
On the
√

élu’s formulae and their applications to CSIDH
and B-SIDH constant-time implementations

Gora Adj ∗1, Jesús-Javier Chi-Domínguez †2, and Francisco
Rodríguez-Henríquez ‡3

1Departament de Matemàtica, Universitat de Lleida, Spain
2Tampere University, Tampere, Finland

3Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico

September 20, 2020

Abstract

At a combined computational expense of about 6` field operations, Vélu’s for-
mulae are used to construct and evaluate degree-` isogenies in the vast majority
of isogeny-based primitive implementations. Recently, Bernstein, de Feo, Leroux
and Smith introduced a new approach for solving this same problem at a reduced
cost of just Õ(

√
`) field operations. In this work, we present a concrete computa-

tional analysis of these novel formulae, along with several algorithmic tricks that
helped us to slightly, but noticeably, reduce their practical cost. Furthermore, we
report a Python-3 implementation of several instantiations of CSIDH and B-SIDH
using a combination of the novel formulae and an adaptation of the optimal strate-
gies commonly used in the SIDH/SIKE protocols. Compared to a traditional Vélu
constant-time implementation of CSIDH, our experimental results report a saving
of 5.357%, 13.68% and 25.938% base field operations for CSIDH-512, CSIDH-1024,
and CSIDH-1792, respectively. Additionally, the first implementation of the B-SIDH
scheme in the open literature is reported here.

1 Introduction

Isogeny-based cryptography was independently introduced by Couveignes [15], Rostovt-
sev and Stolbunov in [30, 31]. Since then, an ever increasing number of isogeny-based
key-exchange protocols have been proposed. A selection of those protocols, especially
relevant for this work, are briefly summarized below.
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Working with supersingular elliptic curves defined over Fp2 , the Supersingular Isogeny-
based Diffie-Hellman key exchange protocol (SIDH) was presented by Jao and de Feo
in [20] (see also [16]). In 2017, the Supersingular Isogeny Key Encapsulation (SIKE)
protocol, a SIDH descendent, was submitted to the NIST post-quantum cryptography
standardization project [2]. NIST recently announced that SIKE passed to the round 3
of this contest as an “alternative candidate”.

In 2018, the commutative group action protocol CSIDH was introduced by Castryck,
Lange, Martindale, Panny and Renes in [8]. Operating with supersingular elliptic curves
defined over Fp, CSIDH is a significantly faster version of the Couveignes-Rostovtsev-
Stolbunov scheme variant as it was presented in [17].

Later, in 2019, Costello proposed a variant of SIDH named B-SIDH [12]. In B-SIDH,
Alice computes isogenies from a (p + 1)-torsion supersingular curve subgroup, whereas
Bob has to operate on the (p− 1)-torsion subgroup of the quadratic twist of that curve.
A remarkable feature of B-SIDH is that it can achieve similar classical and quantum
security levels as SIDH, but using significantly smaller public/private key sizes. On the
down side, at the time of writing, there has been no reported implementation of B-SIDH
highlighting any potential benefit of its shorter key over its predecessors. The single most
important challenge in the implementation of B-SIDH, is the high computational cost
associated to the large degree isogenies involved in its execution.

Let ` be an odd prime number, K a finite field of large characteristic, and A a
Montgomery coefficient of an elliptic curve E : y2 = x3+Ax2+x. Given an order-` point
P ∈ E(K), the construction of an isogeny φ : E 7→ E′ of kernel 〈P 〉 and its evaluation at
a point Q ∈ E(K)\〈P 〉 consist of the computation of the Montgomery coefficient A′ ∈ K
of the codomain curve E′ : y2 = x3 + A′x2 + x and the image point φ(Q), respectively.
Generally speaking, performing isogeny map constructions and evaluations are the most
expensive computational tasks of any isogeny-based protocol. This is especially true for
CSIDH and B-SIDH, where [extremely] large odd prime degree-` isogenies come into
play.

For decades now, Vélu’s formulae (cf. [21, §2.4] and [32, Theorem 12.16]) has been
widely used to construct and evaluate degree-` isogenies. With the introduction of several
elliptic curve arithmetic tricks [25, 13, 9], it turns out that Vélu’s formulae require about
6` field multiplications for the combined isogeny construction and evaluation procedures
(cf. §2).

Recently, Bernstein, de Feo, Leroux and Smith presented in [4] a new approach for
constructing and evaluating degree-` isogenies at a combined cost of just Õ(

√
`) field

operations. This improvement was obtained by observing that the polynomial prod-
uct embedded in the isogeny computations can be speedup via a baby-step giant-step
method [4, Algorithm 2]. Due to its square root complexity reduction (up to polyloga-
rithm factors), in the remainder of this paper, we will refer to this improvement of Vélu’s
formulae computation as

√
élu’s formulae or simply

√
élu.

As we will see in this paper, and as it was already hinted in [4],
√
élu has a high impact

on the performance of CSIDH, and quite especially on B-SIDH. By way of illustration,
consider the combined cost of constructing and evaluating degree-` isogenies for ` = 587,
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which corresponds to an example highlighted in [4, Appendix A.3]. 1 For that degree `,
the authors report a cost of just 2296 ≈ 3.898(` + 2) field multiplications and squaring
operations. In this paper, we further improve that computation to just 2180 ≈ 3.701(`+2)
field multiplications and squaring operations, which is 5% cheaper than the cost reported
by [4]. This has to be compared with the cost of a classical Vélu approach that would
take some 3544 ≈ 6.017(`+ 2) multiplications.

In spite of the groundbreaking result announced in [4], along with the high perfor-
mance achieved by its companion software library, the authors did not focus on providing
a concrete computational cost analysis of their approach but rather, they centered on
its asymptotical analysis. Moreover, an application of their fast

√
élu reported a rather

modest 1% and 8% speedup over the traditional Vélu’s formulae applied to the non
constant-time implementation of the CSIDH instantiations, CSIDH-512 and CSIDH-
1024. Furthermore, the authors of [4] left open the problem of assessing the practical
impact of

√
élu on CSIDH and B-SIDH constant-time implementations.

Contributions. We present a detailed concrete analysis of
√
élu. From this analysis,

we conclude that for virtually all practical scenarios, the best approach for performing
the polynomial products associated to the isogeny arithmetic is achieved by nothing
more than carefully tailored Karatsuba polynomial multiplications. The main practical
consequence of this observation is that computing degree-` isogenies with

√
élu has a

concrete computational cost closer to K(blog2 (3)), where b =
√
`, and K is a constant.

We also present several tricks that permit to save multiplications when performing the
polynomial products involving the polynomials EJ0 and EJ1 (cf. §4). Additionally, we
exploit the fact that for computing xEVAL, the polynomials EJ0 and EJ1 are the reciprocal
of each other. These observations help us to construct and evaluate a degree-587 isogeny
using only 2180M ≈ 3.701(`+2). This is about 5.3% cheaper than the same computation
announced in [4]. This improvement also pushes the limit to ` = 89, where computing
degree-` isogenies with

√
élu becomes more effective than traditional Vélu.

