Scalable Ciphertext Compression Techniques for Post-Quantum
KEMSs and their Applications

Shuichi Katsumata®, Kris Kwiatkowski?, Federico Pintore!, Thomas Prest?

IMathematical Institute, University of Oxford, UK
federico.pintore@maths.ox.ac.uk
2pQShield, UK
elkaafarani@pqshield.com
3National Institute of Advanced Industrial Science and Technology (AIST), JP
shuichi.katsumata@aist.go.jp

September 13, 2020

Abstract

A multi-recipient key encapsulation mechanism, or mKEM, provides a scalable solution to securely
communicating to a large group, and offers savings in both bandwidth and computational cost compared
to the trivial solution of communicating with each member individually. All prior works on mKEM are
only limited to classical assumptions and, although some generic constructions are known, they all require
specific properties that are not shared by most post-quantum schemes. In this work, we first provide a
simple and efficient generic construction of mKEM that can be instantiated from versatile assumptions,
including post-quantum ones. We then study these mKEM instantiations at a practical level using 8
post-quantum KEMs (which are lattice and isogeny-based NIST candidates), and CSIDH, and show that
compared to the trivial solution, our mKEM offers savings of at least one order of magnitude in the
bandwidth, and make encryption time shorter by a factor ranging from 1.92 to 35. Additionally, we show
that by combining mKEM with the TreeKEM protocol used by MLS — an IETF draft for secure group
messaging — we obtain significant bandwidth savings.

1 Introduction

Secure communication within a system of several users is becoming indispensable in our everyday lives. One
leading example is the recent trend in secure group messaging (Zoom, Signal, WhatsApp, and so on) to
handle large groups — up to 50000 users according to the IETF draft of the Message Layer Security (MLS)
architecture [OBR™20, Section 3.1]. The scenario is that users in a system, each holding their public and
secret key, frequently exchange messages with a group of users. More than often, the solution adopted is
the trivial approach of individually encrypting the same message M using the public keys associated with
the respective recipients in the group.! However, this trivial approach makes the required bandwidth and
computational costs grow by a factor N (where N is the number of recipients), compared to sending a
message to a single recipient. Therefore, as the number of recipients increases, this trivial solution has poor
scalability.

An additional motivation for lowering the bandwidth and computational costs is the current phase of
gradual transition towards post-quantum cryptography — a type of cryptography that is known to be resilient

ITo be more precise, it is common to rely on the KEM/DEM framework [CS03, Den03] to lower the reliance on the more
inefficient public key cryptography.

against quantum adversaries. Most, if not all, post-quantum secure schemes are known to incur bandwidth
and/or computational overheads compared to classical schemes. For example, all key encapsulation mecha-
nisms (KEMs) still considered for standardization by NIST require an order of magnitude more bandwidth
than ECDH [BCR™] at a comparable classical security level. Therefore, lowering the cost of communication
with multiple recipients even when the number of recipients N is only moderately large, say N > 10, will
already be of value.

Multi-Recipient Key Encapsulation Mechanism (mKEM), coined by Smart [Sma05]?, is a primitive
designed with the above motivations in mind. On a high level, an mKEM is like a standard KEM that securely
sends the same session key K to a group of recipients. Subsequently, the sender transmits a single ciphertext
to all the recipients by encrypting the message M using K as a secret key for a secret-key encryption scheme.
The latter procedure corresponds to the standard DEM. The main requirement that makes mKEM appealing
is that the bandwidth and computational resources required to send the session key K are less than those
required when individually encrypting K using the recipients’ public keys. To be precise, we can trivially
construct an mKEM from any public-key encryption (PKE) scheme by encrypting the same session key K
with respect to all the recipients’ public keys. However, this trivial construction will be as inefficient as
the aforementioned trivial solution (modulo the efficient DEM component), and therefore, the main goal for
mKEM is to offer a more efficient alternative.

Due to its practically appealing and theoretically interesting nature, the study of mKEM has attracted
much attention, e.g., [Kur02, BF07, HK07, HTAS09, MH13, Yan15]. Also, similar variants of mKEM, such as
multi-message multi-recipient public-key encryption [BBMO00, BPS00, Kur02, BBS03], have been considered
prior to mKEM with similar motivations in mind, and have illustrated the importance of investigating the
multi-recipient settings. As a consequence, by now many exciting results regarding mKEMSs have appeared.
However, we like to point out three unsatisfactory issues remaining with burdening the current state of
affairs. First, to the best of our knowledge, all the literature on mKEMs is based on classical assumptions
(e.g., Diffie-Hellman type assumptions) which are believed to not endure quantum adversaries. We are
aware of one recent work [CLQY18] that claims the construction of an IND-CCA secure mKEM from the
learning parity with noise (LPN) assumption, which is believed to be quantumly secure. However, while
going over their results, we noticed that their scheme is insecure since there is a trivial break in their claimed
IND-CCA security. In particular, the ciphertexts are easily malleable. See Appendix A for more detail.
Second, earlier works such as [BF07, HTAS09, MH13] provide a somewhat generic construction of mKEM
from a (single-recipient) PKE, but require the underlying PKE to satisfy rather specific properties that seems
somewhat tailored to classical Diffie-Hellman type assumptions. For instance, [BF07] requires a notion of
weak reproducibility, which informally states that there is an efficient procedure to re-randomize a ciphertext
under a certain public key to a ciphertext under another public key. Unfortunately, such properties are not
known to exist for post-quantum assumptions, such as lattice-based assumptions. Therefore, we still do not
have a truly general framework for constructing mKEMSs from standard building blocks. Here, “standard”
building blocks mean blocks that are potentially instantiable from many hardness assumptions.

Summarizing thus far, the first question we are interested in this work is:

(Theoretical Question) Are there any simple and efficient generic constructions of mKEM that
can be based on versatile assumptions, including post-quantum assumptions?

The third issue, which is orthogonal to the above concerns, is that all previous works on mKEM do not come
with any implementations. Notably, most literature only points out the efficiency gain in a rather theoretical
manner and does not provide comparisons with the trivial solution (i.e., running KEM in parallel). Since
these gains depend on the concrete mKEM implementation and also on the choice of KEM used in the trivial
solution, the benefit of using an mKEM is unclear without proper comparison. Considering the practical
oriented nature of mKEM, we believe understanding the concrete gain of using an mKEM instead of using
the trivial solution would help in illustrating the practical relevance of this primitive and in providing insight
on when to use an mKEM.

2We note that very similar variants of mKEM have been considered prior to this work [BBM00, BPS00, Kur02,BBS03]. More
details follow.

Therefore, the second question we are interested in this work is:

(Practical Question) What is the concrete gain of using an mKEM compared to the trivial solu-
tion? What are the concrete applications of mMKEMs?

1.1 Owur Contributions and Techniques

Theoretical Contribution. We provide a new simple and efficient generic construction of an IND-CCA secure
multi-recipient KEM (mKEM) from any IND-CPA secure multi-recipient PKE (mPKE).? The construction is
proven secure in the classical and quantum random oracle model ((Q)ROM). Here, mPKE is a variant of
mKEM where a user can encrypt any same message M (rather than a random session key K) to multiple
recipients. We then show that IND-CPA secure mPKEs can be constructed very easily from most assumptions
known to imply standard PKEs (including classical Diffie-Hellman type assumptions). The construction of
an IND-CPA secure mPKE is in most cases a simple modification of a standard IND-CPA secure PKE to
the multi-recipient setting. Concretely, we show how to construct mPKEs based on lattices and isogenies.
Compared to previous works [BF07, HTAS09, MH13] which provide some types of generic constructions of
mKEM, ours require an mPKE whereas they only require a single-recipient PKE. However, we only require
very natural properties from the underlying mPKE, such as IND-CPA. Considering that our mPKE can be
instantiated with diverse assumptions (including but not limited to post-quantum assumptions) in a very
natural way from standard PKEs, we believe our generic construction to be more versatile and handy than
previous ones. We point out that our mKEM achieves both implicit and explicit rejection.

Moreover, we introduce a new notion of recipient anonymity which we believe to be of independent
interest. The notion captures the fact that the ciphertext does not leak the set of intended group members
or recipients. We provide a mild additional property for the underlying IND-CPA secure mPKE, under which
our above generic construction naturally implies a recipient-anonymous IND-CCA secure mKEM. Our lattice
and isogeny-based instantiations satisfy the extra property without any modification. An overview of our
generic construction is provided in the following section.

Practical Contribution. An immediate consequence of our theoretical contribution is that it opens the door
to a large number of post-quantum instantiations of mKEM. A natural next step is to study these mKEM
instantiations at a practical level and compare them to the trivial solution of running standard KEMs in
parallel. Doing this work is precisely one of our practical contributions. As it turns out, at least 9 post-
quantum schemes are compatible with our construction of mKEM: 7 lattice-based NIST candidates, the
only isogeny-based NIST candidate SIKE, and the CSIDH scheme. We performed a systematic study of
the bandwidth efficiency and found that for all of these schemes, our mKEM variants are more compact
than the trivial solution with the original schemes by at least one order of magnitude (for a clearly defined
metric). In addition, for a subset of these 9 schemes (CSIDH, FrodoKEM, Kyber, SIKE), we implemented
their mKEM counterparts and compared their performance (cycle count). We found our mKEM variants to
be (asymptotically) faster than the trivial solution with original schemes by factors ranging from 1.92 to
more than 35.

Additionally, we show that we can use the mKEM primitive for the TreeKEM protocol obtaining significant
bandwidth savings. To give some context, the importance of TreeKEM could be best understood by looking at
its parent protocol, MLS [OBR*20,BBM*20], an IETF draft for secure (group) messaging. MLS has gained
considerable industrial traction and has attracted a fair amount of academic scrutiny. TreeKEM constitutes
the cryptographic backbone of MLS, as well as its main bottleneck in bandwidth and computational efficiency.
Indeed, given N users, it requires each of them to compute and send O(log N) ciphertexts at regular intervals.
We highlight a simple but powerful interplay between TreeKEM and mKEM, and show that by applying our
technique we can reduce communication cost by a factor between 1.8 and 4.2 compared to using standard
KEMs.

