
Scalable Ciphertext Compression Techniques for Post-Quantum

KEMs and their Applications

Shuichi Katsumata1, Kris Kwiatkowski2, Federico Pintore3, Thomas Prest2

1National Institute of Advanced Industrial Science and Technology (AIST), JP

shuichi.katsumata@aist.go.jp
2PQShield, UK

kris.kwiatkowski, thomas.prest@pqshield.com
3Mathematical Institute, University of Oxford, UK

federico.pintore@maths.ox.ac.uk

December 2, 2020

Abstract

A multi-recipient key encapsulation mechanism, or mKEM, provides a scalable solution to securely
communicating to a large group, and offers savings in both bandwidth and computational cost compared
to the trivial solution of communicating with each member individually. All prior works on mKEM are
only limited to classical assumptions and, although some generic constructions are known, they all require
specific properties that are not shared by most post-quantum schemes. In this work, we first provide a
simple and efficient generic construction of mKEM that can be instantiated from versatile assumptions,
including post-quantum ones. We then study these mKEM instantiations at a practical level using 8
post-quantum KEMs (which are lattice and isogeny-based NIST candidates), and CSIDH, and show that
compared to the trivial solution, our mKEM offers savings of at least one order of magnitude in the
bandwidth, and make encryption time shorter by a factor ranging from 1.92 to 35. Additionally, we show
that by combining mKEM with the TreeKEM protocol used by MLS – an IETF draft for secure group
messaging – we obtain significant bandwidth savings.

1 Introduction

Secure communication within a system of several users is becoming indispensable in our everyday lives. One
leading example is the recent trend in secure group messaging (Zoom, Signal, WhatsApp, and so on) to
handle large groups – up to 50 000 users according to the IETF draft of the Message Layer Security (MLS)
architecture [OBR+20, Section 3.1]. The scenario is that users in a system, each holding their public and
secret key, frequently exchange messages with a group of users. More than often, the solution adopted is
the trivial approach of individually encrypting the same message M using the public keys associated with
the respective recipients in the group.1 However, this trivial approach makes the required bandwidth and
computational costs grow by a factor N (where N is the number of recipients), compared to sending a
message to a single recipient. Therefore, as the number of recipients increases, this trivial solution has poor
scalability.

An additional motivation for lowering the bandwidth and computational costs is the current phase of
gradual transition towards post-quantum cryptography — a type of cryptography that is known to be resilient

1To be more precise, it is common to rely on the KEM/DEM framework [CS03, Den03] to lower the reliance on the more
inefficient public key cryptography.

1

against quantum adversaries. Most, if not all, post-quantum secure schemes are known to incur bandwidth
and/or computational overheads compared to classical schemes. For example, all key encapsulation mecha-
nisms (KEMs) still considered for standardization by NIST require an order of magnitude more bandwidth
than ECDH [BCR+] at a comparable classical security level. Therefore, lowering the cost of communication
with multiple recipients even when the number of recipients N is only moderately large, say N ≥ 10, will
already be of value.

Multi-Recipient Key Encapsulation Mechanism (mKEM), coined by Smart [Sma05]2, is a primitive
designed with the above motivations in mind. On a high level, an mKEM is like a standard KEM that securely
sends the same session key K to a group of recipients. Subsequently, the sender transmits a single ciphertext
to all the recipients by encrypting the message M using K as a secret key for a secret-key encryption scheme.
The latter procedure corresponds to the standard DEM. The main requirement that makes mKEM appealing
is that the bandwidth and computational resources required to send the session key K are less than those
required when individually encrypting K using the recipients’ public keys. To be precise, we can trivially
construct an mKEM from any public-key encryption (PKE) scheme by encrypting the same session key K
with respect to all the recipients’ public keys. However, this trivial construction will be as inefficient as
the aforementioned trivial solution (modulo the efficient DEM component), and therefore, the main goal for
mKEM is to offer a more efficient alternative.

Due to its practically appealing and theoretically interesting nature, the study of mKEM has attracted
much attention, e.g., [Kur02,BF07,HK07,HTAS09,MH13,Yan15]. Also, similar variants of mKEM, such as
multi-message multi-recipient public-key encryption [BBM00, BPS00, Kur02, BBS03], have been considered
prior to mKEM with similar motivations in mind, and have illustrated the importance of investigating the
multi-recipient settings. As a consequence, by now many exciting results regarding mKEMs have appeared.
However, we like to point out three unsatisfactory issues remaining with burdening the current state of
affairs. First, to the best of our knowledge, all the literature on mKEMs is based on classical assumptions
(e.g., Diffie-Hellman type assumptions) which are believed to not endure quantum adversaries. We are
aware of one recent work [CLQY18] that claims the construction of an IND-CCA secure mKEM from the
learning parity with noise (LPN) assumption, which is believed to be quantumly secure. However, while
going over their results, we noticed that their scheme is insecure since there is a trivial break in their claimed
IND-CCA security. In particular, the ciphertexts are easily malleable. See Appendix A for more detail.
Second, earlier works such as [BF07, HTAS09, MH13] provide a somewhat generic construction of mKEM
from a (single-recipient) PKE, but require the underlying PKE to satisfy rather specific properties that seems
somewhat tailored to classical Diffie-Hellman type assumptions. For instance, [BF07] requires a notion of
weak reproducibility, which informally states that there is an efficient procedure to re-randomize a ciphertext
under a certain public key to a ciphertext under another public key. Unfortunately, such properties are not
known to exist for post-quantum assumptions, such as lattice-based assumptions. Therefore, we still do not
have a truly general framework for constructing mKEMs from standard building blocks. Here, “standard”
building blocks mean blocks that are potentially instantiable from many hardness assumptions.

Summarizing thus far, the first question we are interested in this work is:

(Theoretical Question) Are there any simple and efficient generic constructions of mKEM that
can be based on versatile assumptions, including post-quantum assumptions?

The third issue, which is orthogonal to the above concerns, is that all previous works on mKEM do not come
with any implementations. Notably, most literature only points out the efficiency gain in a rather theoretical
manner and does not provide comparisons with the trivial solution (i.e., running KEM in parallel). Since
these gains depend on the concrete mKEM implementation and also on the choice of KEM used in the trivial
solution, the benefit of using an mKEM is unclear without proper comparison. Considering the practical
oriented nature of mKEM, we believe understanding the concrete gain of using an mKEM instead of using
the trivial solution would help in illustrating the practical relevance of this primitive and in providing insight
on when to use an mKEM.

2We note that very similar variants of mKEM have been considered prior to this work [BBM00,BPS00,Kur02,BBS03]. More
details follow.

2

Therefore, the second question we are interested in this work is:

(Practical Question) What is the concrete gain of using an mKEM compared to the trivial solu-
tion? What are the concrete applications of mKEMs?

1.1 Our Contributions and Techniques

Theoretical Contribution. We provide a new simple and efficient generic construction of an IND-CCA secure
multi-recipient KEM (mKEM) from any IND-CPA secure multi-recipient PKE (mPKE).3 The construction is
proven secure in the classical and quantum random oracle model ((Q)ROM). Here, mPKE is a variant of
mKEM where a user can encrypt any same message M (rather than a random session key K) to multiple
recipients. We then show that IND-CPA secure mPKEs can be constructed very easily from most assumptions
known to imply standard PKEs (including classical Diffie-Hellman type assumptions). The construction of
an IND-CPA secure mPKE is in most cases a simple modification of a standard IND-CPA secure PKE to
the multi-recipient setting. Concretely, we show how to construct mPKEs based on lattices and isogenies.
Compared to previous works [BF07, HTAS09, MH13] which provide some types of generic constructions of
mKEM, ours require an mPKE whereas they only require a single-recipient PKE. However, we only require
very natural properties from the underlying mPKE, such as IND-CPA. Considering that our mPKE can be
instantiated with diverse assumptions (including but not limited to post-quantum assumptions) in a very
natural way from standard PKEs, we believe our generic construction to be more versatile and handy than
previous ones.

Moreover, we introduce a new notion of recipient anonymity which we believe to be of independent
interest. The notion captures the fact that the ciphertext does not leak the set of intended group members
or recipients. We provide a mild additional property for the underlying IND-CPA secure mPKE, under which
our above generic construction naturally implies a recipient-anonymous IND-CCA secure mKEM. Our lattice
and isogeny-based instantiations satisfy the extra property without any modification. An overview of our
generic construction is provided in the following section.

Practical Contribution. An immediate consequence of our theoretical contribution is that it opens the door
to a large number of post-quantum instantiations of mKEM. A natural next step is to study these mKEM
instantiations at a practical level and compare them to the trivial solution of running standard KEMs in
parallel. Doing this work is precisely one of our practical contributions. As it turns out, at least 9 post-
quantum schemes are compatible with our construction of mKEM: 7 lattice-based NIST candidates, the
only isogeny-based NIST candidate SIKE, and the CSIDH scheme. We performed a systematic study of
the bandwidth efficiency and found that for all of these schemes, our mKEM variants are more compact
than the trivial solution with the original schemes by at least one order of magnitude (for a clearly defined
metric). In addition, for a subset of these 9 schemes (CSIDH, FrodoKEM, Kyber, SIKE), we implemented
their mKEM counterparts and compared their performance (cycle count). We found our mKEM variants to
be (asymptotically) faster than the trivial solution with original schemes by factors ranging from 1.92 to
more than 35.

Additionally, we show that we can use the mKEM primitive for the TreeKEM protocol obtaining significant
bandwidth savings. To give some context, the importance of TreeKEM could be best understood by looking at
its parent protocol, MLS [OBR+20,BBM+20], an IETF draft for secure (group) messaging. MLS has gained
considerable industrial traction and has attracted a fair amount of academic scrutiny. TreeKEM constitutes
the cryptographic backbone of MLS, as well as its main bottleneck in bandwidth and computational efficiency.
Indeed, given N users, it requires each of them to compute and send O(logN) ciphertexts at regular intervals.
We highlight a simple but powerful interplay between TreeKEM and mKEM, and show that by applying our
technique we can reduce communication cost by a factor between 1.8 and 4.2 compared to using standard
KEMs.

3As standard in practice, we consider indistinguishability under chosen ciphertext attacks (IND-CCA) to be the default
security requirement on our resulting scheme.

3

1.1.1 Our Techniques: Generic Construction of IND-CCA secure mKEM.

On a high level, our generic construction can be seen as a generalization of the Fujisaki-Okamoto (FO)
transform [FO99]. The FO transform (roughly) converts any IND-CPA secure PKE into an IND-CCA secure
KEM. There are several variants of the FO transform and most of the variants are secure in the ROM
[OP01,CHJ+02,Den03,HHK17] and/or QROM [TU16,HHK17,SXY18,JZC+18,JZM19b,JZM19a,BHH+19,
Zha19,KSS+]. The high-level construction is as follows: to encrypt, we sample a random message M←M
and derive randomness for the underlying encryption algorithm of the PKE by hashing M with a hash function
G modeled as a (Q)RO. That is, ct ← PKE.Enc(pk,M;G(M)). The session key is then set as K := H(M),
where H is another hash function modeled as a (Q)RO. To decrypt, we first decrypt M′ ← PKE.Dec(sk, ct)
and then only accept K = H(M′) if M′ re-encrypts back to ct, that is, we check ct = PKE.Enc(pk,M′;G(M′)).
Although the actual proof is rather complicated, intuitively, it achieves IND-CCA security since the adversary
must have queried message M to G to have constructed a valid ciphertext ct for message M. Therefore, in
the ROM, to answer a decapsulation-oracle query, the simulator runs through all the messages that have
been queried to G to check if any of them re-encrypts to ct. Since the simulator no longer requires sk to
simulate the decapsulation oracle, we can invoke the IND-CPA security of the underlying PKE.

Our idea is to generalize the FO transform to the mPKE/mKEM setting. At first glance, this may seem
to not work. Indeed, an mPKE typically comes with a multi -encryption algorithm with the following syntax:
mEnc(pp, (pki)i∈[N],M; r) → ~ct, where ~ct is targeted to the set of N recipients with public keys (pki)i∈[N].

There is also an extraction algorithm mExt which takes as input an index i ∈ [N] and ~ct, and outputs the
ciphertext component cti targeted to the i-th recipient, say Ri, holding pki. Recipient Ri can then run the
decryption algorithm on cti using its secret key ski. The reason why the FO transform cannot be directly
applied to mPKE becomes clear. Assume r = G(M) and that recipient Ri decrypted to M. Then, to check
validity of cti, Ri must re-encrypt the entire ciphertext ~ct by running mEnc(pp, (pki)i∈[N],M; r). Therefore,
the decapsulation time will depend on N , which is highly undesirable.

To get around this issue, in this work we consider a slight variant of mPKE with a decomposable flavor. In-
formally, a decomposable multi-encryption algorithm mEnc takes randomness of the form r = (r0, r1, · · · , rN)
as input, and creates a public-key-independent ciphertext ct0 ← mEnci(r0) and public-key-dependent cipher-
texts ĉti ← mEncd(pki,M; r0, ri). The resulting ciphertext for recipient Ri is then cti = (ct0, ĉti). We view
this as a natural formalization of mPKE as it is satisfied by all the mPKE constructions that we are aware
of. Moreover, this feature is desirable in practice as it allows to parallelize part of the encryption algorithm.
Now, to perform the FO transform, we derive r0 = G(M) and ri = G(pki,M). It is evident that Ri can
re-encrypt and check the validity of its ciphertext. Notably, the decapsulation time is now independent of
N . With this new formalization, the proof in the (classical) ROM follows in a straightforward manner (with
minor modification) from the standard FO transform [HHK17].

The security proof of our mKEM in the quantum ROM (QROM) requires slight more work. Prior proof
strategies in the QROM for standard IND-CCA secure KEMs based on the FO transform – which fix the
description of the QROM at the outset of the game [TU16, HHK17, SXY18, JZC+18, JZM19b, JZM19a,
BHH+19] – seem to be an ill fit for mPKE. This is because in the multi-recipient setting, the decapsulation
oracle is required to output an identical session key K when the ciphertext is valid, while it is required to
output different rejection values for each users when the ciphertext is invalid. Due to this discrepancy between
valid and invalid ciphertexts (i.e., the former requires to output an identical random value, whereas the latter
requires to output different random values), previous proof techniques that always output random values
fail. Note that in the single-user setting, regardless of the ciphertext being valid or invalid, the decapsulation
oracle could always output random values without being detected by the adversary, and hence, this obstacle
was absent. To overcome this, we use the recently introduced compressed oracles technique [Zha19]. This
allows the simulator to perform lazy sampling and to check the validity of the ciphertext submitted to the
decapsulation oracle without interfering with the adversary’s state. Although the high-level structure of the
proof is similar to the classical case, much subtle care is required in the QROM case as the simulator must
not disturb the adversary’s state. We note that Zhandry [Zha19] showed security of one variant of the FO
transform which converts a perfectly correct IND-CPA secure PKE to an IND-CCA secure PKE.

4

2 Preliminaries

2.1 Hard Problems for Lattices

For any natural number d and q, let Rq denote the ring Z[X]/(q,Xd + 1). The learning with errors (LWE)
problem is defined below.

Definition 2.1 (Learning with Errors (LWE)). Let d, q, n1, n2, n3 be natural numbers, and Ds and De be
distributions over Rq. We say that the advantage of algorithm A in solving the (decisional) LWEn1,n2,n3

problem over the ring Rq is

AdvLWE
n1,n2,n3

(A) := | Pr[A← Rn1×n2
q ,S← Dn2×n3

s ,E← Dn1×n3
e : 1← A(A,AS + E)]

− Pr[A← Rn1×n2
q ,B← Rn1×n3

q : 1← A(A,B)]
∣∣ .

We say the LWEn1,n2,n3
problem is hard if, for any (possibly quantum) efficient adversary A, its advantage

is negligible.

Roughly, when d = 1 and n1 = n2 ≥ 1 (with an appropriate choice of distributions Ds, De), the above
corresponds to the standard LWE [Reg05], and when d ≥ 1 and n1 = n2 = 1, the above corresponds to the ring
LWE (Ring-LWE) problem [LPR10, LPR13]. We can parametrize d, n1, n2, n3 to achieve a tradeoff between
space and security, where the general case can be casted as the module LWE (Module-LWE) problem [LS15].
In practice, distributions Ds and De are chosen for instance from the discrete Gaussian distribution or from
the uniform distribution (with possibly a fixed weight) over some small interval.

We also consider a variant of the LWE problem, called learning with rounding (LWR) problem [BPR12],
where the least significant bits are removed. The benefit of this variant is that we no longer require to
sample the noise, as it is removed. Below the function b·ep : Zq → Zp, where q > p ≥ 2, is defined as
bxep = b(p/q) · xe mod p. The definition of the LWR problem follows.

Definition 2.2 (Learning with Rounding (LWR)). Let d, p, q, n1, n2, n3 be natural numbers such that q > p,
and Ds a distributions over Rq. We say that the advantage of algorithm A in solving the (decisional)
LWRn1,n2,n3 problem over the rings Rp and Rq is

AdvLWR
n1,n2,n3

(A) := | Pr[A← Rn1×n2
q ,S← Dn2×n3

s : 1← A(A, bASep)]
− Pr[A← Rn1×n2

q ,B← Rn1×n3
p : 1← A(A,B)]

∣∣ .
We say the LWRn1,n2,n3

problem is hard if, for any (possibly quantum) efficient adversary A, its advantage
is negligible.

2.2 Hard Problems for Isogenies

In the following sections we propose two different isogeny-based schemes: one stemming from the SIDH
key exchange [DFJP14] and the other from the CSIDH key exchange [CLM+18]. Both key exchanges
share common mathematical tools, but several technical differences make them, and their descendants,
substantially different. As a consequence, schemes in the SIDH family rely on hardness assumptions different
from those used for schemes in the CSIDH family. Our schemes make no exception, as they use distinct
security assumptions.

