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Abstract. This paper introduces a new approach to computing iso-
genies called “radical isogenies” and a corresponding method to compute
chains of N -isogenies that is very efficient for small N . The method is
fully deterministic and completely avoids generating N -torsion points. It
is based on explicit formulae for the coordinates of an N -torsion point
P ′ on the codomain of a cyclic N -isogeny ϕ : E → E′, such that compos-
ing ϕ with E′ → E′/〈P ′〉 yields a cyclic N2-isogeny. These formulae are
simple algebraic expressions in the coefficients of E, the coordinates of a
generator P of kerϕ, and an Nth root N

√
ρ , where the radicand ρ itself

is given by an easily computable algebraic expression in the coefficients
of E and the coordinates of P . The formulae can be iterated and are
particularly useful when computing chains of N -isogenies over a finite
field Fq with gcd(q − 1, N) = 1, where taking an Nth root is a simple
exponentiation. Compared to the state-of-the-art, our method results in
an order of magnitude speed-up for N ≤ 13; for larger N , the advant-
age disappears due to the increasing complexity of the formulae. When
applied to CSIDH, we obtain a speed-up of about 19% over the imple-
mentation by Bernstein, De Feo, Leroux and Smith for the CSURF-512
parameters.
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1 Introduction

Isogeny-based cryptography is one of the more promising candidates for post-
quantum cryptography and although it is slower than lattice-based cryptography,
it has the advantage of smaller key and ciphertext sizes. Isogeny-based protocols
can be broadly categorized into two families: SIDH and CRS/CSIDH.

SIDH is a key agreement protocol introduced by Jao and De Feo in 2011 [16].
This protocol is based on random walks in isogeny graphs of supersingular elliptic
curves E over Fp2 , and is reminiscent of the CGL hash function due to Charles,
Goren and Lauter from 2009 [8]. The prime p is chosen such that the torsion
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subgroups E[2n] and E[3m] are defined over Fp2 , for large exponents n,m. The
random walks then correspond to choosing a random point P in E[2n] or E[3m]
and constructing the isogeny with kernel 〈P 〉, as a composition of isogenies of
degree 2 respectively 3.

CRS/CSIDH [7] takes a different approach and computes an action of the
ideal-class group cl(O) of some order O in an imaginary quadratic field on the set
È `p(O, t) of elliptic curves over a prime field Fp with Fp-rational endomorphism
ring O and trace of Frobenius t. The idea of using this class group action in
cryptography was independently proposed by Couveignes [11] and Rostovtsev-
Stolbunov [22] for ordinary elliptic curves. In [7] this idea was ported to the
supersingular case, resulting in a speed-up of several orders of magnitude. The
computation of the class group action boils down to computing chains of `-
isogenies for many small primes `, e.g., for CSIDH-512, ` ranges from 3 to 587.
This is in stark contrast with SIDH where only 2- and 3-isogenies are used.

In the CSIDH setting, computing an `-isogeny ϕ from an elliptic curve E/Fp
consists of two steps: first, a generator P of the kernel of ϕ is computed, i.e. an
Fp-rational point of order `, and secondly, given P , an equation for the isogenous
curve E/〈P 〉 is determined.

The most basic approach to solve the first step is to generate a random
point Q ∈ E(Fp) and to multiply this by the cofactor #E(Fp)/`. Generating
a random point is essentially a square root computation at a cost of about
1.5 log p multiplications in Fp, and the multiplication by the cofactor can be
done using the Montgomery ladder [2] and takes roughly 11 log p multiplications
in Fp. Generating a point of order ` is thus a costly operation, even further
exacerbated by the fact that multiplication by the cofactor results in the point
at infinity OE with probability 1/`, which is non-negligible for small `. Note that
this also makes the algorithm non-deterministic, negatively affecting constant
time implementations. The cost of generating `-torsion points from scratch can
be mitigated somewhat by considering a chain of `i-isogenies for many different
primes `i. Instead of sampling an `i-torsion point for every `i-isogeny separately,
it is cheaper to sample an

∏k
i=1 `i-torsion point and push it through the isogeny

to create a chain of isogenies of respective degrees `1, `2, . . . , `k, multiplying this
point with a cofactor that gets smaller in each iteration.

The second step is typically carried out using some form of Vélu’s formu-
lae [28], which compute the coefficients of E/〈P 〉 from the coefficients of E and
the coordinates of the scalar multiples of P . Vélu’s formulae can also be used
to compute the image ϕ(Q) of any point Q under the isogeny. The original im-
plementation of CSIDH uses these formulae on elliptic curves in Montgomery
form [7, 21], and requires O(`) arithmetic operations in Fp per `-isogeny. Since
then many optimizations to CSIDH have been proposed, such as:

– using different forms of elliptic curves, e.g. twisted Edwards curves [18, 19]
and Hessian curves [12, 14];

– adapting Vélu’s formulae to only require Õ(
√
`) operations in Fp [1] instead

of O(`);
– changing CSIDH into CSURF to allow the use of very efficient 2-isogenies [6],
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– lowering the number of `-isogenies that has to be computed for each ` [20, 9].

A number of alternative approaches have been considered that avoid the
generation of `-torsion points altogether, e.g. by using modular polynomials [3,
13] or division polynomials [3]. This leads to deterministic algorithms which can
outperform the above method using Vélu’s formulae for small `. Highly optimized
approaches exist for 2-isogenies [6] and 3-isogenies [12, 14], where the speed-up
stems from two ingredients: firstly, an elliptic curve model is chosen that is nicely
adapted to 2-torsion (a variant of Montgomery curves) resp. 3-torsion (Hessian
curves). The second and main ingredient however is that the coefficients of E/〈P 〉
can be expressed in terms of the coefficients of E and a single radical of a simple
algebraic expression in the coefficients of E. This radical is a square root for
2-isogenies and a cube root for 3-isogenies.

Contributions

The main contribution of this paper is the generalization of the aforementioned
special cases of 2- and 3-isogenies to all isogenies of any degree N ≥ 2.

Concretely, given an elliptic curve E with a point P of order N , one can use
Vélu’s formulae to compute a defining equation for E′ = E/〈P 〉. We present
accompanying formulae which produce a point P ′ on E′ again of order N , such
that the composition

E → E′ → E′/〈P ′〉 (1)

is a cyclic isogeny of degree N2. These formulae are algebraic expressions in
the coefficients of E and the coordinates of P , and one radical (an Nth root)
of another algebraic expression in the coefficients of E and the coordinates of
P . An important implication of this construction is that the same formulae now
apply to E′ and P ′, which allows us to compute chains of N -isogenies of arbitrary
length without needing to generate an N -torsion point in every step. In practice,
we assume P = (0, 0), thereby suppressing its coordinates from the formulae.

More in detail, we proceed as follows: an elliptic curve E over a field K
together with a K-rational point P of order N ≥ 4 can be represented by the
Tate normal form

E : y2 + (1− c)xy − by = x3 − bx2 P = (0, 0), b, c ∈ K .

We then compute the curve E′ = E/〈P 〉 using Vélu’s formulae. The point P ′ on
E′ can be constructed as a pre-image of P under the dual isogeny ϕ̂ : E′ → E,
which guarantees that the composition of ϕ with E′ → E′/〈P ′〉 is cyclic of order
N2. Our central observation is that P ′ is defined over K(b, c, N

√
ρ ) for some

ρ ∈ K(b, c) and we prove that one can take ρ = tN (P,−P ) where tN denotes the
Tate pairing. Indeed, since ϕ̂(P ′) = P and using the compatibility of the Tate
pairing with isogenies, we have

tN (P,−P ) = tN (ϕ̂(P ′),−ϕ̂(P ′)) = tN (P ′,−P ′)deg ϕ̂ = tN (P ′,−P ′)N ,
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which shows that the field of definition of P ′ must contain N
√
tN (P,−P ), and

we show that this is also sufficient.

The fact that we only require one Nth root explains the name “radical iso-
genies”. By rewriting (E′, P ′) again in Tate normal form with coefficients b′ and
c′, we are ready for another iteration. The formulae we derive in fact express b′

and c′ directly as elements of K(b, c, N
√
ρ ).

