness in the protocol.

(A2(β),Z2) formalizes the model of P2, a synchronous
network under dynamic participation, with respect to a bound
β on the fraction of awake nodes that are adversarial:

• At all times, A2 is required to deliver all messages sent
between honest nodes in at most ∆ slots.

5Without slightly restricting dynamic participation via a GAT after which
all nodes are awake, this adversary would fall under the CAP theorem so that
no secure protocol against it can exist. In many applications it is realistic that
every now and then there is a period in which all nodes are awake.

• At all times, A2 determines which honest nodes are
awake/asleep and when, subject to the constraint that at
all times at most fraction β of awake nodes are adversarial
and at least one honest node is awake.

We next formalize the notion of safety, liveness and security
after a certain time. For this purpose, we adopt and modify
the security definition given in [3]. This definition has a
security parameter σ which in the context of longest-chain
protocols represents the confirmation delay for transactions.
In our analysis, we consider a finite time horizon of size
polynomial in σ. Note that in the definition below, LOGti
denotes the ledger LOG in view of node i at time t.

Definition 1. Let Tconfirm be a polynomial function of the
security parameter σ. We say that a state machine replication
protocol Π outputting a ledger LOG is secure after time T and
has transaction confirmation time Tconfirm if LOG satisfies:

• Safety: For any two times t ≥ t′ ≥ T , and any two honest
nodes i and j awake at times t and t′ respectively, either
LOGti � LOGt

′

j or LOGt
′

j � LOGti.
• Liveness: If a transaction is received by an awake honest

node at some time t ≥ T , then, for any time t′ ≥ t +
Tconfirm and honest node j that is awake at time t′, the
transaction will be included in LOGt

′

j .

Definition 1 formalizes the meaning of ‘safety, liveness and
security after a certain time T ’. In general, there it might be
two different times after which a protocol is safe (live). A pro-
tocol that is safe (live) at all times (i.e., after T = 0) is simply
called safe (live) without further qualification. With a slight
abuse of notation, we also call a ledger LOG secure/safe/live
to mean that the protocol Π outputting the ledger LOG is
secure/safe/live, respectively.

Now we are ready to define an ebb-and-flow protocol and its
notion of security. First we define formally a flexible protocol.

Definition 2. A flexible protocol is a pair of state machine
replication protocols (Π1,Π2), where Π1 and Π2 have the
same input transactions txs and output ledgers LOG1 and
LOG2, respectively.

Definition 3. An (β1, β2)-secure ebb-and-flow protocol Π is a
flexible protocol (Πda,Πfin) which outputs an available ledger
LOGda and a finalized ledger LOGfin, such that for security
parameter Tconfirm = σ:

1) P1 - Finality: Under (A1(β1),Z1), LOGfin is safe at
all times and there exists a constant C such that LOGfin

is live after time C(max{GST,GAT} + σ) except with
probability negl(σ).

2) P2 - Dynamic Availability: Under (A2(β2),Z2), LOGda

is secure except with probability negl(σ).
3) Prefix: For any honest node i and time t, LOGtfin,i is a

prefix of LOGtda,i.

In the above definition, the negligible function negl(·)
decays faster than all polynomials, i.e., ∀c > 0 : ∃σ0 : ∀σ >
σ0 : negl(σ) < σ−c.
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Designing a state machine replication protocol Πfin that
satisfies property P1 is the well-studied problem of designing
partially synchronous BFT protocols; the optimal resilience
that can be achieved is β1 = 1

3 . Designing a state machine
replication protocol Πda that satisfies property P2 is the
problem of designing dynamically available protocols; the
optimal resilience that can be achieved is β2 = 1

2 . An ebb-
and-flow protocol (Πda,Πfin) has a further requirement that
LOGfin should be a prefix of LOGda; this requires a careful
joint design of (Πda,Πfin). We now present a construction for
which we show that β1 = 1

3 and β2 = 1
2 can be simultaneously

achieved while respecting the prefix constraint.

B. Protocol

In this section, we give an example of our construction,
Πsac, where we instantiate Πlc with a permissioned longest-
chain protocol and Πbft with a variant of (partially syn-
chronous) Streamlet [12]. Note that all of the longest chain
protocols such as [3]–[7], [32] are suited to instantiate Πlc. For
concreteness, we will follow Sleepy [3] when we get to details.
Streamlet [12] is the latest representative of a line of works
[8], [10], [11], [34] striving to simplify and speed up BFT
consensus. Due to its remarkable simplicity, Streamlet is well-
suited to illustrate our approach. For application requirements,
other BFT protocols might be better suited. We demonstrate
in Section III-D that our technique readily extends to other
BFT protocols such as HotStuff [11] and PBFT [8].

Before we delve into the details of our construction, we
review the basic mechanics of the constituent protocols Πlc

and Πbft (illustrated in the two boxes of Figure 5). In
permissioned longest chain protocols a cryptographic lottery
rate-limits the production of new blocks ( ? ). Honest block
proposers extend the longest chain (and thus vote for it), and
blocks of a certain depth on the longest chain are confirmed
( ). Streamlet proceeds in epochs of fixed duration, each of
which is associated with a pseudo-randomly chosen leader. At
the beginning of each epoch, the leader proposes a new block
( ) extending the longest chain of notarized blocks ( ). Then,
all nodes vote ( ), and the block becomes notarized if at
least two-thirds of the nodes have voted for it. Out of three
adjacent notarized blocks from consecutive epochs, the middle
one gets finalized ( ) along with its prefix.

For the example construction, we follow the blueprint of
Section I-D but, in line with the protocols adopted for Πlc

and Πbft, choose blockchains as a more suitable representation
for ledgers. The above instantiation leads from the high-level
Figure 1b to the concrete Figure 5 which illustrates the overall
protocol as viewed by node i at time t.

Transactions are received from the environment and held in
the mempool txsti. Batched into blocks, they are ordered by Πlc

which outputs a blockchain chti (comprised of LC blocks and
representing the ledger LOGlc in Figure 1b) of transactions
considered confirmed. Snapshots of ch (which themselves are
chains) are input to and ordered by Πbft which outputs a
blockchain Chti (comprised of BFT blocks and representing
the ledger LOGbft in Figure 1b) of snapshots considered final.

In addition, chti is used as side information in Πbft to boycott
the finalization of invalid snapshots proposed by the adversary.
Finally, Chti is flattened (i.e., all snapshots are concatenated as
ordered) and sanitized (i.e., only the first valid occurrence of
a transaction remains) to obtain the finalized ledger LOGtfin,i,
which is prepended to chti and sanitized to form the available
ledger LOGda (see Section III-B3).6

In the following, we provide more explanation for the
following three details, 1) how snapshots are represented
efficiently, 2) how Streamlet is modified to prevent that an
adversary can input an ostensible snapshot which is really un-
confirmed (this would break safety), and 3) how the transaction
ledgers are extracted from the blockchains chti and Chti.

1) Efficient representation of snapshots: We use (vari-
ants of) the symbols ‘b’ and ‘B’ to refer to blocks in the
blockchains chti and Chti output by Πlc and Πbft, respectively.
An LC block b contains as payload transactions denoted as
‘b.txs’. Note that due to the blockchain structure, a single
block uniquely identifies a whole chain of blocks, namely
that of its ancestors all the way back to the genesis block.
A snapshot of a blockchain can thus be represented efficiently
by pointing to the block at the tip of the chain. Thus, instead
of copying a whole chain of LC blocks into each BFT block,
a BFT block B contains as payload only a reference, denoted
by ‘B.ch’, to an LC block representing the snapshot.

For ledgers and blockchains, ‘�’ is canonically defined as
the ‘is a prefix of’ relation. As blocks identify chains, the
definition of ‘�’ naturally carries over: for two blocks [ and
[′, [ � [′ iff the chain identified by [ is a prefix of the chain
identified by [′. The depth of a block is the length of the chain
it identifies, excluding the genesis block.

2) Modification of Streamlet: With the payload of Streamlet
being snapshots, honest epoch leaders are instructed to, when
they propose a block, take a snapshot of chti and include
a reference to its tip as payload in the new BFT block.
Furthermore, Streamlet needs to be modified to ensure that
an adversary cannot input an ostensible snapshot which is
not really entirely confirmed. To this end, the voting rule of
Streamlet is extended by the following condition: An honest
node only votes for a proposed BFT block B if it views B.ch
as confirmed. In effect, side information about Πlc is used in
Πbft to prevent the finalization of invalid snapshots proposed
by the adversary. Pseudocode of the overall protocol as exe-
cuted on node i is found in Algorithm 1. Proper functions of
only their inputs and procedures that access global state are de-
noted as ‘Function(...)’ and ‘PROCEDURE(...)’, respectively.
Incoming network messages (new blocks, proposals and votes)
are processed, and the global state is adjusted accordingly,
in line 27. Honest nodes echo messages they receive, see
line 28. As a result, if an honest node observes a message at
time t then all honest nodes will have observed the message
by time max(GST, t + ∆). The additional constraint in the

6Formally, LOGda and LOGfin are now represented as sequences of LC
blocks. Proper transactions ledgers are readily obtained by concatenating
the transactions contained in the blocks and removing duplicate and invalid
transactions (sanitization).
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Πlc: Permissioned-Longest-Chain

Propose & Vote:
Lottery

? ?

Confirm:
T -deep LC

Πbft: Psync-BFT (Streamlet)

Propose: Vote: Finalize:

Πbft: Psync-BFT (Streamlet)

Propose: Vote: Finalize:

chti Chti

Mempool txsti

LOGtda,i , sanitize(flatten(Chti)‖chti) LOGtfin,i , sanitize(flatten(Chti))

Transactions

Confirmed chain

Chain

Final chain of chains

Network

Fig. 5. Example snap-and-chat protocol (cf. Figure 1b) where Πlc is instantiated with permissioned longest chain and Πbft instantiated with Streamlet, as
viewed by node i at time t. Transactions are held in mempool txsti . Batched into blocks, they are ordered by Πlc which outputs a chain chti (representing
LOGlc) of confirmed transactions. Snapshots of ch (which themselves are chains, cf. the magnifying glass) are input to and ordered by Πbft which outputs
a chain Chti (representing LOGbft) of final snapshots. In addition, chti is used as side information in Πbft to boycott the finalization of invalid snapshots
(dashed arrow). Finally, Chti is flattened and sanitized to obtain the finalized ledger LOGtfin,i, which is prepended to chti and sanitized to form the available
ledger LOGda (cf. Figure 6).

