
NC-Max: Breaking the Security-Performance
Tradeoff in Nakamoto Consensus

Ren Zhang∗, Dingwei Zhang∗, Quake Wang∗, Shichen Wu†, Jan Xie∗ and Bart Preneel‡
∗Nervos, †Shandong University, ‡imec-COSIC, KU Leuven

∗{ren, dingwei, quake, j}@nervos.org, †shichenw@mail.sdu.edu.cn, ‡bart.preneel@esat.kuleuven.be

Abstract—First implemented in Bitcoin, Nakamoto Consensus
(NC) is the most influential consensus protocol in cryptocur-
rencies despite all the alternative protocols designed afterward.
Nevertheless, NC is trapped by a security-performance tradeoff.
While existing efforts mostly attempt to break this tradeoff
via abandoning or adjusting NC’s backbone protocol, we al-
ternatively forward the relevance of the network layer. We
identify and experimentally prove that the crux resides with
the prolonged block propagation latency caused by not-yet-
propagated transactions—fresh transactions. We thus present a
two-step mechanism to eliminate fresh transactions and therefore
remove the limits upon NC’s performance imposed by its security
demands, realizing NC’s untapped potential to its maximum.
Further, we introduce an accurate dynamic difficulty adjustment
mechanism (DAM) to explore the real-time network condition
and to adjust the protocol’s throughput accordingly. Implement-
ing the two-step mechanism and the DAM, we propose NC-Max,
whose (1) security is analyzed, proving that it provides stronger
resistance than NC against selfish mining and transaction with-
holding attacks, and (2) performance is evaluated, showing that
it exhausts the full throughput supported by the network, and
shortens the transaction confirmation latency by at least a factor
of four compared to NC without compromising security.

Index Terms—Nakamoto consensus, throughput, selfish mining

I. INTRODUCTION

Implementing Nakamoto Consensus (NC), Bitcoin [47], the
most popular digital currency, allows all network partici-
pants to reach agreement on a chain of blocks containing
confirmed transactions, and reignited the now well-known
blockchain technology. In NC, miners—a special kind of
network participants—compete for block rewards by solving
a cryptographic puzzle generated from the latest block in the
blockchain and a group of new transactions. A valid solution to
the puzzle allows the miner to broadcast a new block packing
these transactions, extending the blockchain. At the core of
NC, a backbone protocol (1) periodically adjusts the puzzle
difficulty via a difficulty adjustment mechanism (DAM), and
(2) guides the miners to choose the same main chain when
more than one block extends the same predecessor block.

As disruptive as Bitcoin is, its application is limited by
its low throughput and long transaction confirmation latency,
demanding further technological advances. Such a demand has
been answered enthusiastically by both academia and the now
hundred-billion-dollar industry of cryptocurrencies [2], where
the legitimacy of new consensus protocols and new cryp-
tocurrencies mostly resides in radical innovations and, particu-
larly, outperforming NC. Consequently, a considerable number

of new consensus protocols emerge, hoping to overcome
NC’s limitations by abandoning its backbone protocol. How-
ever, all of these new designs—represented by proof-of-stake
(PoS) [19], [20], [31] and blockDAG protocols [4], [7], [44],
[65], [66]—introduce hard-to-solve challenges in their security
or functionality, as they forgo NC’s simplicity. Specifically,
PoS protocols, which select participants to compose blocks
based on their possession of some scarce resources, demand
additional security assumptions and protection mechanisms to
prevent attackers from generating conflicting histories. These
assumptions, however, are often difficult to meet [6], [56],
and new attack vectors emerge even when the protection
mechanisms are in place [11], [27], [37], [50]. BlockDAG
protocols, which replace NC’s linear blockchain structure
with a direct acyclic graph of blocks, either abandon the
global order of transactions [65], therefore limiting the smart
contract functionality, or do not specify their transaction fee
distribution [4], [44], [66] or DAM [4], [7], [66], rendering a
complete security analysis infeasible. Due to these limitations
and uncertainty brought by such radical innovations, NC and
its variants remain the foundation of most of the leading
cryptocurrencies such as Bitcoin, Litecoin [1], Ethereum [13],
Bitcoin Cash [8] and Zcash [63]. Also built on NC are some
influential protocol designs, represented by Fruitchains [54]
and Bitcoin-NG [25].

Nevertheless, a key challenge confronting these NC-based
designs is to improve NC’s performance without compromis-
ing security, due to a well-known tradeoff rooted in its security
and performance’s conflicting requirements on the block size
and the block interval—its security demands small blocks and
long block intervals, while its performance demands larger
blocks and shorter intervals [18], [67]. To break this tradeoff,
a great deal of endeavors has been directed to adjusting NC’s
backbone protocol [42], [60], [67]. However, it has been
shown [39], [76] that such adjustments often complicate the
protocol and thus also lead to new attack vectors.

While it is a general belief that the security-performance
tradeoff is coupled with NC’s backbone, we, in this paper,
alternatively forward the importance of the network layer
in breaking the tradeoff. We identify and experimentally
prove that the tradeoff resides in the network layer via the
existence of fresh transactions—transactions that have not
finished propagating to the network—contained in a block.
Therefore, to eliminate fresh transactions, we focus on the
network layer and propose a two-step mechanism, ensuring all

transactions are not fresh when their full content is embedded
in the blockchain. This mechanism, therefore, removes the
limits on the block size & interval placed by the security
demands. Meanwhile, to further strengthen security, we in-
troduce a DAM in which selfish mining, the most influential
attack against NC [26], is not profitable. Our DAM also
dynamically exploits the lower limit on the block interval,
reducing NC’s transaction confirmation latency. Integrating
these two mechanisms—two-step transaction confirmation and
our DAM, we propose a new consensus protocol NC-Max,
which not only maintains the same level of security as NC,
but also achieves the full throughput supported by the network
and reduces the transaction confirmation latency by at least a
factor of four. Our contributions include:

Breaking NC’s Security-Performance Tradeoff. We identify
and remove the bottleneck of fresh transactions in this tradeoff.
Through experiments deployed on, or with data collected from,
the Bitcoin network, we unveil the detailed mechanism of how
the block size & interval affect NC’s security through the
existence of fresh transactions. Specifically, a fresh transaction
demands the nodes to request its content before forwarding the
block to their peers. This extra request-and-reply round trip
invalidates the compact block mechanism—Bitcoin’s current
block propagation acceleration technique [16]. The extended
block propagation latency leads the protocol more vulnerable
to various attacks [18], [21], [29], [67].

To remove this bottleneck, we introduce a two-step mecha-
nism including transaction proposal and commitment, pipelin-
ing fresh transactions’ synchronization and non-fresh transac-
tions’ confirmation, illustrated in Fig. 1. The resulting block-
size-independent propagation latency reaches the lower limit
permitted by the network, enabling more aggressive block size
and block interval choices without compromising security.

Inheriting and Strengthening NC’s Security. NC’s security
is carefully scrutinized [23], [26], [28], [29], [38], [53], [62],
[72] thanks to its simple backbone protocol. We ensure that
NC-Max inherits NC’s backbone by re-coupling the required
data of the two steps in an updated block structure so that no
new message type is introduced. This approach simplifies both
the security analysis—our protocol directly inherits NC’s chain
growth, chain quality, and common prefix properties [29],
[53]—and the reward distribution, as there is no need to share
the rewards among different types of blocks or to split the fees
among blocks packing the same transactions.

We further strengthen the protocol’s security by raising
its resistance against selfish mining, which allows attackers
to gain unfair block rewards by invalidating blocks mined
by other miners [26]. We prove that, through incorporating
non-main-chain blocks in the DAM, NC-Max renders selfish
mining not profitable. The proof holds regardless of the attack
strategy and duration.

Exploiting the Performance Limit. Our dynamic DAM
maximizes the performance under real-time network condi-
tions. Previous dynamic DAMs [14], [64] can only signal the
adjusting direction—towards a longer or shorter interval. In

NC
time

receive a block
announcement

synchronize
transactions

idle idle

parent

NC-Max

a node’s
bandwidth

orphaned
block

Fig. 1: NC-Max decouples transaction synchronization from
confirmation to allow better bandwidth utilization and a shorter
block interval without raising the orphan rate.

contrast, our DAM pinpoints the accurate expected interval
matching the network condition through delicate modeling
to explore the throughput limit without the possibly time-
consuming trial-and-error procedure.

Our evaluation shows that NC-Max, under Bitcoin’s current
network condition and assuming a uniform bandwidth of
10 Mbps (1.25 MBps), achieves the nodes’ full throughput
of 2500 TPS. When anchoring the same sequence of block
generation events, NC-Max’s throughput outperforms recent
high-throughput blockDAG designs. Anchoring an orphan
rate—percentage of non-main-chain blocks—of 5%, NC-Max
achieves a block interval of 5 seconds, whereas the interval
must be over a minute in NC. Meanwhile, NC-Max reduces
NC’s more-than-six-minute transaction confirmation latency to
80 seconds, similar to that of Prism [4]—a blockDAG protocol
characterized by its short latency.

Advocating a Broader View in Designing Consensus Pro-
tocols. Through this work, we aim to raise awareness of
the importance of the network layer in designing protocols.
Our protocol modification is built upon accurate identification
and experimental verification of NC’s network-layer bottle-
neck, which allows NC-Max to achieve better performance
while preserving NC’s security and flexibility. With NC-Max,
we thus forward the configurational nature of a consensus
protocol—that it shall be understood as a combination of
the backbone protocol and the external rules—including those
who concern the network layer, and the latter deserve no less
attention for the former to exert its full potential and promise.

II. THE LIMITATIONS OF BLOCKCHAIN CONSENSUS
PROTOCOLS

This section provides a brief overview of blockchain con-
sensus protocols and their limitations, elaborating why we
choose NC’s backbone protocol as a base for improvements.

A. Nakamoto Consensus

NC helps all nodes agree on and order the set of confirmed
transactions in a decentralized, pseudonymous way. There
are two components in NC: backbone protocol, including its
chain selection rules and DAM; external rules, including its
transaction packing details, block validity rules, and reward
distribution mechanism.

Backbone Protocol. Each block contains an 80-byte header
in addition to the transactions. A block header includes (1)

the block’s height—distance from the hard-coded genesis
block, (2) the hash value of the parent—the latest block in
the blockchain, (3) the Merkle root of the transactions, (4)
a timestamp, and (5) a nonce. Embedding the parent hash
ensures that a miner chooses its parent before starting to mine.
Based on this parent-child relationship, all blocks form a tree,
and each root-to-leaf path in the tree is called a chain. To
construct a valid block, miners work on finding the right nonce
so that the block hash is smaller than a target T , which is
computed by the last iteration of the DAM. Compliant miners
publish blocks the moment they are found.

When more than one block extends the same parent, miners
work on the main chain that is most computationally chal-
lenging to produce, which is sometimes inaccurately referred
to as the longest chain. When several chains are of the same
“length”, miners choose the first chain they receive. We refer
to this forked situation where miners work on different parents
as a block race, an equal-length block race as a tie, and blocks
of the same height as competing blocks. Blocks not in the main
chain are orphaned and discarded by all miners.

To adjust the target T based on the network hash rate, a
DAM is triggered after every epoch of M blockchain blocks:

Ti+1 =

Ti · 1

τ , Li < Lideal · 1
τ

Ti · τ, Li > Lideal · τ
Ti · Li

Lideal
, otherwise

, (1)

where i is the epoch number, Lideal is the ideal time duration
of an epoch, τ is a dampening filter to prevent rapid changes
of T , and Li is the actual time duration of the last epoch, as
reported in the blocks. In Bitcoin, M = 2016, τ = 4, and
Lideal is two weeks so that the average block interval is ten
minutes if the mining power remains constant.
External Rules. The transactions must not conflict with those
in previous blocks of the same chain. The size of a block
must not exceed a predefined block size limit. Miners are
incentivized by two kinds of rewards. First, a block reward is
allocated to the miner of every blockchain block via a special
coinbase transaction in the block. Second, the value difference
between the inputs and the outputs in a transaction is called
the transaction fee, which goes to the miner who includes the
transaction in the blockchain. We omit other details as they
are not relevant to this study.
Security-Performance Tradeoff. NC’s security relies on the
expected block interval being significantly larger than the
block propagation latency [29], to minimize the number of
blocks mined during other block’s propagation. Violating this
condition leads to a high orphan rate—percentage of orphaned
blocks—which lowers the adversarial mining power threshold
to secretly generate a longer chain, downgrading the system’s
security threshold [67]. However, short block propagation
latency demands a small block size limit, which, together
with a long block interval, results in low throughput and long
transaction confirmation latency.