In a nutshell, our main practical contributions can be summarized as follows:

1. In practice, the computational cost of computing degree-` isogenies using
√
élu, is

closer to K(
√
`)log2 3 field operations, with K a constant.

2. We used the framework presented in [10] to apply optimal strategies à la SIDH
to CSIDH while exploiting

√
élu. This allows us to present the first application

of
√
élu to constant-time implementations of its CSIDH-512, CSIDH-1024, and

CSIDH-1792 instantiations. A comparison with respect to CSIDH using Vélu’s
traditional formulae, reports savings of 5.357%, 13.68% and 25.938% field Fp-
operations for CSIDH-512, CSIDH-1024, and CSIDH-1792, respectively.

3. We report the first constant-time implementation of the protocol B-SIDH intro-
duced in [12]. Using the framework of [10], optimal strategies à la SIDH are applied

1Note that ` = 587 is the largest prime factor of p+1
4
, where p is the prime used in the popular

CSIDH-512 instantiation of the CSIDH isogeny-based protocol.
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to B-SIDH while also taking advantage of
√
élu. As expected and hinted in [4], the

experimental results for B-SIDH show a saving of up to 75% as compared with an
implementation of this protocol using traditional Vélu’s formulae.

Our software library is freely available at

https://github.com/JJChiDguez/velusqrt .

Outline. The remainder of this paper is organized as follows. In §2, traditional Vélu’s
formulae are described. A compact description of the B-SIDH and CSIDH protocols
is also given. In §3, we briefly discuss the application of optimal strategies to CSIDH
and B-SIDH. In §4, an explicit description of

√
élu’s main building blocks KPS, xEVAL,

and xISOG is presented. In addition, we discuss several
√
élu’s algorithmic improvements

in §4.2. The experimental results obtained from our software are reported and discussed
in §5. We discuss CSIDH and B-SIDH in §5.1 and §5.2, respectively. Finally, our con-
cluding remarks are drawn in §6.

Notation. M, S, and A denote the cost of computing a single multiplication, squaring,
and addition (or subtraction) in the base field Fp.

2 Background

The vast majority of the fastest isogeny-based constant-time protocol implementations,
have adopted Montgomery and twisted Edwards curve models for their schemes. A
Montgomery curve [24] is defined by the equation EA,B : By2 = x3 +Ax2 + x, such that
B 6= 0 and A2 6= 4. For the sake of simplicity, we will write EA for EA,1 and will always
consider B = 1. Moreover, it is customary to represent the constant A in the projective
space P1 as (A′ : C ′), such that A = A′/C ′ (see [14]).

Let q = pn, where p is an odd prime number and n a positive integer. Let ` be an
odd number ` = 2k + 1, with d ≥ 1. Also, let E and E′ be two supersingular elliptic
curves defined over Fq, for which there exists a cyclic degree-` isogeny φ : E → E′

defined over Fq. This implies that there must exist an `-order point P ∈ E(Fq) such that
Ker(φ) = 〈P 〉. Given the domain elliptic curve E and an `-order point P ∈ E(Fq), we are
interested in the problem of computing the co-domain elliptic curve E′. Given a point
Q ∈ E(Fq) such that Q 6∈ Ker(φ), we are also interested in the problem of finding φ(Q),
i.e., the image of the point Q over E′. In this paper these two tasks are named isogeny
construction and isogeny evaluation computations, respectively.

Vélu’s formula (see [21, §2.4] and [32, Theorem 12.16]), has been generally used
to construct and evaluate degree-` isogenies by performing three main building blocks,
namely, KPS, xISOG and xEVAL. The block KPS computes the first k multiples of the point
P , namely, the set {P, [2]P, . . . , [k]P}. Using KPS as a sort of pre-computation ancillary
module, xISOG finds the constants (A′ : C ′) ∈ Fq that determine the co-domain curve
E′. Also, using KPS as a building block, xEVAL calculates the image point φ(Q) ∈ E′.

4
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Public parameter:
E/Fp : By2 = x3 +Ax2 + x,

Alice

eA = (e1, . . . , en)
$←− J−m . . mKn

EA = le11 ∗ · · · ∗ lenn ∗ E

Eba = le11 ∗ · · · ∗ lenn ∗ EB

Bob

eB = (f1, . . . , fn)
$←− J−m . . mKn

EB = lf11 ∗ · · · ∗ lfnn ∗ E

Eab = lf11 ∗ · · · ∗ lfnn ∗ EA

EA

EB

Figure 1: CSIDH key-exchange protocol

After applying a number of elliptic curve arithmetic tricks [25, 13, 9], the compu-
tational expenses of KPS, xISOG and xEVAL have been found to be about 3`, ` and 2`
multiplications, respectively. This gives an overall cost of about 6` multiplications for
the combined cost of the isogeny construction and evaluation tasks. In §4, specific de-
tails of how the

√
élu approach of [4] drastically reduces the costs of traditional Vélu’s

formulae are discussed.
In the remainder of this section, we briefly discuss the two isogeny-based protocols

implemented in this paper, namely, CSIDH and B-SIDH.

2.1 Overviewing the C-SIDH

Here, we give a simplified description of CSIDH. For more technical details, the interested
reader is referred to [8, 9, 22, 27].

CSIDH is an isogeny-based protocol that can be used for key exchange and encapsu-
lation [8], and other more advanced protocols and primitives. Figure 1 shows how CSIDH
can be executed analogously to Diffie–Hellman, to produce a shared secret between Alice
and Bob. Remarkably, the elliptic curves Eba and Eab computed by Alice and Bob at
the end of the protocol are one and the same.

CSIDH works over a finite field Fp, where p is a prime of the form

p := 4
n∏

i=1

`i − 1

with `1, . . . , `n a set of small odd primes. For example, the original CSIDH article [8]
defined a 511-bit p with `1, . . . , `n−1 the first 73 odd primes, and `n = 587. This instan-
tiation is commonly known as CSIDH-512.
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The set of public keys in CSIDH is a subset of all supersingular elliptic curves in
Montgomery form, y2 = x3 + Ax2 + x, defined over Fp. Since the CSIDH base curve E
is supersingular, it follows that #E(Fp) = (p+ 1) = 4

∏n
i=1 `i.

Additionally, let π : (x, y) 7→ (xp, yp) be the Frobenius map and N ∈ Z be a posi-
tive integer. Then, E[N ] := {P ∈ E(Fp) : [N ]P = O} denotes the N -torsion subgroup
of E/Fp. Similarly, E[π − 1] := {P ∈ E(Fp) : (π − 1)P = O} and E[π + 1] := {P ∈
E(Fp2) : (π + 1)P = O} denote the subgroups of Fp-rational and zero-trace points, re-
spectively. In particular, any point P ∈ E[π + 1] is of the form (x, iy) where x, y ∈ Fp

and i =
√
−1 so that ip = −i.