Algorithm 1 Pseudocode of example ebb-and-flow construction with
Sleepy as Πlc and Streamlet as Πbft

1: procedure LCSLOT(t)
2: if SleepyIsWinningLotteryTicket(i, t) then
3: b∗ ← SLEEPYTIPLC()
4: b← SleepyNewBlock(b∗, t, i, txst)
5: BROADCAST(b)
6: end if
7: end procedure
8: procedure BFTSLOT(t)
9: e← StreamletEpoch(t)

10: if StreamletIsStartOfProposePhase(t) then
11: if StreamletEpochLeader(e) = i then
12: B∗ ← STREAMLETTIPNOTARIZEDLC()
13: B ← StreamletNewBlock(B∗, e, cht)
14: P ← StreamletNewProposal(B, i)
15: BROADCAST(B,P )
16: end if
17: else if StreamletIsStartOfVotePhase(t) then
18: P ← STREAMLETFIRSTVALIDPROPOSAL(e)
19: if P.B.ch � cht then
20: V ← StreamletNewVote(P.B, i)
21: BROADCAST(V )
22: end if
23: end if
24: end procedure
25: procedure MAIN()
26: for time slot t← 1, 2, 3, ... do
27: PROCESSINCOMINGNETWORKMESSAGES()
28: ECHOINCOMINGNETWORKMESSAGES()
29: LCSLOT(t)
30: cht ← LCCONFIRMEDCHAIN()
31: BFTSLOT(t)
32: Cht ← BFTFINALCHAIN()
33: end for
34: end procedure
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Fig. 6. Chti is flattened and sanitized to obtain the finalized ledger LOGtfin,i,
which is prepended to chti and sanitized to form the available ledger LOGda.

voting rule with respect to ‘vanilla’ Streamlet is highlighted
red (line 19). Note that Sleepy is applied unaltered and the
modification required for Streamlet is minor. The same is true
when instantiating the sub-protocol Πbft with other partially
synchronous BFT protocols such as HotStuff [11] or PBFT
[8], detailed in Section III-D.

3) Ledger extraction: Finally, how honest nodes compute
LOGtfin,i and LOGtda,i from Chti and chti is illustrated in
Figure 6. Recall that Chti is an ordering of snapshots, i.e.,
a chain of chains of LC blocks. First, Chti is flattened, i.e.,
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Safety of
Πbft

1 Lemma 1

Liveness of
Πbft after

max(GST,GAT)

2 Lemmas 2,3

Security of
Πlc after

max(GST,GAT)

3 Theorem 2

Liveness of
LOGfin after

max(GST,GAT)

4 Lemma 4

Security of
LOGfin

5 Theorem 1

Fig. 7. Dependency of the security of LOGfin under (A∗1,Z1) on the
properties of Πlc and Πbft. Boxes represent the properties and the arrows
indicate the implications of these properties. Theorems and lemmas used to
validate the properties are displayed at the bottom right corner of each box.

Security of
Πlc

6 Given

Consistency of
LOGfin with

the output of Πlc

7 Lemma 5

Security of
LOGda

8 Theorem 1

Fig. 8. Dependency of the security of LOGda under (A∗2,Z2) on the
properties of Πlc and Πbft. Boxes represent the properties and the arrows
indicate the implications of these properties. Theorems and lemmas used to
validate the properties are displayed at the bottom right corner of each box.

the chains of blocks are concatenated as ordered to arrive at a
single sequence of LC blocks. Then, all but the first occurrence
of each block are removed (sanitized) to arrive at the finalized
ledger LOGtfin,i of LC blocks. To form the available ledger
LOGtda,i, chti, which is a sequence of LC blocks, is appended
to LOGtfin,i and the result again sanitized.

C. Analysis

In this section, we analyze the security of Πsac as an ebb-
and-flow protocol and show that it is optimally resilient:

Theorem 1. Πsac is a ( 1
3 ,

1
2 )-secure ebb-and-flow protocol.

Observe that no ebb-and-flow protocol can tolerate a Byzan-
tine adversary A1(β1) with β1 ≥ 1

3 in a partially synchronous
network. Similarly, no ebb-and-flow protocol can tolerate a
Byzantine adversary A2(β2) with β2 ≥ 1

2 in a synchronous
network. Hence the security of Πsac implies that it is optimally
resilient. We denote the worst-case adversary-environments as
(A∗1,Z1) , (A1( 1

3 ),Z1) and (A∗2,Z2) , (A2( 1
2 ),Z2).

We now focus on the proof of Theorem 1, which proceeds
as illustrated in Figures 7 and 8 and along with proofs for the
Lemmas can be found in Appendix B. Proof of Theorem 2 is
given in Appendix C.

We first show the safety and liveness (after time
max{GST,GAT}) of the ledger LOGfin under (A∗1,Z1). Fig-
ure 7 visualizes the dependency of the security of LOGfin

on the properties of the sub-protocols Πlc and Πbft. We see
from Figure 7 that the safety of Πbft (box 1) implies the
safety of LOGfin (box 5). However, in Figure 5, txs do not
immediately arrive at Πbft. They are first received by Πlc

and become part of its output ledger, snapshots of which
are then inputted to Πbft. Consequently, liveness of LOGfin

after time max{GST,GAT} (box 4) does not only require the
liveness of Πbft (box 2), but also the security Πlc after time
max{GST,GAT} (box 3).

We observe via Lemmas 1, 2 and 3 that the changes in
Streamlet described by lines 13 and 19 of Algorithm 1 does
not affect the validity of the safety and liveness proofs in
[12]. Hence, security of Πbft (boxes 1 and 2) directly follows
from the security proof of Streamlet. However, showing the
security of Πlc (box 3) claimed by Theorem 2, requires some
work. For this purpose, we extend the concept of pivots as
defined in [3], to a partially synchronous network. Pivots
are time slots such that every honest node has the same
view of the prefix of the longest chain up to the pivot. The
original definition of pivots in [3] ensures the convergence of
longest chains by requiring any time interval containing the
pivot to have more convergence opportunities (honest slots
which are sufficiently apart) than adversarial slots. However,
this requirement fails to ensure convergence under partial
synchrony as the isolated honest nodes can fail to build a
blockchain before max{GST,GAT}. Hence, we define the
concept of a GST-strong pivot that considers only the honest
slots after max{GST,GAT} within any interval around the
GST-strong pivot. Although this definition makes the arrival
of GST-strong pivots less likely, Appendix C proves that GST-
strong pivots appear in O(max{GST,GAT}) time following
max{GST,GAT}, thus, concluding the security of Πlc after
max{GST,GAT}. Finally, Lemma 4 combines the security of
Πlc and liveness of Πbft after time max{GST,GAT} to show
the liveness of LOGfin.

We next show the safety and liveness of the ledger LOGda

under (A∗2,Z2). Figure 8 visualizes the dependency of security
of LOGda on the properties of sub-protocols Πlc and Πbft.

In Figure 5, LOGda is a concatenation of LOGfin with the
output ledger of Πlc. Hence, although the security of Πlc (box
6) is a necessary condition for the security of LOGda (box
8), we also need the prefix LOGfin to be consistent with the
output of Πlc in the view of every honest node at all times
(box 7), to guarantee the safety of the whole ledger LOGda.

Security of Πlc follows from the security proofs of the
respective protocol used for Πlc. However, proving the consis-
tency of LOGfin with the output of Πlc as claimed by Lemma
5, requires a careful look at the finalization rule of Πbft. As
indicated by Algorithm 1, a snapshot of the output of Πlc

becomes final as part of a BFT block only if that snapshot
is seen as confirmed by at least one honest node. However,
since Πlc is safe, the fact that one honest node sees that
snapshot as confirmed implies that every honest node sees the
same snapshot as confirmed. Consequently, the ledger LOGfin

will be generated from the same snapshots in the view of
every honest node. Moreover, as these snapshots are confirmed



10

LC BFT

(a) Πlc and Πbft safe

LC BFT

(b) Πlc unsafe

LC BFT

(c) Πbft unsafe

Fig. 9. Snapshots are depicted as arrows ( ). (a) Safe Πlc and Πbft

means ch and Ch do not fork. (b) Forking in ch is absorbed by safe Πbft.
(c) Safe Πlc renders forking in Ch inconsequential.

prefixes of the output of Πlc and Πlc is safe, LOGfin is a prefix
of the output of Πlc in the view of any honest node at all times.

Finally, since LOGfin is a prefix of LOGda by construction,
the prefix property holds trivially.

To understand how LOGfin can be safe even if Πlc is unsafe
(i.e., under network partition) or how LOGda can be safe even
if Πbft is unsafe (i.e., when n/3 < f < n/2), consider the
following two examples (Figure 9). During a network partition,
LOGlc, the ledger output by Πlc, can be unsafe (Figure 9b).
Thus, snapshots taken by different nodes or at different times
can conflict. However, Πbft is still safe and thus orders these
snapshots linearly. Any transactions invalidated by conflicts
are sanitized during ledger extraction. As a result, LOGfin

remains safe. In a synchronous network with n/3 < f < n/2,
Πlc and thus LOGlc is safe. Even if Πbft is unsafe (Figure 9c),
finalization of a snapshot requires at least one honest vote, and
thus only valid snapshots become finalized. Since finalized
snapshots are consistent, LOGfin is consistent with LOGlc.
Thus, prefixing LOGlc with LOGfin to form LOGda does not
introduce inconsistencies, and LOGda remains safe.

D. Other BFT Sub-Protocols

In the example of Section III-B, Streamlet is readily re-
placed with other BFT sub-protocols for Πbft, such as HotStuff
[11] or PBFT [8]. Furthermore, the analysis of Section III-C
carries over with minor alterations and the security Theorem 1
holds for these variants as well. The necessary modifications
are described in the following.

1) HotStuff: Two minor modifications suffice to use Hot-
Stuff as Πbft in the example of Section III-B.

a) Snapshots as Payload: To use HotStuff for Πbft,
a HotStuff block B contains a snapshot B.ch as payload.
Whenever the output of Πlc updates, an honest leader i takes
a snapshot of its chti and proposes it in a HotStuff block.

b) Side information about Πlc: To ensure that honest
nodes only vote for BFT blocks of which the payload snapshot
is viewed as confirmed in Πlc, we piggy-back on the following
provision (terminology adapted to that of this paper): ‘During
the protocol, a [node] [processes] a message only after the
[chain] [identified] by the [block] is already in its local
tree. [...] For brevity, these details are also omitted from the

Algorithm 2 Pseudocode of example snap-and-chat construction with
HotStuff as Πbft and a longest-chain protocol as Πlc

1: procedure MAIN()
2: Q ← ∅
3: for time slot t← 1, 2, 3, ... do
4: ECHOINCOMINGNETWORKMESSAGES()
5: M← GETINCOMINGNETWORKMESSAGES()
6: Mlc ← FilterForLcMessages(M)
7: Mbft ← FilterForBftMessages(M)
8: LCPROCESSNETWORKMESSAGES(Mlc)
9: LCSLOT(t)

10: cht ← LCCONFIRMEDCHAIN()
11: Q ← Q∪Mbft

12: Mbft,0 ←
{
m ∈ Q

∣∣∣∣ IsInLocalView(m.node)
∧m.node.ch � cht

}
13: Q ← Q \Mbft,0

14: BFTPROCESSNETWORKMESSAGES(Mbft,0)
15: CHAINEDHOTSTUFFBFTSLOT(t)
16: Cht ← BFTFINALCHAIN()
17: end for
18: end procedure

pseudocode.’ [11, Section 4.2] We add the condition that a
node processes a message only after the snapshot contained
in the block referred to by the message is viewed as confirmed.
We explicate the resulting queueing mechanism as pseudocode
in Algorithm 2.