Whether to raise the performance at the risk of downgrading
security is the most heatedly-debated topic in the Bitcoin

community in recent years [18]. We note that even if we
abandon security, simple re-parameterization does not allow us
to fully exploit the nodes’ bandwidth to confirm transactions,
because orphaned blocks do not contribute to the transaction
confirmation yet still consume bandwidth to propagate [67].

B. Innovative Consensus Protocols: Into the Unknown
Inspired by the success of NC, a considerable number

of consensus protocols have emerged. These efforts can be
categorized into two groups: NC’s chain-based variants—
which adjusts the backbone—and innovative protocols—which
abandons the backbone. Nevertheless, while the variants of
NC introduce new attack vectors where they modify the back-
bone [76], innovative protocols all lead to new and unsolved
challenges in their security, performance, or functionality. We
now briefly introduce the limitations of existing innovative
protocols, which are further divided into two approaches.
Proof-of-Possession Protocols. PoS (e.g., Algorand [31],
Ouroboros Praos [20], and Snow White [19]) and proof-of-
space (e.g., Spacemint [52]) protocols avoid the energy con-
sumption in NC by selecting participants to compose blocks
based on their possession of some scarce resources. Since the
resources are not consumed during the block generation, extra
security assumptions and protection mechanisms must be in
place to prevent attackers from constructing multiple history
versions. These systems usually rely on stronger-than-NC
synchrony and online assumptions, or even trusted parties to
checkpoint the blockchain, which lead to new attack vectors if
these assumptions are not met. As an example of the protection
mechanisms, Algorand demands that each block, regardless of
its size, be accompanied by a 300 KB certificate, comprised
of hundreds of digital signatures [31]. Broadcasting these
signatures negatively affects performance. More discussions
on these limitations can be found in [6], [11].
BlockDAG Protocols. SPECTRE [65], Meshcash [7], PHAN-
TOM, GHOSTDAG [66], Prism [4], and Conflux [44] suggest
that, rather than referring to a single parent, a block contains
hashes to all blocks the miner has received satisfying certain
conditions. By confirming transactions with blocks not nec-
essarily in a chain, these protocols hope to achieve higher
throughput than chain-based protocols.

BlockDAG protocols’ actual throughput is yet to be quanti-
fied, as it is difficult to model how much bandwidth is wasted
due to transactions embedded multiple times in simultaneous
blocks [43]. This duplicate-packing problem further compli-
cates the transaction fee distribution, whose mechanism is
omitted in PHANTOM, GHOSTDAG, Prism, and Conflux.
Moreover, Prism, with its three kinds of blocks, introduces
potential incentive issues in block reward distribution and new
attacks against its DAM, which are not accounted for in its
design. At last, as the global order of transactions is not known
when constructing a block, transaction validity can only be
evaluated after the neighboring blockDAG topology is settled,
resulting in a long confirmation delay. Alternatively, SPEC-
TRE abandons the global order, rendering it incompatible with
the most popular smart contract programming model [13].

C. NC’s Backbone as a Base for Future Endeavors

Despite the emergence of numerous alternatives, NC’s back-
bone protocol still has a threefold advantage compared to
its alternatives. First, it is built on only a minimum set of
security assumptions. Consequently, its security is carefully
scrutinized and well-understood [23], [26], [28], [29], [38],
[53], [62], [72]. Alternative protocols often open new attack
vectors, either unintentionally [37], [76] or by relying on
assumptions that are difficult to realize. Second, coupling the
block producer election and transaction confirmation mini-
mizes the consensus protocol’s communication overhead. In
contrast, alternative protocols often demand a non-negligible
communication overhead to certify that certain nodes have
witnessed a block or to transmit the same transactions multiple
times. Third, NC’s chain-based topology ensures that a trans-
action global order is determined at block generation, which
(1) minimizes the transaction verification and confirmation
latencies, and (2) supports all smart contract programming
models [13], [55].

Therefore, we argue that NC’s backbone protocol provides
the most promising base for future protocol designs. Never-
theless, NC’s security-performance tradeoff signals some fun-
damental limitations in its design. As prior attempts trying to
break this tradeoff via modifying the backbone often introduce
new attacks, a natural question arises: is it possible to break the
tradeoff while keeping the backbone protocol intact? Before
answering that question, we need to pinpoint the bottleneck in
this tradeoff.

III. BOTTLENECK IN NC’S SECURITY-PERFORMANCE
TRADEOFF

NC’s security limits its performance as larger blocks and
shorter intervals—i.e., better performance—cause longer block
propagation latency and more frequent blocks, respectively;
both approaches raise the percentage of blocks that overlap
each other’s propagation. More overlaps lead to more or-
phaned blocks, which weaken security. The Bitcoin developers
are among the first to recognize the importance of short
block propagation latency. They, therefore, introduced compact
blocks (CB) in 2016 to reduce this latency. However, with CB
implemented, fresh transactions become the obstacle to lower
the block intervals and larger block sizes. This section first
introduces CB, and then elaborates on how fresh transactions
defer the block propagation and enable a transaction withhold-
ing attack, followed by experiments that confirm the identified
bottleneck.

A. Compact Blocks

We briefly overview the protocol here and refer interested
readers to [16] for the specification. CB reduces the block
propagation latency by optimistically not transferring full
transactions in a block by default. Each node supporting CB
enables the HB mode with the last three peers that have
sent blocks to the node. Whenever a new block is available
at an HB peer, the peer constructs a CB by replacing each
transaction with a 48-bit shortid, and adding two extra fields:

(1) a connection-specific 64-bit random salt and (2) a list of
transactions for which the peer is certain that the receiving
node is not aware of them—just the coinbase transaction
in the current implementation. The second field is called
prefilled transactions. A shortid is computed as siphash-2-
4(txid,SHA-256(header||salt)), where siphash-2-4 and SHA-
256 are two hash functions, txid is the transaction hash, and
header contains the block’s metadata. Replacing transactions
of typically two to five hundred bytes each with their shortids
can compress a 1 MB block into around 13 KB [46], which
is significantly faster to transfer. The CB is then sent to the
node. After receiving the CB, the node computes shortids for
transactions in its unconfirmed transaction pool, matches them
with those in the CB, and requests the missing transactions.
Once the node receives these transactions, it constructs and
forwards relevant CBs to its other peers, and starts verifying
the newly-received transactions in the meantime.

B. Fresh Transactions and Transaction Withholding Attacks

According to the Bitcoin developers, after implementing
CB, the main contributor to the block propagation latency
is the extra round trip caused by the missing transactions,
if there is one [46]. Not all nodes have stored these fresh
transactions in their memory pools, as these transactions are
usually broadcast only a few seconds before they are mined in
a block. This extra-round-trip delay is magnified as it usually
takes several hops for the block to reach the entire network.

Furthermore, resourceful miners can raise their revenues by
deliberately packing transactions known only to themselves,
which we termed transaction withholding attacks. The slower
block propagation gives them more time to mine on their
blocks before other miners have received them, hoping to
orphan honest blocks mined during this period as they do
not extend the longest chain, thus constituting a de facto
selfish mining attack. As selfish mining’s profitability raises
superlinearly with the attacker’s mining power, more resource-
ful miners have less incentive to accelerate their blocks’
propagation [26], [46]. This attack differs from selfish mining
in that the attacker does not delay his blocks further than their
propagation latency.

As of 2020, the time of this writing, most Bitcoin blocks
contain no fresh transactions, thanks to the ten-minute block
interval. Since it takes only 15 seconds for a transaction to
reach 90% of nodes [22], fresh transactions constitute only a
small fraction of the transactions broadcast after the last block.
This fraction increases if the block interval is shortened.

C. Confirming the Bottleneck

Fresh Transactions Affect the Block Propagation Latency.
We first study the relationship between the number of fresh
transactions, denoted as nfresh, and the one-hop block propa-
gation latency δ. The multi-hop latency is studied in Sect. VII.

The one-hop latency is further decomposed into two parts:
δ = δCB + δprep, where δCB denotes the CB transmission
latency from a node’s upstream peer to the node and δprep

denotes the block preparation latency, i.e., the time between

Fig. 2: The block preparation latency δprep is higher when
a block contains fresh transactions, i.e., nfresh > 0. The
ends of a box are the 25th and 75th percentiles of the data
set; a horizontal line inside the box marks the median. The
maximum latency is not displayed if it is over two seconds.

the node’s receiving a CB and forwarding CBs to its peers. As
CBs are small, δCB equals the latency between the upstream
peer and the node, typically 1 to 50 ms [22], as upstream
peers are usually a node’s most well-connected peers. The
extra round trip to request missing transactions is in δprep.

As δCB is relatively short and independent of nfresh, we
focus on the relation between nfresh and δprep. We modified
the Bitcoin client v0.17.1 to reject a fraction of new transac-
tions to increase nfresh when receiving a new block, and to log
nfresh and δprep for every block it receives. We deployed three
instances of the modified client on IP addresses 47.251.4.119,
47.244.165.26, and 8.208.203.101, located in the US, Hong
Kong, and the UK, respectively, and collected data from the
Bitcoin network between May 10th and May 18th, 2019.

As shown in Fig. 2, when there is no fresh transaction, δprep

is short and stable, typically around 100 ms. In this case, the
latency is the time to reconstruct the block from the CB and
to generate CBs for its peers. When nfresh > 0, even if the
number is small, the median of δprep raises to over 500 ms,
due to the request-and-reply round trip. The latency becomes
even higher when there are more than 1000 fresh transactions,
as larger messages take longer to transmit.

The Fraction of Fresh Transactions Increases When the
Block Interval Decreases. Next, we study the relation be-
tween the expected block interval, denoted as tin, and the
fraction of fresh transactions, denoted as pfresh.

We simulate the Bitcoin network with a higher transaction
processing workload of 100 TPS. Our simulation setting is in
Appendix D. A miner packs up to 100tin transactions from its
memory pool, prioritizing those with the oldest timestamps, as
the block. “Packing from the oldest” results in a lower pfresh

than in reality, where miners pack from the highest fee-per-
byte transaction. Each block’s pfresh is averaged over all the
receiving nodes.

The results in Fig. 3 show very few fresh transactions in
blocks when tin = 120 seconds, which is consistent with
Bitcoin’s current situation. However, pfresh increases when the
block interval decreases, especially when it drops below the
total transaction propagation latency.

Combining these results, we conclude that, when reducing

Fig. 3: The percentage of fresh transactions in a block pfresh

increases when the block interval tin decreases.

the block interval, more fresh transactions appear in the blocks,
which prolong the block propagation. Previous studies [21],
[67] demonstrate that increasing the block size also raises this
latency as more transactions take longer to synchronize, which
will be further confirmed in Sect. VII. Longer block propaga-
tion latency directly results in a higher orphan rate, harming
security. Next, we present our solution to this bottleneck.

IV. TWO-STEP CONFIRMATION

Fresh transactions invalidate the CB mechanism as they re-
couple the block propagation latency with the block size &
interval. If we can ensure that the block propagation latency
is short and block-size-independent, the security-performance
tradeoff is broken: we can shorten the block interval to the
lower limit permitted by the security demands, and raise the
block size until the throughput exhausts the nodes’ bandwidth.
Moreover, there is no need to modify NC’s backbone protocol.
This goal is achieved via our two-step transaction confirmation
mechanism, which introduces two adjustments to NC:

Incorporating Uncles. Miners are requested to refer to un-
cles—orphaned blocks in the same epoch—by embedding
their hashes in the blocks. Our uncle’s definition differs from
that of Ethereum [13] in that our uncle’s validity does not
consider how far away the uncle and the nephew’s first
common ancestor is. The reward distribution regarding uncles
(Sect. IV-D) is also different from that of Ethereum.