The input to the CSIDH class group action algorithm is an elliptic curve E : y2 =
x3+Ax2+x, represented by its A-coefficient, and an ideal class a =

∏n
i=1 l

ei
i , represented

by its list of exponents (ei, . . . , en) ∈ J−m . . mKn. The output, for Alice (See Figure 1),
is the A-coefficient of the elliptic curve EA defined as,

EA = a ∗ E = le11 ∗ · · · ∗ lenn ∗ E. (1)

For the sake of simplicity, let us assume that the secret integer vector e = (e1, . . . , en)
is drawn from the interval ei ∈ J0 . . mK. Let φn−j be a degree-`n−j isogeny defined
as, φn−j : Ej 7→ E(j+1) mod n, for j = 0, . . . , n − 1. Then, the CSIDH group action
of Equation 1 can be computed as follows.

At the beginning of the group action evaluation, only the base elliptic curve E0 = E
and the secret integer vector e = (e1, . . . , en) are known. We then proceed by finding a
full torsion point T ∈ En[π − 1] (ideally) with order p+1

4 =
∏

i `i.
2

Thereafter, for j = 0, . . . , n − 1, a subgroup kernel generator Gj is computed, and
then the codomain of the corresponding degree-`n−j isogeny φn−j and the image point
φn−j(T ) are found. To obtain Gj , the point T must be descended by performing a scalar
multiplication with the first n− 1− j prime factors of p+1. For example, for j = 0, the
point G0 =

[∏n−1
i=1 `i

]
T is computed. If G0 is finite, then it has to have order `n and

can be used to generate the kernel of the degree-`n isogeny φ`n . Right after, the kernel
subgroup 〈Gj〉 ← KPS(Gj), the image curve E′ = xISOG(Ej , `n−j , 〈Gj〉) and the image
point T ′ = φn−j(T ) = xEVAL(T, 〈Gj〉) can all three of them be calculated. It becomes
now possible to update the tuple (Ej , T, en−j) as,

(E(j+1) mod n, T, en−j−1)←
{
(E′, T ′, en−j−1) if en−j 6= 0;

(Ej , [`n−j ]T, en−j−1) otherwise,

and en−j ← max{0, en−j − 1}.
Once that all the n secret exponents ej have been processed, the constants defining

the elliptic curve E0 are used to find a new full order point T ∈ E0, restarting the
procedure described above until exactly m evaluations are performed for all the secret
exponents. This completes the CSIDH group action computation.

2In practice the computational cost required for finding a full-torsion point is too expensive. Therefore,
this condition is relaxed to work with points whose order does not necessarily include all the prime factors
of p+ 1. This leads to extra remedy steps not shown in Algorithm 4.
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A constant-time procedure that performs the just described idealized strategy for
computing the group action of Equation 1 is shown in Algorithm 4 ofAppendix A.

The computational cost of the group action is dominated by the calculation of n
degree-`i isogeny evaluations and constructions plus a total of n(n+1)

2 scalar multiplica-
tions by the prime factors `i, for i = 1, . . . , n. A similar multiplication-based approach
for computing the group action algorithm was proposed in the original CSIDH protocol
of [8]. It was first stated in [5, §8] (see also [19]) that this multiplication-based procedure
could possibly be improved by adapting to CSIDH, the SIDH optimal strategy approach
introduced by deFeo, Jao and Plût in [16]. We briefly discuss about the role of optimal
strategies for large instances of CSIDH in §3, where the approach presented in [10] was
adopted.

2.2 Playing the B-SIDH

In the B-SIDH protocol proposed by Costello in [12], Alice and Bob work in the (p+1)-
and (p− 1)-torsion of a set of supersingular curves defined over Fp2 and the set of their
quadratic twist, respectively. B-SIDH is effectively twist-agnostic because optimized
isogeny and Montgomery arithmetic only require the x-coordinate of the points along
with the A coefficient of the curve.3 This feature implies that B-SIDH can be executed
entirely à la SIDH as shown in Figure 2.4

More concretely, let E : By2 = x3 + Ax2 + x denote a supersingular Montgomery
curve defined over Fp2 , so that #E(Fp2) = (p+1)2, and let Et/Fp2 denote the quadratic
twist of E/Fp2 . Then, Et/Fp2 can be modeled as, (γB)y2 = x3+Ax2+x, where γ ∈ Fp2

is a non-square element and #E(Fp2) = (p−1)2. Notice that the isomorphism connecting
these two curves is determined by the map ι : (x, y) 7→ (x, jy) with j2 = γ (see [12, §3]).

Hence, for any Fp2-rational point P := (x, y) on Et/Fp2 it follows that Q := ι(P ) =
(x, jy) is an Fp4-rational point on E, such that Q+π2(Q) = O. Here π : (x, y) 7→ (xp, yp)
is the Frobenius endomorphism. This implies that Q is a zero-trace Fp4-rational point
on E/Fp2 .

B-SIDH can thus be seen as a reminiscent of the CSIDH protocol [8], where the
quadratic twist is exploited to perform the computations using rational and zero-trace
points with coordinates in Fp2 . Although B-SIDH allows to work over smaller fields
than either SIDH or CSIDH, it requires the computation of considerably larger degree-`
isogenies.

As illustrated in Figure 2, B-SIDH can be executed analogously to the main flow of the
SIDH protocol. B-SIDH public parameters correspond to a supersingular Montgomery
curve E/Fp2 : By

2 = x3 +Ax2 + x with #E(Fp2) = (p+ 1)2, two rational points Pa and
Qa on E/Fp2 , and two zero-trace Fp4-rational points Pb and Qb on E/Fp2 such that

3For efficiency purposes, in practice both, the x-coordinate of the points and the constant A of the
curve, are projectivized to two coordinates.

4Although we omit here the specifics of the operations depicted in Figure 2, they are completely
analogus to the ones corresponding to SIDH, a protocol that is carefully discussed in many papers such
as [16, 14, 1].
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Public parameter:
E/Fp2 : By2 = x3 +Ax2 + x,

Pa, Qa ∈ E[p+ 1] of order M , and Pb, Qb ∈ E[p− 1] of order N

Alice

ska
$←− J0 . . M − 1K

Ra = Pa + [ska]Qa

φa : E → E/〈Ra〉
Ea = E/〈Ra〉

Eab = Eb/〈φb(Ra)〉

Bob

skb
$←− J0 . . N − 1K

Rb = Pb + [skb]Qb

φb : E → E/〈Rb〉
Eb = E/〈Rb〉

Eab = Ea/〈φa(Rb)〉

Ea, φa(Pb), φa(Qb)

Eb, φb(Pa), φb(Qa)

Figure 2: B-SIDH protocol for a prime p such that M |(p+ 1) and N |(p− 1).

• Pa and Qa are two independent order-M points with M | (p + 1), gcd(M, 2) = 2,
and

[
M
2

]
Qa = (0, 0);

• Pb and Qb are two independent order-N points with N | (p−1) and gcd(N, 2) = 1.