By specializing to finite fields Fq with gcd(q − 1, N) = 1, we immediately
obtain that the radical N

√
ρ is again defined over Fq, since Nth powering is a

field automorphism in this case. We implemented our formulae and considered
two application scenarios: firstly, we show that using our formulae, chains of N -
isogenies can be computed much faster than using the state-of-the-art methods:
for N = 3, 5, 7 the best previous approach was to use modular polynomials and
we obtain speed-ups of factors 9, 18 and 27. For N = 11, 13, the best previous
approach was to generate N -torsion points in combination with Vélu’s formu-
lae and our radical isogenies outperform this by factors 12 and 5 respectively.
Secondly, we implemented a version of CSIDH using radical isogenies for all
primes ≤ 13 and obtain a speedup of 19% over the state of the art implementa-
tion [1].

Paper organization

Section 2 briefly recaps the necessary background on isogenies, division polyno-
mials, the Tate normal form, the Tate pairing, simple radical extensions, and
isogeny-based protocols. Section 3 proves the existence of radical isogeny for-
mulae, while Section 4 works out these formulae explicitly for small values of
N . Section 5 discusses how our formulae perform when computing chains of
N -isogenies, while Section 6 reports on an improved implementation of CSIDH
using radical isogenies. Finally, Section 7 concludes the paper and lists a number
of open problems.
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2 Background

Throughout this section we let K denote an arbitrary field.
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2.1 Isogenies and Vélu’s formulae

Let E and E′ be elliptic curves over K. An isogeny ϕ : E → E′ is a non-constant
morphism such that ϕ(OE) = OE′ , where OE ,OE′ denote the respective points
at infinity. The degree of ϕ is its degree as a morphism and there always exists
a dual isogeny ϕ̂ : E′ → E such that ϕ̂ ◦ ϕ = [deg(ϕ)], where as usual [·]
denotes scalar multiplication. The kernel of ϕ is a finite subgroup of E, more
precisely its size is a divisor of deg(ϕ), where equality holds if and only if ϕ
is separable (which is automatic if charK - deg(ϕ)). Conversely, given a finite
subgroup C ⊂ E, there exists a unique1 separable isogeny ϕ having C as its
kernel. Concrete formulae for this isogeny were given by Vélu:

Theorem 1. Let C be a finite subgroup of the elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

over K. Fix a partition C = {OE} ∪ C2 ∪ C+ ∪ C−, where C2 are the order
2 points of C, and C+ and C− are such that for any P ∈ C+ it holds that
−P ∈ C−. Write S = C+ ∪ C2, and for Q ∈ S define

gxQ = 3x(Q)2 + 2a2x(Q) + a4 − a1y(Q),

gyQ = −2y(Q)− a1x(Q)− a3,

uQ = (gyQ)2, vQ =

{
gxQ if 2Q = OE ,
2gxQ − a1g

y
Q else,

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + x(Q)vQ),

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)− 7w.

Then the separable isogeny ϕ with domain E and kernel C has codomain E′ =
E/C with Weierstrass equation

E′ : y2 +A1xy +A3y = x3 +A2x
2 +A4x+A6 (2)

over K. Furthermore, for P ∈ E we can compute the image of P as

x(ϕ(P )) = x(P ) +
∑

Q∈C\{OE}

(x(P +Q)− x(Q))

y(ϕ(P )) = y(P ) +
∑

Q∈C\{OE}

(y(P +Q)− y(Q)).

Proof. See [28]. �

1 Up to post-composition with an isomorphism.
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2.2 Division polynomials

Let E/K be defined by y2+a1xy+a3y = x3+a2x
2+a4x+a6, and let b2 = a21+4a2,

b4 = 2a4 + a1a3, b6 = a23 + 4a6, b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24. For all

integers N ≥ 0, the N -division polynomial is given by

ΨE,0 = 0, ΨE,1 = 1, ΨE,2 = 2y+a1x+a3, ΨE,N = t ·
∏

Q∈(E[N ]\E[2])/±

(x−x(Q)),

where t = N if N is odd and t = N
2 ·ΨE,2 if N is even. By definition, we have that

for any non-trivial P ∈ E[N ], ΨE,N (P ) = 0. The division polynomials satisfy
the following recurrence relation which allows them to be computed efficiently:

ΨE,3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8

ΨE,4
ΨE,2

= 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ (b4b8 − b26)

ΨE,2N+1 = ΨE,N+2Ψ
3
E,N − ΨE,N−1Ψ3

E,N+1 if N ≥ 2

ΨE,2N =
ΨE,N
ΨE,2

(ΨE,N+2Ψ
2
E,N−1 − ΨE,N−2Ψ2

E,N+1) if N ≥ 3.

Note that Ψ2
E,2 = 4x3 +(a21 +4a2)x2 +(2a1a3 +4a4)x+a23 +4a6, i.e. a univariate

polynomial in x.
If one is interested in points of exact order N (so not just in E[N ]), then one

can use the reduced N -division polynomial ψE,N defined as

ψE,N =
ΨE,N

lcmd|N,d6=N{ΨE,d}
.

For all primes `, we have that ΨE,` = ψE,`. Note that for N > 2, the reduced
N -division polynomial of an elliptic curve E is a univariate polynomial in x.

The multiplication by N -map can be expressed explicitly using division poly-
nomials as follows [23, Exercise 3.6]:

[N ]P =

(
φE,N (P )

ΨE,N (P )2
,
ωE,N (P )

ΨE,N (P )3

)
, (3)

with φE,N = xΨ2
E,N−ΨE,N+1ΨE,N−1 and ωE,N = 1

2ΨE,N
(ΨE,2N−ΨE,N (a1φE,N+

a3Ψ
2
E,N )).

2.3 The Tate normal form

We will be interested in elliptic curves E over K with a distinguished point
P ∈ E(K) of some finite order N . By translating this point to (0, 0) and requiring
that the tangent line is horizontal, and with proper scaling, one can easily prove
the following lemma; we refer to [25, Lem. 2.1] for further details.

6



Lemma 2. Let E be an elliptic curve over K and let P ∈ E(K) be a point of
order N ≥ 4, then (E,P ) is isomorphic to a unique pair of the form

E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0) (4)

with b, c ∈ K and

∆(b, c) = b3(c4 − 8bc2 − 3c3 + 16b2 − 20bc+ 3c2 + b− c) 6= 0 .

The resulting curve-point pair is said to be in Tate normal form.
Given a Tate normal form, the first few scalar multiples of P = (0, 0) are

given by simple expressions in b and c, e.g.

2P = (b, bc), 3P = (c, b− c), −P = (0, b), −2P = (b, 0), −3P = (c, c2) .

Higher multiples can be computed using (3). Using these multiples, for each
N ≥ 4 one can write down an irreducible polynomial FN (b, c) ∈ Z[b, c] whose
vanishing, along with the non-vanishing of ∆(b, c) and of Fm(b, c) for 4 ≤ m < N ,
expresses that P has exact order N . For instance, for N = 4 we find the equation
F4(b, c) = c = 0, by imposing that 3P = −P . Similarly, for N = 5 we find
F5(b, c) = c − b = 0 and for N = 6 we find F6(b, c) = c2 + c − b = 0. Further
examples can be found in Table 1 below. Alternatively, the polynomial FN (b, c)
can be recovered as a factor of the constant term of the N -division polynomial
of the curve (4), when considered over the rational function field Q(b, c). This is
the approach taken in [25, §2], to which we refer for more details.

Remark 3. Up to birational equivalence, FN (b, c) is a defining polynomial for
the modular curve X1(N). See again [25] for more background.

2.4 The Tate pairing

Given an elliptic curve E/K and an integer N ≥ 2, the Tate pairing is a bilinear
map

tN : E(K)[N ]× E(K)/NE(K)→ K∗/(K∗)N : (P1, P2) 7→ tN (P1, P2)

which can be computed as follows. Consider a Miller function fN,P1
, i.e., a func-

tion on E with divisor N(P1) − N(OE). Let D be a K-rational divisor on E
that is linearly equivalent with (P2)− (OE) and whose support is disjoint from
{P1,OE}. Then tN (P1, P2) = fN,P1

(D). If P1 6= P2 and the Miller function is
normalized, i.e., the leading coefficient of its expansion around OE with respect
to the uniformizer x/y equals 1 (we are assuming that E is in Weierstrass form),
then one can simply compute tN (P1, P2) as fN,P1

(P2).
For certain instances of K, the Tate pairing is known to be non-degenerate,

meaning that for each P1 ∈ E(K)[N ] \ {OE} there exists a P2 ∈ E(K)/NE(K)
such that tN (P1, P2) 6= 1, and vice versa. Most notably, this is true if K = Fq
is a finite field containing a primitive Nth root of unity ζN [15], i.e., for which
N | q − 1.
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Another important feature is that the Tate pairing is compatible with iso-
genies, in the following sense: if ϕ : E → E′ is an isogeny over K then the rule
tN (ϕ(P1), P ′2) = tN (P1, ϕ̂(P ′2)) applies. In particular we have

tN (ϕ(P1), ϕ(P2)) = tN (P1, P2)deg(ϕ)

for all P1 ∈ E(K)[N ] and P2 ∈ E(K)/NE(K). For a proof of this compatibility
we refer to [4, Thm. IX.9], which assumes ζN ∈ K, but this condition can be
discarded (it is not used in the proof).