Prescribing a Transaction Proposal Step. A transaction
proposal zone is added to each block, containing txpids—
the first several bytes of transaction hashes—of some possibly
fresh transactions. We consider these transactions proposed
in this block. Transactions proposed in uncles are considered
proposed in their nephews so that uncles contribute to the
transaction proposal. The set of full transactions in a block
is now called the transaction commitment zone. The proposed
transactions—unlike their txpids—are not part of the block,
therefore they do not affect the block’s validity: a block may
still be valid if some txpids refer to malformed or double-
spending transactions, or the miner refuses to provide the full
content of proposed transactions. The uncles’ proposal zones
are part of the block, and optionally part of the CBs if they
have not been synchronized in the CB’s connection. The most
important rule about the proposal zone is that a transaction

Upstream
peer Node

Downstream
peer

Upstream
peer Node

Downstream
peer

NC NC-Max

often
> 0.5 sec

Fig. 4: Block propagation in NC and NC-Max. “Transactions”
is abbreviated as “txs”. On most occasions, our protocol allows
nodes to forward CBs to their peers as soon as they received
them, as all committed transactions are already synchronized.

in the commitment zone of a block with height h must be
proposed in a main chain block with height between h−wfar

and h− wclose, a range we termed the proposal window.
As proposed transactions do not affect a block’s validity, a

node forwards the CBs—including the full proposal zone—
to its downstream peers as soon as it finishes reconstructing
the commitment zone, whose transactions are already syn-
chronized after receiving the blocks in the proposal window.
The request to the node’s upstream peer for missing proposed
transactions in the latest block is sent in the meantime.
Consequently, the round-trip time of requesting the missing
transactions is removed from the critical path of block propa-
gation, as shown in Fig. 4. Malicious miners may still conduct
transaction withholding attacks by refusing to provide the full
transactions they proposed and then hoping to commit these
secret transactions in the future; however, the success rate and
the damage of this attack are lower in NC-Max than in NC.

Next, we formally define the two steps and the block struc-
ture, and then introduce the new block propagation protocol
and our reward distribution mechanism.

A. Definitions

Definition 1 (Proposal id). A transaction’s proposal id txpid
is defined as the first l bits of the transaction hash txid.

A txpid does not need to be globally unique as the 32-byte
txid, as a txpid is used to identify a transaction among several
neighboring blocks. Since we embed txpids in both blocks
and CBs, sending only the truncated txids could reduce the
bandwidth consumption. When multiple transactions share the
same txpids, all of them are considered proposed. In practice,
we can set l to be large enough so that the computational
effort of finding a collision is non-trivial. For example, when
l = 144, finding a txpid collision is roughly as difficult as
mining a block in Bitcoin.

Definition 2 (Uncle). A block B1 is considered an uncle of
another block B2 if all of the following conditions are met:
(1) they are in the same epoch, sharing the same difficulty;
(2) height(B2) > height(B1); (3) B1’s parent is already
embedded in B2’s chain, either as a main chain block or as

N B

U

hh-wcloseh-wfar

block B’s proposal window
time

parent
uncle

Fig. 5: Block B can only commit transactions proposed in its
proposal window. In this example, wclose = 2, wfar = 4. If
a transaction is only proposed in U and committed in B, its
proposal fee goes to N’s miner.

an uncle; and (4) B2 is the first block in its chain to refer to
B1.

Condition (1) enables uncles to contribute to a more ac-
curate hash rate estimation, which will be exploited in our
DAM. A violation of (2) contradicts the longest-chain rule.
Condition (3) is to ensure that two NC-Max instances with
different genesis blocks do not accidentally recognize each
other’s blocks as uncles. An example is in Fig. 5.

Definition 3 (Transaction proposal). A transaction is proposed
at height hp if its txpid is in the proposal zones of the main
chain block with height hp or of this block’s uncles.

The proposal zone facilitates transaction synchronization.
The proposed transactions’ validity does not affect the block’s
validity.

Definition 4 (Transaction commitment). A non-coinbase
transaction is committed at height hc if all of the following
conditions are met: (1) it is proposed at height hp of the
same chain, where wclose ≤ hc − hp ≤ wfar; (2) it is in
the commitment zone of the main chain block with height
hc; and (3) it is not in conflict with any previously-committed
transactions in the main chain. The coinbase transaction is
committed at height hc if it satisfies (2) and (3).

A transaction is considered embedded in the blockchain
when committed. We borrow the term commit from the lit-
erature for convenience, despite that in line with NC, NC-
Max only offers probabilistic confirmation. Parameters wclose

and wfar define the proposal window—the closest and farthest
on-chain distance between a transaction’s proposal and com-
mitment, as shown in Fig. 5. Enforcing a proposal window
guarantees that the “proposed transaction pool” fits in a node’s
memory. We suggest the proposal window w = wfar−wclose+
1 to be at least four to ensure liveness (Sect. VI-C). Although
a longer window gives the miners more time to commit a
transaction, a shorter window offers stronger resistance against
transaction withholding attacks (Sect. VI-D).

We require wclose be large enough with a lower bound of
two, so that wclose block intervals are long enough for newly-
proposed transactions to finish propagation, and as small as
possible to reduce the transaction confirmation latency. The
selection of wclose will be further discussed in Sect. VII-D.

B. Block and Compact Block Structure

Data Structure. A block includes the following fields:
header block metadata
commitment zone full transactions
proposal zone txpids
uncle headers headers of the uncles
uncles’ proposal zones txpids in the uncles
The header contains the Merkle roots of the commitment

zone, the proposal zone, and uncle headers, in addition to NC’s
header. Similar to NC, a CB replaces the commitment zone
with the transactions’ shortids, a salt, and a list of prefilled
transactions. All other fields remain unchanged in the CB.

A block size limit is applied to the total size of the first four
fields, to limit the data size to synchronize across the network
along with each PoW solution. The uncles’ proposal zones do
not count in this limit as they are usually synchronized before
the block is mined. The number of txpids in a proposal zone
also has a hard-coded upper bound.

Parameter Recommendation. Two heuristic requirements
can help practitioners choose the parameters. First, the upper
bound on the number of txpids in a proposal zone should be no
smaller than the maximum number of committed transactions,
so that this bound is not the protocol’s throughput bottleneck.
Second, ideally, a CB should be no bigger than 80 KB.
According to Croman et al. [18], messages no larger than
80 KB have similar propagation latency in the Bitcoin network
in 2016; larger messages propagate slower as the nodes’
bandwidth becomes the bottleneck. This number changes as
the network condition improves. A typical set of parameters
is in Appendix A.

C. Block Propagation Protocol

In line with [5], [26], [35], nodes should broadcast all blocks
with valid PoWs, including orphans, as they may become
uncles. Valid PoWs cannot be utilized to pollute the network,
as constructing them is energy-consuming.

On most occasions, NC-Max’s block propagation protocol
(Alg. 1) removes the round trip of fresh transactions, as
illustrated in Fig. 4, so that block propagation latency is
constant regardless of how many transactions are proposed;
when the round trip is inevitable, NC-Max ensures that it only
lasts for one hop in the propagation and the additional latency
is limited. This is achieved by the following three rules.

R1: non-blocking transaction query. As soon as the com-
mitment zone is reconstructed, a node forwards the CBs to its
downstream peers and queries the newly-proposed transactions
from its upstream peers simultaneously (Line 16 in Alg. 1).

The block propagation will not be affected by these trans-
action queries as long as they are answered before the next
wclose-th block is mined.

R2: missing transactions, now or never. If certain committed
transactions are unknown to a CB receiver, the receiver queries
the sender with a short timeout (Line 6 to Line 7). Failure to
send these transactions in time leads to the receiver discon-
necting the sender (Line 8 to Line 12). If the disconnected

Algorithm 1 Our Block Propagation Protocol
procedure OnReceiveCompactBlock(CB , fromPeer)

1: freshCommitShortid = ∅, freshProposeTxpid = ∅
2: add CB .prefilledTx to memoryPool
3: for all shortid ∈ CB .commitmentZone do
4: if shortid.tx /∈ memoryPool then
5: add shortid to freshCommitShortid

6: if freshCommitShortid 6= ∅ then
7: request freshCommitShortid .tx from fromPeer
8: start timer t
9: if t = timeOut and no reply then

10: drop the connection with fromPeer
11: initiate the HB mode with another peer
12: return . missing tx in the commitment zone
13: for all shortid ∈ CB .commitmentZone do
14: if shortid.tx /∈ CB .proposalWindow then
15: return invalid block . commit without proposing first
16: Execute Line 17, 19 and 23 in parallel:
17: for all tx ∈ freshCommitShortid .tx do
18: verify tx ’s validity
19: for all toPeer do . forward the CB
20: construct CB toPeer from CB
21: add freshCommitShortid .tx to CB toPeer .prefilledTx
22: send CB toPeer to toPeer
23: for all txpid ∈ CB .proposalZone do . request new txs
24: if txpid.tx /∈ memoryPool then
25: add txpid to freshProposeTxpid

26: if freshProposeTxpid 6= ∅ then
27: request freshProposeTxpid .tx from fromPeer
28: add the replied transactions to memoryPool

sender was an outgoing connection, the receiver establishes a
new connection to a random node. Moreover, the incomplete
block will not be propagated further before receiving these
transactions from another peer.

Proposed-but-not-received transactions are committed either
(1) in a successful transaction withholding attack, or (2) when
wclose consecutive blocks are mined before the transactions
proposed in the first one are synchronized. If the upstream peer
is honest, as in (2), a short timeout is adequate to transfer the
missing transactions, as an honest upstream peer has already
received them before sending the CBs. In the case of (1), the
attacker cannot delay the first hop of the block propagation
more than the timeout value without the block being discarded.
In practice, we set the timeout to be 2 seconds.

R3: transaction push. If certain committed transactions are
previously unknown to a CB sender, they will be embedded
in the prefilled transaction list of the outgoing CBs (Line 19).

This rule removes the round trip if the sender and the
receiver share the same list of proposed-but-not-broadcast
transactions. In a transaction withholding attack, this rule
ensures that the secret transactions are only queried in the
first hop of the block’s propagation, and then pushed directly
to the receivers in subsequent hops.

D. Reward Allocation

A fixed block reward goes to every main chain block miner,
which is calculated based on Eqn. (11) in Appendix B-C.

For each committed transaction, 60% of its transaction fee,
denoted as the commitment fee, goes to the main chain block
miner who commits it; while the other 40%, denoted as the
proposal fee, goes to the earliest main chain block miner who
proposes the transaction within the proposal window. This 60-
to-40 fee allocation balances the miners’ incentives to propose
transactions and to extend the longest chain, in line with
Bitcoin-NG [25]. Uncle miners do not get any fees.

NC-Max—unlike Ethereum—issues neither uncle rewards
to compensate uncle miners, nor nephew rewards to incentivize
miners to embed uncles in their blocks. This is because uncle
and nephew rewards raise the selfish mining profit and lower
the mining power threshold to perform the attack [51], [59].

Miners embed uncles for three kinds of benefits. First,
embedding uncles allows more transactions to be proposed
in a block, thus earning more proposal fees for the nephew
miner. Second, when there are not enough transactions to
propose in a nephew block, some transactions can be omitted
if they are already proposed in the uncles, to further accelerate
the nephew’s propagation and lower its probability of being
orphaned. Third, embedding uncles contributes to a more
accurate estimation of the network hash rate, thus contributing
to the system’s selfish mining resistance (Sect. VI-E).

V. DYNAMIC DAM

Our two-step mechanism enables us to lower the expected
block interval. The next challenge is to locate the interval that
best utilizes the nodes’ bandwidth without affecting security.
To tackle this challenge, we introduce an accurate dynamic
DAM that exploits the bandwidth utilization to the limit of
the real-time network condition. Our goal is twofold: (G1) to
render selfish mining unprofitable; (G2) to dynamically adjust
the throughput based on the network’s bandwidth and latency.
Meanwhile, to maximize compatibility and attack resistance,
our DAM needs to satisfy four constraints, in line with NC:

C1. All epochs have the same target duration Lideal.
C2. The maximum block reward issued in an epoch R(i)
depends only on the epoch number i so that the rewards are
distributed at a predetermined rate.
C3. The hash rate estimation of the last epoch does not change
too fast, to prevent attackers from manipulating the DAM and
forging a blockchain [5], even if some miners’ network is
temporarily controlled by the attacker.
C4. The expected block interval should abide by predeter-
mined upper and lower bounds. The upper bound guarantees
service availability; the lower bound guarantees that NC-Max
does not generate more traffic than most nodes’ capacity, thus
ensuring decentralization.