In practice, B-SIDH is implemented using projectivized x-coordinate points, and thus the
point differences PQa := Pa−Qa and PQb := Pb−Qb must also be recorded. Since the x-
coordinates of Pa, Qa, PQa, Pb, Qb and PQb, all belong to Fp2 , a B-SIDH implementation
must perform field arithmetic on that quadratic extension field.

As in the case of SIDH, the protocol flow of B-SIDH must perform two main phases,
namely, key generation and secret sharing. In the key generation phase, the evaluation
of the projectivized x-coordinate points x(P ), x(Q) and x(P −Q) is required. Thus for
B-SIDH, secret sharing is significantly cheaper than key generation.

We briefly discuss the role of optimal strategies for large instances of B-SIDH in the
next section.

3 Optimal strategies for the CSIDH and the B-SIDH

In [16], optimal strategies were introduced to efficiently compute degree-`e isogenies at
a cost of approximately e

2 log2 e scalar multiplications by `, e
2 log2 e degree-` isogeny

evaluations, and e constructions of degree-` isogenous curves. Optimal strategies can be
obtained using dynamic programming (see [2, 10] for concrete algorithms).

In the context of SIDH, optimal strategies tend to balance the number of isogeny eval-
uations and scalar multiplications to O(n log (n)). However, CSIDH optimal strategies
are expected to be largely multiplicative, i.e., optimal strategies will tend to favor the
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computation of more scalar multiplications. This is due to the fact that these operations
are cheaper than large prime degree ` isogeny evaluations.

Let L := [`1, `2, . . . , `74] be the list of small odd prime numbers such that p = 4 ·∏n
i=1 `i − 1 is the prime number used in CSIDH. In this work we adopt the framework

presented in [10], where the authors heuristically assumed that an arrangement of the
set L from the smallest to the largest `i, is close to the global optimal. For this fixed
ordering, it was presented in [10] a procedure that finds an optimal strategy with cubic
complexity with respect to n.

Similarly to SIDH [16], optimal strategies can be used to improve the performance
of B-SIDH, which requires the construction/evaluation of isogenies whose degrees are
powers of large odd primes. In [19, 10], optimal strategies were applied to the context
of CSIDH. In this work we adopted the framework proposed in [10], which permits an
intuitive and easy integration of optimal strategies to B-SIDH. Let us assume that we
need to construct a degree-L isogeny with L := `1

e1 · `2e2 · · · `nen , and let us write

L′ = [`1, . . . , `1︸ ︷︷ ︸
e1

, `2, . . . , `2︸ ︷︷ ︸
e2

, . . . , `n, . . . , `n︸ ︷︷ ︸
en

].
(2)

Then, an strategy for L′ can be used to perform the key generation or secret sharing
main phases of B-SIDH. In particular, any strategy for B-SIDH can also be encoded as
in SIDH and CSIDH protocols, i.e., by a list of e−1 positive integers where e =

∑n
i=1 ei.

Any such strategy can be evaluated from the procedure shown in Algorithm 5. As
in SIDH [16] and CSIDH [10], optimal strategies are found by means of a dynamic-
programming procedure. The evaluation of strategies for B-SIDH can be seen as an
hybrid between SIDH and CSIDH. On the one hand, B-SIDH shares the same protocol
flow with SIDH. On the other hand, B-SIDH must construct/evaluate multiple isogenies
with degrees of powers of large odd primes as in CSIDH.

4 The new Vélu’s formulae

This Section presents in more details the
√
élu algorithms when applied to isogeny-based

cryptography. Several algorithmic tricks that slightly improve the performance of
√
élu as

it was presented in [4] are given.
Let EA/Fq be an elliptic curve defined in Montgomery form by the equation y2 =

x3+Ax2+x, with A2 6= 4. Let P be a point on EA of odd prime order `, and φ : EA → EA′

a separable isogeny of kernel G = 〈P 〉 and codomain EA′/Fq : y
2 = x3 +A′x2 + x.

Our main task here is to compute A′ and the x-coordinate φx(α) of φ(Q), for a
rational point Q = (α, β) ∈ EA(Fq)\G. As mentioned in [4] (see also [13], [23] and [26]),
the following formulae allow to accomplish this task,

A′ = 2
1 + d

1− d and φx(α) = X` hS(1/α)
2

hS(α)2
,

where d =

(
A− 2

A+ 2

)`( hS(1)

hS(−1)

)8

, S = {1, 3, . . . , `− 2}, and
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hS(X) =
∏
s∈S

(X − x([s]P )).

From this, one can see that the efficiency of computing A′ and φx(α) lies on that
of computing hS(X). This is where

√
élu comes into play, with a baby-step giant-step

strategy permitting a square root speedup over the traditional Vélu’s formulae.

4.1 Construction and evaluation of odd degree isogenies

As in section 2, we consider the three building blocks KPS, xISOG, xEVAL, where KPS con-
sists of computing all the required x-coordinates of points in the kernel G, xISOG is the
computation of the codomain coefficient A′, and xEVAL performs the computation of
φx(α).

While the x-coordinates of (#S = (`− 1)/2) points in G are computed in KPS in the
traditional Vélu algorithm, with the new formulae in [4] only the x-coordinates of points
of G with indices in three subsets of S, each of size O(

√
`), are computed. Denote by I,

J and K those subsets of S. Then, I and J are chosen such that the maps I × J → S
defined by (i, j) 7→ i+ j and (i, j) 7→ i− j are injective and their images I+J , I −J are
disjoint. We call (I,J ) an index system for S and write I±J for (I+J )∩(I−J ). The
remaining indices of S are gathered in K = S\(I ± J ). Algorithm 1 states the required
KPS computations.

Algorithm 1 KPS

Require: An elliptic curve EA/Fq; P ∈ EA(Fq) of order an odd prime `.
Ensure: I = {x([i]P ) | i ∈ I}, J = {x([j]P ) | j ∈ J}, and K = {x([k]P ) | k ∈ K} such

that (I, J) is an index system for S, and K = S\(I ± J)
1: b← b

√
`− 1/2c; b′ ← b(`− 1)/4bc

2: I ← {2b(2i+ 1) | 0 ≤ i < b′}
3: J ← {2j + 1 | 0 ≤ j < b}
4: K ← S\(I ± J)
5: I ← {x([i]P ) | i ∈ I}
6: J ← {x([j]P ) | j ∈ J}
7: K ← {x([k]P ) | k ∈ K}
8: return I,J ,K

For the execution of xISOG and xEVAL, we need to define the following biquadratic
polynomials:

F0(Z,X) = Z2 − 2XZ +X2;

F1(Z,X) = 2(XZ2 + (X2 + 2AX + 1)Z +X);

F0(Z,X) = X2Z2 − 2XZ + 1.

10



The existence of these polynomials is a cornerstone of the
√
élu formulae. Indeed, they

provide a way around to the non-homomorphicity of the x-coordinate map on elliptic
curve points. We refer to [4] and [7, p. 132] for more details.