SIDH-based assumption. Let p be an odd prime of the form 2e23e3 − 1, with e2, e3 ∈ N and 2e2 ≈ 3e3 .
For a supersingular elliptic curve E over Fp2 we will denote by B2 = {P2, Q2} and B3 = {P3, Q3} bases
for E[2e2] and E[3e3], respectively. Under the hypothesis that |E(Fp2)| = (2e23e3)2, both torsion subgroups
E[2e2] and E[3e3] are contained in E(Fp2). Given the curve E and s ∈ Z2e2 , by pk2(s) we denote the
tuple (E/ 〈R2 = P2 + [s]Q2〉 , φ〈R2〉(P3), φ〈R2〉(Q3)), where φ〈R2〉 is the isogeny from E having kernel 〈R2〉.
Analogously, for r ∈ Z3e3 we define pk3(r) as (E/ 〈R3 = P3 + [r]Q3〉 , φ〈R3〉(P2), φ〈R3〉(Q2)).

The security of our scheme relies on a decisional variant, named SSDDH [DFJP14], of the SSCDH as-
sumption. The latter is used by one of NIST second-round candidate KEMs, called SIKE [JAC+19], which
is deduced from the key exchange SIDH.

5

Definition 2.3 (Supersingular Decisional Diffie-Hellman (SSDDH)). Let E be a supersingular elliptic curve
over Fp2 such that |E(Fp2)| = (2e23e3)2. We say that the advantage of algorithm A in solving the SSDDHp,E,B2,B3

problem is

AdvSSDDH
p,E,B2,B3

(A) := | Pr[s← Z2e2 , r ← Z3e3 :

1← A(pk2(s), pk3(r), E/ 〈P2 + [s]Q2, P3 + [r]Q3〉)]
− Pr[(s, s′)← (Z2e2)2, (r, r′)← (Z3e3)2 :

1← A(pk2(s), pk3(r), E/ 〈P2 + [s′]Q2, P3 + [r′]Q3〉)]| .

We say the SSDDHp,E,B2,B3 problem is hard if, for any (possibly quantum) efficient adversary A, its advan-
tage is negligible.

CSIDH-based assumption. Let p be an odd prime of the form 4`1`2 · · · `t−1, where `1, . . . , `t are small odd
primes. E``p(O, π) is the set containing all supersingular elliptic curves E over Fp - modulo isomorphisms
over Fp - such that there exists an isomorphism between the order O ⊆ Q(

√
−p) and Endp(E) mapping√

−p ∈ O into the Frobenius endomorphism (x, y) 7→ (xp, yp). We note that |E``p(O, π)| ≈ √p. We consider
O equal to Z[

√
−p] = {m+n

√
−p | m,n ∈ Z} in which case, provided that p ≡ 3 (mod 8), each isomorphism

class in E``p(O, π) can be uniquely represented by a single element of Fp [CLM+18]. The ideal class group
C`(O) acts freely and transitively on E``p(O, π) via the group action ?. A special integral ideal I`i ⊂ O
corresponds to each prime `i. These ideals allow an easy computation of the group action. In particular,
the action of I`i on a curve E ∈ E``p(O, π) is determined by an isogeny having as kernel the unique rational
`i-torsion subgroup of E.

In the following we restrict our attention to the case where C`(O) is cyclic and generated by g ∈ {[I`i]|i =
1, . . . , t}. The security of the CSIDH-based scheme we introduce in Section 5.2 relies on the decisional variant,
recently exploited in [EKP20,CS20], of the best-known GAIP assumption [CLM+18].

Definition 2.4 (Decisional CSIDH (dCSIDH)). Let p be a prime of the form 4`1`2 · · · `t−1 and g a generator
of the ideal class group C`(O) having order N , where O = Z[

√
−p]. We say that the advantage of algorithm

A in solving the dCSIDHp,g
4 problem is

AdvdCSIDH
p,g (A) := | Pr[E ← E``p(O, π), (a, b)← (ZN)2 :

1← A(E, ga ? E, gb ? E, ga ? (gb ? E))]

− Pr[E ← E``p(O, π), (a, b, c)← (ZN)3 :

1← A(E, ga ? E, gb ? E, gc ? E,)]
∣∣ .

We say the dCSIDHp,g problem is hard if for any (possibly quantum) efficient adversary A, its advantage is
negligible.

Three sets of CSIDH parameters have been proposed so far, namely CSIDH-512, CSIDH-1024 and CSIDH-
1792. Only for CSIDH-512 the structure of the group G is know, and it adheres to the assumption made
above, i.e. G cyclic and generated by g ∈ {[I`i]|i = 1, . . . , t}. For the other two sets of parameters, efficiency
reasons dictate to restrict to elements of G of the form Iei`i · · · I

et
`t

, with the integers ei satisfying the bound
|ei| ≤ B, where B is a suitable (small) natural number. Sampling uniformly from the set {Iei`i · · · I

et
`t
| |ei| ≤ B}

determines a distribution DB over G and, fixing E0 ∈ E``p(O, π), a distribution DE0
over E``p(O, π) itself.

The distribution DB is heuristically assumed to be close to the uniform distribution over G. The dCSIDH
(and the GAIP) problem is (are) believed to be hard also in this more general case. However, its formulation
requires to be slightly modified. Indeed, fixed a curve E0 in E``p(O, π), the curve E is sampled from DE0 ,
while elements sampled from DB replace the powers of g.

4We intentionally put d in dCSIDH so as not to confuse the CSIDH key exchange protocol [CLM+18] with the assumption.

6

2.3 Randomness Extraction

The min-entropy of a random variable X is defined as H∞(X) = − log2(maxx Pr[X = x]). We recall the
definition of family of universal hash functions.

Definition 2.5 (Universal Hash Functions). A family of functions H = {Hk : X → D}k∈K is called a family
of universal hash functions, if for all x, x′ ∈ X with x 6= x′, we have PrH←H[H(x) = H(x′)] ≤ 1

|D| .

It is well known that one can extract uniform random bits from a high min-entropy source using universal
hash functions [HILL99].

Lemma 2.6 (Leftover Hash Lemma). Let H = {Hk : X → D}k∈K be a family of universal hash functions.
Let H be sampled uniformly from H, X be a random variable independent of H and with values in X , and
U(D) be the uniform distribution over D. Then, the following holds

∆
(
(H,H(X)), (H, U(D))

)
≤ 1

2
·
√

2−H∞(X) · |D|.

3 Multi-Recipient PKE and KEM

3.1 Decomposable Multi-Recipient Public Key Encryption

Definition 3.1 (Decomposable Multi-Recipient Public Key Encryption). A (single-message) decomposable
multi-recipient public key encryption (mPKE) over a message space M and ciphertext spaces C and Csingle
consists of the following five algorithms mPKE = (mSetup,mGen,mEnc,mExt,mDec) :

• mSetup(1κ)→ pp : The setup algorithm on input the security parameter 1κ outputs a public parameter
pp.

• mGen(pp) → (pk, sk) : The key generation algorithm on input a public parameter pp outputs a pair of
public key and secret key (pk, sk).

• mEnc(pp, (pki)i∈[N],M; r0, r1, · · · , rN) → ~ct = (ct0, (ĉti)i∈[N]) : The (decomposable) encryption algo-

rithm running with randomness (r0, r1, · · · , rN), splits into a pair of algorithms (mEnci,mEncd) :

– mEnci(pp; r0)→ ct0 : On input a public parameter pp and randomness r0, it outputs a (public key
Independent) ciphertext ct0.

– mEncd(pp, pki,M; r0, ri) → ĉti : On input a public parameter pp, a public key pki, a message
M ∈M, and randomness (r0, ri), it outputs a (public key Dependent) ciphertext ĉti.

• mExt(i, ~ct) → cti = (ct0, ĉti) or ⊥ : The deterministic extraction algorithm on input an index i ∈ N
and a (multi-recipient) ciphertext ~ct ∈ C, outputs either a (single-recipient) ciphertext cti = (ct0, ĉti) ∈
Csingle or a special symbol ⊥Ext indicating extraction failure.

• mDec(sk, cti) → M or ⊥ : The deterministic decryption algorithm on input a secret key sk and a
ciphertext cti ∈ Csingle, outputs either M ∈M or a special symbol ⊥ 6∈ M.

Although we can consider non-decomposable multi-recipient PKEs, we only focus on decomposable
schemes as they are compatible with the Fujisaki-Okamoto (FO) transform [FO99]. Informally, the FO
transform relies on the recipient being able to recover the encryption randomness from the ciphertext and
to check validity of the ciphertext by re-encrypting with the recovered randomness. Therefore, in the multi-
recipient setting, if we do not impose decomposable encryption, then the recipient may require all the public
keys that were used in constructing ~ct to be able to re-encrypt. However, this is clearly undesirable since
the decryption time may now depend on the number of public keys used to encrypt, and furthermore, the
size of the ciphertext will grow by appending all the public keys used. Therefore, in this paper, when we say
mPKE, we always assume it is decomposable. We require the following properties from a mPKE.

7

Definition 3.2 (Correctness). A mPKE is δ-correct if

δ ≥ E
[

max
M∈M

Pr

[
ct0 ← mEnci(pp), ĉt← mEncd(pp, pk,M) :

M 6= mDec(sk, (ct0, ĉt))

]]
, (1)

where the expectation is taken over pp← mSetup(1κ) and (pk, sk)← mGen(pp).5

We also define the notion of well-spreadness [FO99] which states informally that the ciphertext has high
min-entropy.

Definition 3.3 (γ-Spreadness). Let mPKE be a decomposable multi-recipient PKE with message space M
and ciphertext spaces C and Csingle. For all pp ∈ Setup(1κ), and (pk, sk) ∈ Gen(pp), define

γ(pp, pk) := − log2

(
max

ct∈Csingle,M∈M
Pr
r0,r

[
ct =

(
mEnci(pp; r0),mEncd(pp, pk,M; r0, r)

)])
.

We call mPKE γ-spread if E[γ(pp, pk)] ≥ γ, where the expectation is taken over pp ← mSetup(1κ) and
(pk, sk)← mGen(pp).

Finally, we define the notion of indistinguishability of chosen plaintext attacks (IND-CPA) for mPKE.

Definition 3.4 (IND-CPA). Let mPKE be a decomposable multi-recipient PKE with message space M and
ciphertext space C. We define IND-CPA by a game illustrated in Figure 1 and say the (possibly quantum)
adversary A = (A1,A2) wins if the game outputs 1. We define the advantage of A against IND-CPA security
of mPKE parameterized by N ∈ N as

AdvIND-CPA
mPKE,N (A) = |Pr[A wins]− 1/2| .

Remark 3.5 (Insider corruption). We point out that insider corruptions for mPKE are not considered [Sma05,
BF07]. This is because if an adversary obtains a secret key corresponding to any of the public keys used to
encrypt, then it can trivially recover the encrypted message.

Remark 3.6 (Inefficient mPKE from any standard (single-recipient) PKE). Our definition of mPKE captures
the trivial solution of sending different ciphertexts obtained with a standard single-recipient PKE to multiple
recipients. That is, independently encrypting the same message to all recipients using their respective
public keys. In the above syntax of mPKE, this amounts to setting mEnci as a null function and setting
r0 as an empty string. Also, mExt will simply pick the relevant ciphertext component for the particular
recipient. Therefore, in the context of ciphertext compression, the goal is to obtain a mPKE with better
efficiency/ciphertext-size compared to this trivial method.

Remark 3.7 (Number of recipients). In general, the number of recipients N = poly(κ) can be chosen arbitrary
by the sender (or adversary). Some schemes may require an upper bound on N since the concrete provably-
secure parameters may have a dependance on N , e.g., the reduction loss degrades by a factor of 1/N . Our
proposal does not require such an upper bound since N only shows up in a statistical manner, and so we
can handle large N , say N = 215, without having any large impact on the concrete parameter choice.

3.2 Multi-Recipient Key Encapsulation Mechanism

Definition 3.8 (Multi-Recipient Key Encapsulation Mechanism). A (single-message) multi-recipient key
encapsulation mechanism (mKEM) over a key space K and ciphertext space C consists of the following five
algorithms mKEM = (mSetup,mGen,mEncaps,mExt,mDecaps) :

• mSetup(1κ) → pp : The setup algorithm on input the security parameter 1κ outputs a public parame-
ter pp.

5We could have defined correctness with respect to N -recipients as we do for mKEM (see Definition 3.9), however, we use
this single recipient definition since it is more easier to handle during in the security proof.

8

GAME IND-CPA

1: pp← mSetup(1κ)
2: for i ∈ [N] do
3: (pki, ski)← mGen(pp)

4: (M∗0,M
∗
1, state)← A1(pp, (pki)i∈[N])

5: b← {0, 1}
6: ~ct

∗ ← mEnc(pp, (pki)i∈[N],M
∗
b)

7: b′ ← A2(pp, (pki)i∈[N], ~ct
∗
, state)

8: return [b = b′]

GAME IND-CCA

1: pp← mSetup(1κ)
2: for i ∈ [N] do
3: (pki, ski)← mGen(pp)

4: (K∗0, ~ct
∗
)← mEncaps(pp, (pki)i∈[N])

5: K∗1 ← K
6: b← {0, 1}
7: b′ ← AD(pp, (pki)i∈[N], ~ct

∗
,K∗b)

8: return [b = b′]

Decapsulation Oracle D(i, ct)

1: ct∗i := mExt(i, ~ct
∗
)

2: if ct = ct∗i then
3: return ⊥
4: K := mDecaps(ski, ct)
5: return K

Figure 1: IND-CPA of mPKE and IND-CCA of mKEM.

• mGen(pp) → (pk, sk) : The key generation algorithm on input a public parameter pp outputs a pair of
public key and secret key (pk, sk).

• mEncaps(pp, (pki)i∈[N]) → (K, ~ct) : The encapsulation algorithm on input a public parameter pp, and

Npublic keys (pki)i∈[N], outputs a key K and a ciphertext ~ct.

• mExt(i, ~ct)→ cti : The deterministic extraction algorithm on input an index i ∈ N and a ciphertext ~ct,
outputs either cti or a special symbol ⊥Ext indicating extraction failure.

• mDecaps(sk, cti) → K or ⊥ : The deterministic decryption algorithm on input a secret key sk and a
ciphertext cti, outputs either K ∈ K or a special symbol ⊥ 6∈ K.

Definition 3.9 (Correctness). A mKEM is δN -correct if

δN ≥ Pr
[
(K, ~ct)← mEnc(pp, (pki)i∈[N]), (cti ← mExt(i, ~ct))i∈[N] : ∃i ∈ [N] s.t. K 6= mDec(sk, cti)] ,

where the probability is taken over pp← mSetup and (pki, ski)← mGen(pp) for all i ∈ [N].

We define the notion of indistinguishability of chosen ciphertext attacks (IND-CCA) for mKEM.

Definition 3.10 (IND-CCA). Let mKEM be a multi-recipient KEM. We define IND-CCA by a game illustrated
in Figure 1 and say the (possibly quantum) adversary A (making only classical decapsulation queries to D)
wins if the game outputs 1. We define the advantage of A against IND-CCA security of mKEM parameterized
by N ∈ N as

AdvIND-CCA
mKEM,N (A) = |Pr[A wins]− 1/2| .

We note that similarly to the remark made in Remark 3.6, the goal is to obtain a mKEM with better
efficiency/ciphertext-size compared to the trivial method of running a standard single-recipient KEM in
parallel.

3.3 Recipient Anonymity for mPKE and mKEM

In many practical scenarios, it is often convenient to have an additional guarantee of recipient anonymity,
which stipulates that the ciphertext does not leak any information about the set of intended recipients. This
is formally provided in the following Definitions 3.11 and 3.12.

9

Definition 3.11 (IND-Anon-CPA). Let mPKE be a multi-recipient PKE. We define IND-Anon-CPA associated
with a PPT fake encryption algorithm mEnc by a game illustrated in Figure 2 and say the (possibly quantum)
adversary A = (A1,A2) wins if the game outputs 1. For quantum adversaries A, we define the advantage
against IND-Anon-CPA security of mPKE parameterized by N ∈ N as

AdvIND-Anon-CPA
mPKE,N (A) = |Pr[A wins]− 1/2| .

Definition 3.12 (IND-Anon-CCA). Let mKEM be a multi-recipient KEM. We define IND-Anon-CCA associ-
ated with a PPT fake encryption algorithm mEncaps by a game illustrated in Figure 2 and say the (possibly
quantum) adversary A = (A1,A2) (making only classical decryption queries to D) wins if the game out-
puts 1. For quantum adversaries A, we define the advantage against IND-Anon-CCA security of mKEM
parameterized by N ∈ N as

AdvIND-Anon-CCA
mKEM,N (A) = |Pr[A wins]− 1/2| .

GAME IND-Anon-CPA

1: pp← mSetup(1κ)
2: for i ∈ [N] do
3: (pki, ski)← mGen(pp)

4: (M∗, state)← A1(pp, (pki)i∈[N])

5: ~ct
∗
0 ← mEnc(pp, (pki)i∈[N],M

∗)

6: ~ct
∗
1 ← mEnc(pp, N)

7: b← {0, 1}
8: b′ ← A2(pp, (pki)i∈[N], ~ct

∗
b , state)

9: return [b = b′]

GAME IND-Anon-CCA

1: pp← mSetup(1κ)
2: for i ∈ [N] do
3: (pki, ski)← mGen(pp)

4: (K∗0, ~ct
∗
0)← mEncaps(pp, (pki)i∈[N])

5: (K∗1, ~ct
∗
1)← mEncaps(pp, N)

6: b← {0, 1}
7: b′ ← AD(pp, (pki)i∈[N], ~ct

∗
b ,K

∗
b)

8: return [b = b′]

Decapsulation Oracle D(i, ct)

1: ct∗b,i := mExt(i, ~ct
∗
b)

2: if ct = ct∗b,i then
3: return ⊥
4: K := mDecaps(ski, ct)
5: return K

Figure 2: IND-Anon-CPA of mPKE and IND-Anon-CCA of mKEM.