2.5 Simple radical extensions

Following [10], we say that a field extension K ⊂ L is simple radical of degree
N ≥ 2 if there exists an α ∈ L such that (i) L = K(α), (ii) ρ := αN ∈ K, and
(iii) xN − ρ ∈ K[x] is irreducible. Property (iii) can be verified easily using the
following theorem.

Theorem 4. Let K be a field, consider an integer N ≥ 2, and let ρ ∈ K∗.
Assume that for all primes m | N we have ρ /∈ Km. If 4 | N , assume moreover
that ρ /∈ −4K4. Then the polynomial xN − ρ ∈ K[x] is irreducible.

Proof. See [17, Thm. VI.9.1]. �

We will usually write L = K(N
√
ρ ), although it should be noted that N

√
ρ

is only well-defined up to multiplication by ζiN for some i ∈ {0, 1, . . . , N − 1}.
Apart from this subtlety, we note that the field K(N

√
ρ ) does not change if we

multiply ρ with the Nth power of an element of K∗, or if we raise ρ to some
power that is coprime with N .

Remark 1. If K ⊂ L is simple radical of degree N and if charK - N , then the
Galois closure of L over K is obtained by adjoining a primitive Nth root of unity
ζN , and

Gal(L(ζN )/K) = Gal(L(ζN )/K(ζN )) o Gal(L(ζN )/L)

where the first factor is cyclic of order N . In particular, if ζN ∈ L then L is
Galois over K with cyclic Galois group. Kummer theory provides a converse
statement [24, Lem. 9.13.1].

2.6 CSIDH

We briefly review the CSIDH key agreement protocol, which is our main applic-
ation of radical isogenies. Let Fp be a large finite field with p = c`1`2 · · · `r − 1,
where the `i are small distinct primes and where c is some small cofactor. Alice
and Bob agree on an order O ⊂ Q(

√
−p) containing Z[

√
−p], and they con-

sider the set È `p(O) = È `p(O, 0) of elliptic curves E/Fp whose endomorphism
ring EndFp

E is isomorphic to O. Such curves are necessarily supersingular, and
without loss of generality it can be assumed that the isomorphism EndFpE

∼= O
identifies the Frobenius endomorphism πp on E with

√
−p.
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To any E ∈ È `p(O) and any invertible ideal a ⊂ O one can, using the above
isomorphism, associate the finite subgroup

E[a] =
⋂
α∈a

kerα ⊂ E.

It turns out that the isogenous curve E/E[a] is again contained in È `p(O) and
that it depends on the class [a] of a only; furthermore, this defines a free and
transitive action of the ideal-class group cl(O) on È `p(O). The key agreement
then works as follows: Alice and Bob agree on a starting curve E ∈ È `p(O),
then both sample a secret ideal-class [a] resp. [b], compute the isogenous curves
E/E[a] resp. E/E[b], and exchange the outcomes. Both parties can now compute
E/E[ab] by acting with their own secret ideal-class on the other party’s curve.

In order for this to be practical, Alice and Bob should sample a, b as products
of ideals of the form (`i,

√
−p − 1)ei , whose action corresponds to a chain of

|ei| easy-to-compute `i-isogenies; this is also true if ei < 0, in which case one
considers the equivalent ideal (`i,

√
−p+1)|ei|. The prime `i = 2 requires special

treatment: it should be skipped unless p ≡ 7 mod 8 and O is the maximal order,
in which case one considers (2, (

√
−p − 1)/2) resp. (2, (

√
−p + 1)/2) instead of

the principal ideals (2,
√
−p− 1), (2,

√
−p+ 1).

3 Existence of radical isogeny formulae

In this section we prove the existence of radical isogeny formulae, without de-
riving these formulae explicitly. The explicit derivation for small N , including
the cases N = 2, 3, is given in the next section. As such, we assume N ≥ 4 and
consider the ‘universal’ Tate normal curve

E : y2 + (1− c)xy − by = x3 − bx2

over the field

QN (b, c) := Frac
Q[b, c]

(FN (b, c))
,

so that the base point P = (0, 0) has order N . Note that QN (b, c) is simply
the function field of X1(N) over Q. Let ϕ : E → E′ be the isogeny with kernel
〈P 〉; for concreteness it can be assumed that the codomain curve E′ is given by
equation (2) provided by Vélu’s formulae, although this is not needed for what
follows.

Recall that we are interested in those points P ′ ∈ E′ for which the composi-
tion

E
ϕ→ E′ → E′/〈P ′〉

is a cyclic N2-isogeny. It is easy to check that these points are characterized by
the condition

ϕ̂(P ′) = λP for some λ ∈ (Z/N)∗, (5)

with ϕ̂ : E′ → E the dual of ϕ. In particular, there are Nφ(N) such points,
generating N distinct subgroups of E′, where φ denotes Euler’s totient function.
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The points corresponding to λ = 1 will be called P -distinguished; they can be
viewed as a set of canonical generators for these subgroups.

Define

ρ := fN,P (−P ) (6)

where the Miller function fN,P on E is assumed to be normalized, so that ρ
is just tN (P,−P ) when considered modulo Nth powers in QN (b, c)∗. The main
result of this section is:

Theorem 5. Let P ′ ∈ E′ be a point satisfying (5). Then the field extension
QN (b, c) ⊂ QN (b, c)(P ′), obtained by adjoining the coordinates of P ′, is simple
radical of degree N . More precisely, QN (b, c)(P ′) = QN (b, c)(N

√
ρ ) for an appro-

priately chosen N th root N
√
ρ of ρ = fN,P (−P ).

Proof. The fibre ϕ̂−1{λP} decomposes as a union of orbits under the action
of the absolute Galois group of QN (b, c), together containing N elements. One
of these orbits contains P ′. Its number of elements equals the degree of the
corresponding closed point, which in turn equals the degree of the extension
QN (b, c) ⊂ QN (b, c)(P ′). In particular, this extension has degree at most N . On
the other hand, by Lemma 6 below, the extension QN (b, c) ⊂ QN (b, c)(N

√
ρ ) is

of degree precisely N . Therefore, it suffices to prove that QN (b, c)(P ′) contains
an Nth root of ρ.

To this end we consider α := fN,P ′(−P ′) ∈ QN (b, c)(P ′), where the Miller
function fN,P ′ is again assumed normalized, and we let µ be such that λ2µ ≡
1 mod N . Modulo Nth powers in QN (b, c)(P ′)∗ we have

(αµ)N = tN (P ′,−P ′)Nµ = tN (ϕ̂(P ′),−ϕ̂(P ′))µ

= tN (λP,−λP )µ = tN (P,−P )λ
2µ = ρ,

showing that ρ is indeed the Nth power of some element of QN (b, c)(P ′). �

Lemma 6. The polynomial xN − ρ ∈ QN (b, c)[x] is irreducible.

Proof. According to Theorem 4 it suffices to prove:

(i) for all primes m | N we have ρ /∈ QN (b, c)m,
(ii) if 4 | N then ρ /∈ −4QN (b, c)4.

Let p ≡ 1 mod 2N be a prime number such that 4
√
p > N2. Then the Hasse

interval [p+1−2
√
p, p+1+2

√
p] contains the integers λN forN consecutive values

of λ. At least one of these values satisfies gcd(λ,N) = 1. By [27, Thm. 2.4.31]
there exists an elliptic curve E/Fp such that E(Fp) ∼= Z/(λN), so in particular
E(Fp)[N∞] ∼= Z/(N). Without loss of generality we can assume that E is in
Tate normal form, say with coefficients b, c ∈ Fp, and that P = (0, 0) is a point
of order N on E.