Messages for Πlc are unaffected by the changes (line 8).
Messages for Πbft are queued in Q (line 11) and only
processed by Πbft once the blocks that are referred to by the
message are in view and the payload snapshot is viewed as
confirmed (line 12). Intuitively, for honest proposals soon after
GST this leads to a delay of at most ∆ until the LC blocks,
which confirm the honest proposer’s snapshot, are received by
all honest nodes, and thus the proposal is considered for voting
by all honest nodes. Hence, liveness is unaffected. On the
other hand, adversarial proposals containing an unconfirmed
snapshot will look like tardy or missing proposals to HotStuff,
an adversarial behavior in the face of which HotStuff remains
safe. Hence, safety is unaffected. Proof of security follows the
same structure outlined in Section III-C. A detailed analysis
with security proofs can be found in Appendix D.

2) PBFT and Other Propose-and-Vote Protocols: Concep-
tually, the same adaptation as for HotStuff can be used to
employ one of the variety of propose-and-vote BFT protocols
for Πbft, even ones from the pre-blockchain era. Consider,
e.g., PBFT [8]. PBFT is not blockchain-based, instead, it
outputs a ledger of client requests which are denoted by m.
To use PBFT as Πbft in the example of Section III-B, client
requests are replaced by snapshots, m , ch. Whenever the
output of Πlc updates, an honest leader i takes a snapshot
of its chti and starts the three-phase protocol that constitutes
the core of PBFT to atomically multicast the snapshot to the
other nodes. Honest clients queue the messages PRE-PREPARE,
PREPARE and COMMIT, which contain a snapshot as payload,
and only processes them once the snapshot is locally viewed
as confirmed – again, conceptually similar to the adaptation
for HotStuff. The processing of the remaining messages is
unaltered. For PBFT, the output Chti is not a blockchain but
still a sequence of snapshots of the output of Πlc. Thus, the
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ledger extraction (Section III-B3) carries over readily.
Again, intuitively, as for HotStuff, for honest proposals soon

after GST the queueing of protocol messages leads to a delay
of at most ∆ until the LC blocks, which confirm the honest
proposer’s snapshot, are received by all honest nodes, and
thus the proposal is considered for voting by all honest nodes.
Hence, liveness is unaffected. On the other hand, adversarial
proposals containing an unconfirmed snapshot will look like
tardy or missing proposals to PBFT, an adversarial behavior
in the face of which PBFT remains safe. Hence, safety is
unaffected.

IV. SIMULATION EXPERIMENTS

To give the reader some insight into the dynamics of the
ebb-and-flow construction, we simulate it in the presence of
intermittent network partitions and under dynamic participa-
tion of nodes.7 The adversary attempts to prevent liveness for
as long as possible, e.g., by launching a private chain attack
on Πlc after a partition using blocks pre-mined during the
partition, or by refusing to participate in Πbft.

a) Setup: We simulate a system of n = 100 nodes,
f = 25 of which adversarial. Network messages are delayed
by ∆ = 1 s. For Sleepy, λ = 1× 10−1 s−1, so that each
node produces blocks at rate λ0 = λ/n = 1× 10−3 s−1. One
lottery slot takes 1 s. LC blocks are confirmed if k = 20 deep.
Streamlet uses ∆bft = 5 s. The system undergoes intermittent
network partitions (as detailed below) and dynamic partici-
pation of honest nodes (as detailed below). At every time,
a majority of at least f + 1 = 26 honest nodes are awake.
Adversarial nodes are always awake. We observe the length
of the shortest ledgers |LOGtda,i| and |LOGtfin,i| observed by
any honest node i, i.e.,

min
i
|LOGtda,i| and min

i
|LOGtfin,i|. (1)

b) Dynamic Participation: We examine the effect of
dynamic participation of honest nodes on our construction.
For this purpose, we assume a synchronous network, i.e.,
GST = 0. The number of awake honest nodes follows a
reflected Brownian motion between 51 and 75.

Figure 10 shows a sample path of the simulation. LOGda

grows steadily over time (because the conditions of P2 are
satisfied, LOGda is secure, cf. ) at a rate proportional to
the number of awake nodes (cf. ). Only during intervals
when 67 or more honest nodes are awake (shaded in Figure 10,
recall that the adversary refuses to participate in the protocol)
there is a 2/3-quorum to advance LOGfin (cf. ), whenever
conditions in Streamlet permit (i.e., whenever there is a suffi-
ciently long sequence of honest leaders). During a sufficiently
long such interval, LOGfin catches up with LOGda.

c) Intermittent Network Partitions: We simulate the sys-
tem under intermittent network partitions, during which honest
nodes are split into two parts P1 and P2 of 2(n − f)/3
and (n − f)/3 nodes, respectively. Inter-part communication

7The code of our simulations can be found here: https://github.com/tse-g
roup/ebb-and-flow
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Fig. 10. In a synchronous network where the number of awake honest nodes
is modelled by a reflected Brownian motion, LOGda grows steadily over
time. During intervals in which enough honest nodes are awake there is a
2/3-quorum to advance LOGfin so that it catches up with LOGda.
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Fig. 11. Under intermittent network partitions, during which honest nodes
are split into two parts of 2(n − f)/3 and (n − f)/3 nodes, respectively,
finalization of BFT blocks stalls because no 2/3-quorum is live. The ledgers
LOGda as seen by the different parts drift apart. Once the network reunites,
the honest nodes converge on the longer LOGda and LOGfin catches up.

is prevented, intra-part communication incurs delay ∆. All
honest nodes are awake throughout the experiment. During
partitions we consider the ledgers as seen by honest nodes in
the respective parts.

Figure 11 shows a sample path of the simulation. Periods
of network partition are shaded in Figure 11. As expected,
finalization of BFT blocks stalls during periods of partition
(cf. ), because no 2/3-quorum consensus is achieved, as
communication between parts is blocked. The ledgers LOGda

as seen by nodes in the different parts P1 and P2 drift apart
(cf. , ). Once the network reunites, the honest nodes
converge on the longer LOGda (which is that produced by part
P1, cf. ) and LOGfin quickly catches up with LOGda. Note
that the shorter LOGda (produced by part P2) is abandoned and
disappears from LOGda after the partition.

Note that because part P1 outnumbers the adversary, the
adversary does not have a chance to build a long enough

https://github.com/tse-group/ebb-and-flow
https://github.com/tse-group/ebb-and-flow
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Fig. 12. During a period of network partition and low participation honest
block production slows down and the adversary can successfully pre-mine a
private adversarial structure. The adversary releases private blocks to displace
honest blocks from the longest chain. Thus, the longest chain suffers from
low chain quality and the dynamic ledger LOGda stalls. Once the network
reunites and all honest nodes awake, LOGda grows at a fast rate and the
adversary eventually runs out of pre-mined blocks. Honest blocks enter the
longest chain and liveness of LOGda and with it liveness of LOGfin ensues.

private chain that it can use to delay honest nodes’ convergence
on LOGda. Instead, convergence on LOGda is reached once
honest nodes have synchronized their blocktrees and picked
the longest chain. This is different if honest nodes are parti-
tioned into smaller parts, as examined next.

d) Convergence of LOGda After Network Partition and/or
Low Participation: We focus on the convergence of LOGda

after a network partition and/or period of low participation,
where the largest awake part is smaller than f . For this pur-
pose, suppose that during a partition, 50 of the 75 honest nodes
are asleep. The remaining 25 nodes are awake but partitioned
into two parts of 15 and 10 nodes, respectively. Thus, the
largest awake part with 15 honest nodes is smaller than f = 25
and the adversary can successfully pre-mine a private chain
during the period of partition and low participation. As before,
only inter-part communication is prohibited.

Figure 12 shows a sample path of the simulation. Before
the partition, honest block production is fast and the adversary
cannot build a substantial private chain. During the period of
partition and low participation the honest block production
slows down. The adversary gains a considerable lead in that
its private chain (cf. ) grows much faster than the longest
chain in honest view (cf. ). As honest nodes produce
blocks, the adversary releases its withheld adversarial blocks
to displace the honest blocks from the longest chain. As a
result, the longest chain suffers a sustained period of low chain
quality (all blocks are adversarial and thus might not include
any transactions) and the dynamic ledger LOGda effectively
stalls. Once the network reunites and asleep honest nodes
awake, all honest nodes join forces on LOGda, which now
grows at a fast rate again. Eventually, the adversary runs out
of pre-mined blocks and cannot displace honest blocks any
longer. An honest block enters the longest chain and liveness
of LOGda and with it liveness of LOGfin ensues (cf. ).

Note that during the period of partition and low partic-

ipation, LOGfin does not grow because (as in the previous
experiment) no 2/3-quorum consensus is achieved. Once the
network reunites, LOGfin catches up with LOGda, but since
the most recent blocks in LOGda are adversarial (and thus
potentially empty), neither LOGda nor LOGfin are live for
some time. Once honest blocks return to LOGda and get
referenced by LOGfin, both return to be live.

V. DISCUSSION AND CONCLUSION

A. Snap-and-Chat Protocols and Finality Gadgets

Finality gadgets, initiated by [22], are a body of work
[26], [35]–[37] that aims to add finality to a Nakamoto-style
protocol. As far as we can gather, there is no mathematical
definition of a finality gadget; indeed different works have
different goals on what their finality gadgets are supposed
to achieve, and these goals are often not explicitly spelled
out. For example, [36] seems to be using their finality gadget
to achieve opportunistic responsiveness. On the other hand,
the goals of [26] seem to be aligned with the ebb-and-
flow property we studied here, but there is no mathematical
formulation on what should be achieved. In contrast, we focus
on the ebb-and-flow property, precisely define what it means,
and construct snap-and-chat protocols to achieve the property.
So it is difficult to have a scientific comparison between snap-
and-chat protocols and finality gadgets. However, there is one
important structural difference between the construction of
snap-and-chat protocols and the construction of all existing
finality gadgets which we want to point out.