4 FO Transform: (IND-CPA mPKE) ⇒ (IND-CCA mKEM)

4.1 Generic Construction via FO Transform

We provide a generic transformation of an IND-CPA secure mPKE to an IND-CCA secure mKEM following the
(generalized) Fujisaki-Okamoto transform. This is illustrated in Figure 3. The scheme provides some form
of implicit rejection as opposed to explicit rejection, where in the latter type, the decapsulation algorithm
outputs a special symbol ⊥ to explicitly indicate decapsulation failure. (See Remark 4.3 for more discussion).
In Figure 3, G1,G2,H,H

′ are hash functions modeled as random oracles in the security proof. They can be
simulated by a single random oracle by using appropriate domain separation. Finally, we include an `-bit
seed to perform implicit rejection by viewing H′(seed, ·) as a pseudorandom function in the (Q)ROM.

The following theorem classically and quantumly reduce the IND-CCA security of mKEM to the IND-CPA
security of mPKE, where the classical reduction is tight. The proof for each theorem is provided in the
subsequent sections. We note that correctness of our mKEM trivially holds from the correctness of the
underlying mPKE.

10

mSetup(1κ)

1: pp← mSetupp(1κ)
2: return pp

mGen(pp)

1: (pk, skp)← mGenp(pp)
2: seed← {0, 1}`
3: sk := (skp, seed)
4: return (pk, sk)

mExt(i, ~ct)

1: cti ← mExtp(i, ~ct)
2: return cti

mEncaps(pp, (pki)i∈[N])

1: M←M
2: ct0 := mEnci(pp;G1(M))
3: for i ∈ [N] do
4: ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M))

5: K := H(M)
6: return (K, ~ct := (ct0, (ĉti)i∈[N]))

mDecaps(sk, ct)

1: sk := (skp, seed)
2: M := mDec(skp, ct)
3: if M = ⊥ then
4: return K := H′(seed, ct)

5: ct0 := mEnci(pp;G1(M))
6: ĉt := mEncd(pp, pk,M;G1(M),G2(pk,M))
7: if ct 6= (ct0, ĉt) then
8: return K := H′(seed, ct)
9: else

10: return K := H(M)

Figure 3: An IND-CCA secure mKEM from a decomposable IND-CPA secure mPKE =
(mSetupp,mGenp,mEnc = (mEnci,mEncd),mExtp,mDec). We include the superscript p to make the code
more readable.

Theorem 4.1 (Classical: IND-CPA mPKE ⇒ IND-CCA mKEM). Assume mPKE with message space M is
δ-correct and γ-spread. Then, for any classical PPT IND-CCA adversary A issuing at most qD queries to
the decapsulation oracle D, a total of at most qG queries to G1 and G2, and at most qH and q′H queries to H
and H′, there exists a classical PPT adversary BIND such that

AdvIND-CCA
mKEM,N (A) ≤ 2 · AdvIND-CPA

mPKE,N (BIND) + (2qG + qD + 2) · δ + qD · 2−γ +
(qG + qH)

|M|
+ q′H ·N · 2−`.

where the running time of BIND is about that of A, and ` is bit-length of the seed included in the private key.

Theorem 4.2 (Quantum: IND-CPA mPKE ⇒ IND-CCA mKEM). Assume mPKE with message space M
is δ-correct and γ-spread. Then, for any quantum PT IND-CCA adversary A issuing at most qD classical
queries to the decapsulation oracle D, a total of at most qG quantum queries to G1 and G2, and at most qH
and q′H quantum queries to H and H′, there exists a quantum PT adversary BIND such that

AdvIND-CCA
mKEM,N (A) ≤

√
8 · (qG + 1) · AdvIND-CPA

mPKE,N (BIND) +
8 · (qG + 1)√
|M|

+ 12 · (qG + qD + 1)2 · δN + qD · 9
√

2−γ + 9 · 2
−µ
2 + q′H ·N · 2

−`+1
2 ,

where the running time of BIND is about that of A, ` is bit-length of the seed included in the private key, and
µ = |r0|+ |r| for (r0, r) ∈ R where R is the randomness space of mPKE for a single ciphertext.

Remark 4.3 (Implicit vs explicit rejection). In our construction in Figure 3, we use implicit rejection, where
mDecaps does not explicitly output ⊥ to indicate that the input ciphertext was invalid. This may be suitable
in practice when we do not want to let the adversary know that decapsulation failed. However, we note that
our proof is agnostic to this choice, and in particular, the same proof can be shown in case we want explicit
rejection, where mDecaps outputs ⊥ in case either M = ⊥ or ct is not the same as the reencrypted ciphertext
(ct0, ĉti). Concretely, we obtain an IND-CCA secure mKEM with explicit rejection by simply outputting ⊥
rather than outputting H′(seed, ct) in Figure 3. We point out that this tweak cannot be made in general

11

since the security proofs may hinge on the fact that the adversary does not learn decapsulation failures
(see [SXY18,BHH+19] for an example).

Finally, we would like to highlight some subtle differences in the meaning of implicit/explicit rejections
between a single-user KEM and an mKEM. In the single-user setting, the meaning of implicit and explicit
rejection is clear; the adversary cannot check the validity of a ciphertext by querying the decapsulation oracle
since it only receives a random session key regardless of the validity of the ciphertext. In contrast, in the
multi-user setting, we can consider implicit/explicit rejection concerning a single ciphertext cti or for the
entire ciphertext ~ct. Our work provides implicit/explicit rejection in the former sense since an adversary with
only cti cannot check the validity of the ciphertext. In fact, we observe that obtaining an mKEM scheme
with implicit rejection in the latter sense is impossible. If this was possible, then regardless of a ciphertext
~ct being valid or not, when the adversary queries the respective components of ~ct = (ct0, (ĉti)i∈[N]) to
each decapsulation oracle corresponding to users 1 to N , it must receive an identical random session key
from each oracle. Then consider an adversary that modifies a valid ciphertext ~ct to an invalid ciphertext
~ct
′

= (ct0, (ĉt1, · · · , ĉtN−1, ĉt
′
N)) that queries the decapsulation oracles. Since the decapsulation oracles

corresponding to users 1 to N − 1 are agnostic to the change made by the N -th user’s ciphertext, they
respond identically for both ~ct and ~ct

′
. Then by assumption, the decapsulation oracle corresponding to the

N -th user must respond with the same session key when it is queried on (ct0, ĉtN) and (ct0, ĉt
′
N) as well.

However, this means ~ct
′

decrypts to ~ct forming a contradiction. Therefore, in the case of mKEM, it seems
we can only hope for implicit/explicit rejection concerning a single ciphertext.

4.2 Proof for Classical Case

We provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Let A be a classical PPT adversary against the IND-CCA security of mKEM. Without
loss of generality, we make a simplifying argument thatA queries the same message to both oracles G1 and G2.
That is, when A queries for an input M to the oracles, it receives back (G1(M),G2(pk1,M), · · · ,G2(pkN ,M)).
It is clear that this modification does not weaken A, and moreover, we can always transform an adversary
A that does not query all the oracles on the same input to an adversary that does. Below, we upper bound
A’s advantage by considering a sequence of games. We denote by Ei the event A wins in Gamei.

- Game1: This is the real IND-CCA security game. In particular, AdvIND-CCA
mKEM,N (A) = |Pr[E1]− 1/2|.

- Game2: In this game, we replace the computation of H′(seedi, ·) by a random function Ĥ′i(·) in case M = ⊥
or ct 6= (ct0, ĉt) occurs when answering the decapsulation oracle with input i ∈ [N]. Since this modification
remains unnoticed by the adversary unless H′(seed, ·) is queried for any seed ∈ {seedi}i∈[N], we have

|Pr[E1]− Pr[E2]| ≤ q′H ·N
2`

.

- Game3: In this game, we add an additional check at the end of the game to see if a “bad” randomness was
ever used. Define auxi :=

(
pp, (pki, ski)

)
for i ∈ [N] and define the sets of bad randomness as

Rbad
i (auxi,M) :=

{
(r0, ri)

∣∣∣∣∣ M 6= mDec(skpi , (ct0, ĉti)),where

ct0 := mEnci(pp; r0), ĉti := mEncd(pp, pki,M; r0, ri)

}
.

In addition, define S to be the set of index-message pairs (excluding the pairs with message equal to ⊥) that
was obtained by decrypting the ciphertext when answering the decapsulation query (i, ct). Then, after A
outputs its guess at the end of the game, the challenger checks if a pair of tuples (M, r0) and ((pki,M), ri)
for any (i,M) ∈ S and (r0, ri) ∈ Rbad

i (auxi,M) are listed in the random oracles G1 and G2, respectively.
We call the event BADrand if such a set of tuples are found and change A’s output to be a random bit.
Otherwise, it is defined exactly the same as in the previous game. Since the two games are identical
unless BADrand occurs, we have |Pr[E2]− Pr[E3]| ≤ Pr[BADrand]. Here, we can upper bound Pr[BADrand]

12

by (qG + qD + 1) ·maxi{
∣∣Rbad

i (auxi,M)
∣∣ / |R|}, where R is the randomness space of a single ciphertext. By

definition, we have δ ≥ E
[
maxM∈M |Rbad

i (auxi,M)|/|R|
]
, where the expectation is taken over the randomness

used to sample auxi = (pp, (pki, ski)) and δ is the correctness parameter of mPKE. Hence, we conclude

|Pr[E2]− Pr[E3]| ≤ (qG + qD + 1) · δ.

Game4 : Decap. Oracle D(i, ct 6= ct∗i)

1: ski := (skpi , seedi)
2: M := mDec(skpi , ct)
3: if M /∈ LG then

4: return K := Ĥ′i(ct)

5: if M = ⊥ then
6: return K := Ĥ′i(ct)

7: ct0 := mEnci(pp;G1(M))
8: ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M))
9: if ct 6= (ct0, ĉti) then

10: return K := Ĥ′i(ct)
11: else
12: return K := H(M)

Game5 : Decap. Oracle D(i, ct 6= ct∗i)

1: for M ∈ LG do
2: ct0 := mEnci(pp;G1(M))
3: ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M))
4: if ct = (ct0, ĉti) then
5: return K := H(M)

6: return K := Ĥi(ct)

Figure 4: Decapsulation oracles of Game4 and Game5. We enforce ct is not ct∗i := mExt(i, ~ct
∗
) at the input

level for simplicity.

(The next Game4, Game5 and Game6 aim to get rid of the secret keys ski to answer A’s decapsulation oracle
queries.)
- Game4: In this game, we add an additional check when answering the decapsulation oracle query. This is
illustrated in Figure 4 where the red underline indicates the modification. Here, LG is a list that stores the
random oracle queries made to G1 and G2.We have M ∈ LG if G1 was queried on M and G2 was queried on
(pk,M) for any pk. Note that due to our assumption on A, there does not exist an event where either G1 or
G2 was queried on M or (pk,M) while the other oracle was not.

The only difference occurs whenA queries a ciphertext ct = (ct0, ĉti) such that M := mDec(skpi , ct) has not

been queried to the random oracles G1 and G2 but ct0 = mEnci(pp;G1(M)) and ĉti = mEncd(pp, pki,M;G1(M),
G2(pki,M)). Since G1(M) and G2(pki,M) are information theoretically hidden from A, we can use γ-
spreadness of mPKE to conclude

|Pr[E3]− Pr[E4]| ≤ qD · 2−γ .

- Game5: In this game, we further modify the way a decapsulation-oracle query is answered. This is illustrated
in Figure 4, where notice that we no longer require the secret keys ski to answer the queries.

If the decapsulation oracle in Game4 outputs K := H(M), then M ∈ LG and ct = (ct0, ĉti) holds. Therefore,
the decapsulation oracle in Game5 outputs K as well. On the other hand, assume the decapsulation oracle
in Game5 outputs K := H(M) for some M ∈ LG such that ct = (ct0, ĉti) where ct0 := mEnci(pp;G1(M))
and ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M)). Then, conditioning on no correctness error occurs, ct must
decrypt to M. Hence, this implies that the decapsulation oracle Game4 outputs the same K as well. Combining
the arguments together, we get

Pr[E4] = Pr[E5].

- Game6: In this game, we undo the change we made in Game3 and no longer check whether a randomness
that leads to a decryption error was sampled at the end of the game. Due to the same argument as before,
we have

|Pr[E5]− Pr[E6]| ≤ (qG + 1) · δ,

13

where the qD factor is removed from the bound since the decapsulation oracle is no longer re-encrypting due
to the change we made in Game5. At this point, the challenger no longer requires the secret keys ski.

(The following final Game7 aims to get rid of M∗ in the challenge ciphertext.)
- Game7: In this game, we sample the random message M∗ ← M to be used to generate the challenge
ciphertext at the beginning. We then define Query as the event that A queries the random oracles H(·),
G1(·), or G2(?, ·) on input M∗, where ? denotes an arbitrary element. When Query occurs, we abort the game
and force A to output a random bit. We show in Lemma 4.4 that we have

|Pr[E6]− Pr[E7]| ≤ 2 · AdvIND-CPA
mPKE,N (BIND) +

(qG + qH)

|M|

for some classical PPT adversary BIND with similar runtime as A.
Before providing the proof of Lemma 4.4, we finish our proof for our main statement. In Game7, when

the adversary A does not query the random oracle H on M∗, the key K∗0 is distributed exactly the same as
K∗1. Moreover, when Query occurs (i.e., A queries H on M∗), A is forced to output a random bit. Therefore,
we have

Pr[E7] =
1

2
.

Combining everything together, we obtain the statement in Theorem 4.1.
To complete the proof, it remains to prove Lemma 4.4 below.

Lemma 4.4. We have |Pr[E6]− Pr[E7]| ≤ 2 · AdvIND-CPA
mPKE,N (BIND) + (qG+qH)

|M| for some classical PPT adversary

BIND with a runtime about the same as that of A.

Proof. Since the two games are identical unless Query occurs, we have |Pr[E6]− Pr[E7]| ≤ Pr[Query]. There-
fore, in the following, we upper bound Pr[Query]. Let us construct an IND-CPA adversary BIND = (BIND1,BIND2)
which runs A as a subroutine: On input (pp, (pki)i∈[N]), BIND1 samples M∗0 and M∗1 uniformly random over

M and outputs (M∗0,M
∗
1, state := (M∗0,M

∗
1)). BIND2 receives ~ct

∗ ← mEnc(pp, (pki)i∈[N],M
∗
b) and runs A on

input (pp, (pki)i∈[N], ~ct
∗
). BIND2 outputs b′ := 0, if M∗0 is queried to H(·), G1(·), or G2(?, ·) and M∗1 is not;

outputs b′ := 1, if M∗1 is queried to H(·), G1(·), or G2(?, ·) and M∗0 is not; and a random b′ otherwise. Here,
the runtime of BIND is about the same as A.

Let us denote the event BAD the event that A queries M∗1−b to H(·), G1(·), or G2(?, ·). Since M∗1−b is
completely hidden from A, we have Pr[BAD] ≤ (qG + qH)/|M|. Then, we have:

AdvIND-CPA
mPKE,N (BIND) = |Pr[b′ = b]− 1/2|

=
∣∣∣∣∣
(

Pr[Query]·
(

Pr[b′=b|Query∧BAD] Pr[BAD]+Pr[b′=b|Query∧¬BAD] Pr[¬BAD]
)

+ Pr[¬Query]
(

Pr[b′=b|¬Query∧BAD] Pr[BAD]+Pr[b′=b|¬Query∧¬BAD] Pr[¬BAD]
))
−1/2

∣∣∣∣∣
=

∣∣∣∣Pr[Query](
1

2
· Pr[BAD] + Pr[¬BAD]) + Pr[¬Query](

1

2
· Pr[¬BAD])− 1/2

∣∣∣∣
=

1

2
· |Pr[Query] + Pr[BAD]|

≥1

2
· (Pr[Query]− Pr[BAD]) ,

where we used the fact that events Query and BAD occur independently. Therefore, we have

Pr[Query] ≤ 2 · AdvIND-CPA
mPKE,N (BIND) + Pr[BAD] ≤ 2 · AdvIND-CPA

mPKE,N (BIND) +
(qG + qH)

|M|
.

14

4.3 Proof for Quantum Case

The main difference between our proof and prior proofs for IND-CCA secure KEM in the QROM, e.g.,
[TU16,HHK17,SXY18,JZC+18,JZM19b,JZM19a,BHH+19], is that we use the lazy sampling with compressed
quantum oracles introduced in [Zha19] (for reasons explained in the introduction). This allows the simulator
to check the validity of the ciphertext submitted to the decapsulation oracle without interfering with the
adversary’s state. Since other than how we specify and interact with the random oracle, the proof structure
is essentially the same as the classical case, we provide the full proof in Appendix B.

4.4 Adding Recipient Anonymity

The construction provided in Section 4.1 immediately give rise to a recipient anonymous mKEM if we
additionally assume the underlying IND-CPA secure mPKE is IND-Anon-CPA secure. In particular, we define
the fake encapsulation algorithm mEncaps (see Section 3.3) as: sample K← K, run ~ct← mEnc(pp, N), and
output (K, ~ct), where mEnc is the fake encryption algorithm of the underlying mPKE (see Section 3.3). The
only modification to the proofs of Theorems 4.1 and 4.2 is that we add an additional game at the end where
we invoke the IND-Anon-CPA security game. Since, by the end of both proofs, the key K∗ are distributed
uniformly random, it remains to show that ~ct

∗
is distributed independently of the public keys (pki)i∈[N]. We

omit the full proof as it directly reduces from the IND-Anon-CPA security game.