To achieve G1, NC-Max incorporates all blocks, instead of
only the main chain, in calculating the hash rate estimation
of the last epoch, and then applies a dampening factor to
the estimation so that the adjusted output conforms to C3.
This output determines the computing efforts required in the
next epoch for each reward unit. The effectiveness of this
mechanism is proved in Sect. VI-E. To achieve G2, our DAM

targets a fixed orphan rate oideal, rather than a fixed block
interval as in NC. As our two-step confirmation ensures a
relatively stable block propagation process, we can solve the
expected block interval matching the target orphan rate with
the last epoch’s duration, orphan rate, and the main chain block
number. As the target epoch duration is fixed (C1), we can
solve the next epoch’s main chain block number, block reward,
and difficulty target after applying several dampening factors
and upper/lower bounds to safeguard C2 and C4. We defer
the detailed description of our DAM to Appendix B.

Combined with the two-step mechanism, targeting a fixed
orphan rate allows us to pipeline the synchronization of
previously-proposed transactions and the confirmation of
recently-committed transactions, reducing NC’s long idle time,
as shown in Fig. 1.

VI. SECURITY ANALYSIS

Having introduced the core design, next, we analyze the
protocol’s security metrics, its resistance against transaction
withholding and selfish mining attacks.

A. Threat Model

In line with prior studies [5], [26], [30], [35], [62], [74]–
[76], we assume the total mining power remains unchanged
throughout the attack, and the adversarial mining power share
α stays below half of the total mining power. Under this
environment, we assume one strong attacker who coordinates
all adversarial mining power, which can cause more damage
than multiple attackers acting separately [26]. The attacker
may temporarily turn off some mining equipment, hoping to
manipulate the DAM for higher overall profit. The attacker
receives and broadcasts messages with zero propagation delay,
and can arbitrarily reorder messages. However, the attacker
cannot slow down honest blocks’ propagation. Other miners
abide by the protocol. We do not consider the effect of
transaction fees [15], [45], [69], as it only makes up 1% of the
miners’ total rewards in Bitcoin [9]. Neither do we consider
eclipse attacks [36], [48] or network partitions.

B. Analysis of the Backbone Protocol

The security of NC’s backbone protocol is specified as the
upper and lower bounds on the chain quality, chain growth, and
common prefix metrics, first defined and proved by Garay et
al. [29]. Subsequent studies [23], [28], [38], [53], [72] optimize
these bounds and loosen the assumptions.

Our modifications to NC are limited to (1) the block validity
rules—specified as the content validation predicate and the
input contribution function in [29]—and (2) the DAM. NC’s
security proofs make only two assumptions on the block
validity rules, both of which are satisfied by NC-Max: each
block introduces enough entropy; a block mined by an honest
miner is valid to the others. As for the DAM, the security
proofs require that the block propagation latency be shorter
than the block interval, which is guaranteed by our block
interval lower bound (C4) and strengthened by the two-step
confirmation. In sum, NC-Max is an instantiation of NC’s

backbone protocol, and thus is compatible with its potential
security updates.

C. Ledger Persistence and Liveness

Next, we analyze the robustness of NC-Max as a transaction
ledger, specified as persistence and liveness properties in the
literature. We omit the persistence proof as it is identical to
that of NC’s in [29]. The liveness proof, however, is not the
same, as we modify the content validation predicate and the
input contribution function.
• Content Validation Predicate. When receiving a chain C

as input, the predicate returns 1 if and only if (1) the
contents are consistent with the application implemented
on top of C, and (2) for any (committed, tx) ∈ Blocki,
these exists a (proposed, pid) ∈ Blockj such that
txpid(tx) = pid and wclose ≤ i − j ≤ wclose, where
Blocki denotes the block with height i in C.

• Input Contribution Function. When constructing a block,
a miner embeds all proposed-but-not-committed valid
transactions in the proposal window as committed, and
all not-yet-committed and not-in-the-proposal-window
valid transactions as proposed. If a block is mined,
the miner outputs the block along with the proposed
transactions.

In the following theorem, ΠNC-Max denotes the NC-Max
protocol, λ is a security parameter, w is the proposal window
size wfar − wclose + 1, round is a small time unit, f is the
probability of at least one honest party succeeds in finding a
block in a round, ε is a small security margin that covers the
probability of several very unfortunate events.

Theorem 1 (Liveness). Under the Honest Majority Assump-
tion, in ΠNC-Max, assuming λ = w/2f , if a valid transaction
tx is given as input to all honest players continuously for at
least u = d(4λ+ wfar/f)/(1− ε)e consecutive rounds, then
all honest parties will report (committed, tx) more than w
blocks from the end of the ledger, with probability at least
PNC-Max

live = P2, where P = 1− e−Ω(ε2fλ).

Before presenting the proof, we informally summarize the
chain growth, common prefix, and chain quality results in [29]
(Lemma 7, 14, and Theorem 16). When λ ≥ 2/f and u ≥ λ,
the chain growth property states that after u rounds, any honest
chain grows by at least u(1− ε)f blocks; the common prefix
property states that for any two honest chains which may be
from different rounds, the shorter one, after pruning the last
2λf blocks, is a prefix of the longer one; the chain quality
property guarantees that there is at least one honest block in
any 2λf consecutive blocks in an honest chain.

Proof. First, as we prescribe w ≥ 4, we have λ ≥ 2/f ,
which enables us to invoke the chain growth, common prefix,
and chain quality properties with the same λ. Invoking chain
growth, after u rounds, any honest party’s chain grows by at
least 4λf+wfar = 2w+wfar blocks. For each of these chains,
invoking chain quality, with probability at least P, there is at
least one honest block in the first w blocks that will propose tx .

Let say it is the i-th block. Invoking chain quality again, with
probability at least P, there is at least one honest block among
the w-block sequence between block number i + wclose and
i+wfar that would commit tx . Note that i+wfar ≤ w+wfar.
The last w blocks ensure a common prefix.

NC shares a similar liveness property with shorter waiting
time u = 4λ/(1 − ε) and larger liveness probability P.
In practice, the extended waiting time is canceled by the
shortened block interval. Although a larger w gives us larger
PNC-Max

live , a smaller w helps NC-Max to resist better against
transaction withholding attacks, which are analyzed next.

D. Resistance Against Transaction Withholding attacks

Success Rate. We compare the fraction of attacker blocks—
blocks mined by the attacker—that can be slowed down in
NC and NC-Max, denoted as Fslow. We neglect the attack’s
outcome by assuming all the blocks are in the main chain.
This simplification does not affect the comparison: the more
attacker blocks delayed, the more honest blocks orphaned.

In NC, this attack can be performed with every attacker
block, namely FNC

slow = α. In NC-Max, a block’s propagation
can only be delayed if it contains proposed-but-not-broadcast
transactions. To trigger this case, the attacker needs two blocks
not too far from each other in the chain: the older one to
propose these secret transactions, and the younger one to
commit. Namely, for every attacker block with height h, it
can commit secret transactions only if there is another attacker
block between h − wclose and h − wfar. The probability that
there is such a block is 1− (1−α)w. Therefore, FNC-Max

slow =
α(1 − (1 − α)w). We immediately have FNC

slow > FNC-Max
slow ,

namely, NC-Max offers stronger resistance than NC.

Simulation. We simulate both protocols to demonstrate NC-
Max’s resistance against this attack in a more realistic setting.
Our simulation models how α, the proposal window size w, the
maximum attack-incurred latency, and orphaned blocks affect
the attacker’s unfair percentage of main chain blocks. The
results show that after incorporating these real-world factors,
NC-Max enjoys a greater advantage over NC than that in the
success rate analysis. The detailed model and our results are
in Appendix C.

E. Selfish Mining Resistance

We prove the following theorem on the selfish miner’s
profitability:

Theorem 2 (Selfish mining profitability). An attacker cannot
gain more block reward per time unit than mining honestly,
regardless of how many epochs the attack lasts or what
strategy the attacker adopts, if the following conditions are
met: (1) orphaned blocks are incorporated in estimating the
last epoch’s hash rate in the DAM, and (2) each epoch’s total
block reward R is fixed and all goes to non-orphaned blocks.

Modeling the Attack. The attack lasts n epochs, with epoch
number 1, 2, · · · , n. The total block reward per epoch R is
constant throughout the attack. We add an epoch 0 before

the attack launches and assume the attacker mines honestly
with full mining power α in this epoch. Note that this is
just to ensure that the difficulty is well-defined throughout the
attack process. Whether or not an attack strategy generates
continuous unfair profit is not affected by the initial difficulty.
We assume all orphans are caused by the attack, namely, there
is no naturally orphaned block. All epochs are long enough so
that we can neglect deliberately excluded orphans and assume
all orphans are included as uncles [29].

Notation. The time duration of epoch i is denoted as ti. The
compliant miners’ mining power share is denoted as c = 1−α,
and we immediately have c > 0.5. Within each epoch, the
attacker distributes the mining power among honest mining,
selfish mining, and idle. The attacker’s honest mining power
share in epoch i is denoted as bi, which extends the main
chain without orphaning any honest blocks. The selfish mining
power share is denoted as ai, which extends the main chain
and orphans the same number of honest blocks. The remaining
mining power share α− ai− bi is temporarily idle, hoping to
lower the hash rate estimation Ĥ ′i . By these definitions we
have b0 = α, a0 = 0, ai, bi ≥ 0 and ai + bi ≤ 1 − c. For
the compliant miners, c− ai mining power share extends the
main chain, and the rest ai mines orphaned blocks.

The fraction of reward in epoch i that goes to the attacker
is denoted as preward

i . If mining honestly, preward
i equals the

mining power share α, and all epochs have the same duration
t0. Therefore, the attacker’s time-averaged reward is α×R/t0,
where α × R is the attacker’s total reward in an epoch. We
normalize both R and t0 to 1 for simplicity so that α×R/t0 =
α = 1 − c. Similarly, the attacker’s time-averaged reward in
an attack is

∑n
i=1 p

reward
i /

∑n
i=1 ti, where preward

i satisfies

preward
i =

ai + bi
c+ bi

, (2)

where c+ bi is the total mining power share in extending the
main chain, ai + bi is the attacker’s share. According to our
DAM, we have

ti =
c+ ai−1 + bi−1

c+ bi
, (3)

where c + ai−1 + bi−1 is the total mining power in the last
epoch, estimated by our DAM by counting both main chain
blocks and uncles. The main chain grows slower than epoch
0, i.e., ti > 1, when c+ ai−1 + bi−1 > c+ bi, and vice versa.

Proof. We need to prove that, regardless of how the attacker
chooses n, ai and bi for 1 ≤ i ≤ n,∑n

i=1 p
reward
i∑n

i=1 ti
≤ 1− c ,

where the left is the time-averaged block reward with the
attack, the right is that of honest mining. Let σk =∑k
i=1 p

reward
i − (1 − c)

∑k
i=1 ti, proving the inequality is

equivalent to proving σn ≤ 0. Let di = ai + bi, we will
prove a stronger result of σn ≤ c+dn−1 by induction. First,

σ1 = preward
1 − (1− c)t1 =

d1 − (1− c)(c+ d0)

c+ b1

=
c+ d1 − 1

c+ b1
≤ c+ d1 − 1 .

Next, assuming for k < n, σk ≤ c + dk − 1 holds. When
k = n,

σn = σn−1 + preward
n − (1− c)tn

≤ c+ dn−1 − 1 +
dn

c+ bn
− (1− c)c+ dn−1

c+ bn

= c+ dn−1 − 1 +
dn − (1− c)(c+ dn−1)

c+ bn
,

now we only need to prove

c+ dn−1 − 1 +
dn − (1− c)(c+ dn−1)

c+ bn
≤ c+ dn − 1

⇔ (c+ bn)(dn−1 − dn) + dn − (1− c)(c+ dn−1)

c+ bn
≤ 0

⇔ (c+ bn − 1)(dn−1 − dn) + c(c+ dn−1 − 1) ≤ 0 .