Let ResZ(f(Z), g(Z)) denote the resultant of two polynomials f, g ∈ Fq[Z]. We are
now ready to outline xISOG and xEVAL in Algorithm 2 and Algorithm 3, respectively.
Deriving the resultants in Algorithm 2 and Algorithm 3 may turn out to be a cumbersome
task if it is not carried out in an elaborated way. For polynomials f = a

∏
0≤i<n(Z − xi)

and g in Fq[Z], their resultant Res(f, g) = an
∏

0≤i<n g(xi) can be computed efficiently
when the factorization of f is known, which is exactly the case in the algorithms at
hand. Employing a remainder tree approach (an equivalent alternative being continued
fractions), one evaluates the factors g(xi) by computing g mod (Z − xi), 0 ≤ i < n, to
take their product afterwards.

One considerable advantage of using remainder trees here is that the subjacent prod-
uct tree of the (Z − xi) can be shared among all the resultants in Algorithm 2 and
Algorithm 3, since these linear polynomials depend only on the kernel 〈P 〉.

Algorithm 2 Computing xISOG

Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd
prime `; I,J ,K from KPS.

Ensure: A′ ∈ Fq such that EA′/Fq : y
2 = x3+A′x2+x is the image curve of a separable

isogeny with kernel 〈P 〉.
1: hI ←

∏
xi∈I(Z − xi)) ∈ Fq[Z]

2: E0,J ←
∏

xj∈J (F0(Z, xj) + F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

3: E1,J ←
∏

xj∈J (F0(Z, xj)− F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq

5: R1 ← ResZ(hI , E1,J) ∈ Fq

6: M0 ←
∏

xk∈K(1− xk) ∈ Fq

7: M1 ←
∏

xk∈K(−1− xk) ∈ Fq

8: d←
(
A−2
A+2

)` (
M0R0
M1R1

)8
9: return 2 1+d

1−d

Notice that the single most important high level operation is polynomial multiplica-
tion on the ring Fq[X]. Thus, as deemed in [4], it is essential to utilize fast tailor-made
polynomial multiplication algorithms, because in many places only a segment of the
output product is needed. Certainly the resultant ResZ(f(Z), g(Z)) of two polynomials
f, g ∈ Fq[Z] can be computed with an asymptotic runtime complexity of Õ(n) by using a
fast polynomial multiplication, where here fast means that it requires O(n log2(n)) field
multiplications (see [3, p. 7, §3]). Nevertheless, the required degree polynomials for the
case of CSIDH and even B-SIDH, are sufficiently small for karatsuba polynomial multi-
plication (or any of its variants like Toom-Cook), emerges as a more efficient solution.
For example, according to the implementation of [4], ` = 587 requires polynomials of
degree #I = 16 and 2×#J = 18 (in the B-SIDH case, #I,#J ≤ 150). It can be easily

11



Algorithm 3 Computing xEVAL

Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd
prime `; the x-coordinate α 6= 0 of a point Q ∈ EA(Fq)\〈P 〉; I, J , K from KPS.

Ensure: The x-coordinate of φ(Q), where φ is a separable isogeny of kernel 〈P 〉.
1: hI ←

∏
xi∈I(Z − xi)) ∈ Fq[Z]

2: E0,J ←
∏

xj∈J
(
F0(Z, xj)/α

2 + F1(Z, xj)/α+ F2(Z, xj)
)
∈ Fq[Z]

3: E1,J ←
∏

xj∈J
(
F0(Z, xj)α

2 − F1(Z, xj)α+ F2(Z, xj)
)
∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq

5: R1 ← ResZ(hI , E1,J) ∈ Fq

6: M0 ←
∏

xk∈K(1/α− xk) ∈ Fq

7: M1 ←
∏

xk∈K(α− xk) ∈ Fq

8: return (M0R0)
2/(M1R1)

2

verified that Karatsuba polynomial multiplication becomes a more efficient choice.

4.2 Implementation speedups

In this section we report a few algorithmic techniques that are exploited in our imple-
mentation to obtain some modest but noticeably savings over [4]. Our first refinement
affects xEVAL, and arises from the special shape of the biquadratic polynomials F0, F1,
F2. In fact, with respect to either variable, one can see that F1 is symmetric and F0 is
symmetric to F2

5, that is, F1 = 1/Z2 F1(1/Z,X) and F2 = 1/Z2 F0(1/Z,X), considering
the first variable for example. Now, using a projective representation of the x-coordinate
α = x/z in xEVAL, we can write a quadratic polynomial factor in E0,J and a quadratic
polynomial factor in E1,J respectively as

E0,j = 1/x2
(
F0(Z, xj)z

2 + F1(Z, xj)xz + F2(Z, xj)x
2
)
;

E1,j = 1/z2
(
F0(Z, xj)x

2 + F1(Z, xj)xz + F2(Z, xj)z
2
)
.

Thus, it becomes clear that the polynomials x2#JE0,J and z2#JE1,J are symmetric to
one another, allowing to save the computation of one of the two products E0,J , E1,J . This
gives us an expected saving of #J · log2 (#J ) polynomial multiplications via product
trees.

Our next improvement is focused on the computation of E0,j . Let us write xj := Xj/Zj .

5Consequently, all the quadratic factors of E0,J and E1,J in xISOG are symmetric. Bernstein et al. [4,
Appendix A.5] were aware of this fact and took advantage of it to speed up the computation of E0,J ,
E1,J .

12



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  200  400  600  800  1000  1200  1400

F
ie

ld
 m

u
lt

ip
li

ca
ti

o
n

s

Isogeny degree

measured cost
expected cost

(a) Running time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  200  400  600  800  1000  1200  1400

(m
ea

su
re

d
 c

o
st

)/
(e

x
p

ec
te

d
 c

o
st

)

Isogeny degree

(b) Asymptotic constant

Figure 3: Measured and expected running time of KPS + xISOG + xEVAL for all the 207
small odd primes `i required in the group action evaluation of CSIDH-1792 (see [10]).
All computational costs are given in Fp-multiplications. The expected running time

corresponds to Cost(b) with b =
√

(`−1)
2 .

Then,
(
F0(Z, xj)z

2 + F1(Z, xj)xz + F2(Z, xj)x
2
)
can be expressed as aZ2+bZ+c, where

a = C · (x · Zj − z ·Xj)
2;

2b =
([
C · (X2 + Z2)

]
· (−4 ·Xj · Zj)−

[
2 · (X2

j + Z2
j )
]
·
(
2 · [C · (X · Z)]

))
+
((

2 · [A′ · (X · Z)]
)
· (−4 ·Xj · Zj)

)
;

c = (C · (x ·Xj − z · Zj)
2.

In fact, the three equations above, can be implemented (with the help of some extra
pre-computations required in xISOG) at a cost of 7M + 3S + 12a field operations. This
cost should be compared with the implementation of [4], which requires 11M + 2S +
13a field operations. Assuming M = S, this implies that our proposed formulae saves 3
field multiplications per polynomial E0,j , 0 ≤ j < #J .