5 Multi-Recipient KEM from Post-Quantum Assumptions

We provide two types of IND-CCA secure mKEM instantiations: one scheme based on lattices, and two
schemes based on isogenies (in the SIDH and CSIDH setting). Specifically, we provide two types of IND-CPA
secure mPKEs and use Theorems 4.1 and 4.2 to generically convert them into IND-CCA secure mKEMs in
the ROM and QROM, respectively. As we see in Section 6, both types of instantiations are designed to fit
with many of the NIST round 2 candidate (single-recipient) PKE/KEMs.

5.1 Multi-Recipient KEM from Lattices

In this section, we show that the lattice-based (single-recipient) PKE based on the Lindner-Peikert framework
[LP11] provides a natural mPKE with the required properties. Since we are able to reuse a large part of the
ciphertext for lattice-based schemes, we get a notable efficiency gain compared to the trivial mPKE/mKEM
which runs PKE/KEM independently for each recipient (as discussed in Remark 3.6).

The mPKE scheme based on the Lindner-Peikert framework [LP11] is provided in Figure 5. Here, Encode
(resp. Decode) is an efficiently computable bijective function that maps elements from the message space
(resp. Rm̄×mq) to Rm̄×mq (resp. message space). The details of Encode and Decode are scheme specific and not
significant for this section. We show the mPKE scheme in Figure 5 has all the properties required for applying
the “multi-recipient” Fujisaki-Okamoto transform (Theorems 4.1 and 4.2). First, it is straightforward to see
that we can easily set the parameters as to have δ-correctness and γ-spreadness for exponentially small δ and
2−γ . Moreover, practical schemes such as NIST candidates also allow for exponentially small δ and 2−γ . It
remains to show that the Linder-Peikert framework provides not only a secure PKE but also a secure mPKE.

IND-CPA Security. It is straightforward to see that IND-CPA security follows naturally from the LWE as-
sumption. We provide the proof below for completeness.

Lemma 5.1. Assume mPKE as shown in Figure 5. Then, for any (classical or quantum) IND-CPA adversary
A, there exist (classical or quantum) adversaries B1 and B2 such that

AdvIND-CPA
mPKE,N (A) ≤ AdvLWE

n,n,Nm(B1) + AdvLWE
(n+Nm),n,m̄(B2).

Proof. Let A be an efficient (classical or quantum) adversary against the IND-CPA security of mPKE. We
upper bound its advantage by considering the following game sequence. We denote Ei as the event A wins
in Gamei.

15

Algorithm 1 mSetup(1κ)

Input: Security parameter 1κ

Output: Public parameter pp
1: A← Rn×nq

2: return pp := A

Algorithm 2 mGen(pp)

Input: Public parameter pp = A
Output: Public key pk, a secret key sk

1: S← Dn×m
s

2: E← Dn×m
e

3: B← AS + E . B ∈ Rn×mq

4: return pk := B, sk := S

Algorithm 3 mEnc(pp, (pki)i∈[N],M)

Input: Public parameter pp = A, set of public keys
(pki = Bi)i∈[N], message M

Output: Ciphertext ~ct = (ct0, (ĉti)i∈[N])
1: r0 := (R,E′)← Dm̄×n

s ×Dm̄×n
e

2: ct0 := mEnci(pp; r0)
3: for i ∈ [N] do
4: ri := E′′i ← Dm̄×m

e

5: ĉti := mEncd(pp, pki,M; r0, ri)

6: return ~ct := (ct0, ĉt1, . . . , ĉtN)

Algorithm 4 mEncd(pp, pki,M; r0, ri)

Input: Public parameter pp = A, public key pki =
Bi, message M, randomness r0 = (R,E′) and
ri = E′′i

Output: (Public key dependent) ciphertext ĉti
1: Vi ← RBi + E′′i + Encode(M) . Vi ∈ Rm̄×mq

2: return ĉti := Vi

Algorithm 5 mEnci(pp; r0)

Input: Public parameter pp = A, randomness r0 =
(R,E′)

Output: (Public key independent) ciphertext ct0
1: U← RA + E′ . U ∈ Rm̄×nq

2: return ct0 := U

Algorithm 6 mDec(sk, ct)

Input: Secret key sk = S, ciphertext ct = (U,V)
Output: Message M

1: M← V −US . M ∈ Rm̄×mq

2: return M := Decode(M)

Figure 5: Lattice-based mPKE via the Lindner-Peikert framework [LP11]. mExt with input index i is defined
by picking the relevant components (ct0, ĉti) from ~ct.

- Game1: This is the real IND-CPA security game. In particular, AdvIND-CPA
mPKE,N (A) := |Pr[E1]− 1/2|.

- Game2: In this game, we change how the public keys (pki)i∈[N] are created. Rather than generating each
Bi as ASi + Ei for i ∈ [N], we simply sample a random B← Rn×mq . It is easy to see that this modification
is indistinguishable assuming the LWEn,n,Nm assumption. Hence, we can construct an adversary B1 with
around the same running time as A such that

|Pr[E1]− Pr[E2]| ≤ AdvLWE
n,n,Nm(B1).

- Game3: In this game, we change how the challenge ciphertext ~ct
∗

is created. Namely, rather than sampling
~ct
∗

:= (U, (Vi)i∈[N]) as valid LWE samples, we simply sample a random (U, (Vi)i∈[N])← Rm̄×nq ×(Rm̄×mq)N .
Similarly to above, this reduces directly to the LWE(n+Nm),n,m̄, where note that we take the transpose of
the LWE sample since the secret matrix (i.e., R← Dm̄×n

s) is on the left-hand now. Hence, we can construct
an adversary B2 with around the same running time as A such that

|Pr[E2]− Pr[E3]| ≤ AdvLWE
(n+Nm),n,m̄(B2).

Finally, in Game3, the challenge ciphertext is distributed uniformly random and independently from
the challenge bit b. Therefore, no adversary can have a distinguishing advantage. Hence, Pr[E3] = 1/2.
Combining everything together, we get the desired bound.

16

IND-Anon-CPA Security. It is clear that the above proof for IND-CPA security is also a proof for IND-Anon-CPA.
This can be checked by observing that in the final game, we no longer require the users public keys
(pki = Bi)i∈[N] to simulate the challenge ciphertext. In particular, the fake encryption algorithm mEnc
simply outputs a random element in Rm̄×nq × (Rm̄×mq)N .

Remark 5.2 (Using LWR instead of LWE). The mPKE presented in Figure 5 readily generalizes to the LWR
setting. The only difference is that instead of adding the noise terms (i.e., E,E′,E′′i), we round. For instance,
the public key pk will be bASep ∈ Rn×mp rather than AS + E ∈ Rn×mq . It is easy to show that mPKE has
γ-spreadness, is δ-correct and IND-CPA secure assuming the LWR assumption.

5.2 Multi-Recipient KEMs from Isogenies

Retracing the steps that lead to the hashed version of ElGamal encryption from the Diffie-Hellman key
exchange, public-key encryption schemes can be deduced from both SIDH [DFJP14] and CSIDH. Building
on such encryption schemes, we present two isogeny-based IND-CPA secure mPKEs. Both of them satisfy the
generic properties required in Theorems 4.1 and 4.2 for obtaining an IND-CCA secure mKEM. Since a unified
presentation of the two schemes would be rather convoluted, for the sake of readability we differentiate their
explanations. We note that both schemes require a family of universal hash functions H = {Hk : X ⊂ F →
{0, 1}w}k∈K indexed by a finite set K, where F denotes a finite field. The two schemes are detailed below,
starting from the SIDH-based one.

Isogeny-based mPKE via SIDH. The mPKE deduced from SIDH is provided in Figure 6. We highlight
that the public parameter pp output by mSetup on input a security parameter 1κ consists of: a prime p of the
form 2e23e3 − 1; a supersingular elliptic curve E defined over Fp2 and such that |E(Fp2)| = (2e23e3)2; bases
B2 = {P2, Q2} and B3 = {P3, Q3} for E[2e2] and E[3e3], respectively; a hash function H uniformly sampled
from a family of universal hash functions H = {Hk : X ⊂ Fp2 → {0, 1}w}k∈K . Here X is the set of all
supersingular j-invariants in Fp2 , for which holds |X | = p/12 + ε, with ε ∈ {0, 1, 2} [DFJP14]. Furthermore,
Encode (resp. Decode) is an efficiently computable bijective function from the message space (resp. {0, 1}w)
to {0, 1}w (resp. message space). The details of Encode and Decode are not significant for this section, since
they are scheme specific.

The perfect correctness of the SIDH-based public-key encryption scheme from which our mPKE is deduced
implies that the latter has δ-correctness, with δ = 0. In addition, for a given security parameter 1κ, the
prime p = 2e23e3−1 in the public parameter pp← mGen(1κ) is fixed [JAC+19]. The first component of each
element in Csingle contains a curve 2e2-isogenous to E. We denote by W the set {j(E/ 〈P2 + [r]Q2〉)|r ∈ Z2e2 }
of all such curves. Since p/12 + ε � |W |, one expects that the number of pairs of distinct coefficients
r, r̃ ∈ Z2e2 such that j(E/ 〈P2 + [r]Q2〉) = j(E/ 〈P2 + [r̃]Q2〉) is very small [ACC+19a]. Hence, we can
assume that |W | = 2e2 and deduce γ(pp, pk) ≥ e2. This value is independent of the public key pk and
E,B2, B3 in pp,therefore the mPKE scheme has γ-spreadness with γ = e2. We observe that 1/2e2 ≈ 1/

√
p,

which is negligible in the security parameter κ (e2 ≥ κ for any set of SIDH parameters [JAC+19]).

IND-CPA Security. The IND-CPA security of the SIDH-based mPKE follows from the SSDDH assumption and
the Leftover Hash Lemma (see Section 2.3).

Lemma 5.3. Assume mPKE as shown in Figure 6. Then, for any (classical or quantum) IND-CPA adversary
A, there exists a (classical or quantum) adversary B such that

AdvIND-CPA
mPKE,N (A) ≤ N ·

(
AdvSSDDH

p,E,B2,B3
(B) +

1

2

√
2w/p

)
. (2)

Proof. Let A be an efficient (classical or quantum) adversary against the IND-CPA security of mPKE. We
upper bound its advantage by considering the following game sequence. We denote by Ei the event A wins
in Gamei.

17

Algorithm 7 mSetup(1κ)

Input: Security parameter 1κ

Output: Public parameter pp
1: Select e2, e3, E,B2 = {P2, Q2}, B3 = {P3, Q3}
2: H← H
3: return pp := (E, {(ej , Bj)}j=2,3, H)

Algorithm 8 mGen(pp)

Input: Public parameter pp = (E, {(ej , Bj)}j=2,3,
H)

Output: Public key pk, a secret key sk
1: (P2, Q2)← B2, (P3, Q3)← B3

2: s← Z3e3

3: R3 ← P3 + [s]Q3

4: E3 ← E/ 〈R3〉
5: U2 ← φ〈R3〉(P2), V2 ← φ〈R3〉(Q2)
6: return pk := (E3, U2, V2), sk := s

Algorithm 9 mEnc(pp, (pki)i∈[N],M)

Input: Public parameter pp = (E, {(ej , Bj)}j=2,3, H),

set of public keys (pki = (E
(i)
3 , U

(i)
2 , V

(i)
2))i∈[N], mes-

sage M
Output: Ciphertext ~ct = (ct0, (ĉti)i∈[N])

1: r0 := r ← Z2e2

2: ct0 := mEnci(pp; r0)
3: for i ∈ [N] do
4: ĉti := mEncd(pp, pki,M; r0)

5: return ~ct := (ct0, ĉt1, . . . , ĉtN)

Algorithm 10 mEncd(pp, pki,M; r0)

Input: Public parameter pp = (E, {(ej , Bj)}j=2,3,

H), public key pki = (E
(i)
3 ,U

(i)
2 , V

(i)
2), message

M, randomness r0 = r
Output: (Public key dependent) ciphertext ĉti

1: Ti ← U
(i)
2 + [r]V

(i)
2

2: Ji ← jInvariant(E
(i)
3 / 〈Ti〉)

3: Fi ← H(Ji)⊕ Encode(M)
4: return ĉti := Fi

Algorithm 11 mEnci(pp; r0)

Input: Public parameter pp = (E, {(ej , Bj)}j=2,3,
H), randomness r0 = r

Output: (Public key independent) ciphertext ct0
1: (P2, Q2)← B2, (P3, Q3)← B3

2: R2 ← P2 + [r]Q2

3: E2 ← E/ 〈R2〉
4: U3 ← φ〈R2〉(P3), V3 ← φ〈R2〉(Q3)
5: return ct0 := (E2, U3, V3)

Algorithm 12 mDec(sk, ct)

Input: Public parameter pp = (E, {(ej , Bj)}j=2,3,
H), secret key sk = s, ciphertext ct =
(E2, U3, V3, F)

Output: Message M
1: R′ ← U3 + [s]V3

2: E′ ← E2/ 〈R′〉
3: J ′ ← jInvariant(E′)
4: M← F ⊕ H(J ′)
5: return M := Decode(M)

Figure 6: SIDH-based mPKE via hashed ElGamal [DFJP14]. mExt with input index i is defined by picking
the relevant components (ct0, ĉti) from ~ct. Note that mEncd does not require any randomness ri for i ∈ [N].

- Game0: This is the real IND-CPA security game. In particular, AdvIND-CPA
mPKE,N (A) := |Pr[E0]− 1/2|.

- Game1,j for j ∈ [0, N]: In this game, we modify the challenger so that it sets ĉt
∗
i := Encd(pp, pki,M

∗; r0)

for i ∈ [N − j] and ĉt
∗
i ← H(J ′i)⊕Encode(M) for i ∈ [j]. Here, J ′i denotes the j-invariant of the elliptic curve

E/ 〈P2 + [s′]Q2, P3 + [r′]Q3〉, where s′ and r′ are sampled uniformly from Z2e2 and Z3e3 , respectively. The
challenger outputs ~ct

∗
:= (ct∗0, ĉt

∗
1, · · · , ĉt

∗
N) as the challenge ciphertext. We note that Game1,0 corresponds

to Game0. Each game is indistinguishable from the previous one under the SSDDHp,E,B2,B3 assumption. In

18

particular, we can construct an adversary B with around the same running time as A such that

|Pr[E1,j]− Pr[E1,j+1]| ≤ AdvSSDDH
p,E,B2,B3

(B)

for every j in [0, N − 1].

- Game2: In this game, the challenger is modified so that it sets ĉt
∗
i ← h′i ⊕ Encode(M) for all i ∈ [N], where

h′i is an element sampled uniformly from {0, 1}w. This game is indistinguishable from the previous game
due to the Leftover Hash Lemma (Lemma 2.6). In particular, let X be the distribution on W ⊂ X induced
by uniformly sampling the pair (s′, r′) ∈ Z2e2 ×Z3e3 and setting X to be the j-invariant of the elliptic curve
E/ 〈P2 + [s′]Q2, P3 + [r′]Q3〉. It is known that such distribution approximate the uniform one [DFJP14],
and hence H∞(X) ≈ log2 p. Consequently, invoking the Leftover Hash Lemma N times, we have

|Pr[E1,N]− Pr[E2]| ≤ N

2
·
√

2w/p.

Finally, since the challenge ciphertexts are distributed uniformly random for both challenge bit b ∈ {0, 1},
we have Pr[E2] = 1/2. This concludes the proof.

Remark 5.4. We note that in concrete instantiations, log2 p assumes the values 434, 503, 610, while the
corresponding w is 128,192 or 256, respectively [DFJP14]. Therefore we have (1/2)

√
2w/p ≤ 2152 for each

pair (p, w) and it can be safely discarded in the right term of Equation (2).

IND-Anon-CPA Security. The above proof for IND-CPA security is also a proof for IND-Anon-CPA. Indeed,
in the final game we no longer require the users public keys (pki)i∈[N] to simulate the challenge ciphertext.

In particular, the fake encryption algorithm mEnc simply outputs a tuple composed by a ciphertext ct0 and
N uniformly random elements in {0, 1}w.

Isogeny-based mPKE via CSIDH. The mPKE deduced from CSIDH is provided in Figure 7. In mSetup a
prime p of the form 4`1`2 · · · `t−1, where `1, . . . , `t are small odd primes, is chosen. Then the public parameter
pp output by the algorithm consists of: a generator g of the cyclic ideal class group C`(O), whereO = Z[

√
−p],

and its order n ≈ √p; a supersingular elliptic curve E over Fp uniformly sampled from E``p(O, π); a hash-
function H uniformly sampled from a family of universal hash function H = {Hk : E``p(O, π)→ {0, 1}w}k∈K
indexed by the finite set K. Furthermore, Encode (resp. Decode) is an efficiently computable bijective
function that maps elements from the message space (resp. {0, 1}w) to {0, 1}w (resp. message space). The
details of Encode and Decode are not relevant for this section.

The CSIDH-based mPKE scheme satisfies all the properties required by the “multi-recipient” Fujisaki-
Okamoto transform. It is easy to see that the scheme is perfectly correct, hence δ = 0. Furthermore, the
output distribution of mEnci coincides with the uniform distribution over E``p(O, π) (it is induced by the free
and transitive group action ?). Therefore γ(pp, pk) ≥ (log2 p)/2 for all pp ∈ Setup(1κ) and (pk, sk) ∈ Gen(pp),
and hence γ = (log2 p)/2.