Then, in order to prove (i), assume that ρ ∈ QN (b, c)m for some prime divisor
m | N . Since Miller functions are compatible with reduction mod p and with

10



specialization at b, c ∈ Fp (this follows, for instance, from Miller’s algorithm),
we find that

tN (P , [−N/m]P ) = tN (P ,−P )N/m = 1,

in turn implying that tN (Q, [−N/m]P ) = 1 for all Q ∈ E(Fp)[N ]. This contra-
dicts the non-degeneracy of the Tate pairing over Fp (which contains all Nth
roots of unity by our choice of p). Indeed, [−N/m]P is a non-trivial element of
E(Fp)/NE(Fp).

As for (ii): if 4 | N then p ≡ 1 mod 8, from which it follows that −1 and
4 are 4th powers in Fp, in particular the same holds for −4. As above, if ρ ∈
−4QN (b, c)4 then we can conclude that

tN (P , [−N/4]P ) = tN (P ,−P )N/4 = 1,

again contradicting the non-degeneracy of the Tate pairing. �

An immediate consequence of Theorem 5 is that for each point P ′ = (x′0, y
′
0)

satisfying (5) there exist concrete algebraic formulae

x′0(b, c, N
√
ρ ), y′0(b, c, N

√
ρ ) (7)

for its coordinates: these are the radical isogeny formulae we are after. Note that,
in order to find these formulae explicitly, it suffices to consider the cases where P ′

is P -distinguished, i.e., where λ = 1. Indeed, all other cases are then dealt with by
feeding these formulae to the multiplication-by-λ map from (3). Experimentally,
it seems that the P -distinguished case yields the simplest formulae.

Remark 2. Our choice of radicand ρ = fN,P (−P ) is somewhat arbitrary: any
representant of tN (P, µP ) for any µ ∈ (Z/N)∗ would have worked equally well,
with the same proofs. This reflects the fact that scaling ρ by Nth powers, or
raising ρ to an exponent that is coprime with N , results in the same simple
radical extension.

Given the coordinates of a P -distinguished point P ′, all other P -distinguished
points are found by varying the choice of N

√
ρ :

Lemma 7. Let λ ∈ (Z/N)∗ and consider formulae of the form (7) expressing
the coordinates of a point P ′ such that ϕ̂(P ′) = λP . Then, by varying the choice
of the N th root N

√
ρ , i.e., by scaling it with ζiN for i = 0, 1, . . . , N − 1, these

formulae compute the coordinates of all points P ′ for which ϕ̂(P ′) = λP .

Proof. From the proof of Theorem 5 it follows that ϕ̂−1{λP} consists of a single
Galois orbit, which implies our claim. �

For the applications we have in mind, we want to interpret the formulae (7)
in some concrete field K, with the indeterminates b, c replaced by concrete ele-
ments b, c ∈ K. It follows from general principles in algebraic geometry that
these specialized formulae continue to produce the coordinates of a point P ′

defining a cyclic N2-isogeny, with the possible exception of finitely many field
characteristics p > 0 and finitely many (b, c) ∈ K2. Loosely based on good
reduction arguments from the theory of modular curves, we actually believe:

11



Conjecture 1. The formulae (7) are compatible with specialization to all fields
K satisfying charK - N and to all elements b, c ∈ K satisfying FN (b, c) = 0,
∆(b, c) 6= 0 and Fm(b, c) 6= 0 for all 4 ≤ m < N (in other words, to all b, c for
which y2 + (1− c)xy− bx = x3− bx2 is an elliptic curve on which P = (0, 0) has
exact order N).

It is easy to confirm this conjecture for small values of N , by explicitly
factoring the N -division polynomial of E′: this is the approach followed in the
next section, leading to explicit expressions for the formulae (7). In particular,
the above conjecture does not affect any of our conclusions in Sections 5 and 6,
which are based on radical N -isogenies for these small values of N only. But
from a purely mathematical point of view, we leave the validity of Conjecture 1
as an interesting open question.

We conclude by recalling that by rewriting (E′, P ′) in Tate normal form, one
obtains a curve equation

y2 + (1− c′)xy − b′x = x3 − b′x2

where now
b′(b, c, N

√
ρ ), c′(b, c, N

√
ρ ) (8)

are certain algebraic expressions in b, c, N
√
ρ . The formulae (8) can be applied

iteratively, effectively allowing to compute a cyclic Nk-isogeny for arbitrary k
without needing to explicitly generate points of order N in each step.

4 Explicit radical isogeny formulae in low degree

In this section, we explain how to find concrete formulae of the forms (7) and (8)
for small values of N , by factoring the reduced N -division polynomial of E′ with
the help of Magma [5]. As a by-product, we get a confirmation of Conjecture 1
in these cases. In particular, throughout this section, we work over an arbitrary
field K with charK - N .

We first deal with the cases N = 2, 3, which require to use a different curve
model. We note however that the same principles, in particular using the Tate
pairing, also applies in these cases.

Case N = 2. Since charK 6= 2, we can assume that E : y2 = x3 + a2x
2 + a4x

for a2, a4 ∈ K and P = (0, 0). A simple calculation shows that the isogenous
curve E/〈P 〉 can be given by

E′ : y2 = x3 − 2a2x
2 + (a22 − 4a4)x .

The dual isogeny corresponds to quotienting out (0, 0) on E′, so any other point
of order 2 on E′ is a suitable instance of P ′; note that it is automatically P -
distinguished. If we define ρ = a4 and α =

√
ρ, then these points are of the

form
P ′ = (a2 + 2α, 0) ,

12



and by translating P ′ to (0, 0), we find the isomorphic model E′ : y2 = x3 +
a′2x

2 + a′4x, where

a′2 = 6α+ a2 and a′4 = 4a2α+ 8a4. (9)

We are now ready to repeat the whole process, since we can divide out by (0, 0)
again.

Remark 3. We cannot use f2,P (−P ) as an instance of ρ in this case, since
P = −P . Nevertheless, the reader can check that ρ = a4 is a representant
of t2(P,−P ).

Case N = 3. By requiring that the inflexion point P = (0, 0) has a horizontal
tangent line, we can assume that E : y2+a1xy+a3y = x3 for certain a1, a3 ∈ K.
Vélu’s formulae yield

E′ : y2 + a1xy + a3y = x3 − 5a1a3x− a31a3 − 7a23

as a defining equation for E/〈P 〉. The 3-division polynomial of E′ splits as

ΨE′,3(x) = 3(x+ a21/3)(x3 − 9a1a3x− a31a3 − 27a23),

and one checks through explicit computation that the linear factor is the kernel
polynomial of the dual isogeny. Therefore, any root of the cubic factor is the
x-coordinate of a P -distinguished point P ′. Letting ρ = f3,P (−P ) = −a3 and
writing α = 3

√
ρ, this cubic factor splits as

(x+ a1α− 3α2)(x2 + (−a1α+ 3α2)x+ a21α
2 − 3a1a3 − 9a3α)

(note that it splits completely over K(ζ3) in view of Remark 1 and/or Lemma 7).
Thus we can take x′0 = −a1α+ 3α2 and then one checks that y′0 = 4a3 is the y-
coordinate of the corresponding P -distinguished point P ′ = (x′0, y

′
0). Translating

P ′ to (0, 0) yields a model

E′ : y2 + a′1xy + a′3y = x3,

with a′1 = −6α+ a1 and a′3 = 3a1α
2 − a21α+ 9a3, and we can repeat. We recall

that the simple radical nature of iterated 3-isogenies is not a new observation,
see [12, 14].

Case N = 4. For N ≥ 4 we switch to the Tate normal form as in Section 3.
Concretely, for N = 4 we have F4(b, c) = c = 0 so we obtain the defining equation
E : y2 + xy − by = x3 − bx2. From Vélu’s formulae we find

E′ : y2 + xy − by = x3 − bx2 + (−5b2 + 5b)x+ (−3b3 − 12b2 + b)

as a defining equation for E/〈P 〉, with reduced 4-division polynomial

ψE′,4(x) = 2 · (x+ b+ 1/2) · (x− 7b) · (x4 + 4bx3 + (6b2 + 24b)x2

+ (4b3 − 80b2 + 8b)x+ b4 + 152b3 − 8b2 + b).
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The first linear factor corresponds to the x-coordinate of a generator of the
dual isogeny. The second linear factor corresponds to the x-coordinate of a 4-
torsion point Q such that 2Q is in the kernel of the dual isogeny. Any root
of the quartic factor is the x-coordinate of a P -distinguished point P ′. Letting
ρ = f4,P (−P ) = −b and writing α = 4

√
ρ, one can verify that

P ′ = (4α3 + 2α2 + α− b, 2α3 + α2 − 8bα− 7b)

is such a P -distinguished point. Translating P ′ to (0, 0) we find an isomorphic
model of E′ given by

E′ : y2 + xy − b′y = x3 − b′x2, (10)

with

b′ = −α(4α2 + 1)

(2α+ 1)4

This formula can be applied iteratively.