The difference is that the snap-and-chat protocol construc-
tion can use any off-the-shelf dynamically available protocol
unmodified (and the BFT sub-protocol with minor modifi-
cations), while all existing finality gadgets involve a joint
design of the finality voting and the fork choice rule of the
underlying Nakamoto-style chain. In particular, the native fork
choice rule of the Nakamoto-style chain has to be altered to
accommodate the finalization process. In Casper FFG [22], for
example, the ‘correct by construction’ rule specifies that blocks
should be proposed on the chain with the highest justified
block, as opposed to the longest chain. Another example
is the hierarchical finality gadget [37], which specifies that
proposal should be done on the chain with the deepest finalized
block. In contrast, the dynamically available sub-protocol in
our construction is off-the-shelf and so the fork choice rule
as well as the confirmation rule are unaltered. Finalization by
the BFT sub-protocol occurs after transactions are confirmed
in the LOGlc ledger. The confirmation and the finalization
properties are completely decoupled.

The decoupled nature of our construction has several advan-
tages. First, construction adds finality to any existing dynami-
cally available chain without change. Second, our construction
allows the use of state-of-the-art dynamically available proto-
cols and state-of-the-art partially synchronous BFT protocols
without the need to reinvent the wheel. In contrast, existing
finality gadget designs entail handcrafting brand new protocols
(e.g., [26], [36]), and the tight coupling between the two layers
makes reasoning about security difficult in the design process.
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The attack on Gasper in Section II is a good example of the
perils of this approach. Another example is the bouncing attack
on Casper FFG [28], [29] (recapitulated in Appendix E). Third,
our construction is ‘future-proof’ because it can take advantage
of future advances in the design of dynamically available
protocols and in the design of partially synchronous BFT
protocols; both problems have received and are continuing to
receive significant attention from the community.

B. Ebb-and-Flow and Snap-and-Chat for Proof-of-Work

Another common objective for finality gadgets is to
add a permissioned finality layer to a permissionless PoW
Nakamoto-style protocol. In this setting, nodes come in two
flavors: miners are quantified by hash rate and power the PoW
longest chain, and validators with unique cryptographic iden-
tities provide finality. We can extend our results to this setting.
The now two different resources (hash rate and cryptographic
identities) require a slight modification of the environment in
the Theorem of Section I-D and Definition 3. For P2, the total
awake honest hash rate must be bounded away from zero and
constitute more than 50% of the total awake hash rate at all
times. This ebb-and-flow variant is satisfied by the snap-and-
chat construction using Nakamoto’s PoW longest chain as Πlc

and any of the BFT protocols from Sections III-B and III-D as
Πbft. Security is proved analogously to the fully permissioned
case (Section III-C).

C. Snap-and-Chat Protocols for Ethereum 2.0

Our construction yields provably secure ebb-and-flow pro-
tocols from off-the-shelf sub-protocols and provides a flexible
resolution of the availability-finality dilemma. In addition, the
composition enables us to benefit from advances in the design
of sub-protocols and to pass along (rather than having to build
from scratch) additional features of the constituent protocols
which are desired from a decentralized Internet-scale open-
participation consensus infrastructure such as Ethereum.

a) Scalability to Many Nodes: The partially synchronous
BFT sub-protocol Πbft used in the snap-and-chat construction
presents the main scalability bottleneck. HotStuff is the BFT
protocol with the lowest known message complexity O(n).
When used alongside a longest-chain-based protocol, which
are known to scale well to many participants, the overall snap-
and-chat protocol promises good scalability.

b) Accountability: Gasper [21] provides accountability in
the form that a safety violation implies that at least a third of
nodes have provably violated the protocol. As a punitive and
deterrent response, those nodes’ stake is slashed. This attaches
a price tag to safety violations and leads to notions of eco-
nomic security. Snap-and-chat protocols inherit accountability
properties from the BFT sub-protocol Πbft for the finalized
ledger LOGfin. For instance, for many partially synchronous
BFT protocols following the propose-and-vote paradigm, such
as HotStuff, PBFT or Streamlet, a safety violation requires
equivocating votes from more than a third of the nodes. (Recall
that this fact is the cornerstone of these protocols’ safety
argument.) Due to the use of digital signatures, equivocating

votes can be attributed to nodes irrefutably, and equivocating
nodes can be held accountable for the safety violation (cf.
[38], [39]) , e.g., by slashing the nodes’ stake. To what extent
accountability can be provided for the available ledger LOGda

is less clear at this point, both because accountability has not
been widely studied in the context of dynamically available
protocols, as well as due to the non-trivial ledger extraction
that leads to LOGda.

c) High Throughput: High transaction throughput can be
achieved by choosing a high throughput Πlc, such as a longest
chain protocol with separate transaction and backbone blocks
(cf. Prism [40]) or OHIE [41] or ledger combiners [42].

d) Fast Confirmation Latency: Using ledger combiners
[42] or Prism [40] for Πlc, fast latency, in particular, latency
independent of the confirmation error probability, can be
achieved by snap-and-chat protocols. For Πbft, responsive
BFT protocols can be used which finalize snapshots with a
latency in the order of the actual network delay rather than the
delay bound ∆. Hence, Πbft does not present a bottleneck in
terms of reducing the latency of snap-and-chat protocols and
the finalized ledger LOGfin can catch up with the available
ledger LOGda very quickly, when network conditions allow.
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APPENDIX A
DETAILS OF THE LIVENESS ATTACK ON GASPER

A. Setting of the Attack

This appendix describes an attack on the liveness of the
Gasper protocol [21]. We first state the assumptions about
the adversary’s capabilities and control over the network that
suffice for the adversary to launch our attack. Subsequently,
we describe the attack in detail. (The attack is summarized in
Section II.) Then we demonstrate using probabilistic analysis
and Monte Carlo simulation that the adversary is likely in a
position to launch the attack within a short period of time.

1) Goal: We describe an attack on the liveness of the
Gasper protocol [21]. That is, we describe a situation which is
likely to occur and a sequence of adversarial actions such that
the adversary can prevent any Casper finalizations indefinitely.

Our exposition assumes the reader is familiar with Gasper
[21], Casper [22], and the synchronous network model [43].

2) Assumptions: We assume an adversary has the follow-
ing capabilities: (a) The adversary knows at what point in
time honest validators execute the Gasper fork choice rule
HLMD(G) [21, Algorithm 4.2]. (b) The adversary is able to
target a message (such as a block or a vote) for delivery to an
honest validator just before a certain point in time. (c) Honest
validators cannot update each other arbitrarily quickly about
messages they have just received.

Note that (a) is given by design of Gasper which has
predetermined points in time at which honest validators are
supposed to cast their votes. Conditions (b) and (c) are sat-
isfied in standard consensus-theoretic adversary and network
models such as ∆-synchrony [43] or ∆-partial-synchrony [33]
where the adversary controls network delay. The probabilistic
liveness proof of [21] does not apply because it assumes a
weaker adversary (network delays are assumed to be stochastic
rather than adversarial in [21]) which does not have capability
(b).

3) Terminology: Recall that Gasper proceeds in epochs
which are subdivided into slots. We assume that Gasper is
run with C slots per epoch, n validators in total, of which f
are adversarial. Let β , f/n. We assume that C divides n
such that every slot has a committee of integer size n/C. For
each epoch, a random permutation of all n validators fixes the
assignment of validators to committees. The first validator in
every committee is the designated proposer for the respective
slot and gets to propose a new block at a location in the block
tree determined by HLMD(G). Then, each validator of the
slot’s committee executes HLMD(G) in its own view G to
determine what block to vote for.

A vote consists of a GHOST vote and a Casper (FFG) vote.
The Casper vote’s source and target blocks are deterministic
functions of the block the GHOST vote is cast for (see [21,
Definition 4.7]). A block can only become finalized if a
supermajority of ≥ 2n/3 validators vote for it. The goal of the
attack is to keep honest validators split between two options
(a ‘left’ and a ‘right’ chain, see Figure 4, p. 5) indefinitely,

https://ethresear.ch/t/4228/8
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https://ethresear.ch/t/6113
https://ethresear.ch/t/6114
https://ethresear.ch/t/8079
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such that no supermajority of ≥ 2n/3 validators ever votes for
one of the two options and thus no block ever gets finalized.

B. Attack

In this section we describe our attack in detail, cf. [31]. For
an illustration of the attack, see Figure 4 (p. 5).

1) Recap: Proposing and Voting in Gasper: To understand
how the adversary can keep the honest nodes split indefinitely
between two chains it is necessary to revisit the proposing
and voting algorithms of Gasper. For each of the two roles,
proposing and voting, honest validators use the fork chain rule
HLMD(G) (see [21, Algorithm 4.2]) in their local view G to
determine (a) when proposing, what block to extend, and (b)
when voting, what block to endorse with a vote.

Roughly speaking, HLMD(G) does this. First, HLMD(G)
finds the justified pair with highest attestation epoch among all
possible chains, but taking into account only votes that have
already been referenced on said chain (see [21, Algorithm 4.2],
line 3, ‘J(ffgview(Bl))’). Votes that the validator might have
received from the network but have not yet been referenced in
a block are not considered. Second, HLMD(G) filters for only
those chains that contain said highest justified pair, i.e., are
consistent with the prior justification (see [21, Algorithm 4.2],
lines 4 and 5). Third, among the remaining chains, HLMD(G)
picks greedily the ‘heaviest’ chain (GHOST paradigm), i.e.,
the chain which among the most recent votes for each val-
idator has received the most votes (LMD paradigm, see [21,
Algorithm 4.2], lines 7 to 10).

In addition, to vote, the source and target of the Casper
vote are determined as follows (see [21, Definition 4.7]). The
Casper vote’s source LJ is the last justified pair, considering
only votes that have been included in blocks on the chain
determined by HLMD(G). This ensures that all validators
voting for the tip of a certain chain have a consistent view of
and vote from the last justified pair. The Casper vote’s target
LE is the last epoch boundary pair (i.e., of the current epoch)
on the chain determined by HLMD(G). Again, all validators
voting for the tip of a certain chain have a consistent view of
and vote for the same last epoch boundary pair.