IND-CPA Security. Analogously to the SIDH-based mPKE, the IND-CPA security of the scheme in Figure 7
follows from the dCSIDH assumption (Section 2.2) and the Leftover Hash Lemma (Section 2.3). In particular
we have:

Lemma 5.5. Assume mPKE as shown in Figure 7. Then, for any (classical or quantum) IND-CPA adversary
A, there exist (classical or quantum) adversary B such that

AdvIND-CPA
mPKE,N (A) ≤ N ·

(
AdvdCSIDH

p,g (B) +
1

2

√
2w/
√
p

)
. (3)

The proof of Lemma 5.5 is just an adaptation of that of Lemma 5.3. To be precise, a sequence of
hybrid games E1,j , with j ∈ [0, N], replaces H ′i with a uniformly random curve H̃ ′i ∈ E``p(O, π), and so

19

Algorithm 13 mSetup(1κ)

Input: Security parameter 1κ

Output: Public parameter pp
1: Select p and g
2: n← Order(g),H← H
3: E ← E``p(O, π)
4: return pp := (g, n, E,H)

Algorithm 14 mGen(pp)

Input: Public parameter pp = (g, n, E,H)
Output: Public key pk, secret key sk

1: a← Zn
2: H ← ga ? E
3: return pk := H, sk := a

Algorithm 15 mEnc(pp, (pki)i∈[N],M)

Input: Public parameter pp = (g, n, E,H), set of pub-
lic keys (pki = Hi)i∈[N], message M

Output: Ciphertext ~ct = (ct0, (ĉti)i∈[N])
1: r0 := r ← Zn
2: ct0 := mEnci(pp; r0)
3: for i ∈ [N] do
4: ĉti := mEncd(pp, pki,M; r0)

5: return ~ct := (ct0, ĉt1, . . . , ĉtN)

Algorithm 16 mEncd(pp, pki,M; r0)

Input: Public parameter pp = (g, n, E,H), public
key pki = Hi, message M, randomness r0 = r

Output: (Public key dependent) ciphertext ĉti
1: H ′i ← gr ? Hi

2: Fi ← H(H ′i)⊕ Encode(M)
3: return ĉti := Fi

Algorithm 17 mEnci(pp; r0)

Input: Public parameter pp = (g, n, E,H), random-
ness r0 = r

Output: (Public key independent) ciphertext ct0
1: E′ ← gr ? E
2: return ct0 := E′

Algorithm 18 mDec(sk, ct)

Input: Public parameter pp = (g, n, E,H), Se-
cret key sk = a, ciphertext ct = (E′, F)

Output: Message M
1: H ′ ← ga ? E′

2: M← F ⊕ H(H ′)
3: return M := Decode(M)

Figure 7: CSIDH-based mPKE via hashed ElGamal [DFJP14]. mExt with input index i is defined in the
obvious way by picking the relevant component (ct0, ĉti) from ~ct. Note that mEncd does not require any
randomness ri for i ∈ [N] (except that used to compute the action ?).

|Pr[E1,j] − Pr[E1,j+1]| ≤ AdvdCSIDH
p,g (B1) for every j in [0, N − 1]. At this point, we can invoke the Leftover

Hash Lemma to argue that the challenge ciphertext is distributed uniformly random. The value of w can
be parameterized so that in Equation (3) the second term on the right can be safely discarded. Finally, we
observe that the above-sketched proof also implies IND-Anon-CPA, with mEnc that outputs a tuple composed
by a ciphertext ct0 and N uniformly random elements in {0, 1}w.

Remark 5.6 (CSIDH with ideal class group of unknown structure). The scheme described in Figure 7 can be
easily adapted to the case where the structure of the ideal class group G = C`(O) is unknown. In particular,
in that case the public parameter pp comes with two distributions DB and DE0

. Then E is sampled from
DE0 , while the values in line 1 in the mSetup and mEnc algorithms are sampled from DB .

6 Instantiating mKEM with NIST Candidates and CSIDH

In this section, we concretely instantiate the generic mKEM framework laid out in previous sections. We take
the PKEs underlying 8 existing lattice-based and isogeny-based NIST KEMs (as well as CSIDH). We first
modify them into efficient mPKEs (following Section 5) and then into mKEMs via our generic transformation
(Theorems 4.1 and 4.2). We note that we did not consider the corresponding mKEM for the CISDH mPKE, for

20

reasons explained later. We compare these mKEMs to the trivial solution that uses (single-recipient) KEMs
in parallel, and show that our mKEMs provide efficiency gains, both in communication and computation, of
an order of magnitude.

Until the end of this document, we denote by |x| the bytesize of an object x, where x may be any
cryptographic object (a public key, a ciphertext, etc.)

6.1 Comparison Methodology

Our goal is to provide an accurate assessment of the gains provided by various mKEM instantiations. A natu-
ral way to do that is to compare the performances of these mKEMs (with N recipients) with N instantiations
of the original (single-recipient) KEMs. This comparison can be done via two metrics:

(C1) Communication cost. How much data does the encryptor broadcast when using mKEM with N recipi-
ents, and how does it compare to N instances of the original KEM (one per recipient)?

(C2) Computational cost. How many cycles does one instance of mKEM with N recipients cost, and how
does it compare to N instances of KEM?

For (C1), we measure the ratio:

Data broadcast when using N instances of the original KEM

Data broadcast when using mKEM with N recipients
. (4)

With mKEM the encryptor broadcasts a single multi-ciphertext of size |ct0| +
∑
i∈[N] |ĉti| = |ct0| + N |ĉti|,

whereas with N instances of KEM he broadcasts N ciphertexts ct = (ct0, ĉti) – except for NewHope, see
footnote 4 – for a total size N |ct0|+N |ĉti|. Therefore, the ratio converges to a value independent of N when
N tends to infinity. Specifically, the value (4) is:

N |ct0|+N |ĉti|
|ct0|+N |ĉti|

−→
N→∞

1 +
|ct0|
|ĉti|

. (5)

Let kcomm = 1 + |ct0|
|ĉti|

. This value measures asymptotically “how much more compact” mKEM is compared

to the original KEM, and serves as our metric for (C1). Similarly, the following value serves as our metric
for (C2):

kcycles = lim
N→∞

Cycles spent to run N instances of the original KEM

Cycles spent to run mKEM with N recipients
(6)

We note that kcycles is far less absolute than kcomm as a metric, since the number of cycles depend on the
implementation of a scheme, the architecture of the target platform, etc. However, it is a useful indicator
of the efficiency gain that one can expect by using mKEM. All cycles measurements in this section are
performed on a processor i7-8665U (Whiskey Lake) @ 1.90GHz, with Turbo Boost disabled.

6.2 Instantiation with Lattice-based NIST Candidates

In this section, we provide concrete instantiations of the high-level scheme described in Section 5.1. Our
efforts are facilitated by the fact that 7 lattice-based NIST candidate KEMs are deduced from PKEs that
follow the Lindner-Peikert framework:

• Kyber;

• FrodoKEM;

• LAC;

• NewHope;

• Round5;

• Saber;

• ThreeBears.

Full specifications of these 7 schemes are available at [NIS19]. Out of these, FrodoKEM, Kyber, LAC and
NewHope follow the most closely the Lindner-Peikert framework, since they are based on LWE, Module-LWE,
Ring-LWE and Ring-LWE, respectively. Round5 and Saber are based on variants of LWR. This implies a
few changes on Figure 5, since the addition of noise error is replaced in some instances by rounding. See

21

Remark 5.2 for a short discussion on this change. Finally, ThreeBears is based on an extremely recent variant
called Module Integer-LWE. In addition, each scheme has different parameters and uses different tweaks. A
widespread trick is for ĉti to drop the least significant bits of Vi, since the message M is encoded in the most
significant bits. This reduces the size of a (multi-)ciphertext. Note that bit dropping is more beneficial to
mKEMs than to KEMs as it reduces |ĉti|, hence a larger bandwidth impact for mKEMs – see (5).

These 7 KEMs and the PKEs they are based on serve as the bases for our mKEM constructions. We
tweaked them in order to fit the frameworks described in Figure 5 (IND-CPA mPKE) and Figure 3 (con-
version into an IND-CCA mKEM). Note that our tweaks break compatibility with the specifications of the
aforementioned schemes, for two reasons. First, we fix the public matrix A in order to fit Figure 5 (see
Remark 6.1 below). Second, the transform of Figure 3 is completely different from the ones used in the 7
aforementioned KEMs, which themselves differ from each other. As a consequence, comparing our mKEMs
to these KEMs is not an entirely apples-to-apples comparison, as the 7 KEMs we cited claim some additional
properties such as contributivity or security in specific threat models (see Remark 6.1). For our mKEMs, we
do not claim to achieve any security notion besides those proven in this document.

Remark 6.1 (Reusing the public matrix). A difference between Figure 5 and the aforementioned NIST
schemes is that the latter use PKEs for which the matrix A is made part of the public key pk. That is,
each user has its A rather than sharing it. The main argument for this choice is to hinder all-for-the-price-
of-one attacks [ADPS16, Section 3]. The associated threat model considers an attacker that has enough
cryptanalytic capabilities to break one hard instance of a lattice problem, but not much more. This is an
arguably specific security model, one that implicitly considers that the parameter set of the scheme may
not be cryptographically secure. In order to enable our mKEM instantiations, we instead make A part of
the public parameter pp, as per Figure 5. This can be done with minimal changes to the PKEs used by the
original KEMs, and has no impact on their concrete security analysis.

Communication costs.

Table 1 provides a comparison of NIST KEMs with their mKEM variants. Sending N ciphertexts costs
N · |ct| bytes for a NIST KEM, whereas using its mKEM counterpart costs |ct0| + N · |ĉti|. The gain in
bandwidth kcomm is of one order of magnitude (sometimes two). Schemes based on module lattices (Saber,
Kyber, ThreeBears) and standard lattices (FrodoKEM) see the most dramatic gains (as high as a factor 169
times for FrodoKEM).

Computational costs.

Due to time constraints, we only implemented mKEM on two lattice-based schemes: FrodoKEM and Kyber.
Nevertheless, we believe these examples already showcase the efficiency gain provided by our techniques.
Starting from reference implementations available on Github78, we tweaked them to obtain mKEMs. As
shown by Table 2, our mKEM variants perform (multi-)encapsulation between one and two orders of mag-
nitude faster than their original KEM counterparts. Additional experiments in Appendix D show that the
target platform can play an important role in the performance gain.

6.3 Instantiation with Isogeny-Based schemes

In this section, we focus on isogeny-based instantiations of mKEM and mPKE. Concerning SIKE, we obtain
an mKEM from the mPKE of Figure 6, and we compare it with the trivial solution consisting in N instances
of SIKE. For CSIDH, we compare the mPKE of Figure 7 with N instances of the CSIDH-based hashed
ElGamal. Since CSIDH is a key-exchange, we simply construct a trivial IND-CPA secure PKE from it (rather
than constructing an IND-CCA secure KEM) and compare it with our mPKE from Section 5.2 (see also

4Unlike other lattice-based KEMs, the CCA variant of NewHope adds a hash to the ciphertext. So in this particular case
|ct| = |ct0| + |ĉti| + {32, 64}.

7https://github.com/Microsoft/PQCrypto-LWEKE
8https://github.com/pq-crystals/kyber/

22

https://github.com/Microsoft/PQCrypto-LWEKE
https://github.com/pq-crystals/kyber/

Table 1: Bandwidth impact of our solution on various schemes. Sizes are in bytes.

Scheme |ct0| |ĉti| |ct| kcomm

FrodoKEM-640 9 600 120 9 720 81
FrodoKEM-976 15 616 128 15 744 123
FrodoKEM-1344 21 504 128 21 632 169
Kyber-512 640 96 736 7.67
Kyber-768 960 128 1 088 8.5
Kyber-1024 1 408 160 1 568 9.8
LAC-128 512 200 712 3.56
LAC-192 1024 164 1188 7.24
LAC-256 1024 400 1424 3.56
NewHope-512-CCA-
KEM6 896 192 1 120 5.83

NewHope-1048-CCA-
KEM

1 792 384 2 208 5.75

Round5 R5ND 1KEMb 429 110 539 4.9
Round5 R5ND 3KEMb 756 74 830 11.22
Round5 R5ND 5KEMb 940 142 1 082 7.62
LightSaber 640 96 736 7.67
Saber 960 128 1 088 8.5
FireSaber 1 280 192 1 472 7.67
BabyBear 780 137 917 6.69
MamaBear 1 170 137 1 307 9.54
PapaBear 1 560 137 1 697 12.38

Table 2: Encapsulation times of FrodoKEM and Kyber vs their mKEM variants. Times are in cycles and
are normalized by the number of recipients (here, 1000).

Scheme Trivial KEM Our mKEM kcycles

FrodoKEM-640 4 948 835 251 405 19.68
FrodoKEM-976 10 413 149 387 733 26.86
FrodoKEM-1344 18 583 122 519 973 35.74
Kyber-512 181 297 42 647 4.25
Kyber-768 279 210 52 471 5.32
Kyber-1024 414 774 61 808 6.71

Figure 7 for the details). To obtain proof-of-concept implementation of mPKE for CSIDH and mKEM for
SIKE, we have modified implementation available in the NOBS library9.

Communication cost.

Our construction provides the most significant gain when used with SIKE/p434. In this case our mKEM
variant can be over 20 times more efficient.

9https://github.com/henrydcase/nobs

23

https://github.com/henrydcase/nobs

Table 3: Bandwidth impact of our mKEM on isogeny schemes. Sizes are in bytes.

Scheme |ct0| |ĉti| |ct| kcomm

SIKE/p434 330 16 346 21.63
SIKE/p503 378 24 402 16.75
SIKE/p751 564 32 596 18.63
SIKE/p434 compressed 196 16 209 13.25
SIKE/p503 compressed 224 24 248 10.33
SIKE/p751 compressed 331 32 363 11.34
cSIDH PKE/p512 64 16 80 5

Computational costs.

In SIKE and CSIDH-based hashed ElGamal, the computational cost is dominated by isogeny computations.
In both schemes, encapsulation/encryption requires the computation of two smooth-degree isogenies. As-
suming SIKE key compression is not used, we can assume that both computations have a similar cost C.
When running SIKE/CSIDH-based hashed ElGamal for N recipients, the total computation cost is roughly
2 · N · C. By applying our mKEM/mPKE this cost reduces to (N + 1) · C. So, the expectation is that
our approach will be roughly two times faster. The results from the benchmarking in Table 4 confirms the
expected speed-up. It is worth noticing that the gain from using mKEM is expected to be bigger when using
SIKE with key compression. That is because computing |ct0| is a slower operation than computing |ĉti|.

Table 4: Encapsulation times of SIKE vs its mKEM variant and encryption times of CSIDH-based hashed
ElGamal vs its mPKE variant. Times are in cycles and are normalized by the number of recipients (here,
100).

Scheme Trivial KEM Our mKEM kcycles

SIKE/p434 1 657 655 212 759 202 275 2.18
SIKE/p503 2 301 014 376 1 037 469 650 2.22
SIKE/p751 6 900 791 605 3 150 069 659 2.19
cSIDH/p512 37 455 411 429 19 438 021 692 1.92

7 Application to Secure Group Messaging

In this section, we show how our mKEM can be used to optimize the TreeKEM protocol [BBR18,ACDT19,
ACC+19b] used within secure group messagings. The resulting protocol has a lower communication cost
than the standard version of TreeKEM [BBR18,ACDT19].

7.1 Syntax and Notations for Group Messaging

We first introduce group messaging-related notions. We observe that group messaging is an extensive topic;
we keep our presentation minimal and introduce notions that are strictly required for our argument. More
in-depth discussions on group messaging can be found in e.g. [BBR18,ACDT19,ACC+19b,BBM+20].

Continuous group key agreement (CGKA), which generalizes the notion of continuous key agreement
(CKA, see [ACD19]), forms the backbone of secure group messaging (SGM) protocols. Informally, one can
think of CGKA as a group key exchange where the group members dynamically change and the (group)
session keys need to be re-established in each epoch to maintain strong security. Once a session key is
established for a given epoch, a user can then use the key to securely communicate with the group members.

24

Therefore, a SGM protocol can be described as a continuum of running CGKA and exchanging secured
messages.

Definition 7.1 (Continuous Group Key Agreement. [ACDT19]). A continuous group key agreement CGKA =
(Init,Create,Add,Remove,Update,Process) consists of the following algorithms:
• Initialization. Init takes an ID ID and outputs an initial state state.
• Group creation. Create takes a state state, a list of IDs (IDi)i∈[N] and outputs a new state state′ and

a control message W .
• Add. Add takes a state state, an ID ID and outputs a new state state′ and control messages W,T .
• Remove. Remove takes a state state, an ID ID and outputs a new state state′ and a control message
T .

• Update. Update takes a state state and outputs a new state state′ and a control message T .
• Process. Process takes a state state and outputs a new state state′ and an update secret I.

Above, Update allows a user to update the session key on behalf of the whole group (it is run on every
epoch to maintain strong security), and Process allows each group member to process the updated session key.
Four properties are required from a CGKA: correctness, privacy, forward privacy (FS), and post-compromise
security (PCS). At a high level, FS states that if any group member is compromised at some point, then
all previous session keys remain hidden from the attacker; and PCS states that after every compromised
group member performs an update, the session key becomes secret again. As the precise definitions are not
relevant to our work, we refer to [ACDT19, Section 3.2] for more details.

In the following, we focus on TreeKEM; a specific instantiation of CGKA that forms the building block
of the SGM protocol MLS [BBM+20]. It was first described in [BBR18] and various improvements have been
proposed in [ACDT19,ACC+19b]. TreeKEM is at the heart of the MLS protocol [BBM+20], and is arguably
one of MLS’ main efficiency bottlenecks due to the large number of public key material sent. To be more
concrete, our efforts are directed at optimizing the Update algorithm of TreeKEM; this algorithm is one of
the costliest parts (in computation and communication) of TreeKEM as it is performed on a regular basis
(in contrast to Create, Add and Remove, which are performed upon punctual events). In effect, improving
the efficiency of Update will improve the efficiency of TreeKEM (and hence the MLS protocol) on a similar
scale. Details on TreeKEM follows.