Case N = 5. For N = 5 we have F5(b, c) = b−c = 0, so we obtain the defining
equation E : y2 + (1− b)xy − by = x3 − bx2. Vélu’s formulae yield

E′ : y2 +(1−b)xy−by = x3−bx2−5b(b2 +2b−1)x−b(b4 +10b3−5b2 +15b−1)

as a defining equation for the codomain of ϕ : E → E/〈P 〉. The 5-division
polynomial of E′ can be verified to split as

ΨE′,5(x) = 5 · (x2 + (b2 − b+ 1)x+ (b4 + 3b3 − 26b2 − 8b+ 1)/5)

· (x5 + 10bx4 − 5b(b2 + b− 11)x3 − 5b(17b3 + 24b2 + 46b− 7)x2

− 5b(b5 + 62b4 + 154b3 − 65b2 + 19b− 2)x

− b(b7 − 19b6 + 777b5 − 757b4 + 755b3 + 2b2 + 17b− 1))

· (x5 − 15bx4 − 5b(11b2 − 9b− 1)x3 − 5b2(7b3 + 13b2 − 13b+ 20)x2

− 5b2(2b5 + 5b4 + 6b3 + 196b2 − 99b+ 1)x

− b2(b7 + 7b6 − 62b5 + 605b4 − 127b3 + 1177b2 + 14b+ 1))

where the quadratic polynomial factor is the kernel polynomial of the dual
isogeny. The roots of the first quintic factor are the x-coordinates of the P -
distinguished points. Those of the second quintic factor are the x-coordinates
of the points P ′ for which ϕ̂(P ′) = 2P (i.e., the doubles of the P -distinguished
points). Concretely, letting ρ = f5,P (−P ) = b and writing α = 5

√
ρ, the first

quintic factor admits the root

x′0 = 5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b
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(with all other roots obtained by scaling α with powers of ζ5) and then one can
check that

y′0 = 5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b

is the y-coordinate of the corresponding P -distinguished point P ′. Translating
P ′ to (0, 0), we obtain the isomorphic form

E′ : y2 + (1− b′)xy − b′y = x3 − b′x2,

where

b′ = α
α4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1

and again we can repeat.

Case N = 6. For N = 6 we have F6(b, c) = c2 + c − b = 0, so we work with
E : y2 + (1− c)xy − (c2 + c)y = x3 − (c2 + c)x2. Vélu’s formulae yield

y2 + (1− c)xy − (c2 + c)y = x3 − (c2 + c)x2

− (15c4 + 20c3 + 5c2 − 5c)x− (19c6 + 33c5 + 18c4 + 22c3 + 14c2 − c)

as a model for E′ = E/〈P 〉. Its reduced 6-division polynomial ψE′,6(x) behaves
much like in the degree 4 case: there is a unique interesting factor

x6 + 6c(2c+ 3)x5 + 3c(20c3 + 33c2 + 55c+ 37)x4

+ 4c(40c5 + 18c4 − 237c3 − 301c2 − 63c+ 28)x3+

+ 3c(80c7 − 168c6 − 1029c5 − 1028c4 − 333c3 − 202c2 − 93c+ 18)x2

+ 6c(32c9 − 192c8 + 718c7 + 3131c6 + 3186c5 + 847c4 − 196c3 − 69c2 − 22c+ 2)x

+ c(64c11 − 720c10 + 10740c9 + 38500c8 + 46773c7 + 31142c6+

17983c5 + 7506c4 + 901c3 + 13c2 − 18c+ 1)

whose roots are the x-coordinates of the P -distinguished points P ′ ∈ E′. Letting
ρ = f6,P (−P ) = −b2/c = −c(c+ 1)2 and writing α = 6

√
ρ, one checks that

x′0 =
6

c+ 1
α5 +

4

c+ 1
α4 + 3α3 + 2α2 − (3c− 1)α− 2c2 − 3c

is such a root; all other roots are found by scaling α with some power of ζ6. One
then verifies that

y′0 =
3c+ 9

c+ 1
α5+

2c+ 6

c+ 1
α4−(12c−3)α3−(17c−1)α2−(15c2+19c)α−c3−18c2−16c

is the y-coordinate of the corresponding P -distinguished point P ′. When writing
(E′, P ′) in Tate normal form, we find

E′ : y2 + (1− c′)xy − (c′2 + c′)y = x3 − (c′2 + c′)x2
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with

c′ =
1

(c+ 1)(9c+ 1)3
(
(729c3 + 243c2 + 243c− 39)α5 − (108c2 + 216c− 20)α4

− (729c4 + 729c3 + 81c2 − 165c+ 10)α3 + (108c3 − 36c2 − 140c+ 4)α2

+ (729c5 + 1215c4 + 486c3 + 114c2 + 113c− 1)α− 108c4 − 36c3 − 4c2 − 76c
)
.

Once again, this formula can be applied iteratively.

Radical isogenies of degree N ≥ 7. A similar reasoning can be made for
N ≥ 7, but a direct factorization of the reduced N -division polynomial of E′

over QN (b, c)(N
√
ρ ) quickly becomes unwieldy, for several reasons: the coefficients

of E′ become more involved, the degree of ψE′,N grows quadratically, and both
ρ and the base field QN (b, c) become increasingly complicated, see Table 1. For
instance, from N = 7 onwards it is no longer possible to eliminate one of the
variables b, c using the relation FN (b, c) = 0. As long as the modular curveX1(N)
has genus 0, it is possible to get around this by using a different parametrization,
see Table 2, but for N = 11 and N ≥ 13 this is no longer the case.

An approach that already works much better is to use number fields, i.e.
assign a large enough integer value to b, construct the number field defined by
FN (b, c) = 0 and the degree N extension by adjoining N

√
ρ . The root of ψE′,N (x)

is an expression in c and N
√
ρ with rational coefficients. We know that each such

coefficient is a rational function in b, so if b is large enough, this function can
be found using lattice reduction. The most effective method is similar to the
previous method, but uses p-adic fields instead of number fields. Again we need
to choose a “large enough” value for b and a large enough precision with which
we represent the p-adic field, to be able to reconstruct the rational function in
b. We followed this approach for N = 13, since Magma struggles to find the
formulae using direct root finding. All formulae for N = 2, . . . , 13 can be found
online at https://github.com/KULeuven-COSIC/Radical-Isogenies.

5 Isogeny chains over finite fields

In this section we use our iterable radical isogeny formulae of the form (8) to
compute chains of N -isogenies between elliptic curves over finite fields Fq with
charFq - N ; the application to CSIDH is given in Section 6. Here we just con-
centrate on the computation of long chains of N -isogenies for some fixed N ≥ 2,
and address the following two issues. Firstly, the radicand ρ might not admit an
Nth root over Fq: in the worst case, this could mean that at every iteration we
need to replace the base field with a degree N extension. Secondly, over Fq there
are N choices for N

√
ρ , hence the question arises which root to take if we want

to navigate the N -isogeny graph in a controlled way. We discuss three special
cases given by gcd(q − 1, N) = 1, gcd(q − 1, N) = N and gcd(q − 1, N) = 2.
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N Polynomial relation FN (b, c) = 0 Radicand ρ = fN,P (−P )

4 c = 0 −b
5 c− b = 0 b

6 c2 + c− b = 0 −b2/c
7 c3 + cb− b2 = 0 b3/c2

8 c2b− c2 + 3cb− 2b2 = 0 −b3/(b− c)
9 c5 + c4 − c3b+ c3 − 3c2b+ 3cb2 − b3 = 0 b3c2/(b− c)2

10
c5 + c4b+ 3c3b− 3c2b2

+ c2b− 2cb2 + b3 = 0
−b3c/(c2 + c− b)

11
c7b+ 3c6b− c6 − 3c5b2 + 6c5b− 9c4b2

+ 4c3b3 + c3b2 − 3c2b3 + 3cb4 − b5 = 0
b3(b− c)2/(c2 + c− b)2

12
c6 + c4b+ c4 − 5c3b− c2b3

+ 10c2b2 − 9cb3 + 3b4 = 0
−b4(b− c)/(b2 − bc− c3)