2) How to Sway Honest Validators: Suppose there are two
competing chains as depicted in Figure 4. The only time a non-
trivial fork choice occurs in HLMD(G) (see [21, Algorithm
4.2], line 9) is when a validator chooses whether to go down
the ‘left’ or the ‘right’ chain. This decision is based on where
the majority of the most recent votes (one per validator) fall,
in the instant when HLMD(G) is executed. Thus, if half of
the most recent votes are ‘left’ and the other half is ‘right’,
then the adversary can release a single withheld vote to an
honest validator who is just about to execute HLMD(G) and
thereby ‘tip the balance’ and sway that honest validator to
vote on a chain of the adversary’s choosing. Note that the
adversary can release that same withheld vote to multiple
honest validators, all of which will then vote for the chain of
the adversary’s choice. Furthermore, note that the adversary
can release two different withheld votes to different sets of
honest validators and thus steer one group towards ‘left’ and

the other group towards ‘right’. Ultimately (due to the as-
sumption of there being a bound ∆ on the maximum network
delay the adversary can inflict on a message, and the fact that
honest validators gossip about recently received messages in
an attempt to keep consistent views of the protocol execution)
the withheld votes will become known to all honest validators,
but (a) the adversary can prevent this synchronization until
after the honest validators have cast their votes by releasing
the withheld votes just before the honest validators execute
HLMD(G), and (b) after two withheld votes, one for ‘left’
and one for ‘right’, are released, and if the honest validators
either vote ‘left’ and ‘right’ in equal number (during epoch
0) or simply reaffirm their prior votes (during epoch 1 and
beyond), then after sharing all votes with all honest validators
there is still an equal number of votes for ‘left’ and ‘right’,
respectively. Thus, in the next slot the adversary can release
another two withheld votes to continue keeping up the equal
split of honest validators. And so on.

Swaying honest validators by releasing withheld votes se-
lectively is the key technique underlying our attack. Since
the Casper votes are consistent with the GHOST votes by
construction, as long as the GHOST votes are split equally
between the two chains, the Casper votes are split equally be-
tween the two chains. Thus, neither of the two chains will ever
receive a supermajority of ≥ 2n/3 votes as would be necessary
for a justification or finalization. Thus, no epoch boundary pair
will ever get finalized and thus liveness is lost indefinitely
and with certainty, once the attack has been launched. In the
remainder of this section we describe under what sufficient
condition and with what sequence of adversarial actions the
adversary is able to affect a permanent split among honest
validators and thus a permanent loss of liveness of Gasper.

3) Epoch 0: Kick-Starting the Attack: The adversary waits
for an opportune epoch to kick-start the attack. For ease of
exposition, we assume that epoch 0 is opportune. An epoch is
opportune if there are enough adversarial validators in every
slot of the epoch to fill the following roles:
• The proposer of slot 0 needs to be adversarial. The ad-

versarial proposer equivocates and produces two conflicting
blocks (‘left’ and ‘right’, dashed blocks 0 and 0′ in Figure 4)
which it reveals to two suitably chosen subsets of the
validators in slot 0. Thus, the honest validators’ votes are
split equally between the two chains. (Equivocating on
block production is a slashable offense and thus the stake
corresponding to the adversarial block producer will be
slashed. Besides this equivocation, none of the adversarial
actions are slashable. We note that there are variants of our
attack that do not require any slashable adversarial actions,
but these variants are more involved.)

• For every but the last slot of epoch 0 the adversary recruits
two ‘swayers’. The role of these swayers is to withhold their
votes in slot i and release the votes selectively to subsets
of the honest validators in slot i + 1 in order to split the
honest validators’ votes equally between the two chains.

• For every slot of epoch 0 the adversary recruits two more
‘swayers’. The role of these additional swayers is to with-
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hold their votes during slot i of epoch 0 and release the votes
selectively to subsets of the honest validators in slot C+i of
epoch 1 in order to split the honest validators’ votes equally
between the two chains in epoch 1. Similarly, these swayers
withhold their votes during epoch 1 and release the votes
selectively to subsets of the honest validators in epoch 2 in
order to split the honest validators’ votes equally between
the two chains in epoch 2. This repeats beyond epoch 2.

• Finally, to achieve an equal split of honest validators’ votes
for every slot in epoch 0, we require that every slot has an
even number of honest validators. If a slot does not have
an even number of honest validators, then the adversary
recruits a ‘filler’ (‘ ’ in Figure 4) which behaves like an
honest validator for the rest of the attack.
Thus, sufficient for an epoch to be opportune to start the

attack is that the following conditions are all satisfied:
E(0)

(a) : The proposer of slot 0 is adversarial.

E(0)
(b) : Slot 0 has ≥ 6 adversarial validators (the adversarial

proposer, two swayers for epoch 0, two swayers for
epoch 1, potentially one filler).

E(0)
(c),i: Slots i = 1, ..., (C−2) have ≥ 5 adversarial validators

(two swayers for epoch 0, two swayers for epoch 1,
potentially one filler).

E(0)
(d) : Slot (C − 1) has ≥ 3 adversarial validators (two

swayers for epoch 1, potentially one filler).
We show in Appendix A-C that, in particular in the regime
of many validators (n→∞), the probability that a particular
epoch is opportune is approximately equal to β, the fraction
of adversarial validators.

For slots i = 1, ..., (C−1) of epoch 0 the adversary uses two
‘swayers’to withhold their votes in slot i and release the votes
selectively to equally sized subsets of the honest validators in
slot i+ 1 in order to split the honest validators’ votes equally
between the two chains. Thus, in each slot, an equal number
of validators votes ‘left’ and ‘right’, respectively, so that at the
end of epoch 0 both chains have equal weight. In particular,
none of the chains achieves a supermajority. Thus, no Casper
finalization can take place.

4) Epoch 1: Transition to Steady-State : During epoch 1,
the adversary uses the other group of swayers recruited in
epoch 0 to selectively release more withheld votes from epoch
0 to keep splitting validators into two groups, one of which
sees ‘left’ as leading and votes for it, the other sees ‘right’
as leading and votes for it. All the adversary needs to do is
release withheld votes so as to reaffirm the honest validators
in their illusion that whatever chain they previously voted on
in epoch 0 happens to be still leading, so that they renew their
vote. At the end of epoch 1 there are still two chains with
equal number of votes and thus neither gets finalized.

5) Epoch 2 and Beyond: Steady-State : During epoch 2 and
beyond the attack reaches steady-state in that the adversarial
actions now repeat in each epoch. Note that the validators
whose epoch 0 votes the adversary released during epoch 1
to sway honest validators have themselves not voted in epoch
1 yet. Thus, during epoch 2 the adversary selectively releases
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Fig. 13. Monte Carlo estimate of the probability that an adversary who
controls β fraction of stake can launch the attack in epoch `, as a function
of number of slots per epoch C and committee size n/C. Observe that
Pr

[
E(`)

]
≈ β is a good rule of thumb, even for moderate n.

withheld votes from epoch 1 to keep honest validators split
between the two chains. Again, all the adversary needs to do
is to release withheld votes such that it reaffirms the honest
validators in their illusion that whatever chain they previously
voted on in epoch 1 happens to be still leading, so that they
renew their vote. This continues indefinitely. Neither chain
ever reaches a supermajority, thus, no Casper finalizations take
place. As a result of this attack, the ledger of Gasper does not
incorporate new transactions and thus is not live.

C. Analysis & Simulation

We analyze the probability Pr
[
E(`)

]
that an adversary can

launch the attack in epoch `. Without loss of generality, we
consider ` = 0. Recall that the events E(0)

(a) to E(0)
(d) are sufficient

for the adversary to be able to launch the attack. Obviously,

Pr
[
E(0)

(a)

]
= 1− β. (2)

For fixed C and large n such that βn/C ≥ 6, due to tail
bounds for the hypergeometric distribution,

Pr
[
E(0)

(b)

]
,Pr
[
E(0)

(c),i

]
,Pr
[
E(0)

(d)

]
≤ exp (−Θ(n)) (3)

Thus, with a straightforward application of the union bound,

Pr
[
E(`)

]
≥ β − C exp (−Θ(n)) . (4)

Note that, since the events E(`1) and E(`2) of the adversary
being able to kick-start the attack in two epochs `1 6= `2
are independent, the number of epochs until the first epoch
in which the adversary can kick-start the attack follows
a geometric distribution with mean 1/Pr

[
E(0)

]
. It is thus

exponentially unlikely (in the number of epochs considered)
that the adversary is not able to kick-start the attack in any
of a number of epochs, even for small β. As soon as an
opportune epoch occurs and the adversary can kick-start the
attack, liveness is prevented with certainty, assuming that the
networking assumptions given in Appendix A-A2 are satisfied.

We use a Monte Carlo simulation to numerically evaluate
the probability Pr

[
E(`)

]
.8 The result is shown in Figure 13.

8The source code of the simulation can be found at: https://github.com/tse
-group/gasper-attack.

https://github.com/tse-group/gasper-attack
https://github.com/tse-group/gasper-attack
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We observe that the approximation Pr
[
E(`)

]
≈ β is a pretty

good rule of thumb, even for moderate numbers of validators.
This matches the intuition that the probability of successfully
kick-starting the attack in a given epoch is largely dominated
by the probability that the proposer in the first slot of the
epoch is adversarial. All further conditions are satisfied as soon
as there are six adversarial validators per each slot, which
happens with high probability as n grows and β is held fix.

APPENDIX B
ANALYSIS AND SECURITY PROOF FOR THE

SNAP-AND-CHAT CONSTRUCTION USING STREAMLET

We prove Theorem 1 for the protocol Πsac composing a
permissioned longest chain protocol and Streamlet.

Lemma 1 (Safety Lemma for Πbft). (See [12, Lemma 14,
Theorem 3] and Algorithm 1) If some honest node sees a
notarized chain with three adjacent BFT blocks B0, B1, B2

with consecutive epoch numbers e, e+1, and e+2, then there
cannot be a conflicting block B 6= B1 that also gets notarized
in any honest view at the same depth as B1. Hence, there
cannot be conflicting final BFT blocks in any honest view.

Proof. The proof of [12, Lemma 14], which is based on a
quorum intersection argument, is unaffected by the fact that
honest nodes do not vote for a proposed BFT block if they do
not view the referenced LC block as confirmed. Even with the
modification shown at line 19 of Algorithm 1, honest nodes
would not equivocate or vote for proposed BFT blocks that do
not extend the longest notarized chain. Then, via [12, Theorem
3], there cannot be conflicting final BFT blocks in the views
of honest nodes.

By the ledger extraction explained in Figure 6, Lemma 1
completes the proof of safety for LOGfin.

Lemma 2. (See [12, Lemma 5] and Algorithm 1) After
max{GST,GAT}, suppose there are three consecutive epochs
e, e+1, and e+2, all with honest leaders denoted by Le, Le+1,
and Le+2, and the leaders’ proposals reference LC blocks
that are viewed as confirmed by all honest nodes. Then the
following holds: (Below, let B denote the block proposed by
Le+2 during epoch e+ 2.)
(a) By the beginning of epoch e+ 3, every honest node will

observe a notarized chain ending at B, which was not
notarized before the beginning of epoch e.

(b) No conflicting block B′ 6= B with the same length as B
will ever get notarized in honest view.