Let us now illustrate the improvements just described applied to the example ` =
587. Let us recall that in the implementation of [4], we have #I = 16 and #J = 9.
Consequently, our first improvement saves 9 log2(9) ≈ 28 polynomial multiplications via
product trees. On the other hand, our second improvement saves 3×#J = 3× 9 = 27
field multiplications.
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4.3 Concrete computational analysis

In this subsection, the computational cost associated to the combined evaluation of the
KPS, xISOG, and xEVAL procedures is derived.6

First note that KPS (see Algorithm 1), can be performed at a cost of about 3b
differential point additions (assuming #I ≈ #J ≈ #K ≈ b), which implies an expense of
at most (18b)M field multiplications. Here b = b

√
`−1
2 c as given in Step 1 of Algorithm 1.

Observe also that the computation of the polynomial hI(Z) required at Step 1 of
both, xISOG (Algorithm 2) and xEVAL (Algorithm 3) procedures, can be shared and thus
must be computed only once. One interesting observation of [4], is that the computa-
tion of the polynomials E0,J and E1,J in xISOG (see Steps 2-3 of Algorithm 2), can be
performed at a cost of only one product tree procedure. Furthermore, as it was already
discussed in subsection 4.2, this same trick can also be applied to xEVAL, i.e., Steps 2-3 of
Algorithm 3 can be calculated by executing only one product tree. Hence, each polyno-
mial Ei,J , i = 0, 1, required by xISOG and xEVAL can be obtained at a cost of (3b)M and
(10b)M field operations, respectively.

Additionally, in Steps 4-5 of xISOG and xEVAL, the computation of two resultants
are required, implying that four resultants must be computed in total. Each Resultant
corresponds to the computation of ResZ(f(Z), g(Z)) such that f, g ∈ Fq[Z], deg f = b′ ≈
b and deg g = 2b. A detailed description of the cost of computing such a resultant in
terms of b by means of computing the leaves of remainder trees is given in Appendix B.
In Appendix B, it is shown that the complexity in terms of field operations associated to
the computation of a resultant as described in §4.2 is given as,

R(b) = 9blog2(3)

(
1− 2

(
2

3

)log2(b)+1
)

+ 2b log2(b) . (3)

The constantsM0 andM1 in Steps 6-7 of xISOG and xEVAL, have a cost of (2b)M and
(4b)M field operations, respectively. Lastly, the computations of the coefficient d of
xISOG and the output of xEVAL require about (3 log2(b) + 16) multiplications. All in all
and invoking Equation 3, the evaluation of KPS, xISOG, and xEVAL procedures have a
combined cost of approximately,

Cost(b) = 4

(
9blog2(3)

(
1− 2

(
2

3

)log2(b)+1
)

+ 2b log2(b)

)
(4)

+ 3

((
1− 1

3log2(b)+1

)
blog2(3)

)
+ 37b+ 3 log2(b) + 16.

In order to verify the correctness of the cost predicted by Equation 4, the experiment
described next was implemented.

6In the sequel,
√
élu computational costs are derived assuming a projective coordinate system and

M = S .
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We computed degree-` isogenies for all the odd prime factors `1, `2, . . . , `207 of p+ 1,
where p is the prime used in the CSIDH-1792 instantiation proposed in [10]. Figure 3
shows an excellent approximation between the theoretical cost of Equation 4 and the
experimental results obtained from our Python3 software, where it was observed that
(measured runtime) ≈ 0.97× (expected runtime).

Recall that the derivation of the expected cost of Equation 4 (See Appendix B), is
driven by the assumption that M = S, which is the typical case for CSIDH. For the
B-SIDH case on the other hand, since one is working on the quadratic extension field
Fp2 , it holds that M = 3MFp and S = 2MFp , and thus S = 2

3M. However, as an upper
bound (for the B-SIDH case), we can assume M = 3MFp and M = S, which gives an
expected running-time of 3× Cost(b) Fp-multiplications.

A quick inspection of Algorithm 1-Algorithm 3, reveals that it is straightforward to
concurrently compute many of the operations required by all three of those procedures.
Specifically, the calculation of the four resultants in Steps 4-5 of Algorithm 2-Algorithm 3
show no dependencies among them and can therefore be computed in parallel by a multi-
core processor. Since the four resultant calculations accounts for about 85% of the total
computational cost of

√
élu, the expected savings are substantial.

5 Experiments and discussion

In this section we present a Python3-code constant-time implementation of the B-SIDH
and CSIDH protocols, which make extensive usage of the

√
élu’s formulae introduced

in [4] boosted with the computational tricks presented in section 4. Furthermore, the op-
timal strategy framework presented in [10] is also exploited to maximize the performance
of both protocols. Our software library is freely available at

https://github.com/JJChiDguez/velusqrt .

The main aim of our Python3-code software is to benchmark the total number of addi-
tions, multiplications, and squarings required by the instantiations of the two aforemen-
tioned protocols. To this end, we included counters inside the field arithmetic function
cores for fp_add(), fp_sub(), fp_mul(), and fp_sqr(). Hence, all the performance figures
presented in this section correspond with our count of field operations in the base field
Fp. In the case of the B-SIDH experiments, using standard arithmetic tricks the multi-
plication and squaring over Fp2 were performed at the cost of 3M + 5a and 2M + 3a
base field operations, respectively.

All the experiments performed in this section are centered on comparing the following
configurations, which are based on tradicional Vélu’s formuale [13, 29] and

√
élu:

• Using the tradicional Vélu’s formulae (labeled as tvelu);

• Using
√
élu (labeled as svelu);

• Using a hybrid between traditional Vélu and
√
élu (labeled as hvelu).
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Notice that because of the nature of each protocol, the B-SIDH experiments are
randomness-free, which implies that the same cost is reported for any given instance.
In contrast, the CSIDH experiments have a variable cost determined by the randomness
introduced by the order of the torsion points sampled from its Elligator-2 procedure (for
a more detailed explanation see [9]).

5.1 Experiments on the CSIDH

Our Python3-code implementation of the CSIDH protocol includes a portable version for
the following CSIDH instantiations,

1. Two torsion point with dummy isogeny constructions (OAYT-style [27])

2. One torsion point with dummy isogeny constructions (MCR-style [22])

3. Two torsion point without dummy isogeny constructions (Dummy-free style [9])

Our software supports performing experiments with any prime field of p = 2e·(∏n
i=1 `i)−1

elements, for any e ≥ 1. Our experiments were focused on the CSIDH-512 prime proposed
in [8], the CSIDH-1024 prime proposed in [4], and the CSIDH-1792 prime proposed
in [10]. The required number of field operations for those CSIDH variants are reported
in Table 1, Table 2, and Table 3. In addition, each table presents a comparison between
the results of this work and the ones presented in [10]. It is worth mentioning that
optimal strategies and suitable bound vectors according to [10, section 3.4, 4.4 and 4.5]
were used and computed for each configuration.