13

c10 − c9b2 − 6c8b2 + 6c8b+ 5c7b3 − 21c7b2

+ 3c7b+ 24c6b3 − 13c6b2 + c6b− 9c5b4

+ 21c5b3 − 6c5b2 − 15c4b4 + 15c4b3 + 4c3b5

− 20c3b4 + 15c2b5 − 6cb6 + b7 = 0

b5(c2 + c− b)2/(b2 − bc− c3)2

Table 1: Relations FN (b, c) = 0 and radicands ρ for small N ≥ 4

N r s Modular equation Radicand ρ

6 A 1 – −r2(A− 1)

7 A A – r4(A− 1)

8 1
2−A

A – −(r2s)2(A− 1)

9 A2 −A+ 1 A – r3s4(A− 1)

10 −A2

A2−3A+1
A – −r5s9(A− 1)(2A− 1)2

11 AB + 1 1−A B2 + (A2 + 1)B

+A = 0
A(rsB)3

12 2A2−2A+1
A

3A2−3A+1
A2 – r4s3A11(A− 1)(2A− 1)2

13 1−AB 1− AB
B+1

B2 + (A3 +A2 + 1)B

−A2 −A = 0
−r5B(sA)3

Table 2: Modular equations and radicands for low degree isogenies. The paramet-
ers r and s are optimised representations of curves with a prescribed N -torsion
point from [26]. The transformations b = rs(r − 1) and c = s(r − 1) can be
used to obtain the Tate normal form E : y2 + (1− c)xy − by = x3 − bx2, where
P = (0, 0) is a point of order N expressed by the modular equation.
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5.1 The case gcd(q − 1, N) = 1

The most straightforward case is gcd(q−1, N) = 1, where there is a very natural
choice for N

√
ρ . Indeed, in this case the map Fq → Fq : a 7→ aN is a bijection,

so if the starting curve E : y2 + (1 − c)xy − by = x3 − bx2 is defined over Fq,
then so is ρ(b, c) and it admits a unique Nth root which is again defined over
Fq. Choosing this instance of N

√
ρ results in new coefficients b′, c′ ∈ Fq and the

argument repeats. Moreover, the Nth root can be computed as ρµ where µ is
such that µN ≡ 1 mod (q−1). Thus, the condition gcd(q−1, N) naturally pulls
out a chain of N -isogenies whose cost, at least for small N , is dominated by a
single Fq-exponentiation at each step.

Lemma 8. Assume that charFq - N and gcd(q − 1, N) = 1, then EndFq
E is

an imaginary quadratic order which is locally maximal at all primes dividing N ,
and our chain of N -isogenies corresponds to the repeated action of the ideal class
[(N, πq − 1)].

Proof. Observe that

ker([N ]) ∩ ker(πq − 1) = E(Fq)[N ] = 〈P 〉 ,

where the last equality follows from gcd(q − 1, N) = 1 along with the fact that
P = (0, 0) is an Fq-rational point of order N . These properties also imply that

gcd(t2 − 4q,N) = gcd((q + 1− |E(Fq)|)2 − 4q,N) = gcd((q − 1)2, N) = 1

with t the trace of Frobenius, showing that EndFq
E is indeed an imaginary

quadratic order which is locally maximal at all primes dividing N ; see [29, §4].
Thus the isogeny E → E′ = E/〈P 〉 is the horizontal isogeny corresponding to
the invertible ideal (N, πq − 1) ⊂ EndFq

E. Since such isogenies do not change
the structure of E(Fq), and since choosing the unique Fq-rational Nth root of ρ
clearly produces an Fq-rational point of order N , the reasoning can be repeated
and the lemma follows. �

Estimating the rough cost of an exponentiation as 1.5 log q multiplications in
Fq, our method should be compared with:

(i) generating an Fq-rational N -torsion point and applying (some form of)
Vélu’s formulae; the main cost in this approach is the generation of the
N -torsion point, which consists of generating a random point and multiply-
ing by the cofactor #E(Fq)/N , taking roughly 11 log q multiplications in Fq;
furthermore this procedure has to be repeated with probability 1/N , which
is non-negligible for small N ,

(ii) finding an Fq-rational root of ΦN (x, j(E)), with ΦN the classical modular
polynomial of level N ; this roughly amounts to computing xq modulo the
polynomial ΦN (x, j(E)), whose degree is at least N + 1, so we estimate this
cost as 1.5(N + 1)2 log q multiplications in Fq.
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However, for growing N it becomes unfair to measure the cost of a radical
isogeny by merely an exponentiation in Fq: the algebraic expressions for b′ and c′

in terms of b, c, N
√
ρ become increasingly complicated, and the cost of evaluating

these expressions quickly overtakes the cost of the exponentiation as shown in
Table 3. We also remark that the majority of the multiplications are with small
constants coming from the explicit formulae as illustrated in Section 4. The size
of these constants also grows with N , e.g. for N = 13 the constants have a size
of up to 14 bits.

Computational cost Relative cost of formulae evaluation

3-isogeny E + 6M + 3A 2.2 %

4-isogeny E + 4M + 3A + I 3.9 %

5-isogeny E + 7M + 6A + I 4.8%

7-isogeny E + 24M + 20A + I 10.1%

9-isogeny E + 69M + 58A + I 20.5%

11-isogeny E + 599M + 610A + I 67.7%

13-isogeny E + 783M + 776A + I 71.9%

Table 3: The computational cost of radical N -isogenies over a finite field Fq.
The letters E,M,A and I denote exponentiation, multiplication, addition and
inversion respectively. The last column expresses the cost of the multiplications,
additions and inversions, relative to the total cost. The percentages are computed
from the evaluation of a chain of 10 000 horizontal N -isogenies over Fp, where p
is the CSURF-512 prime from [6].

A similar overhead is present in approach (ii) using modular polynomials
(where moreover one is left with the task of determining the correct twist),
which seems consistently outperformed by our radical isogeny formulae. As for
the basic approach (i) using Vélu’s formulae, it is shown in Table 4 that for
small N , radical isogenies are up to 50 times faster, the main reason being that
radical isogenies can be chained without explicitly generating a new N -torsion
point on each curve. From N ≈ 15 onwards, the overhead becomes so large that
radical isogenies become less efficient.

5.2 The case gcd(q − 1, N) = N

At the other extreme, if N | q−1 then Fq contains a primitive Nth root of unity
ζN . As a consequence, if ρ ∈ F∗q admits an Nth root N

√
ρ ∈ Fq, then all Nth

roots are defined over Fq. But the probability that a random ρ ∈ F∗q admits an
Nth root in Fq is 1/N only, so one would expect that the base field needs to be
extended at most steps of the iteration.

The situation is much better in the following special case: let q = p2 for some
prime p ≡ −1 mod N , so that indeed N | q− 1, and let E/Fq be a supersingular
elliptic curve, say with |E(Fq)| = (p + 1)2. Such curves are used in the CGL
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Sampling
N -torsion

Isogenous
curve Vélu

Image
of a point

Modular
polynomial

Radical
isogeny

3-isogeny 50,449,710 38,513 18,860 9,939,840 1,071,612

4-isogeny? 63,693,051 45,093 45,004 29,628,400 1,101,677

5-isogeny 41,519,930 140,968 33,453 19,943,602 1,086,011

7-isogeny 39,049,435 247,526 47,734 34,049,452 1,192,454

9-isogeny 47,994,892 319,695 70,899 76,299,055 1,304,341

11-isogeny 36,755,529 448,043 75,995 76,435,364 3,161,470

13-isogeny 36,252,253 548,833 90,168 147,552,105 3,626,544

Table 4: Clock cycles (using Magma v2.32-2 on an Intel(R) Xeon(R) CPU E5-
2630 v2 @ 2.60GHz with 128 GB memory) for an individual step in a horizontal
N -isogeny chain, basic Vélu approach vs. (unique) root of the modular polyno-
mial vs. radical isogenies averaged over a chain of 10 000 N -isogenies over the
finite field Fp, where p is the CSURF-512 prime from [6]. The probability of
failure to sample an N -torsion point for composite N is larger than 1/N , and
the degree of the modular polynomial scales faster for composite numbers, which
explain the results for N = 4, 9 for the first two methods. ? The clock cycles
for 4-isogenies for the first two methods are obtained from random 4-isogenies
instead of exclusively horizontal ones. Every curve has three 4-isogenous elliptic
curves and identifying the correct one would require an additional square-check
(see Section 5.3).

hash function and in SIDH, but since these rely exclusively on 2 and 3 isogenies
which are already heavily optimized, we do not expect any real improvement for
these applications. On these curves we have πq = [−p], from which it follows
that E[N ] ⊂ E(Fq). Let P ∈ E be any point of order N , then we claim that
ρ = fN,P (−P ) ∈ F∗q is an Nth power, i.e. tN (P,−P ) = 1.