Proof. Note that every honest node is awake and the network
is ∆ synchronous after max{GST,GAT}. Due to the high-
lighted condition added to the Lemma, all honest nodes view
the LC blocks referenced by the proposals as confirmed, thus,
the additional condition for an honest node to cast a vote (see
line 19 of Algorithm 1) is satisfied. Then, all honest nodes
behave as they would in Streamlet, and the liveness lemma
[12, Lemma 5] ensures the validity of (a) and (b).

Lemma 3 (Liveness Lemma for Πbft). After
max{GST,GAT}, suppose that there are five consecutive
epochs e, e+ 1, .., e+ 4 with honest leaders and the leaders’
proposals reference LC blocks that are viewed as confirmed
by all honest nodes. Then, by the beginning of epoch e + 5,
every honest node observes a new final BFT block, proposed
by an honest leader, that was not final at the beginning of
epoch e.

Proof follows from Lemma 2 and [12, Theorem 6].
Notice that Lemma 3, by itself, is not sufficient to show

the liveness of LOGfin after max{GST,GAT} under (A∗1,Z1),
due to the highlighted condition in the lemma’s statement.
In this context, the following theorem shows that after
max{GST,GAT}, the LC blocks referenced by honest pro-
posals in Πbft are viewed as confirmed by all honest nodes,
thus, ensuring that the highlighted condition in the statement
of Lemma 3 is satisfied after max{GST,GAT}. Although,
Theorem 2 below is stated for the static version of the longest
chain protocol described in [3], a similar statement can be
made for [5]. Πlc is initialized with a parameter p which
denotes the probability that any given node gets to produce
a block in any given time slot.

Theorem 2. For all

p <
n− 2f

2∆n(n− f)
, (5)

there exists a constant9 C > 0 such that for any GST
and GAT specified by (A∗1,Z1), Πlc(p) is secure after
C(max{GST,GAT}+ σ), with transaction confirmation time
Tconfirm = σ, except with probability e−Ω(

√
σ).10

Full proof and the associated analysis can be found in
Appendix C. The proof extends the technique of pivots in
[3] from the synchronous model to the partially synchronous
model. The technique of Nakamoto blocks [44] can be used
to further strengthen the result to get an optimal bound for the
block generation rate p given n, f and ∆.

Finally, the following Lemma completes the proof of live-
ness for LOGfin after max{GST,GAT}:

Lemma 4 (Liveness Lemma for LOGfin). There exists a
constant C > 0 such that for any GST and GAT specified by
(A∗1,Z1), LOGfin is live after time C(max{GAT,GST}+ σ)
except with probability e−Ω(

√
σ).

Proof. Via Theorem 2, there exists a constant C > 0
such that for any GST and GAT specified by (A∗1,Z1),
Πlc is safe and live, with confirmation time σ, after time
C(max{GAT,GST} + σ) except with probability e−Ω(

√
σ).

Hence, the following observation is true for any LC block b ex-
cept with probability e−Ω(

√
σ): If b is first viewed as confirmed

9Value of C depends on p, n, f and ∆.
10Using the recursive bootstrapping argument developed in [44, Sec-

tion 4.2], it is possible to bring the error probability e−Ω(
√
σ) as close to

an exponential decay as possible. In this context, for any ε > 0, it is possible
to find constants Aε, aε such that Πlc(p) is secure after C max{GST,GAT}
with confirmation time Tconfirm = σ except with probability Aεe−aεσ

1−ε
.
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by an honest node at some time t > C(max{GAT,GST}+σ),
then, it will be regarded as confirmed in the views of all of
the honest nodes by time t+ ∆.

Each BFT block proposed by an honest leader at time t
references the deepest confirmed LC block in the view of
the leader at time t. Moreover, honest nodes vote ∆ time
into an epoch, i.e., ∆ time after they see a proposal. Hence,
after time C(max{GAT,GST} + σ), all of the proposals by
honest leaders in Πbft reference LC blocks that are viewed
as confirmed by all honest nodes when they vote, except
with probability e−Ω(

√
σ). Finally, via Lemma 3, after time

C(max{GAT,GST}+ σ), every honest node observes a new
final BFT block proposed by an honest leader after all of
the five consecutive honest epochs, except with probability
e−Ω(

√
σ).

Next, consider a time interval [s, s + σ] such that s >
C(max{GAT,GST} + σ). Since the proposer of an epoch
in Πbft is determined uniformly at random among all of the
nodes, after time GAT, any epoch has an honest proposer
independent from other epochs, with probability at least 2/3
under (A∗1,Z1). Hence, there exists a sequence of five consec-
utive honest epochs within the interval [s+σ/2, s+σ] except
with probability e−Ω(σ). Then, every honest node observes a
new final BFT block proposed by an honest leader within the
interval [s+ σ/2, s+ σ] except with probability e−Ω(σ).

Finally, via the liveness of Πlc after C(max{GAT,GST}+
σ), a transaction tx received by an awake honest node at time
s will be included in a confirmed LC block b′ by time s +
σ/2 except with probability e−Ω(

√
σ). Now, let b denote the

confirmed LC block referenced by the new final BFT block
that was proposed by an honest node within the interval [s+
σ/2, s + σ]. Via the safety Πlc, we know that b extends b′

containing the transaction tx except with probability e−Ω(
√
σ).

Consequently, any transaction received by an honest node at
some time s > C(max{GAT,GST} + σ) becomes part of
LOGfin in the view of any honest node i, by time s + σ,
except with probability e−Ω(σ) + e−Ω(

√
σ) = e−Ω(

√
σ). This

concludes the proof.

The following Lemma shows the consistency of LOGfin

with the output of Πlc under (A∗2,Z2), which is a necessary
condition for the safety of LOGda.

Lemma 5. LOGfin is a safe prefix of the output of Πlc in the
view of every honest node at all times under (A∗2,Z2) except
with probability e−Ω(

√
σ).

Proof. Via the security of Πlc under (A∗2,Z2), if any two
honest nodes i and j view bi and bj as confirmed (at any time),
either bi � bj or bj � bi, except with probability e−Ω(

√
σ).

Moreover, for a BFT block to become final in the view of an
honest node i under (A∗2,Z2), at least one vote from an honest
node is required, and honest nodes only vote for a BFT block
if they view the referenced LC block as confirmed. Hence,
given any two honest nodes i and j, if LC blocks bi and bj
are referenced by the BFT blocks Bi and Bj that are final in
the views of i and j respectively, then either bi � bj or bj � bi.

This is true even if the BFT blocks Bi and Bj conflict with
each other in the output of Πbft (see Figure 9).

Since the LC blocks referenced by final BFT blocks in the
view of an honest node i does not conflict with the LC blocks
referenced by final BFT blocks in the view of any other honest
node j under (A∗2,Z2) (even when these BFT blocks might
be conflicting), the ledgers LOGtfin,i and LOGt

′

fin,j also do not
conflict for i and j at any times t, t′, except with probability
e−Ω(

√
σ). Finally, since the ledgers LOGfin are constructed

from confirmed snapshots of the prefix of the output of Πlc

which is safe, LOGfin is a safe prefix of the output of Πlc at
any time and in the view of any honest node under (A∗2,Z2),
except with probability e−Ω(

√
σ).

Finally, we can start the main proof for Theorem 1.

Proof. We first observe via Lemma 1 that Πbft is safe at
all times under (A∗1,Z1). Then, since the ledger extraction
for LOGfin (Section III-B3) preserves the safety of Πbft,
LOGfin is safe under (A∗1,Z1) as well. Second, via Lemma 4,
there exists a constant C > 0 such that for any GST
and GAT specified by (A∗1,Z1), LOGfin is live after time
C(max{GAT,GST} + σ) except with probability e−Ω(

√
σ).

Consequently, under (A∗1,Z1), LOGfin is safe with probability
1 and live after time C(max{GAT,GST} + σ) except with
probability e−Ω(

√
σ). This shows the property P1.

Via [3, Theorem 3, Lemma 1], Πlc is secure with Tconfirm =
σ under (A∗2,Z2) for any p < (n− f)/(2∆n(n− f)), except
with probability e−Ω(

√
σ). Moreover, via Lemma 5, LOGfin

is a safe prefix of the output of Πlc in the view of any
honest node, under (A∗2,Z2) except with probability e−Ω(

√
σ).

Observe that the ledger extraction for LOGda (Section III-B3)
preserves the liveness of Πlc and ensures the safety of LOGda

as long as LOGfin is a safe prefix of the output of Πlc.
Consequently, LOGda is secure under (A∗2,Z2), except with
probability e−Ω(

√
σ). This shows the property P2.

Finally, LOGfin is always a prefix of LOGda by construction,
concluding the proof of Theorem 1.

APPENDIX C
SECURITY PROOF FOR LONGEST CHAIN PROTOCOL AFTER

max{GST,GAT}
In this section, we formalize and prove the fact that security

of Πlc(p) is restored after max{GST,GAT} under (A∗1,Z1)
provided that p, the probability that a given node gets to
propose an LC block at a given time slot, is sufficiently small
(Theorem 2). This is a prerequisite for the liveness of LOGfin.

To understand why the security of Πlc matters for the
liveness of LOGfin (see Figure 7), consider the following two
example attacks. In the first example, before max{GST,GAT},
the adversary isolates all of the honest nodes or puts them
to sleep so that they cannot build a chain of LC blocks.
The adversary simultaneously builds a long and private chain
with empty LC blocks. After max{GST,GAT}, honest nodes
wake up and the communication between them is restored,
thus, they start building a chain. However, whenever they
release an honest LC block, the adversary replaces it with
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one of the pre-mined empty LC blocks and prompts the
honest miners to mine on that empty LC block, thus, attacking
the quality of Πlc’s output chain. In this scenario, although
finalization of BFT blocks can occur in Πbft, the final BFT
blocks only reference empty LC blocks for a long time after
max{GST,GAT}, implying the loss of liveness for LOGfin.

In the second example, adversary builds two conflicting
private chains of LC blocks before max{GST,GAT} while the
honest nodes are asleepy or isolated. After max{GST,GAT},
the adversary releases these pre-mined private chains block-
by-block, thus, making the honest nodes switch back and forth
between the two chains. If the adversary releases new blocks
at opportune times, then the honest nodes are not able to agree
on confirmed LC blocks, and thus, no finalization occurs in
Πbft for a long time after max{GST,GAT}. However, since
the honest nodes can collectively grow a chain of LC blocks
faster than the adversary after max{GST,GAT}, the adversary
cannot sustain the aforementioned attacks except for a limited
period of time, as it would eventually run out of private LC
blocks to release. Hence, in this case, Πlc eventually gains its
safety and liveness after max{GST,GAT}.

Before we state the main theorem for the security of
Πlc(p) after max{GST,GAT} under (A∗1,Z1), we recall the
notation from Section III-A and introduce notation from [3,
Section 4.3]. Recall that n denotes the total number of nodes
and f denotes the number of adversarial nodes. Let β be the
expected number of adversary nodes elected leader in any
single time slot of Sleepy. Observe that β = pf . Let α be
the expected number of awake honest nodes elected leader in
any single time slot of Sleepy. Since every node is awake after
GAT, α = p(n− f) after GAT.