When dn−1 ≥ dn, the last inequality holds. Now we need to
prove that it holds for dn−1 < dn. Let εn = dn − dn−1 > 0,
the last inequality becomes

− εn(c+ bn − 1) + c(c+ dn − εn − 1) ≤ 0

⇔ c(c+ dn − 1)− εn(2c+ bn − 1) ≤ 0 .

As the validity of this “incorporating uncles” mechanism
does not rely on NC-Max’s two-step confirmation and dynamic
block interval, it can be implemented independently in NC to
strengthen its security.

At last, we note that although an attacker cannot gain higher
time-averaged profit, he can still raise the relative revenue, i.e.,
the proportion of block rewards, by invalidating honest blocks.
This limitation is inherited from NC’s backbone protocol. We
hope to fix this limitation in future work.

VII. SIMULATION AND IMPLEMENTATION

In this section, we experimentally confirm that NC-Max
breaks the security-performance tradeoff and compare the per-
formance of NC-Max with existing designs. First, we measure
the block propagation latency and the orphan rate of NC
and NC-Max under several transaction processing workloads
and block intervals in an environment simulating the Bitcoin
network. The results show that NC-Max has a stable low
orphan rate independent of the throughput, therefore allows
a shorter block interval with the same level of security.

Then we compare the throughput and the transaction confir-
mation latency of NC-Max with NC and blockDAG protocols.
The results demonstrate that NC-Max enables the full utiliza-
tion of the nodes’ bandwidth, whereas all blockDAG protocols
suffer from the duplicate-packing problem. Furthermore, the
transaction confirmation latency is similar to that of Prism, a
recent blockDAG protocol featured by its short latency.

A. Experimental Setup

Network and Mining. Our environment emulates the Bitcoin
network’s scale, connectivity, node latency, block and transac-
tion propagation latency, and mining power distribution. Our
data sources and sampling mechanisms are in Appendix D.
The emulated network differs from the Bitcoin network in
two ways: we prescribe (1) a uniform bandwidth of 10 Mbps
(1.25 MBps) and (2) a stable network topology, which does
not account for heterogeneous node resources and the joining
and leaving of nodes. Yet NC’s block propagation latency and
its distribution in our simulation match well with the Bitcoin
network, verifying the reasonableness of the environment.

Transaction Packing and Data Collection. We consider
three transaction packing workloads: 100, 1000 and 2500
TPS, and eight average block intervals tin: 1 to 5, 10, 20
and 40 seconds. In the 100 TPS setting, 100 transactions
are generated per second; each block packs up to 100tin
transactions. Other settings follow similar constraints. The
2500 TPS setting exhausts the nodes’ 10 Mbps bandwidth
to synchronize transactions. The number of fresh transactions
nfresh is sampled from our second experiment in Sect. III-C
with tin, the time since last block tin, and the transaction
packing workload as inputs. Note that the initial transaction
propagation does not affect the block propagation as blocks
have priority in propagation over transactions. A simulation is
executed 40 times; each instantiates a new network topology
and generates 200 blocks.

B. Block Propagation Latency

Figure 6 shows the time distribution for blocks to propagate
to 50% and 90% of nodes. We only display one setting for
NC-Max as all settings follow similar patterns.

In the NC, tin = 40, 100 TPS setting, 50% of blocks
contain no fresh transaction, which finish propagation within
600 ms; the other 50% take more than two seconds to
finish propagation. These results match well with Bitcoin’s
current situation: when tin = 600, most blocks’ propagation
delay is within 600 ms, with a few exceptions over two
seconds [22]. When tin decreases, fewer and fewer blocks
contain no fresh transaction. Also as tin decreases, blocks
with fresh transactions propagate slightly faster, because the
block size decreases along with tin in a fixed-TPS setting.
However, the speedup is not proportional to the block size,
especially in the worst case, as a smaller tin also means a
higher fraction of fresh transactions. At last, blocks propagate
slower as the workload increases, since the bandwidth, rather
than the latency, becomes the bottleneck.

In NC-Max, when wclose is large enough, the latency is not
affected by the block interval, and only marginally affected
by the block size. In the 100 TPS setting, the 50% block
propagation latency concentrates at two values: 450 ms and
520 ms, because sometimes it takes a block four hops to reach
the 50th percentile, sometimes it takes five. Other settings have
similar results, except for abiding by the bandwidth constraint.

C. Orphan Rate

In line with our DAM, an orphan rate here is computed as
the number of orphaned blocks, divided by the number of main
chain blocks. As displayed in Fig. 7, in NC, as the workload
increases, the orphan rate deteriorates, since larger blocks take
longer to propagate; whereas in NC-Max, the orphan rate is
almost independent of the workload. Consequently, NC-Max
reduces the block interval with the same orphan rate. For
example, when tin = 4, the orphan rate is 6% in NC-Max;
whereas in NC, the same orphan rate demands tin = 20 with
100 TPS, tin = 40 with 1000 TPS, tin > 40 with 2500 TPS.

D. Minimum Propose-Commit Distance

NC-Max’s near-constant block propagation latency and low
orphan rate require that newly-committed transactions have
finished synchronization, which is ensured by the minimum
propose-commit distance wclose. The minimum wclose to guar-
antee performance, denoted as wmin

close, is a function of (1) tin,
(2) the block size limit S, and (3) the network condition Z ,
which encompasses the network’s topology, the joining and
leaving of nodes, and the nodes’ heterogeneous resources.

We display wmin
close(tin, S,Z) and how the orphan rate raises

when wclose < wmin
close in Fig. 8. For NC-Max, 100 TPS and all

other omitted settings, wmin
close = 2. The orphan rate is stable

when wclose ≥ wmin
close; otherwise it is sensitive to wclose even

when tin is small: a change from 26 to 25 in the tin = 1, 2500
TPS setting doubles the orphan rate.

Due to the dynamic nature of Z , we do not claim that our
wmin

close values are directly applicable in practice. We suggest
two mechanisms to ensure a large-enough wclose. First, to
hard-code some lower bounds on wclose based on the expected
block interval of the epoch. Second, to dynamically adjust
wclose based on the block propagation information of the last
epoch, in line with our DAM.

E. Throughput and Transaction Confirmation Latency

We simulate several blockDAG protocols and compare their
throughput and transaction confirmation latency with NC and
NC-Max. To ensure fairness, we apply the same sequence
of block generation events to all protocols with each tin and
anchor the transaction processing workload at 2500 TPS. The
memory pool size has a 300 MB limit—Bitcoin’s peak size
achieved in Dec. 2017 [12]; old transactions are dropped if it is
full. We summarize the main results here and refer interested
readers to the complete results in Appendix E.
Throughput. NC-Max outperforms all other protocols with
all tin values, reaching at least 2490 TPS when tin < 40.
When tin = 40, some transactions are lost as sometimes the
transactions generated between consecutive blocks exceed the
pool size limit. If all miners pack randomly from their pool,
blockDAG protocols perform only slightly worse than NC-
Max—at least 2470 TPS when the memory pool is not full.
However, their performance downgrades to that of NC if all
miners share the same preference in transaction packing.
Transaction Confirmation Latency. We compare the latency
of NC, NC-Max, and Prism [4]. Both NC-Max and Prism

1 2 3 4 5 10 20 40
Average Block Interval tin [sec]

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Bl
oc

k
Pr

op
ag

at
io

n
La

te
nc

y
[m

s]

progress
50%
90%

(a) NC, 100 TPS.

1 2 3 4 5 10 20 40
Average Block Interval tin [sec]

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

Bl
oc

k
Pr

op
ag

at
io

n
La

te
nc

y
[m

s]

progress
50%
90%

(b) NC, 1000 TPS.

1 2 3 4 5 10 20 40
Average Block Interval tin [sec]

0

10,000

20,000

30,000

40,000

Bl
oc

k
Pr

op
ag

at
io

n
La

te
nc

y
[m

s] progress
50%
90%

(c) NC, 2500 TPS.

1 2 3 4 5 10 20 40
Average Block Interval tin [sec]

400

500

600

700

800

Bl
oc

k
Pr

op
ag

at
io

n
La

te
nc

y
[m

s] progress
50%
90%

(d) NC-Max, 100 TPS. For all data in this figure, wclose = 2.

Fig. 6: Blocks propagate faster in NC-Max than in NC. Latency distribution is displayed as the kernel density estimation [71];
wider value indicates higher density. The median is displayed as a white dot.

Fig. 7: Orphan rates. NC-Max with large-enough wclose.

26 21 17 13 10

Fig. 8: The orphan rate increases when wclose < wmin
close.

confirm transactions faster than NC, whose latency is at least
four times that of NC-Max with the same orphan rate. The

median latencies of Prism range from 50% to 90% of those
of NC-Max when tin < 5, as all blocks in Prism contribute
to transaction confirmation regardless of whether they are in
the main chain. NC-Max outperforms Prism as tin grows
and orphaned blocks diminish. As an additional observation,
blocks propagate faster are confirmed sooner in blockDAG
protocols; whereas NC-Max confirms transactions at roughly
even latency, providing more stable user experience.

VIII. IMPLEMENTATION

NC-Max is implemented in Nervos CKB, a public per-
missionless blockchain launched in Nov. 16, 2019, and has
operated smoothly since then. The PoW puzzle of Nervos
CKB is a dedicated hash function called EagleSong [3]. The
project’s consensus and peer-to-peer communication compo-
nents consist of 14K lines of code (LOC). In addition, we
implement Yamux [34] and libp2p secio [57] protocols as
a separate library called Tentacle of 2.9K LOC to handle
lower-level connection details. Nervos CKB1 and Tentacle2

are implemented in Rust and are open source.
The protocol parameters are instantiated as follows. The

target epoch duration Lideal = 4 hours. Coinbase transaction
outputs, i.e., block rewards, can only be spent after four
epochs. The lower and upper bounds on the expected block
interval are 8 and 48 seconds, respectively. Each block embeds

1https://github.com/nervosnetwork/ckb
2https://github.com/nervosnetwork/tentacle

Fig. 9: In Nervos CKB, most epochs’ duration is close to the
four-hour target. Data collected between Nov. 16, 2019 and
June 12, 2020.

Fig. 10: The network hash rate of Nervos CKB grows 150
times in its first seven months; the orphan rate stays close
to the 2.5% target. The hash rate rocketed since early March
as dedicated ASIC miners enter the market. Two spikes in the
orphan rate correspond to two sharp increases in the hash rate.
The initial orphan rate is omitted as it is close to zero.

Fig. 11: The planned block interval outputted by our DAM
matches well with the actual average block interval. We
only display the last 100 epochs as the two lines become
indistinguishable when including more epochs.

at most two uncles, which is enough given our target orphan
rate oideal = 2.5%. The maximum block size is 597 KB, which
translates to around 1000 two-input-two-output committed
transactions and a proposal zone of at most 1500 txpids. The
minimum and maximum propose-commit distances, i.e., wclose

and wfar, are set to two and ten, respectively. Parameters of
our DAM are in Appendix B.

The Nervos CKB network has grown considerably since its

inception. The network hash rate, displayed in Fig. 10, has
grown from 7.3 × 1013 to 1.1 × 1016 hash/sec. As of June
2020, the mining power is distributed among 12 mining pools
with the largest one controlling roughly a third.

Nervos CKB demonstrates the effectiveness of our DAM
from three aspects. First, as shown in Fig. 9, despite the
150-time hash rate growth in its first seven months, 93%
of epochs’ duration deviates no more than 20 minutes from
Lideal. Second, as shown in Fig. 11, the measured average
block interval in each epoch deviates only 3.7% on average
from the planned expected interval outputted by our DAM;
only 4.4% of epochs deviate more than 10%. These two
aspects demonstrate the accuracy of our estimation of the
total hash rate. Third, as displayed in Fig. 10, the orphan
rate, targeting an ideal value of 2.5%, goes over 3% for only
three days, proving that our adjustment on the difficulty, hence
the block interval, stabilizes the orphan rate. Figure 11 also
reveals that the planned block interval frequently hits the eight-
second lower bound, indicating that the network is capable of
processing more frequent blocks.