To see this, note that the codomain of ϕ : E → E′ = E/〈P 〉 again sat-
isfies |E′(Fq)| = (p + 1)2 and therefore E′[N ] ⊂ E′(Fq). In particular, any
P -distinguished point P ′ takes coordinates in Fq and we conclude

tN (P,−P ) = tN (ϕ̂(P ′),−ϕ̂(P ′)) = tN (P ′,−P ′)N = 1 .

The argument of course repeats, so in this case one can keep applying our radical
isogeny formulae, choosing an Nth root of ρ at each iteration, without ever
leaving Fq. A performance comparison with the modular polynomial method (ii)
from the previous section can be found in Table 5.

5.3 The case gcd(q − 1, N) = 2

An interesting intermediate case is gcd(q − 1, N) = 2, where an element ρ ∈ F∗q
is an Nth power if and only if it is a square. If it is, then it has exactly two
Nth roots ±N

√
ρ . If q ≡ 3 mod 4 then one of these Nth roots is a square and

one of them is not; they can be computed as ρµ resp. −ρµ, where µ is such that
µN ≡ 1 mod (q − 1)/2.
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Modular
polynomial

Radical
isogeny

3-isogeny 397,463,526 7,376,366

4-isogeny 705,256,757 29,128,205

5-isogeny 1,020,128,985 8,988,513

7-isogeny 1,889,168,090 8,973,325

9-isogeny 2,795,301,745 24,966,750

11-isogeny 3,827,699,588 12,707,001

13-isogeny 5,533,476,662 14,563,945

Table 5: Clock cycles (using Magma v2.32-2 on an Intel(R) Xeon(R) CPU E5-
2630 v2 @ 2.60GHz with 128 GB memory) for an individual step in an N -isogeny
chain, roots of the modular polynomial vs. radical isogenies averaged over a chain
of 1 000 N -isogenies over finite fields Fp2 . The prime p = 2512 + ε was chosen
per N -isogeny such that p ≡ −1 mod N and such that p ≡ 3 mod 4, so that we
could start from E : y2 = x3 + x; concretely, for N = 3, 4, 5, 7, 9, 11, 13 we took
ε = 727, 75, 2743, 7471, 1147, 29607, 1147 respectively.

For N = 2, it was observed in [6] that this distinction allows for a controlled
navigation of the 2-isogeny graph of supersingular elliptic curves E over a finite
prime field Fp with p ≡ 7 mod 8. Concretely, such curves come in two types:
curves on ‘the floor’ have endomorphism ring Z[

√
−p] and admit a unique Fp-

rational point of order 2, while curves on ‘the surface’ have endomorphism ring
Z[(1 +

√
−p)/2] and have three distinguished Fp-rational points of order 2:

– P−, whose halves have x-coordinates that are not defined over Fp,
– P+

1 , whose halves are not defined over Fp, but their x-coordinates are,
– P+

2 , whose halves are defined over Fp

(see Figure 1). Quotienting out P− takes us from the surface to the floor, while
quotienting out P+

1 and P+
2 amounts to traveling along the surface, using the

horizontal isogenies corresponding to the respective ideals (2, (
√
−p + 1)/2),

(2, (
√
−p− 1)/2) of Z[(1 +

√
−p)/2], see [6, Lem. 5].

Lemma 9. If the curve point pair (E,P+
1 ) resp. (E,P+

2 ) is in the form (E,P )
with

E : y2 = x3 + a2x
2 + a4x, P = (0, 0), a2, a4 ∈ Fq

as in Section 4, then ρ = a4 is a square. Applying the iterative formulae (9)
corresponds to the repeated action of [(2, (

√
−p+ 1)/2)] resp. [(2, (

√
−p− 1)/2)]

if one consistently computes
√
ρ as −ρµ resp. ρµ.

Proof. The fact that ρ = a4 is a square follows from the proof of [6, Lem. 3].
From [6, Lem. 4] it follows that selecting −ρµ resp. ρµ corresponds to selecting
P ′+1 resp. P ′+2 on E′, which implies the lemma. Note that the other square root
of ρ corresponds to P ′− in both cases, taking us to the floor. �
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2

]

Z[
√
−p]

Figure 1: A connected component of the 2-isogeny graph of supersingular elliptic
curves over Fp with p ≡ 7 mod 8, highlighting two elliptic curves on the surface
together with their three distinguished 2-torsion points and the corresponding
2-isogenies.

The first observation, namely that ρ is a square, generalizes to all N satisfying
gcd(p − 1, N) = 2, where we continue to work over Fp with p ≡ 7 mod 8. More
precisely, consider a curve E on the surface, let us say in Tate normal form with
P = (0, 0) a point of order N ≥ 4. The cyclic N -isogeny ϕ : E → E′ = E/〈P 〉 is
the composition of a horizontal N/2-isogeny, i.e. to another curve on the surface,
and either (i) a horizontal 2-isogeny or (ii) a vertical 2-isogeny. Then we claim
that we are in case (i) if and only if ρ is a square. To see this, note that we are in
case (i) if and only if there exists a point P ′ ∈ E(Fp) such that the composition
of ϕ with E′ → E′/〈P ′〉 is cyclic of degree N2. If ρ is a square then the existence
of such a point simply follows from our radical isogeny formulae (7). Conversely,
if there exists such a point P ′ then we necessarily have P = λϕ̂(P ′) for some
λ ∈ (Z/N)∗, and it follows from

tN (P,−P ) = tN (λϕ̂(P ′),−λϕ̂(P ′)) = tN (P ′,−P ′)Nλ
2

that ρ is a square.
Unfortunately, it seems harder to generalize the second observation, but

based on experiments we conjecture the following statement for N = 4, in which
case we can take µ = (p+ 1)/8:

Conjecture 2. Assume that N = 4 and that (E,P ) is in Tate normal form

y2 + xy − by = x3 − bx2, P = (0, 0), b ∈ Fp

as above. If the isogeny E → E/〈P 〉 is horizontal then ρ = −b is a square.
Moreover, applying the iterative formula (10) corresponds to the repeated action
of [(2, (

√
−p − 1)/2)]2 if one consistently computes α = 4

√
ρ as −ρµ resp. ρµ,

depending on whether p ≡ 7 mod 16 resp. p ≡ 15 mod 16.

Note that we have just come to argue why ρ = −b is indeed a square. Also,
since P = (0, 0) ∈ E(Fp), we necessarily have that 2P equals P+

2 , the unique
point of order 2 whose halves are Fp-rational. As a result, since the isogeny
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ϕ : E → E′ = E/〈P 〉 is cyclic and horizontal, it necessarily corresponds to the
action of [(2, (

√
−p− 1)/2)]2. Therefore, the main open problem in proving the

conjecture is the last claim. So far, we did not succeed in giving a proof, nor did
we manage to generalize its statement to larger values of N .

6 Speeding up CSIDH

The core operation in CSIDH [7] is computing a composition of many horizontal
isogenies of small prime degree `i for i = 1, . . . , n, where the `i are typically
consecutive small primes starting from 2 or 3. The exact composition that needs
to be computed can be specified as an exponent vector [e1, . . . , en], where each
ei ∈ [−Bi, Bi] indicates how many horizontal isogenies of degree `i have to be
computed. In practice often Bi = B for all i, where B is some fixed small value
such that (2B + 1)n > 22λ, with λ the (classical) security parameter. In the
previous section, we considered this problem for a single `i and showed that
generating a new `i-torsion point in every step is expensive.

In CSIDH this problem is (partly) remedied by chaining isogenies of distinct
degrees, i.e. computing a horizontal isogeny of degree N =

∏n
i=1 `

δi
i where δi = 1

if |ei| > 1 and zero otherwise. Without loss of generality we will assume that
all δi = 1. Instead of generating an `i-torsion point in every step, one first
generates a point Q of order (possibly dividing) N and then pushes Q through
the isogeny chain. Denote with Qk = ϕk(Q) with ϕk the isogeny of degree

Nk =
∏k
i=1 `i, then ifQ had orderN at the start,Qk will have orderMk = N/Nk.