3As standard in practice, we consider indistinguishability under chosen ciphertext attacks (IND-CCA) to be the default
security requirement on our resulting scheme.

1.1.1 Our Techniques: Generic Construction of IND-CCA secure mKEM.

On a high level, our generic construction can be seen as a generalization of the Fujisaki-Okamoto (FO)
transform [FO99]. The FO transform (roughly) converts any IND-CPA secure PKE into an IND-CCA secure
KEM. There are several variants of the FO transform and most of the variants are secure in the ROM
[OP01,CHJT02,Den03, HHK17] and/or QROM [TU16, HHK17,SXY18,JZC*18,JZM19b,JZM19a, BHH" 19,
Zhal9,KSS*]. The high-level construction is as follows: to encrypt, we sample a random message M <+ M
and derive randomness for the underlying encryption algorithm of the PKE by hashing M with a hash function
G modeled as a (Q)RO. That is, ct < PKE.Enc(pk,M; G(M)). The session key is then set as K := H(M),
where H is another hash function modeled as a (Q)RO. To decrypt, we first decrypt M’ «<— PKE.Dec(sk, ct)
and then only accept K = H(M’) if M’ re-encrypts back to ct, that is, we check ct = PKE.Enc(pk, M’; G(M’)).
Although the actual proof is rather complicated, intuitively, it achieves IND-CCA security since the adversary
must have queried message M to G to have constructed a valid ciphertext ct for message M. Therefore, in
the ROM, to answer a decapsulation-oracle query, the simulator runs through all the messages that have
been queried to G to check if any of them re-encrypts to ct. Since the simulator no longer requires sk to
simulate the decapsulation oracle, we can invoke the IND-CPA security of the underlying PKE.

Our idea is to generalize the FO transform to the mPKE/mKEM setting. At first glance, this may seem
to not work. Indeed, an mPKE typically comes with a multi-encryption algorithm with the following syntax:
mEnc(pp, (pk;)iciny, M; 1) — ct, where ct is targeted to the set of N recipients with public keys (Pk;)ien-
There is also an extraction algorithm mExt which takes as input an index i € [N] and ct, and outputs the
ciphertext component ct; targeted to the ¢-th recipient, say R;, holding pk;. Recipient R; can then run the
decryption algorithm on ct; using its secret key sk;. The reason why the FO transform cannot be directly
applied to mPKE becomes clear. Assume r = G(M) and that recipient R; decrypted to M. Then, to check
validity of ct;, R; must re-encrypt the entire ciphertext ct by running mEnc(pp, (pk;)ie(n]s M; r). Therefore,
the decapsulation time will depend on N, which is highly undesirable.

To get around this issue, in this work we consider a slight variant of mPKE with a decomposable flavor. In-
formally, a decomposable multi-encryption algorithm mEnc takes randomness of the form r = (rg,ry,- -+, ry)
as input, and creates a public-key-independent ciphertext ctg <— mEnc'(rg) and public-key-dependent cipher-
texts ct; « mEncd(pki, M;rg,r;). The resulting ciphertext for recipient R; is then ct; = (cto,ct;). We view
this as a natural formalization of mPKE as it is satisfied by all the mPKE constructions that we are aware
of. Moreover, this feature is desirable in practice as it allows to parallelize part of the encryption algorithm.
Now, to perform the FO transform, we derive rp = G(M) and r; = G(pk;,M). It is evident that R; can
re-encrypt and check the validity of its ciphertext. Notably, the decapsulation time is now independent of
N. With this new formalization, the proof in the (classical) ROM follows in a straightforward manner (with
minor modification) from the standard FO transform [HHK17].

The security proof of our mKEM in the gquantum ROM (QROM) requires slight more work. Prior proof
strategies in the QROM for standard IND-CCA secure KEMs based on the FO transform — which fix the
description of the QROM at the outset of the game [TU16, HHK17, SXY18, JZC*18, JZM19b, JZM19a,
BHH™19] — seem to be an ill fit for mPKE. This is because in the multi-recipient setting, the decapsulation
oracle is required to output a different (implicit) rejection value for each of the users when the ciphertext
is invalid, and to output the same session key K when the ciphertext is valid. Due to this discrepancy
between invalid and valid ciphertexts (i.e., the former requires to output different random values, whereas
the latter requires to output the same random value), previous proof techniques that always output random
values fail. Note that in the single-user setting, regardless of the ciphertext being valid or invalid, the
decapsulation oracle could output random values without being detected by the adversary, and hence, this
obstacle was absent. To overcome this, we use the recently introduced compressed oracles technique [Zhal9].
This allows the simulator to perform lazy sampling and to check the validity of the ciphertext submitted to
the decapsulation oracle without interfering with the adversary’s state. Although the high-level structure of
the proof is similar to the classical case, much subtle care is required in the QROM case as the simulator
must not disturb the adversary’s state. We note that Zhandry [Zhal9] showed security of one variant of the
FO transform which converts a perfectly correct IND-CPA secure PKE to an IND-CCA secure PKE.

2 Preliminaries

2.1 Hard Problems for Lattices

For any natural number d and g, let R, denote the ring Z[X]/(q, X¢ + 1). The learning with errors (LWE)
problem is defined below.

Definition 2.1 (Learning with Errors (LWE)). Let d,q,n1,ns2,n3 be natural numbers, and Ds and D be
distributions over Ry. We say that the advantage of algorithm A in solving the (decisional) LIWE,, n, ns
problem over the ring Ry is

AR, na(A) == | Pr[A « RIS < DX E ¢+ D™ 1 1+ A(A,AS + E)|
— Pr[A « RJV™ B+ RV 01+ A(A,B)]|.

We say the LWE,,, n, n, problem is hard if, for any (possibly quantum) efficient adversary A, its advantage
is negligible.

Roughly, when d = 1 and n; = ny > 1 (with an appropriate choice of distributions Ds, De), the above
corresponds to the standard LWE [Reg05], and when d > 1 and ny = ng = 1, the above corresponds to the ring
LWE (Ring-LWE) problem [LPR10,LPR13]. We can parametrize d,ny,n2,n3 to achieve a tradeoff between
space and security, where the general case can be casted as the module LWE (Module-LWE) problem [LS15].
In practice, distributions Ds and D, are chosen for instance from the discrete Gaussian distribution or from
the uniform distribution (with possibly a fixed weight) over some small interval.

We also consider a variant of the LWE problem, called learning with rounding (LWR) problem [BPR12],
where the least significant bits are removed. The benefit of this variant is that we no longer require to
sample the noise, as it is removed. Below the function |-], : Z; — Z,, where ¢ > p > 2, is defined as
z], = |(p/q) -] mod p. The definition of the LWR problem follows.

Definition 2.2 (Learning with Rounding (LWR)). Let d,p, ¢, n1,n2,ng be natural numbers such that q > p,
and Ds a distributions over R,. We say that the advantage of algorithm A in solving the (decisional)
LWR,, ny.ng problem over the rings R, and Ry is

AV g (A) 7= | PrIA RG2S o DI=X"0 11 A(A, |AS],)]
— Pr[A « R}**™ B+ R}V™ 1 1+ A(A,B)]].

We say the L\WR,,, ny ns problem is hard if, for any (possibly quantum) efficient adversary A, its advantage
is negligible.

2.2 Hard Problems for Isogenies

In the following sections we propose two different isogeny-based schemes: one stemming from the SIDH
key exchange [DFJP14] and the other from the CSIDH key exchange [CLMT18]. Both key exchanges
share common mathematical tools, but several technical differences make them, and their descendants,
substantially different. As a consequence, schemes in the SIDH family rely on hardness assumptions different
from those used for schemes in the CSIDH family. Our schemes make no exception, as they use distinct
security assumptions.

SIDH-based assumption. Let p be an odd prime of the form 2¢23° — 1, with eg,e3 € N and 2°2 ~ 3°3.
For a supersingular elliptic curve E over Fj2 we will denote by By = {P,,Q2} and Bs = {P3,Q3} bases
for E[2°2] and E[3°], respectively. Under the hypothesis that |E(F,2)| = (2°23°)2, both torsion subgroups
E[2%2] and E[3°] are contained in E(FF,2). Given the curve E and s € Zse, by pky(s) we denote the
tuple (E/ (Ry = Py + [s]Q2) , &(r,)(P3), ¢(r,)(Q3)), where ¢ g,y is the isogeny from E having kernel (Ry).
Analogously, for r € Zze; we define pk3(r) as (E/(Rz = P3 + [r]Q3) , ¢(ry)(P2), ¢(ry)(Q2)).

The security of our scheme relies on a decisional variant, named SSDDH [DFJP14], of the SSCDH as-
sumption. The latter is used by one of NIST second-round candidate KEMs, called SIKE [JACT19], which
is deduced from the key exchange SIDH.

Definition 2.3 (Supersingular Decisional Diffie-Hellman (SSDDH)). Let E be a supersingular elliptic curve
over Fp2 such that |E(F,2)| = (2°23%)%. We say that the advantage of algorithm A in solving the SSDDH,, g 5, B,
problem is

Adv2SD o (A) i= | Prls ¢ Zoea,r < Zges :
1 < A(pky(s), pks(r), E/ (P2 + [s]Q2, P3 + [r]Q3))]
— Pr[(s, 8") + (Zge2)%, (r,7") = (Zizes)?
1 < A(pky(s), pks(r), E/ (P2 + [s']Q2, P5 + [1']Q3))]| -

We say the SSDDH,, g B, B, problem is hard if, for any (possibly quantum) efficient adversary A, its advan-
tage is negligible.