When comparing with respect to CSIDH constant-time implementations using tra-
ditional Vélu’s formulae, our experimental results report a saving of 5.357%, 13.68%
and 25.938% field Fp-operations for CSIDH-512, CSIDH-1024, and CSIDH-1792, respec-
tively. These results are somewhat more encouraging than the ones reported in [4], where
speedups of about 1% and 8% were reported for a non constant-time implementation of
CSIDH-512 and CSIDH-1024.

5.2 Experiments playing the B-SIDH

To the best of our knowledge, we present in this section the first implementation of the B-
SIDH protocol, which was designed to be a constant-time one. As in the case of CSIDH,
we report here the required number of Fp arithmetic operations. Similarly to CSIDH,
the B-SIDH implementation provided in this work, allows to perform experiments with
any prime field of p elements such that p ≡ 3 mod 4. The main contribution provided in
this subsection corresponds to a comparison of B-SIDH instantiations using the primes
B-SIDHp253, B-SIDHp255,B-SIDHp247,B-SIDHp237 and B-SIDHp257, as de-
scribed in Appendix C.

All the above primes were chosen considering the following features: i) p ≡ 3 mod 4,
ii) the isogeny degrees are as small as it was possible to find, and iii) 2210 < N,M .
Our Python3-code implementation uses the degree-4 isogeny construction and evaluation
formulae given in [11]. The corresponding experimental results for the key generation and
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Configuration Group action evaluation M S a Cost Saving (%)

tvelu
OAYT-style 0.641 0.172 0.610 0.813

—MCR-style 0.835 0.231 0.785 1.066
dummy-free 1.246 0.323 1.161 1.569

svelu
OAYT-style 0.656 0.178 0.988 0.834 −2.583
MCR-style 0.852 0.219 1.295 1.071 −0.469
dummy-free 1.257 0.324 1.888 1.581 −0.765

hvelu
OAYT-style 0.624 0.165 0.893 0.789 2.952
MCR-style 0.805 0.204 1.164 1.009 5.347
dummy-free 1.198 0.301 1.696 1.499 4.461

Table 1: Number of field operation for the constant-time CSIDH-512 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. For comput-
ing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column
labeled Saving corresponds to

(
1− Cost

baseline

)
× 100 and baseline equals to tvelu configuration.

Configuration Group action evaluation M S a Cost Saving (%)

tvelu
OAYT-style 0.630 0.152 0.576 0.782

—MCR-style 0.775 0.190 0.695 0.965
dummy-free 1.152 0.259 1.012 1.411

svelu
OAYT-style 0.566 0.138 0.963 0.704 9.974
MCR-style 0.702 0.152 1.191 0.854 11.503
dummy-free 1.046 0.230 1.746 1.276 9.568

hvelu
OAYT-style 0.552 0.133 0.924 0.685 12.404
MCR-style 0.687 0.146 1.148 0.833 13.679
dummy-free 1.027 0.221 1.679 1.248 11.552

Table 2: Number of field operation for the constant-time CSIDH-1024 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. For comput-
ing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column
labeled Saving corresponds to

(
1− Cost

baseline

)
× 100 and baseline equals to tvelu configuration.

secret sharing phases are presented in Table 4 and Table 5, respectively. It can be seen
that significant savings ranging from 24% up to 76% were obtained by B-SIDH combined
with

√
élu with respect to the same implementation of this protocol using traditional

Vélu’s formulae.
Notice that the best results were obtained when using the B-SIDHp253 configura-

tion, which seems to be faster than any CSIDH instantiation, mostly due to its small
256-bit field.

5.3 Discussion

Table 6 presents the clock cycle counts for several isogeny-based protocols recently re-
ported in the literature. Rather than providing a direct comparison, the main purpose
of including this table here is that of providing a perspective of the relative timing costs
of several emblematic implementations of isogeny-based key-exchange primitives.
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Configuration Group action evaluation M S a Cost Saving (%)

tvelu
OAYT-style 1.385 0.263 1.137 1.648

—MCR-style 1.041 0.239 0.911 1.280
dummy-free 1.557 0.327 1.336 1.884

svelu
OAYT-style 1.063 0.187 2.073 1.250 24.150
MCR-style 0.807 0.154 1.550 0.961 24.922
dummy-free 1.233 0.247 2.314 1.480 21.444

hvelu
OAYT-style 1.060 0.185 2.061 1.245 24.454
MCR-style 0.797 0.151 1.522 0.948 25.938
dummy-free 1.220 0.241 2.272 1.461 22.452

Table 3: Number of field operation for the constant-time CSIDH-1792 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. For comput-
ing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column
labeled Saving corresponds to

(
1− Cost

baseline

)
× 100 and baseline equals to tvelu configuration.

Configuration Alice’s side Bob’s side
M a Saving (%) M a Saving (%)

tvelu

B-SIDHp253 4.229 8.731

—

3.444 7.107

—
B-SIDHp255 4.254 8.774 2.900 5.984
B-SIDHp247 0.910 1.881 2.295 4.735
B-SIDHp237 0.077 0.164 10.449 21.532
B-SIDHp257 4.281 8.828 0.303 0.630

svelu

B-SIDHp253 1.176 4.403 72.192 0.972 3.750 71.777
B-SIDHp255 1.225 4.664 71.204 0.879 3.252 69.690
B-SIDHp247 0.452 1.492 50.330 0.997 3.423 56.558
B-SIDHp237 0.106 0.243 −37.663 2.772 10.684 73.471
B-SIDHp257 1.332 4.933 68.886 0.230 0.665 24.092

hvelu

B-SIDHp253 1.158 4.355 72.618 0.953 3.699 72.329
B-SIDHp255 1.223 4.659 71.251 0.867 3.221 70.103
B-SIDHp247 0.442 1.461 51.429 0.995 3.420 56.645
B-SIDHp237 0.077 0.164 00.000 2.770 10.676 73.490
B-SIDHp257 1.321 4.905 69.143 0.217 0.633 28.383

Table 4: Number of base field operation in Fp for the public key generation phase of BSIDH.
Counts are given in millions of operations. Columns labeled Saving correspond to

(
1− Cost

baseline

)
×

100 and baseline equals to tvelu configuration.