Meanwhile, the block propagation latency is satisfactory,
which can be testified by the low orphan rate: Nervos CKB
achieves a 2.5% long-term average orphan rate with a 7.5-
second average block interval. The block interval is shorter
than the lower bound as the hash rate constantly increases. In
contrast, in Ethereum, which implements a variant of NC, the
long-term average orphan rate is 10% [58]; the average block
interval is 13 seconds [24]. Admittedly, these two systems are
not directly comparable given that Nervos CKB has a lower
transaction processing workload. An in-depth analysis of the
block propagation requires a well-connected network monitor,
which we leave for future work.

IX. DISCUSSION

We now further elaborate on some possible concerns.

Remaining Performance Limit. While the block size limit
can increase until the throughput exhausts most nodes’ band-
width, our protocol does not support arbitrarily low block
intervals as it would lead to too high an orphan rate. For
example, the orphan rate may undesirably exceed 10% and dis-
courage some miners when tin is one or two seconds. Accord-
ingly, although NC-Max reduces the transaction confirmation
latency of NC, a lower bound remains on this latency. Also, the
correlation between the transaction processing workload and
the confirmation latency remains, as transactions propagate
slower when the nodes’ bandwidth is exhausted.

The leading cause of orphaned blocks in NC-Max is the
random nature of the mining process. Specifically, as block
intervals follow an exponential distribution, it is impossible
to enforce a lower bound on all of them. One approach to
modify the distribution is to combine the current reversing-a-
hash-function puzzle with a verifiable delay function [10].

Reasons to Embed Uncles. Another concern involves the min-
ers’ possible lack of financial incentives to embed uncles when
there are not enough transactions to propose. Nevertheless,

rational miners would still follow the protocol since, next to
the proposal fees for embedding uncles which they are likely
to receive under most situations, doing so would strengthen the
system’s security and, in particular, lower the possibility that
the miners’ blocks are orphaned in the long term. Moreover,
not all honest behaviors need to be incentivized by fees. For
example, Bitcoin relies on all miners not to set their clocks
collectively faster to exhaust all remaining block rewards;
no cryptocurrency provides any reward for nodes to forward
blocks and transactions.

Pipelining vs. Concurrency. There is an emerging awareness
in blockchain designs towards parallel block processing to
exhaust the nodes’ bandwidth. While parallel processing is
mostly through concurrency as in blockDAG protocols, we
highlight the potential of pipelining. Compared to concur-
rency protocols, which often involve duplicate transaction
packing [43] and complicated algorithms to order blocks [44],
[65], [66], a pipelining protocol, such as NC-Max, enjoys the
advantage of simplicity, which leads to stronger security and
functionality. Admittedly, pipelining protocols, including the
recent Byzantine fault tolerance protocol Hotstuff [73], man-
date an additional latency. In NC-Max, however, this propose-
commit distance is to ensure that all nodes have received
the transactions, which is necessary for all blockchains—
including blockDAGs—before the transactions are considered
confirmed. Explicitly mandating this latency strengthens the
security, as demonstrated in our analysis of transaction with-
holding attacks.

In sum, as our pipelining approach already enables the full
utilization of the nodes’ bandwidth, we avoid introducing more
complex rules—which often lead to more attack vectors and
more limitations on functionality—to the consensus protocol.

X. RELATED WORK

We discuss some related work here in addition to Sect. II-B.
We omit alternative designs that leverage more security as-
sumptions than NC’s and refer interested readers to Bano et
al. [6] for these non-PoW and hybrid consensus protocols.
Neither do we include off-chain [33] and sharding [70] proto-
cols, where not all transactions are synchronized by all nodes.
These protocols are compatible with NC-Max, and therefore
can further increase a system’s throughput.

Parallel Blocks. The GHOST protocol designed by Sompolin-
sky and Zohar [67] demands that during a block race, miners
select the branch with the largest number of blocks, rather
than the longest chain. GHOST resists better against double-
spending than NC when the block interval is short so that
natural forks happen frequently. However, Kiayias and Pana-
giotakos indicated that GHOST enables an attacker to slow
down transaction confirmation via a balancing attack [40].

The Inclusive protocol proposed by Lewenberg et al. [43]
also enables transaction confirmation by competing blocks.
NC-Max inherits this key idea by allowing uncles to propose
transactions while avoiding redundant transmission as each
transaction is proposed with its txpid.

Decoupled Consensus. Bitcoin-NG by Eyal et al. [25] de-
couples NC’s leader election and transaction serialization,
allowing the nodes’ full bandwidth to be utilized to confirm
transactions. Unlike NC-Max, which shortens NC’s transaction
confirmation latency, this latency remains the same in Bitcoin-
NG as in NC.

Novel DAM. Miller suggested a DAM targeting a one-to-
one orphan-to-main-chain-block ratio, to minimize the block
interval and to remove the block timestamp [64]. However,
it is unclear how to distribute rewards at a constant speed
without the timestamps. Moreover, Rosenfeld indicated that
such a high orphan rate downgrades the attack difficulty [61].

The fact that selfish mining’s profitability roots in the DAM
was observed by Gervais et al. [30] and proved by Grunspan,
and Pérez-Marco [32]. The latter study suggests incorporating
uncles in the DAM to thwart the attack. Their proof on the
new DAM’s effectiveness does not cover the case where the
attacker adapts to the modified mechanism and temporarily
turns off some mining equipment, as indicated by Negy et
al. [49]. Ethereum also incorporates uncles in its DAM [14].

Block Propagation Acceleration Techniques. The FIBRE
network maintained by Corallo [17] deploys several high-
speed nodes across the globe to help miners synchronize
blocks the moment they are found. Bloxroute by Klarman et
al. [41] is a network design that deploys high-speed nodes that
start to relay blocks before receiving the full content. Both
approaches are centrally coordinated. Although centralized
systems can further accelerate the block propagation, the P2P
acceleration techniques, including the one we proposed, serve
as safety nets that are immune to single points of failure.

XI. CONCLUSION

While the current scholarly and engineering efforts to
improve blockchains’ performance concentrate on designing
innovative consensus protocols, we alternatively highlight the
importance of the network layer in the issue. By optimizing
NC’s block propagation mechanism on both the consensus and
the network layer with a two-step mechanism, we break the
throughput limit of NC without compromising security. We
believe such an “incremental” approach, though not necessar-
ily in line with the blockchain industry’s eagerness for “rev-
olutionary breakthroughs”, is meaningful and inspirational. It
reveals the significance of a long-overlooked aspect of protocol
design—the network layer, and even more importantly, pre-
serves the value and allows an easy transfer of our knowledge
around NC—the knowledge that we, as scholars and engineers,
collectively accumulated through the last decade.

REFERENCES

[1] “Litecoin,” https://litecoin.org/.
[2] “Crypto-currency market capitalizations,” 2020, https://coinmarketcap.

com/charts/.
[3] Anonymized, “Our peer-reviewed hash function design,” 2020.
[4] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:

Deconstructing the blockchain to approach physical limits,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 585–602.

[5] L. Bahack, “Theoretical Bitcoin attacks with less than half of the
computational power (draft),” arXiv preprint arXiv:1312.7013, 2013,
https://arxiv.org/pdf/1312.7013.pdf.

[6] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Consensus in the age of blockchains,” CoRR,
vol. abs/1711.03936, 2017, http://arxiv.org/abs/1711.03936.

[7] I. Bentov, P. Hubácek, T. Moran, and A. Nadler, “Tortoise and Hares
consensus: the Meshcash framework for incentive-compatible, scalable
cryptocurrencies,” IACR Cryptology ePrint Archive, 2017, https://eprint.
iacr.org/2017/300.pdf.

[8] bitcoincash.org, “Bitcoin cash,” 2019, https://www.bitcoincash.org/.
[9] Blockchain, “Bitcoin block explorer,” 2017, https://blockchain.info/.

[10] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, ser. Lecture Notes in Computer
Science, vol. 10991. Springer, 2018, pp. 757–788.

[11] J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg,
“Formal barriers to longest-chain proof-of-stake protocols,” in
Proceedings of the 2019 ACM Conference on Economics and
Computation, ser. EC ’19. ACM, 2019, pp. 459–473. [Online].
Available: http://doi.acm.org/10.1145/3328526.3329567

[12] BTC.com, “Unconfirmed transactions in Bitcoin,” 2020, https://btc.com/
stats/unconfirmed-tx.

[13] V. Buterin, “Ethereum: A next-generation smart contract and decentral-
ized application platform,” 2014, https://github.com/ethereum/wiki/wiki/
White-Paper.

[14] ——, “Change difficulty adjustment to target mean block time includ-
ing uncles,” 2016, https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-100.md.

[15] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On
the instability of Bitcoin without the block reward,” in Proc. 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. ACM, 2016, pp. 154–167, http://doi.acm.org/10.1145/
2976749.2978408.

[16] M. Corallo, “Compact block relay,” 2016, https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki.

[17] ——, “Public highly optimized fibre network,” 2019, http://bitcoinfibre.
org/public-network.html.

[18] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in Financial Cryptography and Data Security, ser. LNCS,
vol. 9604. Springer, 2016, pp. 106–125.

[19] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 23–41.

[20] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[21] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in 13th IEEE International Conference on Peer-to-Peer Com-
puting (P2P). IEEE, 2013.

[22] DNS Research Group, KASTEL @ KIT, “Bitcoin network monitor,”
2019, https://dsn.tm.kit.edu/bitcoin/.

[23] T. Duong, A. Chepurnoy, and H.-S. Zhou, “Multi-mode cryptocurrency
systems,” in Proceedings of the 2nd ACM Workshop on Blockchains,
Cryptocurrencies, and Contracts. ACM, 2018, pp. 35–46.

[24] Ethstats, “Ethereum network status,” 2020, https://ethstats.net/.
[25] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-

NG: A scalable blockchain protocol,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16).
Santa Clara, CA: USENIX Association, 2016, pp. 45–59. [Online].
Available: https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/eyal

[26] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography and Data Security. Springer,
2014, pp. 436–454.

[27] P. Gai, A. Kiayias, and A. Russell, “Stake-bleeding attacks on proof-
of-stake blockchains,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT), 2018, pp. 85–92.

[28] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone protocol
with chains of variable difficulty,” in Advances in Cryptology – CRYPTO
2017, ser. LNCS, vol. 10401. Springer, 2017, pp. 291–323.

[29] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone
protocol: Analysis and applications,” in EUROCRYPT, 2015, pp. 281–
310.

[30] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proc. the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. ACM, 2016, pp. 3–16,
http://doi.acm.org/10.1145/2976749.2978341.

[31] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 51–68.

[32] C. Grunspan and R. Pérez-Marco, “On profitability of selfish min-
ing,” arXiv preprint arXiv:1805.08281, 2018, https://arxiv.org/pdf/1805.
08281.pdf.

[33] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Off the chain transactions,” Cryptology ePrint Archive, Report
2019/360, 2019, https://eprint.iacr.org/2019/360.

[34] Hashicorp, “Yamux (yet another multiplexer),” 2020, https://github.com/
hashicorp/yamux.

[35] E. Heilman, “One weird trick to stop selfish miners: Fresh Bitcoins,
a solution for the honest miner.” Cryptology ePrint Archive, Report
2014/007, 2014, https://eprint.iacr.org/2014/007.

[36] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
Bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 129–144.

[37] S. Kanjalkar, J. Kuo, Y. Li, and A. Miller, “Short paper: I can’t
believe it’s not stake! resource exhaustion attacks on PoS,” in Financial
Cryptography and Data Security (FC) 2019, ser. Lecture Notes in
Computer Science, vol. 11598. Springer, 2019, pp. 62–69.

[38] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis,
“Blockchain mining games,” in Proceedings of the 2016 ACM Con-
ference on Economics and Computation. ACM, 2016, pp. 365–382.

[39] A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in blockchain
protocols,” IACR Cryptology ePrint Archive, 2015, http://eprint.iacr.org/
2015/1019.

[40] ——, “On trees, chains and fast transactions in the blockchain,” IACR
Cryptology ePrint Archive, 2016, https://eprint.iacr.org/2016/545.pdf.

[41] U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, “bloxroute:
A scalable trustless blockchain distribution network whitepaper,” IEEE
Internet of Things Journal, 2018.