CSIDH-based assumption. Let p be an odd prime of the form 44145 - - - £;—1, where {1, . . ., £; are small odd
primes. £00,(O,) is the set containing all supersingular elliptic curves E over F, - modulo isomorphisms
over I, - such that there exists an isomorphism between the order O C Q(y/—p) and End,(F) mapping
v/—p € O into the Frobenius endomorphism (z,y) — (2P, y?). We note that |££(,(O,)| = /p. We consider
O equal to Z[\/—p] = {m+n+/—p | m,n € Z} in which case, provided that p = 3 (mod 8), each isomorphism
class in £00,(0,) can be uniquely represented by a single element of F,, [CLM*18]. The ideal class group
Cl(O) acts freely and transitively on £04,(O,) via the group action . A special integral ideal J,, C O
corresponds to each prime ¢;. These ideals allow an easy computation of the group action. In particular,
the action of Jy, on a curve E € £00,(0,) is determined by an isogeny having as kernel the unique rational
{;-torsion subgroup of F.

In the following we restrict our attention to the case where C£(O) is cyclic and generated by g € {[Jy,]]i =
1,...,t}. The security of the CSIDH-based scheme we introduce in Section 5.2 relies on the decisional variant,
recently exploited in [EKP20, CS20], of the best-known GAIP assumption [CLM*18].

Definition 2.4 (Decisional CSIDH (dCSIDH)). Let p be a prime of the form 4¢145-- -y —1 and g a generator
of the ideal class group CL(O) having order N, where O = Z[\/—p]. We say that the advantage of algorithm
A in solving the dCSIDH,, 4* problem is

AdvIPH(A) == | Pr[E « £00,(0,7), (a,b) + (Zn)?
1+ AE,g*+E,g"« E, g% (g° « F))]
— Pr[E + £06,(0,7), (a,b,c) + (Zn)?
1 eA(E,g“*E,gb*E,gC*E,)H.

We say the dCSIDH,, ¢ problem is hard if for any (possibly quantum) efficient adversary A, its advantage is
negligible.

Three sets of CSIDH parameters have been proposed so far, namely CSIDH-512, CSIDH-1024 and CSIDH-
1792. Only for CSIDH-512 the structure of the group G is know, and it adheres to the assumption made
above, i.e. G cyclic and generated by g € {[J,,]|i = 1,. t} For the other two sets of parameters, efficiency
reasons dictate to restrict to elements of G of the form fi ¢+ 3!, with the integers e; satisfying the bound
le;| < B, where B is a suitable (small) natural number. Samphng uniformly from the set {J;' - - 37" | |e;| < B}
determlnes a distribution D over G and, fixing Ey € £0¢,(O,), a distribution Dg, over £££,(O, m) itself.
The distribution Dpg is heuristically assumed to be close to the uniform distribution over G. The dCSIDH
(and the GAIP) problem is (are) believed to be hard also in this more general case. However, its formulation
requires to be slightly modified. Indeed, fixed a curve Ey in £0£,(O,), the curve E is sampled from Dg,,
while elements sampled from Dp replace the powers of g.

4We intentionally put d in dCSIDH so as not to confuse the CSIDH key exchange protocol [CLM* 18] with the assumption.

2.3 Randomness Extraction

The min-entropy of a random variable X is defined as Hoo(X) = — logy(max, Pr[X = z]). We recall the
definition of family of universal hash functions.

Definition 2.5 (Universal Hash Functions). A family of functions H = {Hy : X — D}rex is called a family
of universal hash functions, if for all x,2’ € X with © # z', we have Pryy[H(z) = H(2')] < ﬁ.

It is well known that one can extract uniform random bits from a high min-entropy source using universal
hash functions [HILL99].

Lemma 2.6 (Leftover Hash Lemma). Let H = {Hj : X — D}rex be a family of universal hash functions.
Let H be sampled uniformly from H, X be a random variable independent of H and with values in X, and
U(D) be the uniform distribution over D. Then, the following holds

A((H,H(X)), (H,U(D))) < % -y/27He(X) D).

3 Multi-Recipient PKE and KEM

3.1 Decomposable Multi-Recipient Public Key Encryption

Definition 3.1 (Decomposable Multi-Recipient Public Key Encryption). A (single-message) decomposable
multi-recipient public key encryption (mPKE) over a message space M and ciphertext spaces C and Csingle
consists of the following five algorithms mPKE = (mSetup, mGen, mEnc, mExt, mDec) :

e mSetup(1®) — pp : The setup algorithm on input the security parameter 1" outputs a public parameter
Pp-

e mGen(pp) — (pk,sk) : The key generation algorithm on input a public parameter pp outputs a pair of
public key and secret key (pk, sk).

e mEnc(pp, (pk;)icin), Msro, 11, -+ ,ry) — = (cto,(cAti)ie[N]) : The (decomposable) encryption algo-
rithm running with randomness (ro,r1,--- ,rn), splits into a pair of algorithms (mEnc, mEncd) :

— mEnci(pp; ro) — cto : On input a public parameter pp and randomness rq, it outputs a (public key
Independent) ciphertext cty.

— mEncd(pp, pk;, M;ro,r;) — ct; : On input a public parameter pp, a public key pk,, a message
M € M, and randomness (ro,r;), it outputs a (public key Dependent) ciphertext ct;.

e mExt(i,ct) — ct; = (cto,ct;) or L : The deterministic extraction algorithm on input an index i € N
and a (multi-recipient) ciphertest ct € C, outputs either a (single-recipient) ciphertest ct; = (cto,ct;) €
Csingle 0T a special symbol Lg. indicating extraction failure.

e mDec(sk,ct;) — M or L : The deterministic decryption algorithm on input a secret key sk and a
ciphertext ct; € Csingle, outputs either M € M or a special symbol L & M.

Although we can consider non-decomposable multi-recipient PKEs, we only focus on decomposable
schemes as they are compatible with the Fujisaki-Okamoto (FO) transform [FO99]. Informally, the FO
transform relies on the recipient being able to recover the encryption randomness from the ciphertext and
to check validity of the ciphertext by re-encrypting with the recovered randomness. Therefore, in the multi-
recipient setting, if we do not impose decomposable encryption, then the recipient may require all the public
keys that were used in constructing ct to be able to re-encrypt. However, this is clearly undesirable since
the decryption time may now depend on the number of public keys used to encrypt, and furthermore, the
size of the ciphertext will grow by appending all the public keys used. Therefore, in this paper, when we say
mPKE, we always assume it is decomposable. We require the following properties from a mPKE.

Definition 3.2 (Correctness). A mPKE is §-correct if

S >E [max Pr (1)

ctg < mEnci(pp), ct + mEncd(pp, pk, M) :
MeM ’

M # mDec(sk, (cto, ct))
where the expectation is taken over pp <— mSetup(1%) and (pk,sk) «+— mGen(pp).°

We also define the notion of well-spreadness [FO99] which states informally that the ciphertext has high
min-entropy.

Definition 3.3 (y-Spreadness). Let mPKE be a decomposable multi-recipient PKE with message space M
and ciphertext spaces C and Csingle- For all pp € Setup(17), and (pk,sk) € Gen(pp), define

o _ . d .
v(pp, pk) := —log, <ctec$.§ﬁem Pr [Ct (mEnc'(pp; ro), mEnc® (pp, pk,l\/l,ro,r))D :

We call mPKE ~-spread if E[y(pp, pk)] > 7, where the expectation is taken over pp < mSetup(1®) and
(pk, sk) <~ mGen(pp).

Finally, we define the notion of indistinguishability of chosen plaintext attacks (IND-CPA) for mPKE.

Definition 3.4 (IND-CPA). Let mPKE be a decomposable multi-recipient PKE with message space M and
ciphertext space C. We define IND-CPA by a game illustrated in Figure 1 and say the (possibly quantum)
adversary A = (A1, As) wins if the game outputs 1. We define the advantage of A against IND-CPA security
of mPKE parameterized by N € N as

AdvSiea (A) = [Pr[A wins] — 1/2].

Remark 3.5 (Insider corruption). We point out that insider corruptions for mPKE are not considered [Sma05,
BF07]. This is because if an adversary obtains a secret key corresponding to any of the public keys used to
encrypt, then it can trivially recover the encrypted message.

Remark 3.6 (Inefficient mPKE from any standard (single-recipient) PKE). Our definition of mPKE captures
the trivial solution of sending different ciphertexts obtained with a standard single-recipient PKE to multiple
recipients. That is, independently encrypting the same message to all recipients using their respective
public keys. In the above syntax of mPKE, this amounts to setting mEnc as a null function and setting
ro as an empty string. Also, mExt will simply pick the relevant ciphertext component for the particular
recipient. Therefore, in the context of ciphertext compression, the goal is to obtain a mPKE with better
efficiency /ciphertext-size compared to this trivial method.

Remark 3.7 (Number of recipients). In general, the number of recipients N = poly(x) can be chosen arbitrary
by the sender (or adversary). Some schemes may require an upper bound on N since the concrete provably-
secure parameters may have a dependance on N, e.g., the reduction loss degrades by a factor of 1/N. Our
proposal does not require such an upper bound since N only shows up in a statistical manner, and so we
can handle large N, say N = 2'°, without having any large impact on the concrete parameter choice.

3.2 Multi-Recipient Key Encapsulation Mechanism

Definition 3.8 (Multi-Recipient Key Encapsulation Mechanism). A (single-message) multi-recipient key
encapsulation mechanism (mMKEM) over a key space K and ciphertext space C consists of the following five
algorithms mKEM = (mSetup, mGen, mEncaps, mExt, mDecaps) :

e mSetup(1®) — pp : The setup algorithm on input the security parameter 1% outputs a public parameter
PP

5We could have defined correctness with respect to N-recipients as we do for mKEM (see Definition 3.9), however, we use
this single recipient definition since it is more easier to handle during in the security proof.