Since f < n/3 under (A∗1,Z1), for any given f , n and ∆,
p can be selected such that there exist constants 0 < c < 1
and 0 < Φ for which

2pn∆ < 1− c, n− f
f
≥ 1 + Φ

1− 2pn∆
. (6)

(This holds for any p smaller than (n− 2f)/(2∆n(n− f)).)
Then, we observe that for such a p, after GAT,

β < α(1− 2pn∆), (7)

and (A∗1,Z1) becomes ‘Πlc(p)-compliant’ as defined in [3,
Section 4.3]. The property of Πlc(p)-compliance will be useful
in subsequent proofs when we directly use results from [3] to
achieve our goals.

Informally, by adjusting p above, we ensure that the honest
nodes are elected leaders at time slot which are more than
∆ apart from each other. Hence, after max{GST,GAT}, the
honest blocks do not get mapped into the same depths in the
blocktree. This is similar to adjusting the growth rate λ of the
proof-of-work longest chain so that λ∆ is sufficiently small.
As long as f < n/2, via such an adjustment, we can always
guarantee that the chain extended by the honest nodes grow
faster than any private chain grown by the adversary after
max{GST,GAT}. Consequently, in the rest of this section and
in Theorem 2 we will assume that p is sufficiently small so

that β < α(1− 2pn∆) and (A∗1,Z1) is Πlc(p)-compliant per
[3, Section 4.3].

To prove Theorem 2, we use the notion of strong pivot
defined in [3]. In this context, we slightly change the definition
of strong pivot given in [3, Definition 5] to ensure that
strong pivots force the convergence of the longest chains in
views of different honest nodes when max{GST,GAT} > 0.
In Definition 4 below, we use the same definition for the
convergence opportunity as given in [3, Sections 2.2 and 5.2].
Let A[ta, tb] and C[ta, tb] denote the number of adversarial
slots and convergence opportunities respectively, between slots
ta and tb ≥ ta.

Definition 4. A time slot t ≥ max{GST,GAT} is said
to be a GST-strong pivot if for any ta, tb, 0 ≤ ta ≤
t ≤ tb, the number of convergence opportunities within
[max{ta,GST,GAT}, tb] is greater than the number of ad-
versarial slots in [ta, tb], i.e.,

C[max{ta,GST,GAT}, tb] > A[ta, tb]. (8)

In the definition of GST-strong pivots, we only count
the number of convergence opportunities that happen after
max{GST,GAT}. This is because the useful properties of
convergence opportunities do not hold in an asynchronous
network, which is the case before GST, and all honest nodes
are potentially asleep before GAT.

We can now focus on the proof of Theorem 2, which
depends on the following propositions. Recall that while
proving the propositions below, we can assume that β <
α(1 − 2pn∆) and (A∗1,Z1) is ‘Πlc(p)-compliant’ as defined
in [3, Section 4.3].

Proposition 1. Consider two honest nodes i and j, and, let
t, max{GST,GAT} ≤ t, be a GST-strong pivot. Then, given
any r, r′ such that r′ ≥ r > t+ (σ/β), the prefixes ending at
time t are the same for the longest chains seen by i and j at
times r and r′.

Note that every GST-strong pivot is also a strong pivot as
given in [3, Definition 5] and the network is ∆ synchronous
after time max{GST,GAT}. Hence, the proof of Proposition 1
follows from the proof of Lemma 5 in [3].

Proposition 2. For any ε > 0, there exist constants Cε, cε > 0
such that

Pr[A[0, t] < (1 + ε)βt, ∀t ≥ s] > 1− Cεe−cεs. (9)

Proof. We first consider the time sequence {tn}n≥0 given by
the following formula:

t0 = 0, tn =

(
2 + 2ε

2 + ε

)n−1

for n ≥ 1. (10)

Let’s define En as the event that A[0, tn] > (1 + ε)βtn−1,
i.e., there are more than (1 + ε)βtn−1 adversarial slots within
the time interval [0, tn]. Similarly, let’s define Fs as the event
that for any time t ≥ s, A[0, t] ≤ (1+ε)βt, i.e., the number of
adversarial slots within the time interval [0, t] is smaller than
(1 + ε)βt for any t ≥ s.
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Given these definitions, we can express F s, s > 1, in terms
of the events En as F s ⊆

⋃∞
n=ns

En, where ns is an integer
such that (

2 + 2ε

2 + ε

)ns−2

≤ s <
(

2 + 2ε

2 + ε

)ns−1

. (11)

We next calculate the probability of the event En. Fact 2
in [3] states that for any constant ε > 0 and ta, tb such that
t , tb − ta ≥ 0,

Pr[A[ta, tb] > (1 + ε)βt] ≤ e−
ε2βt

3 . (12)

Then, as

tn =
2 + 2ε

2 + ε
tn−1 =

1 + ε

1 + ε/2
tn−1, (13)

we infer that

Pr[En] = Pr[A[0, tn] > (1 + ε)βtn−1] (14)

= Pr[A[0, tn] > (1 + ε/2)βtn] < e−
ε2βtn

12 . (15)

Finally, using

tns =

(
2 + 2ε

2 + ε

)ns−1

≥ s ≥ bsc, (16)

and the union bound, we observe that for any s > 1,

Pr
[
F s
]
≤

∞∑
n=ns

Pr[En] ≤
∞∑

n=ns

e−
ε2βtn

12 (17)

≤
∞∑

i=bsc

e−
ε2βi
12 ≤ 1

Aε,β(1−Aε,β)
Asε,β (18)

where

Aε,β = e−
ε2β
12 < 1 for any ε > 0. (19)

We conclude the proof by setting

Cε =
1

Aε,β(1−Aε,β)
, cε = − ln (Aε,β) > 0. (20)

Corollary 1. Given any ε > 0, the following statement
is true for any s > 1 except with probability Cεe

−cεs:
For any GST and GAT specified by (A∗1,Z1), the num-
ber of adversarial slots by max{GST,GAT} is less than
(1 + ε)βmax{s,GST,GAT}.

Proposition 3. For any positive integer Ne, ε > 0 and times
t0, t1, there exist positive constants C̃ε and c̃ε such that

Pr[A[t0, t1] +Ne ≤ C[t0, t1]] ≥ 1− e−c̃εNe (21)

if t , t1 − t0 ≥ C̃εNe.

Proof follows from [3, Fact 2, Lemma 2].

Proof. Define

C̃ε =
1 + ε

α(1− 2pn∆)− β
, (22)

and, let

ε1 =
ε(α(1− 2pn∆)− β)

(1 + ε)(α(1− 2pn∆) + β)
. (23)

Due to [3, Fact 2], for any 0 < ε1 < 1,

Pr[A[t0, t1] > (1 + ε1)βt] < e−
ε21βt

3 . (24)

Due to [3, Lemma 2], for any ε1 > 0, there exists a positive
ε2 such that

Pr[C[t0, t1] < (1− ε1)α(1− 2pn∆)t] < e−ε2βt. (25)

Finally, for the values of t and ε1 chosen above, we note that

(1− ε1)α(1− 2pn∆)t− (1 + ε1)βt = Ne. (26)

Then, via union bound,

Pr[A[t0, t1] +Ne ≤ C[t0, t1]] (27)
= 1− Pr[A[t0, t1] +Ne > C[t0, t1]] (28)
≥ 1− Pr[A[t0, t1] > (1 + ε1)βt]

− Pr[C[t0, t1] < (1− ε1)α(1− 2pn∆)t] (29)

= 1− e−ε2βt − e−
ε21βt

3 (30)

where t = O(Ne). Consequently, there exists a constant c̃ε
such that

Pr[A[t0, t1] +Ne ≤ C[t0, t1]] ≥ 1− e−c̃εNe . (31)

Define T as the minimum time t ≥ max{GST,GAT}
such that the number of convergence opportunities in
[max{GST,GAT}, t] equals the number of adversarial slots
within [0, t]:

T = min
t≥max{GST,GAT}; C[max{GST,GAT},t]=A[0,t]

t. (32)

Proposition 4. There exists a constant C such that for
any given security parameter σ and GST, GAT specified by
(A∗1,Z1),

T ≤ C(max{GST,GAT}+ σ) (33)

except with probability e−Ω(σ).

Proof. From Corollary 1, we know that given a constant
ε > 0, the following statement is true for any s > 1
except with probability Cεe

−cεs: For any GST and GAT
specified by (A∗1,Z1), the number of adversarial slots by
max{GST,GAT}, A[0,max{GST,GAT}], is less than (1 +
ε)βmax{s,GST,GAT}. Moreover, Proposition 3 implies that
for any positive integer Ne and ε > 0, there exist positive
constants C̃ε and c̃ε such that

Pr[A[0, t] +Ne ≤ C[0, t]] ≥ 1− e−c̃εNe (34)

where t = C̃εNe.
Next, we fix some ε > 0 and set s = σ where σ is our

security parameter. Then, for any GST and GAT specified by
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(A∗1,Z1), the number of adversarial slots by max{GST,GAT}
is upper bounded by

(1 + ε)βmax{σ,GST,GAT}
≤ (1 + ε)β(σ + max{GST,GAT}) (35)

except with probability e−Ω(σ). Furthermore, setting

Ne = (1 + ε)β(σ + max{GST,GAT}), (36)

we can assert that

Pr[A[0, t] ≤ C[max{GST,GAT}, t]]
≥ 1− e−c̃εσ − Cεe−cεs = 1− e−Ω(σ) (37)

for

t = max{GST,GAT}
+ C̃ε(1 + ε)β(σ + max{GST,GAT}). (38)

Finally, we conclude that for any GST and GAT specified
by (A∗1,Z1), C[max{GST,GAT}, t] ≥ A[0, t] for

t = GST + C̃ε(1 + ε)2β(σ + max{GST,GAT}) (39)

except with probability e−Ω(σ). Hence, there is a constant C >
0 such that for any given security parameter σ, GST and GAT,

T ≤ C(max{GST,GAT}+ σ) (40)

except with probability e−Ω(σ).

Finally, we have all the components to start the proof of
Theorem 2. The proof uses the same concepts as (TG, g0, g1)-
chain growth, (TQ, µ)-chain quality and TC-safety introduced
in Sections 3.2.1, 3.2.2 and 3.2.3 of [3], respectively.