[42] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing Bitcoin security and performance with strong consistency
via collective signing,” in Proc. 25th conference on USENIX Security
Symposium, 2016.

[43] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain
protocols,” in Financial Cryptography and Data Security, ser. LNCS,
vol. 8975. Springer, 2015, pp. 528–547.

[44] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and
A. C.-C. Yao, “A decentralized blockchain with high throughput and fast
confirmation,” in 2020 USENIX Annual Technical Conference, 2020, pp.
515–528.

[45] K. Liao and J. Katz, “Incentivizing blockchain forks via whale transac-
tions,” in Financial Cryptography and Data Security, ser. LNCS, vol.
10323. Springer, 2017, pp. 264–279.

[46] G. Maxwell, “Advances in block propagation,” 2017, https://www.
youtube.com/watch?v=EHIuuKCm53o.

[47] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
http://www.bitcoin.org/bitcoin.pdf.

[48] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in IEEE
European Symposium on Security and Privacy (EuroS&P), IEEE. IEEE,
2016, pp. 305–320.

[49] K. A. Negy, P. R. Rizun, and E. G. Sirer, “Selfish mining re-examined,”
in Financial Cryptography and Data Security - 24th International Con-
ference, ser. Lecture Notes in Computer Science, vol. 12059. Springer,
2020, pp. 61–78.

[50] M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, “Defending against
malicious reorgs in Tezos Proof-of-Stake,” in Proceedings of the 2nd
ACM Conference on Advances in Financial Technologies, ser. AFT ’20.
Association for Computing Machinery, 2020, p. 4658.

[51] J. Niu and C. Feng, “Selfish mining in Ethereum,” in 39th IEEE
International Conference on Distributed Computing Systems, ICDCS
2019. IEEE, 2019, pp. 1306–1316.

[52] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, and K. Pietrzak,
“Spacemint: A cryptocurrency based on proofs of space,” in Inter-
national Conference on Financial Cryptography and Data Security.
Springer, 2018, pp. 480–499.

[53] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.

[54] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proceedings of
the ACM Symposium on Principles of Distributed Computing, ser. PODC
’17. ACM, 2017, pp. 315–324, http://doi.acm.org/10.1145/3087801.
3087809.

[55] A. Poelstra, “Scriptless scripts,” 2017, https://download.wpsoftware.net/
bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf.

[56] A. Poelstra et al., “Distributed consensus from proof of stake is
impossible,” Self-published Paper, 2014.

[57] Protocol Labs, “Libp2p secio: a secure transport module for go-libp2p,”
2020, https://github.com/libp2p/go-libp2p-secio.

[58] YCharts Inc., “Ethereum uncle rate,” 2019, https://ycharts.com/
indicators/ethereum uncle rate.

[59] F. Ritz and A. Zugenmaier, “The impact of uncle rewards on selfish
mining in Ethereum,” in 2018 IEEE European Symposium on Security
and Privacy Workshops (EuroS PW). IEEE, April 2018, pp. 50–57.

[60] P. R. Rizun, “Subchains: A technique to scale Bitcoin and improve the
user experience,” Ledger, 2016, https://www.ledgerjournal.org/ojs/index.
php/ledger/article/view/40.

[61] M. Rosenfeld, “Re: on the optimal difficulty setting for Bitcoin,”
2012, https://bitcointalk.org/index.php?topic=98314.msg1075710#
msg1075710.

[62] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in Bitcoin,” in Financial Cryptography and Data Security, ser.
LNCS, vol. 9603. Springer, 2016, pp. 515–532.

[63] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
459–474.

[64] socrates1024, “on the optimal difficulty setting for Bitcoin,” 2012, https:
//bitcointalk.org/index.php?topic=98314.msg1075701#msg1075701.

[65] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: Serialization
of proof-of-work events: Confirming transactions via recursive elec-
tions,” 2016, https://eprint.iacr.org/2016/1159.pdf.

[66] Y. Sompolinsky, S. Wyborski, and A. Zohar, “PHANTOM and
GHOSTDAG: A scalable generalization of Nakamoto Consensus,” IACR
Cryptology ePrint Archive, 2020, https://eprint.iacr.org/2018/104.pdf.

[67] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in Bitcoin,” in Financial Cryptography and Data Security, ser. LNCS,
vol. 8975. Springer, 2015, pp. 507–527.

[68] M. P. Stats., “Bitcoin mining pools,” 2019.
[69] I. Tsabary and I. Eyal, “The gap game,” in Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. ACM, 2018, pp. 713–728. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243737

[70] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, ser. AFT 19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 4161. [Online].
Available: https://doi.org/10.1145/3318041.3355457

[71] M. Waskom, “Kernel density estimation,” 2019, https://seaborn.pydata.
org/tutorial/distributions.html#distribution-tutorial.

[72] P. Wei, Q. Yuan, and Y. Zheng, “Security of the blockchain against long
delay attack,” in Advances in Cryptology–ASIACRYPT 2018, ser. LNCS,
vol. 11274. Springer, 2018.

[73] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: BFT consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[74] R. Zhang and B. Preneel, “On the necessity of a prescribed block
validity consensus: Analyzing Bitcoin Unlimited mining protocol,” in
13th International Conference on emerging Networking EXperiments
and Technologies (CoNEXT). ACM, Dec. 2017, pp. 108–119.

[75] ——, “Publish or Perish: A backward-compatible defense against selfish
mining in Bitcoin,” in The Cryptographers’ Track at the RSA Conference
(CT-RSA), ser. LNCS, vol. 10159. Springer, Feb. 2017, pp. 277–292.

[76] ——, “Lay down the common metrics: Evaluating proof-of-work con-
sensus protocols’ security,” in 40th IEEE Symposium on Security and
Privacy (S&P). IEEE, May 2019, pp. 1190–1207.

APPENDIX A
PARAMETER EXAMPLES

Here is a typical set of parameters that satisfy the require-
ments mentioned in Sect. IV-B, assuming the block size limit
is 1 MB. A header is 176 bytes, including 80 bytes of NC
block header and three 32-byte Merkle roots. A proposal zone
is 41 403 bytes at most, including 2300 18-byte txpids and
a three-byte transaction count. For a block with one uncle,
the header, the proposal zone, and the uncle header consume
41 755 bytes, which leaves 1 006 821 bytes in a block for the
commitment zone, that can accommodate 2237 transactions of
450 bytes each. The corresponding CB includes 41 755 bytes
for two block headers and the proposal zone, 13 422 bytes
for shortids, 450 bytes for the coinbase transaction and less
than 20 bytes of other metadata, in total less than 55 KB.
The size becomes 95 KB if the uncle’s proposal zone is
included. Whether or not to include uncles’ proposal zones
in CBs depends on whether they are already synchronized in
this connection. There is no need to propose transactions that
are already proposed in the uncles, which reduces the size of
CBs.

APPENDIX B
OUR DIFFICULTY ADJUSTMENT MECHANISM

A. Inputs and Outputs

Similar to NC, NC-Max’s DAM is executed at the end of
every epoch. It takes four inputs:
Ti last epoch’s target
Li last epoch’s duration—the timestamp difference

between epoch i and i− 1’s last blocks
Ci,m last epoch’s main chain block count
Ci,o last epoch’s orphaned block count—the number

of uncles embedded in epoch i’s main chain
Among these inputs, Ti and Ci,m are decided by the last

DAM iteration; Li and Ci,o are measured after the epoch ends.
The orphan rate oi is calculated as Ci,o/Ci,m. We do not
include Ci,o in its denominator to simplify the equations. As
some orphans at the end of the epoch might be excluded from
the main chain by an attack, oi is a lower bound of the actual
number. However, the proportion of deliberately excluded
orphans is negligible as long as the epoch is long enough, as
the difficulty of orphaning a chain grows exponentially with
the chain length [29]. The algorithm outputs three values:
Ti+1 next epoch’s target
Ci+1,m next epoch’s main chain block count
ri+1 next epoch’s block reward
If the network hash rate and block propagation latency

remain constant, oi+1 should reach the ideal value oideal,
unless Ci+1,m equals its upper bound Cmax

m or its lower bound
Cmin

m . Epoch i + 1 ends when it reaches Ci+1,m main chain
blocks regardless of how many uncles are embedded.

B. Estimating Last Epoch’s Hash Rate and Block Propagation
Parameters

Adjusted Hash Rate Estimation. The adjusted hash rate esti-
mation, denoted as Ĥi, is computed by applying a dampening
factor τ1 to last epoch’s actual hash rate Ĥ ′i . The actual hash
rate is calculated as follows:

Ĥ ′i =
HSpace

Ti
· (Ci,m + Ci,o)/Li , (4)

where HSpace is the size of the entire hash space, e.g., 2256 in
Bitcoin, HSpace/Ti is the expected number of hash operations
to find a valid block, and Ci,m + Ci,o is the total number of
blocks in epoch i. Ĥ ′i is computed by dividing the expected
total number of hash operations by the duration Li.

Now we apply the dampening filter:

Ĥi =

Ĥi−1 · 1

τ1
, Ĥ ′i < Ĥi−1 · 1

τ1

Ĥi−1 · τ1, Ĥ ′i > Ĥi−1 · τ1
Ĥ ′i, otherwise

,

where Ĥi−1 denotes the adjusted hash rate estimation out-
putted by the last DAM iteration. The dampening factor
ensures that the adjusted hash rate estimation does not change
by more than a factor of τ1—instantiated as 2 in Nervos
CKB—between two consecutive epochs so that our DAM
satisfies C3.

Modeling the Block Propagation. It is difficult, if not
impossible, to model the detailed block propagation procedure,
given that the network topology is unknown. Luckily, for our
purpose, it suffices to describe the block propagation with two
parameters, which will be used to compute Ci+1,m later. We
learn some information on these parameters by computing the
expected hash operations working on orphaned blocks in two
different ways and then connect the expressions.

We assume all blocks follow a similar propagation model,
in line with [18], [21]. In the last epoch, it takes d seconds
for a block to propagate to the entire network, and during this
process, the average fraction of mining power working on the
block’s parent is p. Therefore, during these d seconds, Ĥ ′i×dp
hash operations work on the latest block’s parent, thus do not
contribute to extending the blockchain. Consequently, in the
last epoch, the total number of hashes that do not extend the
blockchain is Ĥ ′i × dp× Ci,m.

On the other hand, the number of hash operations working
on observed orphaned blocks is HSpace/Ti×Ci,o. When the
orphan rate is relatively low, we can ignore the rare event that
more than two competing blocks are found at the same height.
Therefore we have

Ĥ ′i × dp× Ci,m = HSpace/Ti × Ci,o . (5)

If we combine Eqn. (4) and (5), we can solve dp:

dp =
HSpace/Ti × Ci,o

Ĥ ′i × Ci,m
=

oi × Li
(1 + oi)Ci,m

, (6)

C. Computing the Outputs

Main Chain Block Count. If the next epoch’s block propa-
gation situation is identical to the last epoch’s, the value dp
should remain unchanged. In order to achieve the ideal orphan
rate oideal and C1—the ideal epoch duration Lideal, following
the same reasoning with Eqn. (6), we should have

dp =
oideal × Lideal

(1 + oideal)C ′i+1,m

, (7)

where C ′i+1,m is the number of main chain blocks in the next
epoch, if our only goal is to achieve oideal and Lideal.

By combining Eqn. (6) and (7), when oi 6= 0, we can solve
C ′i+1,m:

C ′i+1,m =
oideal(1 + oi)× Lideal × Ci,m

oi(1 + oideal)× Li
. (8)

Now in order to achieve C4, we can apply the upper and
lower bounds to C ′i+1,m and get Ci+1,m:

Ci+1,m =

min{Cmax
m , τ2Ci,m},

oi = 0 or C ′i+1,m > min{Cmax
m , τ2Ci,m}

max{Cmin
m , Ci,m/τ2},
C ′i+1,m < max{Cmax

m , Ci,m/τ2}
C ′i+1,m, otherwise

.

(9)
Equation (9) also covers the case of oi = 0. When Lideal

is fixed (C1), a lower bound on Ci+1,m is equivalent to an
upper bound on the expected block interval tin, and vice versa.
The dampening factor τ2, also instantiated as 2 in Nervos
CKB, serves both C3 and C4, preventing the main chain block
number from changing too fast.