GAME IND-CPA GAME IND-CCA

pp + mSetup(17)
for i € [N] do

1: pp + mSetup(1”)
2: for i € [N] do

v AD(ppa (pki)iE[N]v C_{:*7 KZ)

: b« As(pp, (pki)ie[N},c?*,state)
return [b =V/]

: return [b = b/

3: (pk;, ski) <~ mGen(pp) (pk;, ski) < mGen(pp)

4: (Mg, M7, state) < A;(pp, (pki)iE[N]) (K§, c_’E*) < mEncaps(pp, (pki)iE[N])
5: b« {0,1} Ki K

6: ct” < mEnc(pp, (Pk;)ien]s M) b+« {0,1}

7

8

Decapsulation Oracle D(i, ct)

1: ct* := mExt(i,ct")

2: if ct=ct] then

3: return |

4: K := mDecaps(sk;, ct)
5: return K

Figure 1: IND-CPA of mPKE and IND-CCA of mKEM.

e mGen(pp) — (pk,sk) : The key generation algorithm on input a public parameter pp outputs a pair of
public key and secret key (pk,sk).

e mEncaps(pp, (pk;)icin]) — (K, ct) : The encapsulation algorithm on input a public parameter pp, and
Npublic keys (pk;)ic(n), outputs a key K and a ciphertext ct.

o mExt(3, ct) — ct; : The deterministic extraction algorithm on input an index i € N and a ciphertext ct,
outputs either ct; or a special symbol Lg. indicating extraction failure.

e mDecaps(sk,ct;) — K or L : The deterministic decryption algorithm on input a secret key sk and a
ciphertext ct;, outputs either K € K or a special symbol L & IC.

Definition 3.9 (Correctness). A mKEM is oy -correct if
dn > Pr[(K,ct) - mEnc(pp, (pk;)ic(n)), (cti <= mExt(i,ct));eqn) : Ji € [N] s.t. K # mDec(sk, ct;)]
where the probability is taken over pp +— mSetup and (pk;,sk;) — mGen(pp) for all i € [N].
We define the notion of indistinguishability of chosen ciphertext attacks (IND-CCA) for mKEM.

Definition 3.10 (IND-CCA). Let mKEM be a multi-recipient KEM. We define IND-CCA by a game illustrated
in Figure 1 and say the (possibly quantum) adversary A (making only classical decapsulation queries to D)
wins if the game outputs 1. We define the advantage of A against IND-CCA security of mKEM parameterized
by N € N as

Advpiem w (A) = |Pr[A wins] — 1/2|.

We note that similarly to the remark made in Remark 3.6, the goal is to obtain a mKEM with better
efficiency/ciphertext-size compared to the trivial method of running a standard single-recipient KEM in
parallel.

3.3 Recipient Anonymity for mPKE and mKEM

In many practical scenarios, it is often convenient to have an additional guarantee of recipient anonymity,
which stipulates that the ciphertext does not leak any information about the set of intended recipients. This
is formally provided in the following Definitions 3.11 and 3.12.

Definition 3.11 (IND-Anon-CPA). Let mPKE be a multi-recipient PKE. We define IND-Anon-CPA associated
with a PPT fake encryption algorithm mEnc by a game illustrated in Figure 2 and say the (possibly quantum)
adversary A = (Ay, Ag) wins if the game outputs 1. For quantum adversaries A, we define the advantage
against IND-Anon-CPA security of mPKE parameterized by N € N as

Advinice s P2 (A) = [Pr[A wins] — 1/2].

Definition 3.12 (IND-Anon-CCA). Let mKEM be a multi-recipient KEM. We define IND-Anon-CCA associ-
ated with a PPT fake encryption algorithm mEncaps by a game illustrated in Figure 2 and say the (possibly
quantum) adversary A = (A1, As) (making only classical decryption queries to D) wins if the game out-
puts 1. For quantum adversaries A, we define the advantage against IND-Anon-CCA security of mKEM
parameterized by N € N as

Advicemn C“*(A) = [Pr[A wins] — 1/2].

GAME IND-Anon-CPA GAME IND-Anon-CCA

1: pp < mSetup(1¥) 1: pp < mSetup(1¥)

2: for i € [N] do 2: for i € [N] do

3: (pk;, sk;) < mGen(pp) 3: (pk;, sk;) < mGen(pp)

4: (M, state) < Ai(pp, (pk;)ic(n]) 4: (K§, cty) < mEncaps(pp, (pk;)ic(n))
5: &; < mEnc(pp, (pk;)icin], M*) 5: (K*{,C_’ET) + mEncaps(pp, N)

6: ct; < mEnc(pp, N) 6: b+« {0,1} o

7. b« {0,1} 7. b < AP (pp, (pk;)ic(n]s Cty, K)

8 b < As(pp, (pk;)icn), cty, state) 8: return [b= V']

9: return [b = V']

Decapsulation Oracle D(i, ct)

ct; ; == mExt(i, cty)

if ct=ct), then
return |

K := mDecaps(sk;, ct)

return K

Figure 2: IND-Anon-CPA of mPKE and IND-Anon-CCA of mKEM.

4 FO Transform: (IND-CPA mPKE) = (IND-CCA mKEM)

4.1 Generic Construction via FO Transform

We provide a generic transformation of an IND-CPA secure mPKE to an IND-CCA secure mKEM following
the (generalized) Fujisaki-Okamoto transform. This is illustrated in Figure 3. The scheme provides implicit
rejection as opposed to explicit rejection, where in the latter type, the decapsulation algorithm outputs a
special symbol L to explicitly indicate decapsulation failure. We discuss later how to tweak our scheme
to get explicit rejection with no additional cost. In Figure 3, Gi, Gy, H,H’ are hash functions modeled as
random oracles in the security proof. They can be simulated by a single random oracle by using appropriate
domain separation. Finally, we include an ¢-bit seed to perform implicit rejection by viewing H'(seed,) as a
pseudorandom function in the (Q)ROM.

The following theorem classically and quantumly reduce the IND-CCA security of mKEM to the IND-CPA
security of mPKE, where the classical reduction is tight. The proof for each theorem is provided in the

10

mSetup(17) mGen(pp) mExt (i, ct)

1: pp < mSetup®(1¥) 1: (pk,skP) <~ mGenP(pp) 1: ct; < mExtP(i, ct)
2: return pp 2: seed < {0,1}* 2: return ct;

3: sk := (skP, seed)

4: return (pk, sk)

if ct # (cto,ct) then
return K := H'(seed, ct)

else
return K := H(M)

mEncaps(pp, (pk;)ic[n]) mDecaps(sk, ct)

MM 1: sk := (skP, seed)

2: ctg := mEnc'(pp; G1(M)) 2: M := mDec(skP, ct)

3: for i € [N] do 3: if M= 1 then

4: ct; = mEncd(pp, pk;, M; Gy (M), G2 (pk;, M)) 4: return K := H'(seed, ct)

5. K:=H(M) 5: cto := mEnc'(pp; G1(M))

6: return (K, ct := (cto, (&i)ie[N])) 6: ct := mEnc®(pp, pk, M; G1(M), Go(pk, M))
7
8:
9:

=
=

Figure 3: An IND-CCA secure mKEM from a decomposable IND-CPA secure mPKE =
(mSetup?, mGenP, mEnc = (mEnc', mEnc?), mExt”, mDec). We include the superscript P to make the code
more readable.

subsequent sections. We note that correctness of our mKEM trivially holds from the correctness of the
underlying mPKE.

Theorem 4.1 (Classical: IND-CPA mPKE = IND-CCA mKEM). Assume mPKE with message space M is
d-correct and ~v-spread. Then, for any classical PPT IND-CCA adversary A issuing at most qp queries to
the decapsulation oracle D, a total of at most qc queries to G1 and Gz, and at most gu and q{;, queries to H
and H', there exists a classical PPT adversary Binp such that

- - _ + _
Advmicen (A) < 2 Advipcey (Bino) + (206 +ap +2) 6 +ap - 277 + (qulq”) N2

where the running time of Binp is about that of A, and £ is bit-length of the seed included in the private key.

Theorem 4.2 (Quantum: IND-CPA mPKE = IND-CCA mKEM). Assume mPKE with message space M
is d-correct and ~y-spread. Then, for any quantum PT IND-CCA adversary A issuing at most qp classical
queries to the decapsulation oracle D, a total of at most qc quantum queries to Gy and Gz, and at most gy
and gjy, quantum queries to H and H’, there ezists a quantum PT adversary Binp such that

8 (g6 +1)
M|
+12-(ge+agp+1)? - dn+aqp - 9V2 7 +9-27 4 ¢, - N -2

AVINRLCN (A) < /8- (46 + 1) - AVIERET (Bivo) +

—£+4+1
2
7

where the running time of Binp is about that of A, £ is bit-length of the seed included in the private key, and
w=|ro|l + |r| for (ro,r) € R where R is the randomness space of mPKE for a single ciphertext.

Remark 4.3 (Implicit vs explicit rejection). In our construction in Figure 3, we use implicit rejection. That
is, mDecaps does not explicitly output L to indicate that the input ciphertext was invalid. This may be
suitable in practice when we do not want to let the adversary know that decapsulation failed. However, we
note that our proof is agnostic to this choice, and in particular, the same proof can be shown in case we want
explicit rejection, where mDecaps outputs L in case either M = L or ct is not the same as the reencrypted

11

ciphertext (cto,ct;). Concretely, we obtain an IND-CCA secure mKEM with explicit rejection by simply
outputting | rather than outputting H’(seed, ct) in Figure 3. We emphasize that this tweak cannot be made
in general since the security proofs may hinge on the fact that the adversary does not learn decapsulation
failures (see [SXY18, BHH'19] for an example).

4.2 Proof for Classical Case
We provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Let A be a classical PPT adversary against the IND-CCA security of mKEM. Without
loss of generality, we make a simplifying argument that A queries the same message to both oracles G; and Gs.
That is, when A queries for an input M to the oracles, it receives back (G;(M), Ga(pky, M), -+, Ga(pky, M)).
It is clear that this modification does not weaken .4, and moreover, we can always transform an adversary
A that does not query all the oracles on the same input to an adversary that does. Below, we upper bound
A’s advantage by considering a sequence of games. We denote by E; the event A wins in Game;.

- Game;: This is the real IND-CCA security game. In particular, Advﬂ,?éff]Av(A) = |Pr[E1] — 1/2].