7.1.1 Dendrologic notations.

In a (binary or m-ary) tree T, a leaf is a node with no child, an internal node is a node that is not a leaf,
and the root root is the unique node that has no parent. By synecdoche, we may abusively refer to a node
by its label; for example in Figure 8, “1” denotes the bottom left node.

Let u be a node in a tree T. Its siblings, siblings(u), is the set of nodes v 6= u in T with the same parent
as u. Its path, path(u), is the set of nodes between u and root, including u but excluding root. Its co-path,
copath(u), is the set of siblings of nodes in its path: copath(u) =

⋃
v∈path(u) siblings(v). For example, in

Figure 8, the only sibling of “1” is “2”, its path is the set of red nodes (), and its co-path is the set of

green nodes ().

7.1.2 TreeKEM.

In TreeKEM, a (binary or m-ary) tree T is constructed with the N group members as its leaves. As an
example, Figure 8 illustrates the tree T associated to a group of 16 users (numbered from 1 to 16). Let
PRG be a pseudorandom generator. Then, to each node i is associated a secret seed seedi and a keypair
(pki, ski) = mGen(pp;PRG(seedi)L), where PRG(·)L (resp. PRG(·)R) denotes the left (resp. right) half output
of the PRG. In particular, mGen is run on randomness PRG(seedi)L. The root does not need a keypair, but
its seed will in effect be the group secret I (i.e., session key). The TreeKEM invariant states that a group
member u knows seedi if and only if i ∈ path(u). When a user u performs an update (via Update), he does
the following:

25

(U1) Generate a new secret seed seedu for u.

(U2) For each i ∈ path(u), update its keypair: (pki, ski) = mGen(pp;PRG(seedi)L), and compute a new secret
seed for its parent: seedparent(i) = PRG(seedi)R.

(U3) For each i ∈ path(u), compute the ciphertext

~cti ← mEncaps(pp, (pkj)j∈siblings(i); seedparent(i)). (7)

Note that mEncaps is derandomized here. For our construction in Figure 3, this is equivalent to setting
the random message Mi = PRG(seedparent(i)).

(U4) Send the update package (pki, ~cti)i∈path(u) to the server, which dispatches it to the other group members
(this is known as server-side fan-out).

Upon receiving the update package, a user v processes it (via Process) as follows:

(P1) Update each pki he received.

(P2) Compute the closest common ancestor w of u and v, then recover seedw by decapsulating the adequate
~cti.

(P3) Recover the secret seeds of all remaining common ancestors of u and v by computing seedparent(i) =
PRG(seedi)R. The update secret is I = seedroot

This description is more generic than previous ones [BBR18,ACDT19,ACC+19b,BBM+20] in the following
sense. All existing instantiations of TreeKEM take T to be a binary tree, in which case there is no need for
a mKEM as a single-recipient KEM suffices. Note that while our description uses mKEM as a building block,
it is easily adapted to work with an mPKE. Figure 8 illustrates the “classical” instantiation of TreeKEM.
Each update contains at most dlog2(N)e public keys and as many ciphertexts, so its bytesize is at most:

dlog2(N)e ·
(
|pk|+ |ct0|+ |ĉti|

)
(8)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2

Figure 8: TreeKEM

m-ary TreeKEM.

We now show how to obtain significant efficiency gains by instantiating TreeKEM with an m-ary tree
combined with mKEM. As mentioned in [BBR18], TreeKEM can be instantiated with an m-ary tree instead
of binary; see Figure 9 for an example where “1” issues a package update. At first, it is not obvious that this
is more efficient than the instantiation of Figure 8, since in our example the update package now contains 2
public keys (one for each node () in the path) and 6 ciphertexts (one for each node () in the co-path).

We make the following observation: when a user u issues an update, the update package may encapsu-
late several times the same information. Precisely, for each i ∈ path(u), the update package encapsulates
seedparent(i) under the key pkj for each j ∈ siblings(i). In the example of Figure 9, this means that an update
package issued by 1 encapsulates seedA under pk2, pk3, pk4, and seedroot under pkB , pkC , pkD. The bandwidth
gain happens exactly here: since the same value seedA is encapsulated under pk2, pk3, pk4, one can use mKEM
to perform this (multi-)encapsulation. And similarly at each level of the tree. Hence the total size of an
update package is at most:

dlogm(N)e ·
(
|pk|+ |ct0|+ (m− 1) · |ĉti|

)
. (9)

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B C D

2 3 4

A

1

Figure 9: 4-ary TreeKEM

One can see that (9) generalizes (8) to any integer m > 2. It is clear from (9) that whenever |pk|+|ct0| � |ĉti|,
it is advantageous efficiency-wise to take m > 2. This is illustrated in the next section.

7.2 Concrete Instantiations of m-ary TreeKEM

We now illustrate the substantial communication gains that can be obtained in practice with the method

described above. A good rule of thumb is to take m − 1 ≈ |pk|+|ct0|
|ĉti|

. According to (8), the bytesize of an

update package for binary TreeKEM will then be approximately dlog2(N)e ·m · |ĉti|. On the other hand, the
bytesize – given by (9) – for our proposal is about dlogm(N)e · 2(m − 1) · |ĉti|. Compared to the standard
TreeKEM, our proposal improves communication cost by a factor equal to the ratio of the two values, which
is approximately:

dlog2(N)e·m·|ĉti|
dlogm(N)e·2(m−1)·|ĉti|

−→
N→∞

m
2(m−1) · log2(m)

= O(logm).

Our solution provides a gain O(logm) compared to TreeKEM. A concrete comparison is provided by Fig-
ure 10, which compares the bytesize of an update package for binary TreeKEM - using FrodoKEM, Kyber,
SIKE or cSIDH as a (single-recipient) KEM/PKE - and m-ary TreeKEM - using the mKEM/mPKE obtained
from FrodoKEM, Kyber, SIKE or cSIDH, respectively. For the schemes considered, our proposal improves the
communication cost for large groups by a factor between 1.8 and 4.2.

Acknowledgement. Shuichi Katsumata was supported by JST CREST Grant Number JPMJCR19F6 and
JSPS KAKENHI Grant Number JP19H01109. Kris Kwiatkowski and Thomas Prest were supported by
the Innovate UK Research Grant 104423 (PQ Cybersecurity). The authors would like to thank Takashi
Yamakawa for helpful discussions on QROM.

References

[ACC+19a] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez, Alfred Menezes, and Fran-
cisco Rodŕıguez-Henŕıquez. On the cost of computing isogenies between supersingular elliptic
curves. In Carlos Cid and Michael J. Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS,
pages 322–343. Springer, Heidelberg, August 2019.

[ACC+19b] Joel Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Keep the dirt: Tainted treekem, an effi-
cient and provably secure continuous group key agreement protocol. Cryptology ePrint Archive,
Report 2019/1489, 2019. https://eprint.iacr.org/2019/1489.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs,
and modularization for the Signal protocol. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, volume 11476 of LNCS, pages 129–158. Springer, Heidelberg, May 2019.

[ACDT19] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and
improvements for the IETF MLS standard for group messaging. Cryptology ePrint Archive,
Report 2019/1189, 2019. https://eprint.iacr.org/2019/1189.

27

https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189

22 24 26 28 210 212 214
0

50

100

150

200

250

300
Binary
m-ary

(a) FrodoKEM-640

22 24 26 28 210 212 214
0

5

10

15

20

25
Binary
m-ary

(b) Kyber-512

22 24 26 28 210 212 214
0

2

4

6

8

10

12
Binary
m-ary

(c) SIKE-p434

22 24 26 28 210 212 214
0

0.5

1

1.5

2

2.5
Binary
m-ary

(d) cSIDH-p512

Figure 10: Comparing the classic “binary” TreeKEM with m-ary TreeKEM, when instantiated with four
schemes: FrodoKEM, Kyber, SIKE and cSIDH. In each case, the x-axis represent the number N of group
members (from 2 to 215) and the y-axis represent the maximal size of an update package in kilobytes. The
arity m depends on the scheme and the group size N , and is omitted for readability.

28

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key ex-
change - A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016,
pages 327–343. USENIX Association, August 2016.

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-
classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
volume 11693 of LNCS, pages 269–295. Springer, Heidelberg, August 2019.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 259–274. Springer, Heidelberg, May 2000.

[BBM+20] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and
Raphael Robert. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-
protocol-09, Internet Engineering Task Force, March 2020. Work in Progress.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous Decen-
tralized Key Management for Large Dynamic Groups A protocol proposal for Messaging Layer
Security (MLS). Research report, Inria Paris, May 2018.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-recipient
encryption schemeas. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 85–99.
Springer, Heidelberg, January 2003.

[BCR+] Elaine Barker, Lily Chen, Allen Roginsky, Miles Smid, Elaine Barker, Lily Chen, Allen Rogin-
sky, and Miles Smid. Recommendation for pair-wise key establishment schemes using discrete
logarithm cryptography. In Technical Report; National Institute of Standards and Technology
(NIST): Gaithersburg, MD, USA, 2006. 2012, page 15158. https://doi.org/10.6028/NIST.

SP.800-56Ar3.

[BF07] Manuel Barbosa and Pooya Farshim. Randomness reuse: Extensions and improvements. In
IMA International Conference on Cryptography and Coding, pages 257–276. Springer, 2007.

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti.
Tighter proofs of CCA security in the quantum random oracle model. In TCC 2019, LNCS,
pages 61–90. Springer, Heidelberg, March 2019.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 719–737. Springer, Heidelberg, April 2012.

[BPS00] Olivier Baudron, David Pointcheval, and Jacques Stern. Extended notions of security for mul-
ticast public key cryptosystems. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,
ICALP 2000, volume 1853 of LNCS, pages 499–511. Springer, Heidelberg, July 2000.

[CHJ+02] Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier, David Pointcheval, and
Christophe Tymen. GEM: A generic chosen-ciphertext secure encryption method. In Bart
Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 263–276. Springer, Heidelberg,
February 2002.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH:
An efficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, De-
cember 2018.

[CLQY18] Haitao Cheng, Xiangxue Li, Haifeng Qian, and Di Yan. Cca secure multi-recipient kem from
lpn. In ICICS, pages 513–529. Springer, 2018.

29

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum
random oracle model. In TCC 2019, LNCS, pages 1–29. Springer, Heidelberg, March 2019.

[CMSZ19] Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur. Quantum lazy
sampling and game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive,
Report 2019/428, 2019. https://eprint.iacr.org/2019/428.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.

[CS20] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret keys to produce an
actively secure distributed signing protocol. In Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2018, pages 169–186. Springer, Heidelberg, 2020.

[Den03] Alexander W Dent. A designer’s guide to kems. In IMA International Conference on Cryptog-
raphy and Coding, pages 133–151. Springer, 2003.

[DFJP14] Luca De Feo, David Jao, and Jerome Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Journal of Mathematical Cryptology, volume 8 (3),
pages 209–247, 2014.

[EKP20] Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy CSI-FiSh: Efficient signature
scheme with tight reduction to decisional CSIDH-512. In PKC 2020, LNCS, pages 157–186.
Springer, Heidelberg, 2020.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554. Springer, Heidelberg, August 1999.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, volume 10677
of LNCS, pages 341–371. Springer, Heidelberg, November 2017.

[HI19] Akinori Hosoyamada and Tetsu Iwata. 4-round Luby-Rackoff construction is a qPRP. In ASI-
ACRYPT 2019, LNCS, pages 145–174. Springer, Heidelberg, December 2019.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. Construction of a
pseudo-random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer,
Heidelberg, August 2007.

[HKSU20] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated
key exchange in the quantum random oracle model. In PKC 2020, pages 389–422, 2020.

[HTAS09] Harunaga Hiwatari, Keisuke Tanaka, Tomoyuki Asano, and Koichi Sakumoto. Multi-
recipient public-key encryption from simulators in security proofs. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP 09, volume 5594 of LNCS, pages 293–308. Springer,
Heidelberg, July 2009.

[JAC+19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes,
Vladimir Soukharev, David Urbanik, and Geovandro Pereira. SIKE. Technical report, National
Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

30

https://eprint.iacr.org/2019/428
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[JZC+18] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, volume 10993 of LNCS, pages 96–125. Springer,
Heidelberg, August 2018.

[JZM19a] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit
rejection in the quantum random oracle model. In Dongdai Lin and Kazue Sako, editors,
PKC 2019, volume 11443 of LNCS, pages 618–645. Springer, Heidelberg, April 2019.

[JZM19b] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter security proofs for generic key encapsu-
lation mechanism in the quantum random oracle model. In PQCRYPTO 2019, pages 227–248,
2019.

[KSS+] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shi-Feng Sun. Measure-
rewind-measure: tighter quantum random oracle model proofs for one-way to hiding and cca
security. In EUROCRYPT 2020, pages 703–728. Springer.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In David
Naccache and Pascal Paillier, editors, PKC 2002, volume 2274 of LNCS, pages 48–63. Springer,
Heidelberg, February 2002.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer,
Heidelberg, February 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23.
Springer, Heidelberg, May / June 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 35–54. Springer, Heidelberg, May 2013.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, 75(3):565–599, 2015.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, volume 11693 of LNCS, pages 326–355.
Springer, Heidelberg, August 2019.

[MH13] Takahiro Matsuda and Goichiro Hanaoka. Key encapsulation mechanisms from extractable hash
proof systems, revisited. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume
7778 of LNCS, pages 332–351. Springer, Heidelberg, February / March 2013.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[NIS19] NIST. Post-quantum cryptography - round 2 submissions. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions, 2019.

[OBR+20] Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srinivas Inguva, Albert Kwon, and Alan
Duric. The Messaging Layer Security (MLS) Architecture. Internet-Draft draft-ietf-mls-
architecture-04, Internet Engineering Task Force, January 2020. Work in Progress.

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 159–175. Springer, Heidelberg, April 2001.

31

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

[Sma05] Nigel P. Smart. Efficient key encapsulation to multiple parties. In Carlo Blundo and Stelvio
Cimato, editors, SCN 04, volume 3352 of LNCS, pages 208–219. Springer, Heidelberg, September
2005.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rij-
men, editors, EUROCRYPT 2018, volume 10822 of LNCS, pages 520–551. Springer, Heidelberg,
April / May 2018.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the Fujisaki-Okamoto
and OAEP transforms. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, volume 9986
of LNCS, pages 192–216. Springer, Heidelberg, October / November 2016.

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 129–146. Springer,
Heidelberg, May 2014.

[Yan15] Zheng Yang. On constructing practical multi-recipient key-encapsulation with short ciphertext
and public key. SCN, 8(18):4191–4202, 2015.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, volume 11693 of LNCS,
pages 239–268. Springer, Heidelberg, August 2019.

A Simple Attack on LPN-based mKEM by [CLQY18]

We are aware of one recent work by Cheng et al., [CLQY18] that constructs a post-quantum IND-CCA secure
mKEM from the LPN assumption. As with any practical IND-CCA secure encryption scheme in the ROM,
they rely on the Fujisaki-Okamoto transform. However, on closer inspection, it is clear that they misuse the
Fujisaki-Okamoto transform in the multi-recipient setting, and in particular, their scheme admits a trivial
attack.

Similarly to our LWE-based mKEM, they require randomness that is specific to each users. In the context
of mPKE, this means ri in mEnc is not an empty string (see Definition 3.1). However, when they apply
the Fujisaki-Okamoto transform, they only generate the randomness used by all the users via H(M) and
samples the rest of the user specific randomness on its own. Consequently, since the ciphertext cannot
be reencrypted back from the message, there is no way to validate the user specific part of the ciphertext.
Concretely, in their construction, decryption will succeed even if we add a slight noise in the user specific part
of the ciphertext. Therefore, as an adversary, we can simply add a small noise to the challenge ciphertext
to recover the challenge message (or sessions key) to break IND-CCA security.

B Proof of Theorem 4.2

We provide the proof of Theorem 4.2 (post-quantum IND-CCA security of our mKEM) in this section. Minimal
background on quantum computation is provided in Appendix C, and we refer for more details to other works
such as [CMSZ19,AHU19,Zha19,HKSU20].

Proof of Theorem 4.2. Let A be a quantum PT adversary against the IND-CCA security of mKEM. We
upper bound its advantage by considering the following game sequence. We denote Ei as the event A wins
in Gamei.

32

- Game1: This is the real IND-CCA security game. In particular, Pr[E1] := AdvIND-CCA
mKEM,N (A).

- Game2: In this game, we replace the computation of H′(seedi, ·) by a random function Ĥ′i(·) in case M = ⊥
or ct 6= (ct0, ĉt) occurs when answering the decapsulation oracle with input i ∈ [N]. Due to Lemma C.1, and
a standard hybrid argument, we have

|Pr[E1]− Pr[E2]| ≤ q′H ·N · 2
−`+1

2 .

Using Compressed Oracles. We first make a simplifying argument that A queries the same message to all of
the oracles G1, G2, and H, and that G2 is only queried on pki ∈ {pk1, · · · , pkN}. That is, when A queries for
an input M to the oracles, it receives back (G1(M),G2(pk1,M), · · · ,G2(pkN ,M),H(M)). It is clear that this
modification does not weaken A since querying G2 on other pk provides A no additional advantage. Here,
we assume A obtains (N + 2) results by making one query. Moreover, we can always transform an adversary
A that does not query all the oracles on the same input to an adversary that does.