Target. To compute the target, we introduce an adjusted
orphan rate estimation o′i+1:

o′i+1 =

0, oi = 0

oideal, Ci+1,m = C ′i+1,m

1/(
(1+oi)LidealCi,m

oiLiCi+1,m
− 1), otherwise

.

Using o′i+1 instead of oideal prevents some undesirable
situations when Ci+1,m reaches its upper or lower bound. Now
we can compute Ti+1:

Ti+1 = HSpace/
Ĥi · Lideal

(1 + o′i+1) · Ci+1,m
, (10)

where Ĥi · Lideal is the total number of hashes, (1 + o′i+1) ·
Ci+1,m is the total number of blocks. The denominator
in Eqn. (10) is the number of hashes required to find a block.

Note that if none of the edge cases is triggered, i.e., Ĥi =
Ĥ ′i and Ci+1,m = C ′i+1,m, we can combine Eqn. (4), (8),
(10) and get T ′i+1 = Ti × oideal/oi. This result is consistent
with our intuition. On the one hand, if oi is larger than the
ideal value oideal, the target lowers, increasing the difficulty of
finding a block and raising the block interval if the hash rate is

unchanged. Therefore, the orphan rate is lowered as it is more
unlikely to find a block during another block’s propagation. On
the other hand, the target increases if the last epoch’s orphan
rate is lower than the ideal value, decreasing the block interval
and raising the system’s throughput.
Block Reward. Now we can compute the block reward:

ri+1 = min

{
R(i+ 1)

Ci+1,m
,
R(i+ 1)

C ′i+1,m

·
T ′i+1

Ti+1

}
, (11)

where the two cases differ only in the edge cases. The first
case guarantees that the total reward issued in epoch i + 1
will not exceed R(i+ 1), thus ensuring C2. The second case
ensures that an attacker that maliciously triggers some edge
cases to make Ti+1 > T ′i+1 cannot get more reward with the
same mining power. When oi = 0, only the first case applies.

In our security proof in Sect. VI-E, we use ri+1 =
R/Ci+1,m and assume none of the edge cases is triggered.
This is reasonable as: (1) when the mining power is stable, the
dampening mechanism cannot be triggered without network-
layer attacks; (2) causing Ci+1,m 6= C ′i+1,m is not rational as it
only lowers the attacker’s block reward according to Eqn. (11).

APPENDIX C
TRANSACTION WITHHOLDING ATTACK SIMULATIONS

Our simulation supports attackers with arbitrary mining
power share α and arbitrary success rate of winning a tie,
denoted as γ. To simplify the demonstration, we assume a
strong attacker with α = 0.4, who also wins all the ties—i.e.,
γ = 1, by immediately pushing his blocks to all the nodes
after the competing blocks are mined. We omit natural orphans
and assume that honest blocks are propagated immediately
after they are mined, but not before the competing attacker
block if there is one. The block interval follows an exponential
distribution with expectation tin as an input.

In both protocols, every “delayable” attacker block is de-
layed up to tdelay, during which the first honest block, if
there is one, is orphaned. The attacker only delays the last
block if he mines several blocks in a row. In NC, all attacker
blocks are delayable. In NC-Max, the attacker delays his
latest block only if there is another attacker block in the
proposal window. The NC-Max simulation has an additional
parameter w = wfar−wclose + 1. For every set of parameters,
our simulation generates a chain of two million blocks and
compute ρ, the proportion of main chain blocks mined by the
attacker.

The results are displayed in Fig. 12. With the same tdelay,
when w = 1 and 2, NC-Max reduces the damage ρ − α by
roughly a half and a third, respectively. Although we compute
the results where tdelay = 2 and 5 seconds for both protocols,
in reality, tdelay is shorter in NC-Max than in NC, thanks to
R2 and R3 introduced in Sect. IV-C.

APPENDIX D
SIMULATION ENVIRONMENT

Network. There are 6000 nodes, each establishes 8 random
outgoing connections. The network latency between any two

Fig. 12: NC-Max resists better against transaction withholding
attacks than NC. The proposal window size w = wfar −
wclose + 1; “delay” denotes tdelay, the maximum time an
attacker can delay the propagation of its blocks.

peers δa,b is sampled from data collected by a public Bitcoin
crawler maintained by KIT [22]. All connections have the
same bandwidth of 10 Mbps (1.25 MBps). The compact block
(CB) transmission latency δCB equals δa,b. Each time a node
receives a CB, the block preparation latency δprep is a function
of nfresh:

δprep =

max{n1, 0}, nfresh = 0

max{1.33233× 10−4nfresh

+ 0.544959 + n2,
δa,b + 3.6× 10−4nfresh}, nfresh > 0

,

(12)
where δa,b + 3.6 × 10−4nfresh is the bandwidth con-
straint assuming each transaction is 450 bytes; n1 and
n2 are random variables encompassing the variation of
local-message-processing and network latencies: n1 ∼
N (0.101102, 0.04317022), n2 ∼ N (0, 0.4202092), whose
parameters have been learned via maximum likelihood esti-
mation from the data we collected from the Bitcoin network
(Sect. III-C). Parameters n1, n2, δa,b, and δprep are in the
unit of one second. Equation (12) is chosen based on our
understanding of the block propagation: when nfresh = 0,
there is no round trip to query the fresh transactions; when
nfresh > 0, δprep grows linearly with nfresh. We choose not
to sample from the measurement data directly because that
data misses certain nfresh values. This delay also applies to
NC-Max for querying transactions in the proposal zone. In
both NC and NC-Max, the propagation of CBs is not affected
by synchronizing fresh transactions; for each node, different
blocks’ δprep do not overlap each other to avoid violating the
bandwidth constraint.

Mining. There are altogether 20 miners whose mining power
distribution follows Bitcoin’s on September 15, 2019 [68]. The
top five miners control 17.42%, 17.39%, 16.63%, 13.51%, and
8.65% of mining power, respectively. The PoW is replaced
with a scheduler that triggers block generation events at
intervals following an exponential distribution with tin as an
input. An orphaned block emerges if it is mined before the

Fig. 13: NC-Max—in orange—outperforms other protocols in
throughput. The lines of NC—in blue—and other DAG (lower
bound)—in green—overlap except when tmain

in = 40.

latest block is propagated to its miner, therefore more than
one block may be orphaned at the same height.

Transaction Generation and Propagation. A fixed number
of transactions are generated per second, each from a random
node as its initiator. Transactions are gossiped to the network
from their initiators, with a fixed one-hop latency of 3.59
seconds so that the total propagation time—usually five hops—
is similar to those of Bitcoin’s 15 seconds [22]. A transaction
is simulated as a dummy message with an ID and a times-
tamp. Each node maintains a memory pool of unconfirmed
transactions.

APPENDIX E
COMPARISON WITH BLOCKDAG PROTOCOLS

A. Throughput

Modeling blockDAG Protocols. We model two types of
blockDAG protocols: Prism [4] and the others [7], [44],
[65], [66]. In Prism, each transaction has a color, possibly
determined by its txid; all transactions in a transaction block
are of the same color. Each miner maintains, for each color, a
queue of unconfirmed transactions, and simultaneously mines
on all queues. We simulate Prism with two, four, and six
colors. Other DAG protocols have no prescribed transaction
inclusion rules, except that blocks do not include transactions
in their predecessor blocks. For simplicity, we only implement
two extreme transaction inclusion strategies: the lower bound
and the upper bound. In the former setting, miners pack from
the oldest transactions; in the latter, miners pack uniformly at
random from their pools.

Additional Setup. To test whether NC-Max can exhaust the
nodes’ bandwidth, in each setting, we target a fixed main chain
block interval tmain

in in NC-Max and adjust tin accordingly.
To ensure fairness, we apply the same sequence of block
generation events to all protocols. Transactions are generated
at an even speed of 2500 per second, capping the throughput
as the physical limit. A block packs up to 2500tmain

in trans-
actions from the miner’s pool. The pool size has a 300 MB
limit—Bitcoin’s peak size achieved in Dec. 2017 [12]; old

1 2 3 4 5 10 20 40

NC-Max's Average Main Chain Block Interval tmain
in [sec]

0

100

200

300

400

500

Tr
an

sa
ct

io
n

C
on

fir
m

at
io

n
La

te
nc

y
[s

]

Protocol
NC-Max
Prism (lower bound), 2 colors
Prism (lower bound), 6 colors

Fig. 14: NC-Max achieves similar transaction confirmation
latency with Prism. The latency of Prism is simulated as lower
bounds as we simplify its block-ordering logic. Values over
500 seconds are omitted.

transactions are dropped if it is full. In Prism, the pool size is
evenly split among the colors.
Results. NC-Max reaches at least 2490 TPS when tin < 40,
outperforming all other protocols (Fig. 13). When tin = 40,
some transactions are lost as sometimes the transactions gen-
erated between consecutive blocks exceed the pool size limit.

Other DAG (upper bound) performs slightly worse than
NC-Max, as a small fraction of transactions are included
multiple times in competing blocks, wasting the processing
capacity. Here we slightly abuse the term competing blocks
to denote a group of blocks with no predecessor relation
among them. Other DAG (lower bound) has almost the same
throughput with NC, because when miners pack from the
oldest transactions, competing blocks contain almost the same
set of transactions unless the pool size is smaller than the
block size—which only happens when tmain

in = 40. In reality,
the throughput of a blockDAG protocol should be between the
lower and the upper bounds: to maximize their fees, miners
prefer transactions with higher fees and but would randomize
their selection to decrease the overlap with other miners’
blocks [43].

Although Prism’s throughput increases along with the num-
ber of colors, there are two caveats. First, more colors lead
to longer transaction confirmation latency, as demonstrated in
the next simulation. Second, the randomized nature of mining
results in uneven processing speed among the queues, leading
some queues to exceed their memory limits when some others
are almost empty. In particular, when tmain

in > 10, more
colors lead to lower throughput. It is not trivial to dynamically
allocate the memory among the colors without introducing
new denial-of-service attack vectors.

We note that our results do not contradict blockDAG proto-
cols’ claims that they can exhaust the nodes’ bandwidth. To do
so, these protocols demand higher block frequency and larger
memory pools than NC-Max.

B. Transaction Confirmation Latency

DAG protocols usually involve complicated transaction
confirmation rules, therefore we only implement part of the

transaction confirmation procedure of Prism to show that NC-
Max achieves similar latency. We measure NC-Max’s latency
as wmin

close + 6 main chain block intervals after the transaction
is broadcast: the first block to propose it, the (wmin

close + 1)-
th block to commit it, and the last to settle it. In Prism, a
transaction is confirmed in three steps: (1) a transaction block
of the same color to embed it, which may take several block
intervals; (2) a proposer block whose miner has received this
transaction block to propose the latter; (3) several voter blocks
to vote for this proposer block. Unlike NC-Max, there is no
need for these blocks to be in the main chain in Prism. We
consider a transaction settled when the sixth voter block is
mined, regardless of the voter blocks’ referring relationships.
This simplification underestimates Prism’s confirmation time,
thus is in favor of Prism. We assume the same average block
interval for each of the three kinds of blocks in Prism and
blocks in NC-Max.

All three protocol instances displayed in Fig. 14 confirm
transactions faster than NC, whose latency is at least four
times that of NC-Max with the same orphan rate. Two Prism
instances and NC-Max achieve similar latency. Specifically,
the median latencies of two Prism instances are shorter than
NC-Max’s when tmain

in < 10 and 5, respectively, as all blocks
in Prism contribute to transaction confirmation regardless of
whether they are in the main chain. NC-Max outperforms them
as tin grows, because (1) orphan blocks diminish, and (2)
there is no need to wait for a same-color transaction block.
Moreover, the latency advantage of Prism, 2 colors comes at
the price of lower throughput. Prism, 6 colors suffers from long
worst-case confirmation latency—two to three times that of
NC-Max, as it takes longer before a transaction meets a same-
color block. As an additional observation, blocks propagate
faster are confirmed sooner in blockDAG protocols; whereas
NC-Max confirms transactions at roughly even latency, pro-
viding more stable user experience.