- Gamey: In this game, we replace the computation of H'(seed;,) by a random function ﬁ;() in case M = |
or ct # (ctp, ct) occurs when answering the decapsulation oracle with input 7 € [N]. Since this modification
remains unnoticed by the adversary unless H'(seed, -) is queried for any seed € {seed;};c[n], we have

- N

[Pr(Ey] — PrlEs)| <

- Games: In this game, we add an additional check at the end of the game to see if a “bad” randomness was
ever used. Define aux; := (pp, (pk;,sk;)) for i € [N] and define the sets of bad randomness as

R?ad(auxi, M) = {(ro,ri)

M # mDec(sk?, (cto, ct;)), where
cto := mEnc'(pp; ro), ct; := mEnc? (pp, pk;, Miro,r;) | -

In addition, define S to be the set of index-message pairs (excluding the pairs with message equal to L) that
was obtained by decrypting the ciphertext when answering the decapsulation query (i,ct). Then, after A
outputs its guess at the end of the game, the challenger checks if a pair of tuples (M, rg) and ((pk;, M), r;)
for any (i,M) € S and (rg,r;) € RP*(aux;, M) are listed in the random oracles G; and Gy, respectively.
We call the event BAD,,nq if such a set of tuples are found and change A’s output to be a random bit.
Otherwise, it is defined exactly the same as in the previous game. Since the two games are identical
unless BAD,,,q occurs, we have |Pr[Es] — Pr[Es]| < Pr[BADyang]. Here, we can upper bound Pr[BAD,.nq]
by (g6 + gp + 1) - max;{|RP*(aux;,M)| / [R|}, where R is the randomness space of a single ciphertext. By
definition, we have § > E [maxmea [R5 (aux;, M)|/|R|], where the expectation is taken over the randomness
used to sample aux; = (pp, (pk;,sk;)) and ¢ is the correctness parameter of mPKE. Hence, we conclude

[Pr[E2] — Pr(Es]] < (46 +ap +1) - .

(The next Gamey, Games and Gameg aim to get rid of the secret keys sk; to answer A’s decapsulation oracle
queries.)
- Gamey: In this game, we add an additional check when answering the decapsulation oracle query. This is
illustrated in Figure 4 where the red underline indicates the modification. Here, L¢ is a list that stores the
random oracle queries made to G; and G3.We have M € Lg if G; was queried on M and Gy was queried on
(pk, M) for any pk. Note that due to our assumption on A, there does not exist an event where either G; or
Gy was queried on M or (pk, M) while the other oracle was not.

The only difference occurs when A queries a ciphertext ct = (cto, ct;) such that M := mDec(sk?, ct) has not
been queried to the random oracles G; and Gy but cty = mEnc (pp; G;(M)) and ct; = mEnc® (pp, pk;, M; G1 (M),

12

Gamey : Decap. Oracle D(i, ct # ct}) Gamey : Decap. Oracle D(i, ct # ct})

1: sk; := (sk?, seed;) 1: for M e Lg do
2: M := mDec(sk?, ct) 2: cto := mEnc'(pp; G1(M))
3: if M ¢ L then 3: ct; = mEncd(Bp, pk;, M; G1 (M), Ga(pk;, M))
4 return K :— ﬁ;(ct) 4; if ct = (ctg,ct;) then
5: return K := H(M)
5: if M = L then o
6. return K — ﬁ;(ct) 6: return K := H;(ct)
7: cto := mEnc' (pp; G1(M))
8 ct; := mEnc’(pp, pk;, M; G1 (M), Ga(pk;, M)
9: if ct # (ctg,ct;) then

10: return K := H/(ct)
11: else
12: return K := H(M)

Figure 4: Decapsulation oracles of Gamey and Games. We enforce ct is not ct} := mExt(, c_f*) at the input
level for simplicity.

Ga(pk;, M)). Since G;(M) and Gz(pk;, M) are information theoretically hidden from A, we can use ~-
spreadness of mPKE to conclude
|PI‘[E3] — PI‘[E4]| S qp - 277,

- Games: In this game, we further modify the way a decapsulation-oracle query is answered. This is illustrated
in Figure 4, where notice that we no longer require the secret keys sk; to answer the queries.

If the decapsulation oracle in Gamey outputs K := H(M), then M € L¢ and ct = (cto, cAti) holds. Therefore,
the decapsulation oracle in Games outputs K as well. On the other hand, assume the decapsulation oracle
in Games outputs K := H(M) for some M € Lg such that ct = (cto,ct;) where cty := mEnc'(pp; G;(M))
and ct; :== mEnc®(pp, pk;, M; G; (M), Go(pk;, M)). Then, conditioning on no correctness error occurs, ct must
decrypt to M. Hence, this implies that the decapsulation oracle Gamey outputs the same K as well. Combining
the arguments together, we get

PI‘[E4] = PI‘[E5]

- Gameg: In this game, we undo the change we made in Gamez and no longer check whether a randomness
that leads to a decryption error was sampled at the end of the game. Due to the same argument as before,
we have

|Pr[Es5] — Pr[Eg]| < (g6 + 1) - 6,

where the ¢p factor is removed from the bound since the decapsulation oracle is no longer re-encrypting due
to the change we made in Games. At this point, the challenger no longer requires the secret keys sk;.

(The following final Game; aims to get rid of M* in the challenge ciphertext.)

- Game7: In this game, we sample the random message M* < M to be used to generate the challenge
ciphertext at the beginning. We then define Query as the event that A queries the random oracles H(-),
G1(+), or Ga(x,) on input M*, where * denotes an arbitrary element. When Query occurs, we abort the game
and force A to output a random bit. We show in Lemma 4.4 that we have

(g6 + qn)

|Pr[E¢] — Pr[E7]| < 2- AdVL’:‘E&E%(BlND) + M

for some classical PPT adversary Bjyp with similar runtime as A.
Before providing the proof of Lemma 4.4, we finish our proof for our main statement. In Game;, when
the adversary A does not query the random oracle H on M*, the key K§j is distributed exactly the same as

13

K}. Moreover, when Query occurs (i.e., A queries H on M*), A is forced to output a random bit. Therefore,
we have 1
PI‘[E?] = 5

Combining everything together, we obtain the statement in Theorem 4.1.
To complete the proof, it remains to prove Lemma 4.4 below.

Lemma 4.4. We have |Pr[Eg] — Pr[E7]| < 2- Ade':'pDkEEC(BWD) + % for some classical PPT adversary
Binp with a runtime about the same as that of A.

Proof. Since the two games are identical unless Query occurs, we have |Pr[Eg] — Pr[E7]| < Pr[Query]. There-
fore, in the following, we upper bound Pr[Query]. Let us construct an IND-CPA adversary Binp = (Bino1, Binp2)
which runs A as a subroutine: On input (pp, (pk;)ic(n]), Binp1 samples Mg and M7 uniformly random over
M and outputs (M, M*, state := (M%, M%)). Binps receives ct < mEnc(pp, (pk;)ie(v)» My) and runs A on
input (pp, (pki)ie[N],c_f*). Binpg outputs b’ := 0, if M{ is queried to H(:), Gi(:), or Ga(%,-) and M7 is not;
outputs b’ := 1, if M7 is queried to H(-), G1(-), or Ga(*,-) and Mg is not; and a random b’ otherwise. Here,
the runtime of Bjyp is about the same as A.

Let us denote the event BAD the event that A queries Mj_, to H(-), Gi(-), or Ga(*,-). Since Mj_, is
completely hidden from A, we have Pr[BAD] < (¢g + gn)/|M]|. Then, we have:

Advpke n (Binp) = [Pr[t = b] — 1/2|

:‘ (Pr[Query]-(Pr[b/:b\QueryABAD] Pr[BAD]+Pr[t/ =b|QueryA~BAD] Pr[-BAD)

+ Pr[~Query] (Pr[t=b|~Query ABAD] Pr[BAD]+Pr[5’'=b|~Query A=BAD] Pr[ﬂBAD])) ~1/2

Pr[Query](% - Pr[BAD] 4 Pr[-BAD]) + Pr[—\Query](% - Pr[-BAD]) — 1/2‘

:% - |Pr[Query] + Pr[BAD]|

> - (Pr{Queny] — Pr[BAD]),

where we used the fact that events Query and BAD occur independently. Therefore, we have

(g6 + qn)

Pr[Query] < 2- Advln':lé)kgje(BWD) + Pr[BAD] < 2- Ade’}'E,;E%(BWD) + W

4.3 Proof for Quantum Case

The main difference between our proof and prior proofs for IND-CCA secure KEM in the QROM, e.g.,
[TU16,HHK17,SXY18,JZC*18,JZM19b,JZM19a, BHH ™ 19], is that we use the lazy sampling with compressed
quantum oracles introduced in [Zhal9] (for reasons explained in the introduction). This allows the simulator
to check the validity of the ciphertext submitted to the decapsulation oracle without interfering with the
adversary’s state. Since other than how we specify and interact with the random oracle, the proof structure
is essentially the same as the classical case, we provide the full proof in Appendix B.

14

4.4 Adding Recipient Anonymity

The construction provided in Section 4.1 immediately give rise to a recipient anonymous mKEM if we
additionally assume the underlying IND-CPA secure mPKE is IND-Anon-CPA secure. In particular, we define
the fake encapsulation algorithm mEncaps (see Section 3.3) as: sample K < K, run ct +— mEnc(pp, V), and
output (K, ct), where mEnc is the fake encryption algorithm of the underlying mPKE (see Section 3.3). The
only modification to the proofs of Theorems 4.1 and 4.2 is that we add an additional game at the end where
we invoke the IND-Anon-CPA security game. Since, by the end of both proofs, the key K* are distributed
uniformly random, it remains to show that ¢t is distributed independently of the public keys (pk;);e[n]. We
omit the full proof as it directly reduces from the IND-Anon-CPA security game.