Proof. First, recall the definition of T as the minimum time
t ≥ max{GST,GAT} such that C[max{GST,GAT}, t] =
A[0, t]. Due to Proposition 4, there exists a constant C > 0
such that for any given security parameter σ,

T ≤ C(max{GST,GAT}+ σ) (41)

except with probability e−Ω(σ).
From [3, Theorem 5, Corollary 4], we know that within

any time period [s, t] such that t − s is a polynomial of
σ, there exists a strong pivot as given in [3, Definition 5]
except with probability e−Ω(

√
σ). Observe that if s > T , then

any strong pivot in the interval [s, t] is also a GST-strong
pivot. Consequently, within any time period [s, t] such that
s > C(max{GST,GAT}+σ), there exists a GST-strong pivot
except with probability e−Ω(

√
σ) + e−Ω(σ) = e−Ω(

√
σ).

Via Proposition 1, a GST-strong pivot at time t forces the
convergence of the longest chains seen by all honest nodes
up till some time t − O(1). Then, using [3, Theorem 7],
Proposition 1 and the observations above, we infer that Πlc(p)
is σ-consistent after time C(max{GST,GAT} + σ) except
with probability e−Ω(

√
σ). Moreover, σ-consistency of Πlc(p)

after time C(max{GST,GAT} + σ) implies, through [3,
Lemmas 3, 4 and 8], that for any ε > 0, Πlc(p) satisfies
(σ, g0, g1)-chain growth and (σ, µ)-chain quality after time

C(max{GST,GAT} + σ), except with probability e−Ω(
√
σ),

where g0, g1 and µ are constants that depend on the parameters
of Πlc(p) and (A∗1,Z1). Specifically, g0 = (1−ε)α(1−2pn∆).

Finally, using [3, Lemma 1] and its proof, we conclude that
if Πlc(p) satisfies (TG, g0, g1)-chain growth, (TQ, µ)-chain
quality and TC-safety after time C(max{GST,GAT} + σ),
then, it is secure with confirmation time

Tconfirm ≤ O
(
TG + TQ + TC

g0
+ ∆

)
, (42)

after time C(max{GST,GAT}+ σ). Consequently, Πlc(p) is
secure with confirmation time

Tconfirm ≤ O
(

3σ

(1− ε)α(1− 2pn∆)
+ ∆

)
= O(σ), (43)

after time C(max{GST,GAT} + σ) except with probability
e−Ω(

√
σ). This concludes the proof.

APPENDIX D
ANALYSIS AND SECURITY PROOF FOR THE

SNAP-AND-CHAT CONSTRUCTION USING HOTSTUFF

In this section, we prove Theorem 1 for the protocol
Πsac composing a permissioned longest chain protocol and
HotStuff. Note that the safety and liveness proofs for HotStuff
as presented in [11] remain unaffected by the composition with
Sleepy. Hence, using [11, Lemma 1, Theorem 2, Lemma 3,
Theorem 4], we can replace the safety and liveness lemmas for
Πbft given in Section III-C by the following lemmas derived
from [11] under the model (A∗1,Z1) , (A1( 1

3 ),Z1).

Lemma 6 (Safety Lemma for Πbft). If B1 and B2 are two
conflicting BFT blocks, then they cannot be both final in the
view of any honest node.

Proof is by [11, Lemma 1, Theorem 2], which remain
unaffected by the composition. Lemma 6 shows the safety
of Πbft at all times.

Lemma 7 (Liveness Lemma for Πbft). There exists a bounded
time period Tf after max{GST,GAT} such that if all honest
nodes remain in some view v during Tf and v has an honest
leader, then a new BFT block becomes final over v.

Since the network delay is bounded and all of the honest
nodes are awake after max{GST,GAT}, the proof follows
from [11, Lemma 3, Theorem 4].

Observe that the proof of Theorem 2 stays the same since we
use the same Πlc protocol as Section III-B. Hence, combining
Lemma 7 and Theorem 2, we can assert the liveness of LOGfin

after max{GST,GAT} as shown below.

Lemma 8 (Liveness Lemma for LOGfin). There exists a
constant C > 0 such that for any GST and GAT specified by
(A∗1,Z1), LOGfin is live after time C(max{GAT,GST}+ σ)
except with probability e−Ω(

√
σ).

Proof. Via Theorem 2, there exists a constant C > 0
such that for any GST and GAT specified by (A∗1,Z1),
Πlc is safe and live, with confirmation time σ, after time
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C(max{GAT,GST} + σ) except with probability e−Ω(
√
σ).

Hence, the following observation is true for any LC block b ex-
cept with probability e−Ω(

√
σ): If b is first viewed as confirmed

by an honest node at some time t > C(max{GAT,GST}+σ),
then, it will be regarded as confirmed in the views of all of
the honest nodes by time t+ ∆.

Now, if an honest leader sends a message that points to a
BFT block B at some time t and in some view v, then the
LC block referenced by B must be confirmed in the view
of this leader at time t. Then, by the above observation, if
t > C(max{GAT,GST}+σ), all honest nodes would see the
LC block referenced by B as confirmed and add B to their
blocktrees, by time t + ∆, except with probability e−Ω(

√
σ).

Hence, after time C(max{GAT,GST}+ σ), the requirements
outlined in line 12 of Algorithm 2 can be modeled by a ∆
delay. In other words, every BFT block pointed by the message
of an honest node enters the blocktree of every honest node
at most ∆ time after the first such message.

Via Lemma 7, there exists a bounded time period Tf after
max{GST,GAT} such that if all honest nodes remain in some
view v during Tf and v has an honest leader, then a new
BFT block becomes final over v. Then, we can assert the
following statement for Πbft except with probability e−Ω(

√
σ):

If all honest nodes remain in some view v during a time period
[s, s+ Tf ] such that s > C(max{GAT,GST}+ σ) and v has
an honest leader, then a new BFT block becomes final over v.
Since HotStuff implements a round robin leader section and an
exponential back-off mechanism for view change, there will be
a view v with an honest leader within a constant time Tbounded

after C(max{GAT,GST}+σ) such that the honest nodes will
remain in view v for longer than time Tf .

Finally, let σ > 2(Tbounded +Tf) and consider a time inter-
val [s, s+σ] such that s > C(max{GAT,GST}+σ). Observe
that since σ/2 > Tbounded+Tf and s > C(max{GAT,GST}+
σ), a new BFT block b becomes final in the interval [s +
σ/2, s+σ] except with probability e−Ω(

√
σ). Moreover, via the

liveness of Πlc after C(max{GAT,GST} + σ), a transaction
tx received by an awake honest node at time s will be
included in a confirmed LC block b′ in the view of all honest
nodes by time s+ σ/2 except with probability e−Ω(

√
σ). Via

the safety of Πlc, we know that b extends b′ containing the
transaction tx except with probability e−Ω(

√
σ). Consequently,

any transaction received by an honest node at some time
s > C(max{GAT,GST} + σ) becomes part of the ledger
LOGfin in the view of any honest node i by time s+σ, except
with probability e−Ω(σ)+e−Ω(

√
σ) = e−Ω(

√
σ). This concludes

the proof.

Finally, recall Figure 7, and observe that Lemma 7 (box
2) and Theorem 2 (box 3) imply Lemma 8 (box 4) whereas
the Lemmas 6 (box 1) and 8 imply the security of LOGfin

outputted Πsac (box 5). Moreover, the proof of the security
of LOGda stays the same as we use the same Πlc protocol as
Section III-B. Hence, we conclude the proof of Theorem 1 for
Πsac.
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Fig. 14. By releasing withheld Casper FFG votes late, the adversary can
force honest validators to adopt a competing chain, due to the modification
of the fork choice rule to respect ‘the justified checkpoint of the greatest
[depth]’. Over longer periods of time, the adversary forces honest validators
to switch back and forth between a ‘left’ and a ‘right’ chain and thus liveness
of finalizations is disrupted.

APPENDIX E
BOUNCING ATTACK ON CASPER FFG

Applications of Casper FFG are two-tiered. A blockchain
serves as dynamically available block proposal mechanism,
and Casper FFG is a voting-based BFT-style overlay protocol
to add finalization on top of said blockchain. Usually, only
some ‘checkpoint’ blocks are candidates for finalization, e.g.,
blocks at depths that are multiples of 100. First, a checkpoint
becomes ‘justified’ once two-thirds vote for it. Subsequently,
roughly speaking, a justified checkpoint becomes finalized
once two-thirds vote for a direct child checkpoint of the jus-
tified checkpoint. To ensure consistency among the two tiers,
the fork choice rule of the blockchain is modified to always
respect ‘the justified checkpoint of the greatest [depth]’ [22].
There is thus a bidirectional interaction between the block
proposal and the finalization layer: blocks proposed by the
blockchain are input to finalization, while justified checkpoints
constrain future block proposals. This bidirectional interaction
is intricate to reason about and a gateway for liveness attacks.

The bouncing attack [28], [29] exploits this bidirectional
interaction to attack liveness of the overall protocol as follows
(see Figure 14). Suppose there are two competing chains, ‘left’
and ‘right’, with checkpoints shown as squares in Figure 14.
A square’s label represents the number of votes for that
checkpoint, in a system with n = 100 total and f = 10
adversarial validators. The initial setting of blocks and votes
could be produced, e.g., during a period of asynchrony in
which the adversary controls message delivery in its favor.
‘Left’ has the deepest justified checkpoint and is thus chosen
by the fork choice rule of honest validators. At the same time,
‘right’ has a deeper checkpoint which is not yet justified but
can be justified by the adversary whenever it casts its f = 10
votes for the respective checkpoint depth. Once ‘left’ advances
to a new checkpoint depth, and accumulates enough votes so
that the adversary could again justify that new checkpoint
in the future by releasing its f = 10 votes, the adversary
releases its votes for the competing checkpoint of ‘right’ on the
previous checkpoint depth. The deepest justified checkpoint is
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now on ‘right’, and honest validators switch to propose new
blocks on ‘right’. Note that the chains are now already set up
such that the adversary can bounce honest validators back to
‘left’ once ‘right’ advances to a new deepest checkpoint depth.

As a result, a single brief period of asynchrony suffices to
set the consensus system up such that both chains grow in
parallel indefinitely. No checkpoint will ever be finalized, the
protocol stalls. What is more, since the fork choice flip-flops
between the two chains, the underlying blockchain is rendered
unsafe by the modified fork choice rule. The bidirectional
interdependency of Casper FFG and the blockchain gives the
adversary major leverage over honest nodes on the proposal
layer and thus enables this attack.

In contrast, an isolated partially synchronous BFT-style
protocol, akin to Casper FFG, would have eventually recov-
ered from the period of asynchrony and regained liveness,
while remaining safe throughout. Similarly, an isolated typical
dynamically available longest-chain protocol with intact fork
choice rule could have suffered from security violations during
and shortly after the period of asynchrony, but would have
‘healed’ eventually, i.e., from some point on, no more safety
violations occur and transactions get included in the ledger.
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