Next, throughout the security game, we assume the oracles G1(·), G2(pk1, ·), · · · ,G2(pkN , ·), and H(·) to

be simulated by a single oracle Ĝ(·). In particular, we define G1(M) := Ĝ(npk,M), G2(M) := Ĝ(pki,M) for

i ∈ [N], and H(M) := Ĝ(key,M), where npk and key are special symbols distinct from all pki’s. Namely, we
implement the oracles from a single oracle by using appropriate domain separation. Finally, we simulate the
random oracle Ĝ by a compressed standard oracle CStO initialized by the empty database D [Zha19] (see
Appendix C.1).

- Game3: In this game, we add an additional check at the end of the game to see if a “bad” randomness was
ever used. Define auxi :=

(
pp, (pki, ski)

)
for i ∈ [N] and define the sets of bad randomness as

Rbad
i (auxi,M) :=

{
(r0, ri)

∣∣∣∣∣ M 6= mDec(skpi , (ct0, ĉti)),where

ct0 := mEnci(pp; r0), ĉti := mEncd(pp, pki,M; r0, ri)

}
.

In addition, define S to be the set of index-message pairs (excluding the pairs with message equal to ⊥) that
was obtained by decrypting the ciphertext when answering the decapsulation query (i, ct). Note that S only
consists of classical elements since A only makes classical decapsulation queries. Then, after A outputs its
guess at the end of the game, the challenger checks the database D (i.e., state of the compressed standard
oracle) for a pair of tuples ((npk,M), r0) and ((pki,M), ri) for any (i,M) ∈ S and (r0, ri) ∈ Rbad

i (auxi,M).
We call the event BADrand if such a set of tuples are found and change A’s output to be a random bit.
Otherwise, it is defined exactly the same as in the previous game. Since the two games are identical unless
BADrand occurs, we have |Pr[E2]− Pr[E3]| ≤ Pr[BADrand]. By Lemma C.2, we can upper bound Pr[BADrand]
by 6 · (qG + qD + 1)2 ·maxi{

∣∣Rbad
i (auxi,M)

∣∣ / |R|} + 3 · 2−µ/2, where R is the randomness space of a single

ciphertext and µ = |r0|+ |r| for any (r0, r) ∈ R. By definition, we have δ ≥ E
[
maxM∈M |Rbad

i (auxi,M)|/|R|
]
,

where the expectation is taken over the randomness used to sample auxi = (pp, (pki, ski)) and δ is the
correctness parameter of mPKE. Hence, we conclude

|Pr[E2]− Pr[E3]| ≤ 6 · (qG + qD + 1)2 · δ + 3 · 2−µ/2.

(The next Game4 through Game8 aim to get rid of the secret keys ski to answer A’s decapsulation oracle
queries.)

- Game4: In this game, we make a conceptual change in the way we answer the decapsulation oracle query.
During responding to the decapsulation oracle query, if M 6= ⊥, we perform a test in superposition to check
if whether (npk,M) and (pki,M) are in the database D. Note that this test can be performed in the standard
basis. To be precise, we first prepare an extra registry (which we call b). We then evaluate a classical
binary output function on D (in superposition) which evaluates to 1 if and only if D includes (npk,M) and
(pki,M), and finally writes the output into the newly created b register. Let us call this test implemented by
a unitary operation by TEST1. We overload the notation and also use TEST1 to denote the unitary operation
itself. We then, subsequently un-compute TEST1, which is equivalent to performing TEST1 again. Since

33

we compute the test and immediately un-compute the test, this modification incurs no change compared to
Game3. Hence,

Pr[E3] = Pr[E4].

- Game5: In this game, we alter the time on which we un-compute TEST1. Namely, we perform TEST1 after
we finish responding to the decapsulation oracle query.

To make the statement more clear, we first recall how the decapsulation oracle query is implemented by
unitary operations. Since we only care about the computation made after we check M 6= ⊥, we focus on
how the check ct 6= (ct0, ĉt) is implemented. First note that checking ct 6= (ct0, ĉt) is equivalent to checking
(G1(M),G2(pki,M)) ∈ Ri(auxi, ct,M), where Ri(auxi, ct,M) is the subset of the randomness space R which
maps an encryption of M to ct with respect to pp, pki. Namely, we check ((npk,M), r0) and ((pki,M), ri) such
that (r0, ri) ∈ Ri(auxi, ct,M) are included in the database D. Let the classical function which performs this
check as TEST2. Then, by the definition of compressed standard oracles, we first perform StdDecomp |M〉 |D〉
(where we ignore the irrelevant registers right now), then apply TEST2 that writes the output to a newly

prepared registry which we call w. Conditioned on the w registry being |0〉, we compute Ĥ′i(ct) and otherwise
compute H(M), where recall H(M) is also simulated by the compressed standard oracle. Finally, we perform
StdDecomp |M〉 |D〉 again to decompress the oracle.

To show that Game4 and Game5 are indistinguishable, we must show that performing StdDecomp ◦
TEST2 ◦ StdDecomp ◦ TEST1 ◦ TEST1 is indistinguishable from performing TEST1 ◦ StdDecomp ◦ TEST2 ◦
StdDecomp ◦ TEST1, where the former (resp. latter) corresponds to Game4 (resp. Game5). Since both

computation starts with applying TEST1, we ignore them below. We also ignore the computation of Ĥ′i and
H since they commute with TEST1 by noticing that they work on different registries. Notice that in case
(npk,M) and (pki,M) were already in the database D, the corresponding output registry cannot be ⊥ (i.e.,
((npk,M),⊥) and ((pki,M),⊥) cannot be in the database D), since each query to CStO ends by removing
such entries by definition. Therefore, StdDecomp is the same as an identity operation for such inputs. Now,
in case (npk,M) or (pki,M) are not in the database D, StdDecomp adds either 1√

2|r0|

∑
r0
|(npk,M), r0〉 or

1√
2|ri|

∑
ri
|(pki,M), ri〉, respectively, to the database D. Denote TEST†1 as the unitary operation that first

applies the quantum Fourier transform to the registry corresponding to |r0〉 and |ri〉 and then outputs 1 if and

only if both registries are not identical to 0. Then, from the above argument, we have TEST†1 ◦ StdDecomp =

StdDecomp ◦ TEST1. Now, since TEST†1 tests whether (r0, ri) is equal to (0, 0) in the Fourier basis and
TEST2 tests whether (r0, ri) ∈ Ri(auxi, ct,M) in the standard basis, we can invoke Lemma C.4 to argue

that TEST†1 and TEST2 “almost” commute. Namely, performing TEST2 ◦ TEST†1 or TEST†1 ◦ TEST2 alters

the distribution of the view of A by at most 8
√
|Ri(auxi, ct,M)| / |R|. Finally, using the same argument for

swapping TEST†1 and StdDecomp as before, we conclude that performing StdDecomp ◦ TEST2 ◦ StdDecomp ◦
TEST1 ◦ TEST1 is indistinguishable from performing TEST1 ◦ StdDecomp ◦ TEST2 ◦ StdDecomp ◦ TEST1.
In particular, by taking the expectation over the randomness used to sample aux = (pp, (pki, ski)i∈[N]), we
conclude

|Pr[E4]− Pr[E5]| ≤ qD · 8
√

2−γ ,

where recall we have 2−γ ≥ E
[
maxct∈Csingle,M∈M |R(aux, ct,M)|/|R|

]
due to γ-spreadness.

- Game6: In this game, after we perform (the first) TEST1, we perform an additional computation that takes
as input the bit b, which is the output of TEST1. Let i ∈ [N] be the index queried to the decapsulation oracle.
Recall b = 1, if (npk,M) and (pki,M) are in the database D and b = 0, otherwise. In this game, in case

b = 0, we simply compute Ĥ′i(ct) and return it to the adversary, ignoring the rest of the checks. Otherwise,
it is the same as in Game5. The only way for A to distinguish the two games is if it queries the decapsulation
oracle on (i, ct 6= ct∗i) such that ct = (ct0, ĉti) and M := mDec(skpi , ct), where (npk,M) or (pki,M) are not in
the database. Due to our assumption on how A queries the compressed standard oracle, if either one of the
pair (npk,M) or (pki,M) is not found in the database, then the corresponding randomnesses are in uniform
distribution with overwhelming probability in the view of the adversary (due to Lemma C.2). Therefore, by
γ-spreadness the probability of A choosing ct such that ct = (ct0, ĉt) is bounded by 2−γ . Hence, we have

|Pr[E5]− Pr[E6]| ≤ qD · 2−γ + 3 · 2−µ/2,

34

where recall µ = |r0|+ |r| for any (r0, r) ∈ R.

- Game7: In this game, we further modify the way we answer the decapsulation oracle query. Recall in the
previous game, we computed M← mDec(skpi , ct) and tested several times whether (npk,M) and (pki,M) are
in the database to respond to the decapsulation query. In this game, to answer the decapsulation oracle
query, the challenger instead just scans through all the inputs of the form (npk,M) and (pki,M) inside the
database and checks if ct = (ct0, ĉti), where ct0, ĉti are encrypted using the measured randomness. The

challenger returns H(M) if it holds and Ĥ′i(ct) otherwise.
We check that the two games are identical unless event BADrand occurs. First, notice that if the de-

capsulation oracle in Game6 outputs K := H(M), then M was in the database and ct = (ct0, ĉti) holds.
Therefore, the decapsulation oracle in Game7 outputs the same K as well. On the other hand, assume the
decapsulation oracle in Game7 outputs K := H(M) for some M in the dabase such that ct = (ct0, ĉti) where
ct0 := mEnci(pp;G1(M)) and ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M)). Then, since we have no correctness
error conditioning on BADrand not occurring, ct must decrypt to M. Hence, this implies that the decapsula-
tion oracle Game6 outputs the same K as well. Finally, since when BADrand occurs, we force the adversary
to output a random bit in both games, we have

Pr[E6] = Pr[E7].

- Game8: In this game, we undo the change we made in Game3 and will no longer abort in case event BADrand

occurs. Due to the same argument as before, we have

|Pr[E7]− Pr[E8]| ≤ 6 · (qG + 1)2 · δ + 3 · 2−µ/2.

At this point, the challenger no longer requires the secret keys ski. Moreover, the challenger can be run
efficiently since it does not need to check the event BADrand.

(The next Game9 and Game10 aim to get rid of M∗ in the challenge ciphertext.)
- Game9: In this game, we sample all the randomness used to construct the challenge ciphertext at the

beginning of the game and program the compressed standard oracle. That is, the challenger samples the
random message M∗ ←M, randomness (r∗0, r

∗
1, · · · , r∗N), and random key K∗ that will be used to generate the

challenge ciphertext ~ct
∗

at the beginning of the game. Namely, the challenger sets ~ct
∗

:= mEnc(pp, (pki)i∈[N];
r∗0, r

∗
1, · · · , r∗N) and K∗0 := K∗. It then sets the compressed standard oracle CStO to an almost compressed

standard oracle CStO[T], where T = {((npk,M∗), r∗0), (((pki,M
∗), r∗i))i∈[N], ((key,M

∗),K∗)}. This has the
effect of patching the randomness used to generate the challenge ciphertexts to be consistent with the oracle,
e.g., Ĝ(npk,M∗) = G1(M∗) = r∗0. Since this does not alter the view of the adversary, we have

Pr[E8] = Pr[E9].

- Game10: In this game, we further modify how the almost compressed standard oracle is set up. At
the beginning of the game, the challenger further samples fresh randomness (̃r∗0, r̃

∗
1, · · · , r̃∗N) and key K̃∗

independent from (r∗0, r
∗
1, · · · , r∗N) and K∗ used to construct the challenge ciphertext. It then sets T̃ =

{((npk,M∗), r̃∗0), (((pki,M
∗), r̃∗i))i∈[N], ((key,M

∗), K̃∗)} and initializes the almost compressed standard oracle

as CStO[T̃]. Observe that in this game, the adversary only obtains information on (r∗0, r
∗
1, · · · , r∗N) and K∗

through the challenge ciphertext query. Therefore, since the keys K∗0 = K∗ and K∗1 are distributed uniformly
random from A’s view regardless of the challenge bit b ∈ {0, 1}, we have

Pr[E10] = 1/2.

It remains to prove that Game9 and Game10 are indistinguishable. Let B be an algorithm that simulates
the interaction between the challenger and the adversary A given oracle access to an almost compressed
standard oracle. More formally, B on input zb = (pp, (pk)i∈[N], ~ct

∗
,K∗b) simulates the challenger using zb

conditioning on the challenge bit being b ∈ {0, 1} and runs A. B outputs whatever output by A. In

35

case B has oracle access to CStO[T] (resp. CStO[T̃]) it corresponds to Game9 (resp. Game10). Then, by
Theorem C.5, we have

|Pr[E9]− Pr[E10]| =
∑

b∈{0,1}

1

2

∣∣∣Pr[1← BCStO[T](zb)]− Pr[1← BCStO[T̃](zb)]
∣∣∣

≤
∑

b∈{0,1}

√
(qG + 1) Pr[FIND : BCStO[T̃]\S(zb)], (10)

where S = {(npk,M∗), ((pki,M∗)), (key,M∗)}. Observe that the randomness (r∗0, r
∗
1, · · · , r∗N) used to generate

~ct
∗

in zb for b ∈ {0, 1} is independent from T̃ . Therefore we can invoke the IND-CPA security of the
underlying mPKE to change zb to z̃b, where the only difference between zb and z̃b is that we swap ~ct

∗
to

~̃ct
∗

= mEnc(pp, (pki), 0; r∗0, r
∗
1, · · · , r∗N). Hence, the probability inside Equation (10) can be further upper

bounded by

Pr[FIND : BCStO[T̃]\S(zb)] ≤ Pr[FIND : BCStO[T̃]\S(z̃b)] + 2 · AdvIND-CPA
mPKE,N (BIND),

where BIND is the IND-CPA adversary that is naturally induced by B. Finally, since T̃ and z̃b are distributed
independently except for the public (pp, (pki)i∈[N]), and M∗ is distributed uniformly overM, by Theorem C.5,
we have

Pr[FIND : BCStO[T̃]\S(z̃b)] ≤
4(qG + 1)

|M|
.

Collecting all the bounds, we have

|Pr[E9]− Pr[E10]| ≤ 2 ·
√

2(qG + 1) · AdvIND-CPA
mPKE,N (BIND) +

8(qG + 1)√
M

,

where we use the concavity of the square root function. This concludes the proof.

C Background on Quantum Random Oracles

The main purpose of this section is to recall the compressed oracle techniques introduced in [Zha19]. At
a high level, it allows for powerful proof techniques used in classical random oracle model (ROM) to also
be usable in the quantum ROM (QROM). For example, the compressed oracle technique allows for lazy
sampling (i.e., the output of an entry is defined when it becomes necessary) and allows checking what the
adversary has queried to the random oracle thus far. Both techniques were considered to be difficult, if not
impossible, before the astute observation by Zhandry. Below, we assume the readers to have basic knowledge
of quantum computations and refer to [NC02] for a thorough introduction. Our presentation of the digest
of Zhandry’s result follows closely to that made in [HI19]. We refer [Zha19] for the full detail and [HI19] for
a more in-depth summary of [Zha19] (along with an alternative formalization of compressed oracles).

Stateful Oracles. Let oracle O have a k-qubit quantum state. Then, O is modeled as a sequence of
unitary operators (O1, · · · ,Oq) that acts on the first (m + n)-qubits of A’s quantum register in addition
to O’s quantum register. Here, we assume the first m-registers of A represents the input to O and the
next n-registers of A are used to write the response of O. When we run A relative to the oracle O, the
unitary operation U0 ⊗ Ik,O1, U1 ⊗ Ik, · · · , Uq ⊗ Ik,Oq act sequentially on the initial state |0`〉 ⊗ |initO〉,
where |initO〉 is the initial state of O. Finally, A measures its output register of the resulting quantum
state (Uq ⊗ Ik)Oq · · · O1(U0 ⊗ Ik) |0`〉 ⊗ |initO〉, and returns the measurement result as the output. We write
b← AO() to denote the event that A runs relative to the oracle O and outputs b. We assume without loss
of generality that all quantum registers including those of the oracles are measured only once at the end of
the game.

36

C.1 Compressed Oracles and QROM

Standard Oracles. An oracle OH can be implemented with an encoding of a function H : {0, 1}m → {0, 1}n
and an operator StO that is independent of the description of H. Here, we assume the function H is encoded
into the (n2m)-qubit state |H〉 := |H(0)〉 |H(1)〉 · · · |H(2m − 1)〉. The unitary operator StO is defined as

StO : |x〉 |y〉 ⊗ |α0〉 · · · |α2m−1〉 7→ |x〉 |y ⊕ αx〉 ⊗ |α0〉 · · · |α2m−1〉 ,

where αx ∈ {0, 1}n for each x ∈ [0, 2m−1]. In particular, we have StO |x〉 |y〉 |H〉 = |x〉 |y ⊕ H(x)〉 |H〉. Here,
the x registers represent inputs to the function H, the y registers are for writing the response, and we assume
that the x, y registers come from the adversary.

Zhandry [Zha19] observed that one can formalize the QROM by allowing the adversary A to run relative
to StO, where H is initialized to the uniform superposition over all H, that is,

∑
H

1√
2n2m

|H〉. More concretely,

the whole quantum state before A makes the (i+ 1)-th quantum query can be expressed by

|φi+1〉 = (Ui ⊗ Ik)StO · · · StO(U0 ⊗ Ik)

(
|0`〉 ⊗

∑
H

1√
2n2m

|H〉

)
. (11)

This is in contrast to previous formalization of QROM where one (quantumly accessible) function H was
randomly sampled and fixed throughout the security game. By considering the mixed state of the adversary
A, it can be seen that the new notion of QROM is perfectly indistinguishable from the previous QROM from
the view of the adversary A.