5 Multi-Recipient KEM from Post-Quantum Assumptions

We provide two types of IND-CCA secure mKEM instantiations: one scheme based on lattices, and two
schemes based on isogenies (in the SIDH and CSIDH setting). Specifically, we provide two types of IND-CPA
secure mPKEs and use Theorems 4.1 and 4.2 to generically convert them into IND-CCA secure mKEMs in
the ROM and QROM, respectively. As we see in Section 6, both types of instantiations are designed to fit
with many of the NIST round 2 candidate (single-recipient) PKE/KEMs.

5.1 Multi-Recipient KEM from Lattices

In this section, we show that the lattice-based (single-recipient) PKE based on the Lindner-Peikert framework
[LP11] provides a natural mPKE with the required properties. Since we are able to reuse a large part of the
ciphertext for lattice-based schemes, we get a notable efficiency gain compared to the trivial mPKE/mKEM
which runs PKE/KEM independently for each recipient (as discussed in Remark 3.6).

The mPKE scheme based on the Lindner-Peikert framework [LP11] is provided in Figure 5. Here, Encode
(resp. Decode) is an efficiently computable bijective function that maps elements from the message space
(resp. Ry*™™™) to R7"*™ (resp. message space). The details of Encode and Decode are scheme specific and not
significant for this section. We show the mPKE scheme in Figure 5 has all the properties required for applying
the “multi-recipient” Fujisaki-Okamoto transform (Theorems 4.1 and 4.2). First, it is straightforward to see
that we can easily set the parameters as to have §-correctness and y-spreadness for exponentially small § and
277. Moreover, practical schemes such as NIST candidates also allow for exponentially small § and 277. It
remains to show that the Linder-Peikert framework provides not only a secure PKE but also a secure mPKE.

IND-CPA Security. It is straightforward to see that IND-CPA security follows naturally from the LWE as-
sumption. We provide the proof below for completeness.

Lemma 5.1. Assume mPKE as shown in Figure 5. Then, for any (classical or quantum) IND-CPA adversary
A, there exist (classical or quantum) adversaries By and By such that
IND-CPA LWE LWE
AdePKE,N(‘A) < Advn,n,Nm(Bl) + Adv(n+Nm),n7ﬁ’L(B2)‘
Proof. Let A be an efficient (classical or quantum) adversary against the IND-CPA security of mPKE. We
upper bound its advantage by considering the following game sequence. We denote E; as the event A wins
in Game;.
- Game;: This is the real IND-CPA security game. In particular, Adv'rr':'PDkg]C(.A) = |Pr[E;] — 1/2].
- Gamey: In this game, we change how the public keys (pk;);cn] are created. Rather than generating each
B, as AS; + E; for i € [N], we simply sample a random B + Rgxm. It is easy to see that this modification
is indistinguishable assuming the LWE,, , n» assumption. Hence, we can construct an adversary B; with
around the same running time as A such that
|Pr[E;] — Pr[Es]| < AdviVEL (By).

n,n,Nm

15

Algorithm 1 mSetup(1*) Algorithm 2 mGen(pp)

Input: Security parameter 1* Input: Public parameter pp = A
Output: Public parameter pp Output: Public key pk, a secret key sk
1A+ R 1. S <« Dpxm
2: return pp := A 2: E« DP>*m
3: B« AS+E >Be Ry
4: return pk := B,sk :=S
Algorithm 3 mEnc(pp, (pk;)ic[n], M) Algorithm 4 mEncd(pp7 pk;, M; ro, ;)
Input: Public parameter pp = A, set of public keys Input: Public parameter pp = A, public key pk; =
(pk; = By);e[n], message M B;, message M, randomness rop = (R,E’) and
Output: Ciphertext ct = (cto, (ct;)ien)) r, =E/ R
1 ry:= (R,E') « DI*n x Dmxn Output: (Public key dependent) ciphertext ct;
2: cto := mEnc' (pp; ro) 1: V; <~ RB; + E/ +Encode(M) > V; € Rj"**™
3: for i € [N] do 2: return ct; ;== V;
4 = EJ « pmxm
5 ct; := mEnc?(pp, pk;, M; ro, r;)
6: return ct := (ctg, cty,...,cty)
Algorithm 5 mEnc' (pp;ry) Algorithm 6 mDec(sk, ct)
Input: Public parameter pp = A, randomness ryp = Input: Secret key sk = S, ciphertext ct = (U, V)
(R,E) Output: Message M
Output: (Public key independent) ciphertext cto . M+ V-US > Me Rp™>™
1: U+« RA+E > U e Ry™" 2: return M := Decode(M)

2: return cty :=U

Figure 5: Lattice-based mPKE via the Lindner-Peikert framework [LP11]. mExt with input index ¢ is defined
by picking the relevant components (ct, ct;) from ct.

- Games: In this game, we change how the challenge ciphertext ct” is created. Namely, rather than sampling
at’ = (U, (Vi)ien) as valid LWE samples, we simply sample a random (U, (V;);e(n]) < RI™ x (R7>™)N.
Similarly to above, this reduces directly to the LWE(,, Nyn) n,m, Where note that we take the transpose of
the LWE sample since the secret matrix (i.e., R <= D**"™) is on the left-hand now. Hence, we can construct
an adversary By with around the same running time as A such that

|PI‘[E2] - PT[E;;” < Advl(_\v/LV-ENm),n,m(Bz)‘

Finally, in Games, the challenge ciphertext is distributed uniformly random and independently from
the challenge bit b. Therefore, no adversary can have a distinguishing advantage. Hence, Pr[E3] = 1/2.
Combining everything together, we get the desired bound. O

IND-Anon-CPA Security. It is clear that the above proof for IND-CPA security is also a proof for IND-Anon-CPA.
This can be checked by observing that in the final game, we no longer require the users public keys
(pk; = Bj)icn) to simulate the challenge ciphertext. In particular, the fake encryption algorithm mEnc
simply outputs a random element in RJ**™ x (Rp**™)N.

Remark 5.2 (Using LWR instead of LWE). The mPKE presented in Figure 5 readily generalizes to the LWR
setting. The only difference is that instead of adding the noise terms (i.e., E, E’, E), we round. For instance,

16

the public key pk will be |AS], € R;*™ rather than AS + E € R}*™. It is easy to show that mPKE has
~v-spreadness, is d-correct and IND-CPA secure assuming the LWR assumption.

5.2 Multi-Recipient KEMs from Isogenies

Retracing the steps that lead to the hashed version of ElGamal encryption from the Diffie-Hellman key
exchange, public-key encryption schemes can be deduced from both SIDH [DFJP14] and CSIDH. Building
on such encryption schemes, we present two isogeny-based IND-CPA secure mPKEs. Both of them satisfy the
generic properties required in Theorems 4.1 and 4.2 for obtaining an IND-CCA secure mKEM. Since a unified
presentation of the two schemes would be rather convoluted, for the sake of readability we differentiate their
explanations. We note that both schemes require a family of universal hash functions = {Hy : X CF —
{0,1}*}rek indexed by a finite set K, where F denotes a finite field. The two schemes are detailed below,
starting from the SIDH-based one.

Isogeny-based mPKE via SIDH. The mPKE deduced from SIDH is provided in Figure 6. We highlight
that the public parameter pp output by mSetup on input a security parameter 1” consists of: a prime p of the
form 2¢23% — 1; a supersingular elliptic curve E defined over F,2 and such that |E(F,2)| = (2°23%)?; bases
By = {P5,Q2} and Bz = {P3,Qs} for F[2°2] and E[3°], respectively; a hash function H uniformly sampled
from a family of universal hash functions H = {Hy : & C F,2 — {0,1}"}rcx. Here & is the set of all
supersingular j-invariants in 2, for which holds |X| = p/12 + €, with € € {0,1,2} [DFJP14]. Furthermore,
Encode (resp. Decode) is an efficiently computable bijective function from the message space (resp. {0,1}*)
to {0,1}™ (resp. message space). The details of Encode and Decode are not significant for this section, since
they are scheme specific.

The perfect correctness of the SIDH-based public-key encryption scheme from which our mPKE is deduced
implies that the latter has d-correctness, with 6 = 0. In addition, for a given security parameter 1”, the
prime p = 2°23% — 1 in the public parameter pp +— mGen(1%) is fixed [JACT19]. The first component of each
element in Cgngle contains a curve 2°2-isogenous to E. We denote by W the set {j(E/ (P2 + [r]Q2))|r € Zae2 }
of all such curves. Since p/12 + ¢ > |W]|, one expects that the number of pairs of distinct coefficients
7,7 € Zges such that j(E/ (P2 + [r]Q2)) = j(E/ (P2 + [F]Q2)) is very small [ACCT19a]. Hence, we can
assume that |[W| = 2°2 and deduce v(pp,pk) > es. This value is independent of the public key pk and
E, By, B3 in pp,therefore the mPKE scheme has vy-spreadness with v = e;. We observe that 1/2° =~ 1/,/p,
which is negligible in the security parameter k (e2 > k for any set of SIDH parameters [JACT19]).

IND-CPA Security. The IND-CPA security of the SIDH-based mPKE follows from the SSDDH assumption and
the Leftover Hash Lemma (see Section 2.3).

Lemma 5.3. Assume mPKE as shown in Figure 6. Then, for any (classical or quantum) IND-CPA adversary
A, there exists a (classical or quantum) adversary B such that

1
Advipke A (A) < N - (Advgf’gg@ﬁa (B) + SV2" /p) . (2)

Proof. Let A be an efficient (classical or quantum) adversary against the IND-CPA security of mPKE. We
upper bound its advantage by considering the following game sequence. We denote by E; the event A wins
in Game;.