To generate a point of order `k+1 it therefore suffices to compute [Mk/`k+1]Qk,
which is much cheaper than a full scalar multiplication, certainly for larger k.
Note that in practice the original point P does not necessarily have order N , so
this procedure might skip a few `i. This method therefore amortizes the cost of
one full scalar multiplication (to generate the initial Q) over the different primes
`i, and only requires a multiplication by [Mk/`k+1] in step k. Table 4 shows that
pushing a point through an isogeny is a rather cheap operation, and the main
costs are still the generation of the initial Q’s and the scalar multiplications by
[Mk/`k+1]. Table 4 also shows that excluding the computation of an N -torsion
point, computing a radical isogeny of degreeN is slower than a simple application
of Vélu’s formulae.

For the above approach, it is clear that the number of initial Q’s that need to
be generated is (at least) maxiBi, so it typically does not make sense to sample
the exponent vectors from a very skew box, i.e. to take B1 � Bn, even though
computing an isogeny of degree `1 is much cheaper than computing an isogeny
of degree `n. However, using radical isogenies it does make sense to really skew
the box since for every prime `i one only needs to generate one Q.

Implementation

To illustrate this approach, we implemented a variant of CSIDH that also uses
radical isogenies to compute the class group action. Our implementation uses
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Magma v.2.25-2 [5] and is available at https://github.com/KULeuven-COSIC/
Radical-Isogenies and builds upon the code from [1]. Concretely, for 128 bits
of classical security, consider the field Fp, with p the CSURF-512 prime from [6],
i.e.

p = 23 · 3 · (3 · . . . · 389)︸ ︷︷ ︸
74 consecutive primes,

skip 347 and 359

− 1 ≈ 2512.

In the implementation of [1], the authors used Bi = 5 for all i, however using
radical isogenies we propose the skew box

I = [−202; 202]× [−170; 170]× [−95; 95]× [−91; 91]× [−33; 33]×
[−29; 29]× [−6; 6]20 × [−5; 5]14 × [−4; 4]10 × [−3; 3]10 × [−2; 2]8 × [−1; 1]7.

These vectors represent the action of classes of ideals of the form(
2,

√
−p− 1

2

)e1
(3,
√
−p− 1)e2(5,

√
−p− 1)e3 · · · (389,

√
−p− 1)e75

on elements from the set of public keys S−p = {A ∈ Fp | y2 = x3 + Ax2 −
x is a supersingular elliptic curve}. The set S−p is in 1-to-1 correspondence with
Fp-isomorphism classes of supersingular elliptic curves, which allows for a slightly
easier key validation than using Montgomery curves. The set I contains approx-
imately 2256 integer vectors, and just as in [7], we heuristically assume that these
vectors represent the elements in the class group quasi-uniformly.

The first step in computing the class group action is finding a 4-torsion point
P , such that if we compute the isogeny ϕ : E → E/〈2P 〉, it holds that ϕ(P )
has halves defined over Fp. In accordance with Conjecture 2 and the discussion
following it, this implies that the isogeny with kernel 〈P 〉 will then correspond

to the action of
(

2,
√
−p−1
2

)2
. In order to iteratively compute this horizontal

4be1/2c-isogeny, we first swap to the Tate normal form by translating P to (0, 0).
After iterating the 4-isogeny formula be1/2c times, we perform a vertical isogeny
to a Montgomery representation of an elliptic curve on the floor. If e1 is odd, we
do a single horizontal 2-isogeny on the Montgomery curve, as explained in [1].

The rest of the computation is done on Montgomery curves on the floor for
two reasons. The first is that arithmetic on Montgomery curves is slightly more
efficient than arithmetic on curves represented by elements of S−p . The second
reason is that, in order to compute 3-, 5-, 7-, 11- and 13-isogenies, we will need
to swap between elliptic curves in Tate normal form and Montgomery curves.
Computing the Montgomery representation of an elliptic curve is essentially
finding a two-torsion point, which in practice means finding a solution to a
cubic equation. If a cubic equation has three solutions, the explicit formulae to
compute any single one of them require going through a quadratic field extension,
even if all solutions are defined over the ground field.2 An elliptic curve on the

2 This is known as the casus irreducibilis, proven by Pierre Wantzel in the first half of
the 19th century.
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floor however, only has one nontrivial two-torsion point. In this case, the cubic
equation has exactly one solution over Fp, and the formula to find it does not
require field extensions.

We then compute a horizontal 3e2-isogeny as follows. We first sample a 9-
torsion point and swap to the Tate normal form by translating this point to
(0, 0). Next, we calculate a 9be2/2c−1-isogeny iteratively. We perform one last
9-isogeny using Vélu’s formulae on the Tate normal form with kernel generator
(0, 0), before swapping back to the Montgomery form of this curve. The reason
for this choice is that one more iteration of the formulae would be more expensive,
since we already know the final 9-torsion point and hence can simply use Vélu’s
formulae. If e2 is odd, we will compute this final 3-isogeny together with the
`-isogenies for ` ≥ 17.

The `ei-isogenies for `ei = 5e3 , 7e4 , 11e5 , 13e6 are then iteratively computed
in a similar manner. We first compute an `-torsion point on a Montgomery curve
to swap to the Tate normal form. Next, we iterate the formulae for `-isogenies
ei−1 times, and the final `-isogeny is computed using Vélu’s formulae, at which
point we go back to the Montgomery representation of the curve. The only
noteworthy exception is that if |ei| = 1, we use the original computation of the
CSIDH class group action. The reason for this is that swapping to a Tate normal
form requires sampling an `-torsion point, which means it is more efficient to
perform this action together with the `-isogenies for ` ≥ 17.

The rest of the `-isogenies for ` ≥ 17 are performed as in [7], where optim-
izations such as those of [1] can be applied. At the end, we perform one final
vertical isogeny to the surface to obtain a public key in S−p .

We set the bound to swap to the new formulae of [1] at ` > 113, since this is
the threshold where they start outperforming the formulae of [21] in Magma. The
box I from which the exponent vectors are sampled was obtained heuristically
over a large sample and is near optimal. Over a sample size of 100 000 class
group actions each, our variant of CSIDH results in a speed-up of 19% over the
one from [1]. We do note that this comparison is with respect to the CSIDH-512
parameter version, since the Magma code from [1] based on the CSURF-512
parameters did not seem to work. Since the CSIDH-512 parameters do not allow
horizontal 2-isogenies, a small part of our speed-up can be ascribed to the work
of [6].

7 Conclusion and open problems

Starting from a curve E with an N -torsion point P we have proved the existence
of explicit formulae for the isogenous curve E′ = E/〈P 〉 and the coordinates of a
point P ′ on E′ of order N , such that the composition of E → E′ = E/〈P 〉 with
E′ → E′/〈P ′〉 is cyclic of degree N2. This property implies that the formulae
can be used repeatedly to compute chains of N -isogenies without generating
N -torsion points in each step of the chain. Furthermore, the formulae, which we
have described explicitly for N ≤ 13, only involve basic arithmetic operations,
except for the extraction of an Nth root. We have implemented these formulae
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and used them in two main applications: computing a chain consisting solely of
N -isogenies, where we obtained a speed-up ranging from a factor 29 for N = 7
to a factor 5 for N = 13, and an improved implementation of CSIDH which is
19% faster than the state of the art implementation.

Open problems The following problems remain open and are interesting future
work:

– Prove Conjecture 1, stating that our formulae have good reduction wherever
there is no obvious obstruction.

– Devise a more efficient method for explicitly finding the radical isogeny for-
mulae to avoid our current approach of factoring N -division polynomials as
in Section 4, which is a major bottleneck.

– Optimize our formulae, e.g. is it indeed true that the P -distinguished case
yields the most compact expressions? Using the relations αN = ρ(b, c) and
FN (b, c) = 0, using different instances of ρ, or using different parametriza-
tions of X1(N) as in Table 2 or [26], can we rewrite our formulae such that
they become more efficient?

– Prove Conjecture 2 on radical isogenies of degree N = 4 between supersin-
gular elliptic curves over Fp with p ≡ 7 mod 8, and generalize it to larger
even values of N .

– Measure the impact of our work on constant-time implementations of CSIDH
and on the quantum circuits discussed in [3].
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