Compressed Standard Oracles. An issue with the above is that we cannot simulate the oracle efficiently
as we must store the whole function H. Therefore, in case we need to efficiently simulate the view of the
adversary within a security proof, say because we want to base security on a computational assumption, then
we cannot use the above as it is. Zhandry’s [Zha19] main observation is that we can consider a compressed
version of the standard oracle which allows for such efficient simulation.

To get a better intuition, consider changing the basis of the αi registers in Equation (11) from the
standard computational basis {|u〉}u∈{0,1}n to the so called Fourier basis {H⊗n |u〉}u∈{0,1}n , where H is
the Hadamard operator. Denoting elements represented in the Fourier basis by “ ̂ ”, Equation (11) is
equivalent to

|φi+1〉 = (Ui ⊗ Ik)StO · · · StO(U0 ⊗ Ik)
(
|0`〉 ⊗ |0̂n2m〉

)
(12)

=
∑
xyzD̂

a′
xyzD̂

|xyz〉 ⊗ |D̂〉 , (13)

where a′
xyzD̂

denotes a complex number satisfying
∑
xyzD̂

∣∣∣a′
xyzD̂

∣∣∣2 = 1, z is A’s working register, and

|D̂〉 = |α̂0〉 · · · |α̂2m−1〉 is a concatenation of 2m n-bit strings. Moreover, if A’s y-register is also expressed in
the Fourier basis, then we have the following:

StO |x〉 |ŷ〉 ⊗ |α̂0〉 · · · |α̂2m−1〉 = |x〉 |ŷ〉 ⊗ |α̂0〉 · · · |α̂x ⊕ ŷ〉 · · · |α̂2m−1〉 ,

In particular, the StO operator adds at most one data in the oracle’s register. Therefore, since |α̂x〉 6= 0n for

at most i many x after the i-th query, D̂ can be regarded as a database which stores at most i many non-zero
entries. We can bring back this argument to the standard basis by performing the Hadamard operator H⊗n

to each α̂x in D̂ and obtaining another database D. Intuitively, (x, αx) ∈ D corresponds to the condition
that A queried x to the oracle and received back αx. We call D a standard database or simply a database.

Now that we established that D̂ only has at most q entries that are non-zero after A queries the oracle,
Zhandry’s [Zha19] main idea was to compress the description of the oracle so that we simply keep track of
the database for which the entries that are non-zero. In summary, Zhandry observed that the QRO can be
described as a stateful quantum oracle CStO called the compressed standard oracle. Roughly, CStO comprises
of the following procedures:

37

1. On input (x, αx), look for a tuple (x, αx) ∈ D. If such a tuple exists, return |x〉 |y ⊕ αx〉.

2. Otherwise, create a new register initialized to the state 1√
2n

∑
αx
|αx〉. Add the registers (x, αx) to D

and respond with |x〉 |y ⊕ αx〉.

3. Finally, test whether the registers containing αx contain 0n in the Fourier basis. If so, remove the tuple
from D. Otherwise, leave the tuple in D.

It may be helpful to understand the above by considering the classical ROM. The first and second item
corresponds to lazy sampling. That is, if the database is defined on x, then it outputs whatever written there,
and otherwise, it samples a random αx ← {0, 1}n element on the fly. Here, sampling a random element in
QROM amounts to creating the superposition 1√

2n

∑
αx
|αx〉. The third item is unique to the quantum

setting, and is a vital procedure to keep the state of the oracle and the adversary un-entangled in case the
data x is no longer used by the adversary. In particular, by appropriately forgetting information, we can
simulate the view of A without every being detected. The formal description of CStO follows.

More formally, a compressed standard oracle CStO is defined as CStO = StdDecomp ◦CStO′ ◦ StdDecomp,10

where StdDecomp and CStO′ are unitary operations described below and the oracles’s state is initial-
ized as the empty database D. Here, D will be represented as an element of the set Sq, where S =
({0, 1}m∪{⊥})×{0, 1}n and we call D empty when D = ((⊥, 0n), · · · , (⊥, 0n)), where the number of (⊥, 0n)
pairs is equal to q (i.e., the number of oracle query A makes). In fact, we have additional requirements for
D, such as requiring D to be sorted in some canonical order, however, since we do not explicitly use them,
we refer [Zha19] for the details.

The unitary operation StdDecomp takes as input |x〉 |y〉 ⊗ |D〉 and does the following:

• If D(x) = ⊥, return 1√
2n

∑
αx
|D ∪ (x, αx)〉. This corresponds to item 2 above, where we “randomly

sample” an output for x if x is yet to be specified.

• If D(x) 6= ⊥, denote |D〉 =
∑
αx
aαx |D′ ∪ (x, αx)〉 where D′(x) = ⊥, and return |D′〉 if aαx = 1√

2n
for

all αx ∈ {0, 1}n and return |D〉 otherwise. In other words, if D is already specified on x and if the
corresponding αx registers contain 0 in the Fourier basis, it will remove x and the αx registers from D
which corresponds to item 3 above. Otherwise, StdDecomp is the identity.

The unitary operation CStO′ takes as input |x〉 |y〉 ⊗ |D〉 and simply returns |x〉 |y ⊕D(x)〉 ⊗ |D〉. Here,
note that CStO′ is well-defined as it is always applied after StdDecomp, which guarantees that D(x) 6= ⊥.

This completes the explanation of compressed standard oracles.

Almost Compressed Oracles. We consider a slight variant of the above compressed oracle known as the
almost compressed oracle [LZ19]. The only difference is that an almost compressed oracle has polynomially
many inputs which are uncompressed. That is, the database will be initialized as D = ((⊥, 0n), · · · , (⊥, 0n),
(x∗1, y

∗
1), · · · , (x∗t , y∗t)) for some polynomial t, where D(x∗i) = y∗i for all i ∈ [t] is guaranteed. Since t is

polynomial, this oracle still provides an efficient implementation. We denote this oracle as CStO[T], where
T = {(x∗i , y∗i)i∈[t]}. By considering the mixed state of A, it can be checked that A cannot distinguish having
oracle access to CStO or CStO[T] for randomly chosen y∗i values.

C.2 Useful Lemmas

We prepare some useful lemmas required for our proof.

General Lemmas.

Lemma C.1 ([SXY18, Lem. 2.2]). Let ` be an integer. Let H : {0, 1}` × X → Y and H′ : X → Y be two
independent random functions. If an unbounded time quantum adversary A makes a query to H at most QH

times, then we have∣∣∣Pr[seed← {0, 1}` : 1← A|H〉,|H(seed,·)〉(1λ)]− Pr[1← A|H〉,|H
′〉(1λ)]

∣∣∣ ≤ QH · 2
−`+1

2 .

10Note that without loss of generality we simplify the discussion by omitting the operator Increase in [Zha19].

38

Lemma C.2 ([CMS19, Lem. 4.9, 5.7], [Zha19, Thm. 3]). Let CStO be a compressed oracle over X × Y .
For every x ∈ X, let Sx be a subset of Y and denote s = maxx |Sx|. Then, for any adversary making q
queries to CStO initialized by the empty database D, if the database D is measured after the q queries, the
probability it contains a pair of the form (x, y) ∈ Sx for any x ∈ X is at most 6q2 · s/|Y |+ 3 · 2− log(|Y |)/2.

Commutativity of Quantum Tests. In classical computation, the order of how one checks x ∈ S and
x ∈ T for sets S, T makes no difference. However, in quantum computation, the order may matter since the
two checks (expressed by unitaries) may not necessarily commute. The following provides a condition for
when two unitary operations, each representing some check, “almost” commutes. That is, the condition for
when we can swap the order of the checks while remaining unnoticed by an adversary.

For a set S and value x, let (x
?
= S) as the boolean function that outputs 1 if and only if x ∈ S. Let

C : Z → {0, 1}. A computational basis test, denoted CBTC , performs the unitary defined as |x, S, b, z〉 7→
|x, S, b⊕ (C(z) · (x ?

= S)), z〉. Namely, conditioned on x ∈ S, it writes the result of C(z) in the b register. We
call x the test register, S the set register, b the output register, and z the auxiliary register. Analogously, we
define a Fourier basis test, denoted FBTC , which is identical to CBTC , except that it performs the Hadamard
operator H⊗n on the x registers before and after the test.

Definition C.3 (Almost Commutativity). Let U0 and U1 be unitaries over the same quantum system. We
say U0 and U1 ε-commute if, for any initial state ρ, the images of ρ under U0U1 and U1U0 are at most ε-far
in trace distance.

Lemma C.4 ([Zha19, Lemma 39]). Consider a quantum system over n-bit strings x, subsets S, T ⊆ {0, 1}n
of size at most s and t, respectively, output registers b, c ∈ {0, 1}, and auxiliary information z. Then the
following unitaries 8

√
st/2n-almost commute:

• CBTC , where x is the test register, S is the set register, b is the output register, (c, z) is the auxiliary
register.

• FBTD, where x is the test register, T is the set register, c is the output register, (b, z) is the auxiliary
register.

One-way to Hiding for Almost Compressed Oracles. We recall the one-way to hiding (O2H) lemma
for almost compressed oracles, which was originally defined for standard oracles [Unr14,AHU19].

Let T be a set over X × Y of size t. Let CStO[T] be an almost compressed standard oracle on database
D such that D(x) = y for all (x, y) ∈ T . For any subset S in X, denote CStO[T]\S the punctured almost
compressed oracle that is defined equal to CStO[T], except that we measure if the query of adversary A is
in S or not. Formally, define a classical procedure fFINDS that takes A’s input and computes 1 if and only
if A’s input is in S. Then the measurement is implemented by initializing a new register to |0〉, and then
evaluating fFINDS in superposition and XORing the output into the newly generated register. Finally, the
register is measured. By FIND, we denote the event that the measurement results in |1〉 at least once after
the q queries made by A. The following theorem allows us to bound A’s distinguishing probability of two
almost compressed random oracles that are decompressed with different output values. Below, let a‖b denote
a concatenation of two strings a and b.

Theorem C.5 (Almost Compressed Oracle O2H). For t ∈ N and all i ∈ [t], let x∗i ← X, (y∗i , ỹi
∗) ← Y 2

and set T = {(x∗i , y∗i)}i∈[t], T̃ = {(x∗i , ỹ∗i)}i∈[t], and S = {x∗i }i∈[t]. Further, let z be a random string. Here,

T, T̃ , and z may have an arbitrary joint distribution. Let CStO[T] be an almost compressed standard oracle
that is uncompressed on points (x, y) ∈ T ⊂ X × Y . Then, for all quantum algorithms A issuing at most q
queries that, on input z, output either 0 or 1, we have∣∣∣Pr[1← ACStO[T](z)]− Pr[1← ACStO[T̃](z)]

∣∣∣
≤ 2 ·

√
(q + 1) Pr[FIND : ACStO[T̃]\S(z)].

39

If furthermore, all x∗i have a common suffix x∗, i.e., for all i ∈ [t], x∗i = x̄∗i ‖x∗, x∗ is sampled uniformly
random, and (x∗, (ỹ∗i)i∈[t]) and z are independent, we have

Pr[FIND : ACStO[T̃]\S(z)] ≤ 4q

2|x∗|
.

In particular, z may include (x̄∗i)i∈[t].

The first half of the above theorem is an immediate consequence of [AHU19, Theorem 1] by considering
the mixed state of A. Namely, by tracing out the oracle’s register, the mixed state of A in our theorem
and that of [AHU19] are identical. The second half of the above theorem follows from [AHU19, Theorem 2],
where we again notice that the bound is agnostic to whether A is given oracle access to a standard oracle or
an almost compressed oracle.

D Additional Experiments for FrodoKEM

This section provides additional experimental results on the running time of FrodoKEM and its mKEM
variant. We recall that we started from the Github implementation of FrodoKEM11 and tweaked it to
instantiate an mKEM.

As documented in FrodoKEM’s specification, the running time of FrodoKEM is highly dependent on two
factors:

• Whether pseudorandomness is generated using AES128 or SHAKE128.

• Whether the target platform supports instructions that speed up AES128 or SHAKE128.

Conveniently, the Github implementation of FrodoKEM provides compilation flag that allow to switch be-
tween AES128 or SHAKE128 (GENERATION A), and turn on/off platform-specific instructions (OPT LEVEL).
We set various compilation flags, and compared in each case the running times of running FrodoKEM and
our mKEM (normalized by the number of users). Measurements were done on an Intel(R) Core(TM) i5-
8250U CPU at 1.60GHz, with Turbo Boost disabled. Results are given in Table 5: KEM stands for the
initial, single-recipient version of FrodoKEM, and mKEM stands for our mKEM instantiation. Note that the
runtime of our mKEM instantiation is normalized by the number of recipient.

Our main finding is that the running time of our mKEM instantiation only mildly depends on the com-
pilation flags we act on: running times differ by factors less than 2. This stands in sharp contrast with the
standard KEM, which running time vary by factors up to 39. Logically, this impacts the computational gain
kcycles provided by our mKEM techniques. In one case, we report an (amortized) speed-up of a factor 323 by
using our mKEM over the trivial mKEM (which runs the standard KEM in parallel).

Our interpretation of these results is that the performance of our mKEM instantiation is much less reliant
on the presence of platform-specific instructions for AES and/or SHAKE. As a consequence, it is likely
to perform across a wide array of platforms in a more consistent manner than the standard version of
FrodoKEM. From a deployment perspective, we view this as a desirable characteristic.

11https://github.com/Microsoft/PQCrypto-LWEKE

40

https://github.com/Microsoft/PQCrypto-LWEKE

Table 5: Encapsulation times of FrodoKEM for different compilation flags. Running times for mKEM are
normalized by the number of users (1000).

Compilation flags Parameter set Trivial KEM Our mKEM kcycles

GENERATION A=AES128 FrodoKEM-640 2 165 086 280 173 7.73
OPT LEVEL=FAST FrodoKEM-976 4 277 417 428 522 9.98

FrodoKEM-1344 6 979 744 565 357 12.35
GENERATION A=SHAKE128 FrodoKEM-640 5 052 476 275 510 18.34
OPT LEVEL=FAST FrodoKEM-976 10 671 922 448 188 23.81

FrodoKEM-1344 18 781 051 604 893 31.05
GENERATION A=SHAKE128 FrodoKEM-640 18 896 506 291 660 64.79
USE OPENSSL=FALSE FrodoKEM-976 38 617 382 443 122 87.15
OPT LEVEL=REFERENCE FrodoKEM-1344 73 604 047 652 053 112.88
GENERATION A=AES128 FrodoKEM-640 65 454 403 328 682 199.14
USE OPENSSL=FALSE FrodoKEM-976 145 201 863 550 714 263.66
OPT LEVEL=REFERENCE FrodoKEM-1344 275 885 548 853 822 323.12

41

Contents

1 Introduction 1
1.1 Our Contributions and Techniques . 3

2 Preliminaries 5
2.1 Hard Problems for Lattices . 5
2.2 Hard Problems for Isogenies . 5
2.3 Randomness Extraction . 7

3 Multi-Recipient PKE and KEM 7
3.1 Decomposable Multi-Recipient Public Key Encryption . 7
3.2 Multi-Recipient Key Encapsulation Mechanism . 8
3.3 Recipient Anonymity for mPKE and mKEM . 9

4 FO Transform: (IND-CPA mPKE) ⇒ (IND-CCA mKEM) 10
4.1 Generic Construction via FO Transform . 10
4.2 Proof for Classical Case . 12
4.3 Proof for Quantum Case . 15
4.4 Adding Recipient Anonymity . 15

5 Multi-Recipient KEM from Post-Quantum Assumptions 15
5.1 Multi-Recipient KEM from Lattices . 15
5.2 Multi-Recipient KEMs from Isogenies . 17

6 Instantiating mKEM with NIST Candidates and CSIDH 20
6.1 Comparison Methodology . 21
6.2 Instantiation with Lattice-based NIST Candidates . 21
6.3 Instantiation with Isogeny-Based schemes . 22

7 Application to Secure Group Messaging 24
7.1 Syntax and Notations for Group Messaging . 24
7.2 Concrete Instantiations of m-ary TreeKEM . 27

A Simple Attack on LPN-based mKEM by [CLQY18] 32

B Proof of Theorem 4.2 32

C Background on Quantum Random Oracles 36
C.1 Compressed Oracles and QROM . 37
C.2 Useful Lemmas . 38

D Additional Experiments for FrodoKEM 40

42

	Introduction
	Our Contributions and Techniques
	Our Techniques: Generic Construction of IND-CCA secure mKEM.

	Preliminaries
	Hard Problems for Lattices
	Hard Problems for Isogenies
	Randomness Extraction

	Multi-Recipient PKE and KEM
	Decomposable Multi-Recipient Public Key Encryption
	Multi-Recipient Key Encapsulation Mechanism
	Recipient Anonymity for mPKE and mKEM

	FO Transform: (IND-CPA mPKE) (IND-CCA mKEM)
	Generic Construction via FO Transform
	Proof for Classical Case
	Proof for Quantum Case
	Adding Recipient Anonymity

	Multi-Recipient KEM from Post-Quantum Assumptions
	Multi-Recipient KEM from Lattices
	 Multi-Recipient KEMs from Isogenies

	Instantiating mKEM with NIST Candidates and CSIDH
	Comparison Methodology
	Instantiation with Lattice-based NIST Candidates
	Instantiation with Isogeny-Based schemes

	Application to Secure Group Messaging
	Syntax and Notations for Group Messaging
	Dendrologic notations.
	TreeKEM.

	Concrete Instantiations of m-ary TreeKEM

	Simple Attack on LPN-based mKEM by ICICS:CLQY18
	Proof of thm:quantumproofFO
	Background on Quantum Random Oracles
	Compressed Oracles and QROM
	Useful Lemmas

	Additional Experiments for FrodoKEM