- Gameg: This is the real IND-CPA security game. In particular, Advlnl:lpD,ZESf}(A) := |Pr[Eo] — 1/2].
- Game, ; for j € [0, N]: In this game, we modify the challenger so that it sets cAt* = Encd(pp, pk;, M*;1q)
for i € [N —j] and ct; « H(J))® Encode() for i € [4]. Here, J/ denotes the j-invariant of the elliptic curve

E/ (P, +[s'1Q2, P3s + [1Q3), where s" and 7" are sampled umformly from Zge, and Zges, respectively. The
challenger outputs ¢t~ := (ct, ct17 oo ct N) as the challenge ciphertext. We note that Game; ¢ corresponds

17

Algorithm 7 mSetup(1*) Algorithm 8 mGen(pp)

Input: Security parameter 1% Input: Public parameter pp = (E, {(e;, Bj)}j=23,
Output: Public parameter pp H)
1: Select eq, e3, E, By = {P2,Q2},Bs = {P5,Q3} Output: Public key pk, a secret key sk
2: H+H 1: (Pg, Qg) — BQ, (Pg, Qg) — Bg
3: return pp := (E, {(ej,Bj)}jzgﬁ, H) 2: § < ZLiges
3: Rg <—P3+[S]Q3
4: B3 E/ <R3>
5: U < §(Ry) (P2), Vo < ¢(ry) (Q2)
6: return pk := (F3,Us, V3),sk := s

Algorithm 9 mEnc(pp, (pk;)ic(n), M) Algorithm 10 mEncd(pp, pk;, M;rg)

Input: Public parameter pp = (E {(ej, i) }i=2,3, H), Input: Public parameter pp = (E, {(e;, Bj)}j=2.3,
set of public keys (pk; = (E é 7U2 ,VQ(I))ie[n], mes- H), public key pk; = (F §)7U2(Z), 2())7 message
sage M R M, randomness rg =

Output: Ciphertext ct = (cto, (cti)icn]) Output: (Public key dependent) ciphertext ct;

L rg =1 & Zaes 10 T; < U2(Z) + [r]VQ(I)

> Clo = mEne <§P? fo) 2 J; ¢ jinvariant(ESY) (T3))
3: for i€[N] do 3: F; « H(J;) ® Encode(M)
4 ct; := mEnc® (pp, pk;, M; rp) 4 return d, = F,

5: return ct := (ctg,cty,...,cCty)

Algorithm 11 mEnc (pp; ro) Algorithm 12 mDec(sk, ct)

Input: Public parameter pp = (E, {(e;, B;)}j=2.3, Input: Public parameter pp = (E, {(e;, Bj)};=2,3,
H), randomness ry = r H), secret key sk = s, ciphertext ct =

Output: (Public key independent) ciphertext ctg (Eq,Us, V3, IF)

1: (P, Q2) < By, (Ps,Qs3) < B3 Output: Message M
2:R2<—P2—|—[’I"}Q2 1~R/<_U3+[]V3
3: By + E/(Ry) 2 B B/ (R)
4: Us + ¢(ryy(Ps), Vs < b(ry) (Q3) 3: J' + jInvariant(E")
5: return cty := (Fy, Us, V3) 4 M+ FaoH(J)
5: return M := Decode(M)

Figure 6: SIDH-based mPKE via hashed ElGamal [DFJP14]. mExt with input index i is defined by picking
the relevant components (ctg, ct;) from ct. Note that mEnc? does not require any randomness r; for i € [N].

to Gamey. Each game is indistinguishable from the previous one under the SSDDH,, £ g, B, assumption. In
particular, we can construct an adversary BB with around the same running time as A such that

| Pr(Ey] — Pr[Ey]l < Advy B 5, (B)

for every j in [0, N —1].

- Gamey: In this game, the challenger is modified so that it sets ct; < h} @ Encode(M) for all i € [N], where
R} is an element sampled uniformly from {0,1}". This game is indistinguishable from the previous game
due to the Leftover Hash Lemma (Lemma 2.6). In particular, let X be the distribution on W C X induced

18

by uniformly sampling the pair (s',7') € Zgez X Zges and setting X to be the j-invariant of the elliptic curve
E/ (P, + [s']Q2, P3 + [r']Qs3). It is known that such distribution approximate the uniform one [DFJP14],
and hence Ho, (X) = log, p. Consequently, invoking the Leftover Hash Lemma N times, we have

|Pr[E; n] — Pr[Es]| <

N
/2w /p.
5 /p

Finally, since the challenge ciphertexts are distributed uniformly random for both challenge bit b € {0,1},
we have Pr[Es] = 1/2. This concludes the proof. O

Remark 5.4. We note that in concrete instantiations, log, p assumes the values 434,503,610, while the
corresponding w is 128,192 or 256, respectively [DFJP14]. Therefore we have (1/2)/2%/p < 252 for each
pair (p, w) and it can be safely discarded in the right term of Equation (2).

IND-Anon-CPA Security. The above proof for IND-CPA security is also a proof for IND-Anon-CPA. Indeed,
in the final game we no longer require the users public keys (pk;);cn) to simulate the challenge ciphertext.

In particular, the fake encryption algorithm mEnc simply outputs a tuple composed by a ciphertext cty and
N uniformly random elements in {0, 1}*.

Isogeny-based mPKE via CSIDH. The mPKE deduced from CSIDH is provided in Figure 7. In mSetup a
prime p of the form 44145 - - - £, —1, where £, ..., ¢; are small odd primes, is chosen. Then the public parameter
pp output by the algorithm consists of: a generator g of the cyclic ideal class group C¢(O), where O = Z[/—p],
and its order n ~ /p; a supersingular elliptic curve E over F, uniformly sampled from ££/,(O,7); a hash-
function H uniformly sampled from a family of universal hash function H = {Hy, : £€¢,(O,7) — {0,1}* }kex
indexed by the finite set K. Furthermore, Encode (resp. Decode) is an efficiently computable bijective
function that maps elements from the message space (resp. {0,1}*) to {0,1}" (resp. message space). The
details of Encode and Decode are not relevant for this section.

The CSIDH-based mPKE scheme satisfies all the properties required by the “multi-recipient” Fujisaki-
Okamoto transform. It is easy to see that the scheme is perfectly correct, hence 6 = 0. Furthermore, the
output distribution of mEnc' coincides with the uniform distribution over ££4,(O,) (it is induced by the free
and transitive group action %). Therefore v(pp, pk) > (log, p)/2 for all pp € Setup(1*) and (pk, sk) € Gen(pp),
and hence v = (log, p)/2.

IND-CPA Security. Analogously to the SIDH-based mPKE, the IND-CPA security of the scheme in Figure 7

follows from the dCSIDH assumption (Section 2.2) and the Leftover Hash Lemma (Section 2.3). In particular
we have:

Lemma 5.5. Assume mPKE as shown in Figure 7. Then, for any (classical or quantum) IND-CPA adversary
A, there exist (classical or quantum) adversary B such that

. 1
AdvinekE R (A) < N - (Advgfj'DH(B) + 5,/2w /\/13> } (3)

The proof of Lemma 5.5 is just an adaptation of that of Lemma 5.3. To be precise, a sequence of
hybrid games E ;, with j € [0, N], replaces H! with a uniformly random curve H] € £0(,(O,7), and so
| Pr[E; ;] — Pr[Ei j+1]| < Advf)FgS'DH (By) for every j in [0, N — 1]. At this point, we can invoke the Leftover
Hash Lemma to argue that the challenge ciphertext is distributed uniformly random. The value of w can
be parameterized so that in Equation (3) the second term on the right can be safely discarded. Finally, we
observe that the above-sketched proof also implies IND-Anon-CPA, with mEnc that outputs a tuple composed

by a ciphertext cty and N uniformly random elements in {0,1}*.

Remark 5.6 (CSIDH with ideal class group of unknown structure). The scheme described in Figure 7 can be
easily adapted to the case where the structure of the ideal class group G = C4(O) is unknown. In particular,
in that case the public parameter pp comes with two distributions Dg and Dg,. Then E is sampled from
Dg,, while the values in line 1 in the mSetup and mEnc algorithms are sampled from Dp.

19

Algorithm 13 mSetup(1*) Algorithm 14 mGen(pp)

Input: Security parameter 1* Input: Public parameter pp = (g,n, F,H)
Output: Public parameter pp Output: Public key pk, secret key sk

1: Select p and g 1: a4 Znp

2: n <+ Order(g),H « H 2: H+ g°xFE

3: B+ &00,(0,) 3: return pk := H,sk:=a

4: return pp := (g,n, E,H)

Algorithm 15 mEnc(pp, (pk;)ic[n]: M) Algorithm 16 mEncd(pp, pk;, M; rp)
Input: Public parameter pp = (g,7, E,H), set of pub- Input: Public parameter pp = (g,n, E,H), public
lic keys (pk; = H;)ic|n], message M key pk, = H;, message M, randomness ro = r
Output: Ciphertext ct = (cto, ((:Ati)ie[N]) Output: (Public key dependent) ciphertext ct;
11 rg:=1 4+ Zy 1. Hl < g"x H;
2: cto := mEnc'(pp; ro) 2: F; < H(H]) ® Encode(M)
3: for i € [N] do 3: return ct; := F;
4 ¢t == mEnc?(pp, pk;, M; ro)
5: return ct := (ctg, cty,...,cty)
Algorithm 17 mEnc (pp; ro) Algorithm 18 mDec(sk, ct)
Input: Public parameter pp = (g,n, F,H), random- Input: Public parameter pp = (g,n, £,H), Se-
ness ro = r cret key sk = a, ciphertext ct = (E', F)
Output: (Public key independent) ciphertext cto Output: Message M
1. B« g «E 1: H « g*xE’
2: return ctg := F’ 2 M+ FaH(H)

3: return M := Decode(M)

Figure 7: CSIDH-based mPKE via hashed ElGamal [DFJP14]. mExt with input index ¢ is defined in the
obvious way by picking the relevant component (ctg,ct;) from ct. Note that mEnc? does not require any
randomness r; for i € [N] (except that used to compute the action).

6 Instantiating mKEM with NIST Candidates and CSIDH

In this section, we concretely instantiate the generic mKEM framework laid out in previous sections. We take
the PKEs underlying 8 existing lattice-based and isogeny-based NIST KEMs (as well as CSIDH). We first
modify them into efficient mPKEs (following Section 5) and then into mKEMs via our generic transformation
(Theorems 4.1 and 4.2). We note that we did not consider the corresponding mKEM for the CISDH mPKE, for
reasons explained later. We compare these mKEMs to the trivial solution that uses (single-recipient) KEMs
in parallel, and show that our mKEMs provide efficiency gains, both in communication and computation, of
an order of magnitude.

Until the end of this document, we denote by |x| the bytesize of an object x, where x may be any
cryptographic object (a public key, a ciphertext, etc.)

6.1 Comparison Methodology

Our goal is to provide an accurate assessment of the gains provided by various mKEM instantiations. A natu-
ral way to do that is to compare the performances of these mMKEMs (with N recipients) with N instantiations
of the original (single-recipient) KEMs. This comparison can be done via two metrics:

20

(C1) Communication cost. How much data does the encryptor broadcast when using mKEM with N recipi-
ents, and how does it compare to N instances of the original KEM (one per recipient)?

(C2) Computational cost. How many cycles does one instance of mKEM with N recipients cost, and how
does it compare to N instances of KEM?

For (C1), we measure the ratio:

Data broadcast when using N instances of the original KEM

4
Data broadcast when using mKEM with N recipients)
With mKEM the encryptor broadcasts a single multi-ciphertext of size [cto| + >;¢(n |cts| = |cto] + N|cti],
whereas with NV instances of KEM he broadcasts N ciphertexts ct = (cto,&i) — except for NewHope, see
footnote 4 — for a total size N|ctg|+ N|ct;|. Therefore, the ratio converges to a value independent of N when
N tends to infinity. Specifically, the value (4) is:

N|cto| + Nlct; t
Nicto| + Nleti| 1 4 Il (5)
|cto] + Nct;] N—co |ct;]

Let kcomm = 1+ ‘IZ{OI‘ This value measures asymptotically “how much more compact” mKEM is compared

to the original KEM, and serves as our metric for (C1). Similarly, the following value serves as our metric
for (C2):

. Cycles spent to run N instances of the original KEM
im
N—o0 Cycles spent to run mKEM with IV recipients

(6)

We note that kcycles is far less absolute than kcomm as a metric, since the number of cycles depend on the
implementation of a scheme, the architecture of the target platform, etc. However, it is a useful indicator
of the efficiency gain that one can expect by using mKEM. All cycles measurements in this section are
performed on a processor i7-8665U (Whiskey Lake) @ 1.90GHz, with Turbo Boost disabled.

kcycles =

6.2 Instantiation with Lattice-based NIST Candidates

In this section, we provide concrete instantiations of the high-level scheme described in Section 5.1. Our
efforts are facilitated by the fact that 7 lattice-based NIST candidate KEMs are deduced from PKEs that
follow the Lindner-Peikert framework:

o Kyber; e LAC,; e Round5; e ThreeBears.

e FrodoKEM; e NewHope; e Saber;

Full specifications of these 7 schemes are available at [NIS19]. Out of these, FrodoKEM, Kyber, LAC and
NewHope follow the most closely the Lindner-Peikert framework, since they are based on LWE, Module-LWE,
Ring-LWE and Ring-LWE, respectively. Round5 and Saber are based on variants of LWR. This implies a
few changes on Figure 5, since the addition of noise error is replaced in some instances by rounding. See
Remark 5.2 for a short discussion on this change. Finally, ThreeBears is based on an extremely recent variant
called Module Integer-LWE. In addition, each scheme has different parameters and uses different tweaks. A
widespread trick is for ct; to drop the least significant bits of V;, since the message M is encoded in the most
significant bits. This reduces the size of a (multi-)ciphertext. Note that bit dropping is more beneficial to
mKEMs than to KEMs as it reduces |ct;|, hence a larger bandwidth impact for mKEMs — see (5).

These 7 KEMs and the PKEs they are based on serve as the bases for our mKEM constructions. We
tweaked them in order to fit the frameworks described in Figure 5 (IND-CPA mPKE) and Figure 3 (con-
version into an IND-CCA mKEM). Note that our tweaks break compatibility with the specifications of the
aforementioned schemes, for two reasons. First, we fix the public matrix A in order to fit Figure 5 (see
Remark 6.1 below). Second, the transform of Figure 3 is completely different from the ones used in the 7
aforementioned KEMs, which themselves differ from each other. As a consequence, comparing our mKEMs

21

to these KEMs is not an entirely apples-to-apples comparison, as the 7 KEMs we cited claim some additional
properties such as contributivity or security in specific threat models (see Remark 6.1). For our mKEMs, we
do not claim to achieve any security notion besides those proven in this document.

Remark 6.1 (Reusing the public matrix). A difference between Figure 5 and the aforementioned NIST
schemes is that the latter use PKEs for which the matrix A is made part of the public key pk. That is,
each user has its A rather than sharing it. The main argument for this choice is to hinder all-for-the-price-
of-one attacks [ADPS16, Section 3]. The associated threat model considers an attacker that has enough
cryptanalytic capabilities to break ome hard instance of a lattice problem, but not much more. This is an
arguably specific security model, one that implicitly considers that the parameter set of the scheme may
not be cryptographically secure. In order to enable our mKEM instantiations, we instead make A part of
the public parameter pp, as per Figure 5. This can be done with minimal changes to the PKEs used by the
original KEMs, and has no impact on their concrete security analysis.

Communication costs.

Table 1 provides a comparison of NIST KEMs with their mKEM variants. Sending N ciphertexts costs
N - |ct| bytes for a NIST KEM, whereas using its mKEM counterpart costs |ctg| + N - |ct;|. The gain in
bandwidth kcomm is of one order of magnitude (sometimes two). Schemes based on module lattices (Saber,
Kyber, ThreeBears) and standard lattices (FrodoKEM) see the most dramatic gains (as high as a factor 169
times for FrodoKEM).

Table 1: Bandwidth impact of our solution on various schemes. Sizes are in bytes.

Scheme |cto] |cty| |ct| kcomm
FrodoKEM-640 9600 120 9720 81
FrodoKEM-976 15616 128 15744 123
FrodoKEM-1344 21504 128 21632 169
Kyber-512 640 96 736 7.67
Kyber-768 960 128 1088 8.5
Kyber-1024 1408 160 1568 9.8
LAC-128 512 200 712 3.56
LAC-192 1024 164 1188 7.24
LAC-256 1024 400 1424 3.56
NewHope-512-CCA-

KEM® 896 192 1120 5.83
NewHope-1048-CCA-

KEM 1792 384 2208 5.75
Round5 R5ND_1KEMb 429 110 539 4.9
Round5 R5ND_3KEMb 756 74 830 11.22
Round5 R5ND_5KEMb 940 142 1082 7.62
LightSaber 640 96 736 7.67
Saber 960 128 1088 8.5
FireSaber 1280 192 1472 7.67
BabyBear 780 137 917 6.69
MamaBear 1170 137 1307 9.54
PapaBear 1560 137 1697 12.38

*Unlike other lattice-based KEMs, the CCA variant of NewHope adds a hash to the ciphertext. So in this particular case
et = |cto| + |cti| + {32, 64}.

22

Computational costs.

Due to time constraints, we only implemented mKEM on two lattice-based schemes: FrodoKEM and Kyber.
Nevertheless, we believe these examples already showcase the efficiency gain provided by our techniques.
Starting from reference implementations available on Github’®, we tweaked them to obtain mKEMs. As
shown by Table 2, our mKEM variants perform (multi-)encapsulation between one and two orders of mag-
nitude faster than their original KEM counterparts. Additional experiments in Appendix D show that the
target platform can play an important role in the performance gain.

Table 2: Encapsulation times of FrodoKEM and Kyber vs their mKEM variants. Times are in cycles and
are normalized by the number of recipients (here, 1000).

Scheme Trivial KEM Our mKEM keycles
FrodoKEM-640 4948 835 251 405 19.68
FrodoKEM-976 10413149 387733 26.86
FrodoKEM-1344 18583122 519973 35.74
Kyber-512 181297 42647 4.25
Kyber-768 279210 52471 5.32
Kyber-1024 414774 61 808 6.71

6.3 Instantiation with Isogeny-Based schemes

In this section, we focus on isogeny-based instantiations of mMKEM and mPKE. Concerning SIKE, we obtain
an mKEM from the mPKE of Figure 6, and we compare it with the trivial solution consisting in N instances
of SIKE. For CSIDH, we compare the mPKE of Figure 7 with N instances of the CSIDH-based hashed
ElGamal. Since CSIDH is a key-exchange, we simply construct a trivial IND-CPA secure PKE from it (rather
than constructing an IND-CCA secure KEM) and compare it with our mPKE from Section 5.2 (see also
Figure 7 for the details). To obtain proof-of-concept implementation of mPKE for CSIDH and mKEM for
SIKE, we have modified implementation available in the NOBS library®.

Communication cost.

Our construction provides the most significant gain when used with SIKE/p434. In this case our mKEM
variant can be over 20 times more efficient.

Table 3: Bandwidth impact of our mKEM on isogeny schemes. Sizes are in bytes.

Scheme |cto] |cts |ct] Kcomm
SIKE/p434 330 16 346 21.63
SIKE/p503 378 24 402 16.75
SIKE/p751 564 32 596 18.63
SIKE/p434_compressed 196 16 209 13.25
SIKE/p503_compressed 224 24 248 10.33
SIKE/p751_compressed 331 32 363 11.34
c¢SIDH PKE/p512 64 16 80 5

"https://github.com/Microsoft/PQCrypto-LWEKE
8https://github.com/pq-crystals/kyber/
9https://github.com/henrydcase/nobs

23

https://github.com/Microsoft/PQCrypto-LWEKE
https://github.com/pq-crystals/kyber/
https://github.com/henrydcase/nobs

Computational costs.

In SIKE and CSIDH-based hashed ElGamal, the computational cost is dominated by isogeny computations.
In both schemes, encapsulation/encryption requires the computation of two smooth-degree isogenies. As-
suming SIKE key compression is not used, we can assume that both computations have a similar cost C.
When running SIKE/CSIDH-based hashed ElGamal for N recipients, the total computation cost is roughly
2. N - C. By apply