Clearly,
√
élu has a dramatic impact on the performance of B-SIDH, so much so that

one can claim confidently that B-SIDH outperforms any instantiation of CSIDH. For
example, using the B-SIDH configuration presented in example 2 of [12], Alice and Bob
will require about 1.620 × 220 and 1.343 × 220 base field multiplications in Fp, where p
is a 256-bit prime, respectively. In particular, making the conservative assumption that
a 256-bit field multiplication takes 40 clock cycles, then a key exchange using B-SIDH
would cost about 118.520× 220 clock cycles. On the other hand, the fastest CISDH-512
group action evaluation (see [19, 10]) takes about 230×220 clock cycles. Therefore, a key
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Configuration Alice’s side Bob’s side
M a Saving (%) M a Saving (%)

tvelu

B-SIDHp253 1.831 3.936

—

1.529 3.277

—
B-SIDHp255 1.931 4.127 1.305 2.795
B-SIDHp247 0.434 0.928 1.113 2.372
B-SIDHp237 0.053 0.115 4.872 10.377
B-SIDHp257 1.963 4.190 0.156 0.336

svelu

B-SIDHp253 0.472 1.769 74.222 0.400 1.546 73.839
B-SIDHp255 0.505 1.945 73.847 0.370 1.357 71.648
B-SIDHp247 0.208 0.668 52.074 0.450 1.543 59.569
B-SIDHp237 0.068 0.157 −28.302 1.184 4.590 75.698
B-SIDHp257 0.562 2.094 71.370 0.116 0.327 25.641

hvelu

B-SIDHp253 0.462 1.741 74.768 0.390 1.517 74.493
B-SIDHp255 0.505 1.943 73.847 0.362 1.338 72.261
B-SIDHp247 0.203 0.653 53.226 0.449 1.541 59.659
B-SIDHp237 0.053 0.115 00.000 1.183 4.585 75.718
B-SIDHp257 0.555 2.077 71.727 0.108 0.306 30.769

Table 5: Number of base field operation in Fp for the secret sharing phase of BSIDH. Counts
are given in millions of operations. Columns labeled Saving correspond to

(
1− Cost

baseline

)
× 100

and baseline equals to tvelu configuration.

Implementation Protocol Instantiation Mcycles
SIKE [2] SIKEp434 22

Castryck et al. [8] CSIDH-512 unprotected 4 × 155

Bernstein et al. [4] CSIDH-512 unprotected 4 × 153
CSIDH-1024 unprotected 4 × 760

Cervantes-Vázquez et al. [9] CSIDH-512 MCR-style 4 × 339
CSIDH-512 OAYT-style 4 × 238

Hutchinson et al. [19] CSIDH-512 OAYT-style 4 × 229

Chi-Domínguezet al. [10] CSIDH-512 MCR-style 4 × 298
CSIDH-512 OAYT-style 4 × 230

This work (estimated)
CSIDH-512 MCR-style 4 × 282
CSIDH-512 OAYT-style 4 × 223

B-SIDH-p253 119

Table 6: Skylake Clock cycle timings for a key exchange protocol for different instantiations of
the SIDH, CSIDH, and B-SIDH protocols.

exchange using CSIDH would take about 920× 220 clock cycles (considering four group
action evaluations). This implies that B-SIDH is expected to be about 8x faster than
the fastest CSIDH-512 C-code implementation.

Costello proposed in [12] that B-SIDH could be useful for key-exchange scenarios
executed in the context of a client-server session. Typically, one could expect that the
client has much more constrained computational resources than the server. In the case
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that the prime B-SIDHp237 is chosen for performing a B-SIDH key exchange, Alice and
Bob would require about 0.13 × 220 and 3.953 × 220 base field multiplications in Fp.
Assuming once again that that a 256-bit field multiplication takes 40 clock cycles, then
a key exchange using B-SIDH would cost about 5.20× 220 and 158.12× 220 clock cycles
for Alice and Bob, respectively. For comparison, a SIKEp434 key exchange costs about
10.73×220 and 12.04×220 clock cycles for Alice and Bob, respectively. Hence, Alice (the
client) will benefit with a B-SIDHp237 computation that is about twice as fast as the one
required in SIKEp434. This will come at the price that Bob’s computation (the server)
would become thirteen times more expensive. On the other hand, the B-SIDHp237 key
sizes are noticeably smaller than the ones required in SIKEp434. This feature is especially
valuable for highly constrained client devices.

We stress that the quantum security level offered by the CSIDH instantiations re-
ported in this work have been recently call into question in [28, 6].

In terms of security, the B-SIDH instantiations reported in this paper should achieve
the same classical and quantum security level than a SIDH instantiations using the
SIKEp434 prime. However, B-SIDH is susceptible to the active attack described in [18].
To offer protection against this kind of attacks, B-SIDH should incorporate a key encap-
sulation mechanism such as the one included in [2]. Providing this protection will imply
an extra overhead for B-SIDH, which was not considered in this paper.

6 Conclusions

A concrete analysis of
√
élu introduced in [4] was presented in this paper. From our anal-

ysis we conclude that for most practical scenarios, the best approach for performing the
polynomial products associated to

√
élu, is achieved by Karatsuba polynomial multipli-

cations. The main practical consequence of this observation is that computing degree-`
isogenies with

√
élu has a concrete computational complexity essentially proportional to

blog2 (3), where b =
√
`.

We introduced several algorithmic tricks that permit to save multiplications when per-
forming the polynomial products involving the computation of the resultants included
in Algorithm 2-Algorithm 3. The combination of these improvements allows us to con-
struct and evaluate degree-` isogenies with a slightly lesser number of arithmetic opera-
tions than the ones employed in [4].

We applied
√
élu and optimal strategies to several instantiations of the CSIDH and

B-SIDH protocols, producing the very first constant-time implementation of the latter
protocol for a selection of primes taken from [12, 4].

Our future work includes C constant-time single-core and multi-core implementations
of the two protocol instantiations studied in this work. We would also like to study more
efficient selections of the sets I,J and K as defined in §4.1, which could yield more
economical computations of

√
élu.
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A Algorithms

Algorithm 4 Simplified constant-time CSIDH class group action for supersingular curves over Fp,
where p = 4

∏n
i=1 `i − 1. The ideals li = (`i, π − 1), where π maps to the p-th power Frobenius

endomorphism on each curve. This algorithm computes exactly m isogenies for each ideal li (Adapted
from [10]).

Require: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each ei ∈ [0,m]),
m a positive number.

Ensure: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1: E0 ← E // Initializing to the base curve
2: // Outer loop: Each `i is processed m times
3: for i← 1 to m do
4: T ← GetFullTorsionPoint(E0) // T ∈ En[π − 1]
5: T ← [4]T // Now T ∈ En

[∏
i `i
]

6: // Inner loop: processing each prime factor `i|(p+ 1)
7: for j ← 0 to (n− 1) do
8: Gj ← T
9: for k ← 1 to (n− 1− j) do

10: Gj ← [`k]Gj

11: end for
12: if en−j 6= 0 then
13: 〈Gj〉 ← KPS(Gj)
14: E(j+1) mod n ← xISOG(Ej , `n−j , 〈Gj〉)
15: T ← xEVAL(T, 〈Gj〉)
16: en−j ← en−j − 1
17: else
18: 〈Gj〉 ← KPS(Gj)
19: xISOG(Ej , `n−j , 〈Gj〉) // Dummy operations
20: T ← [`n−j ]T
21: Ej+1 mod n ← Ej

22: end if
23: end for
24: end for
25: return E0

B Computational cost of computing resultants via remain-
der trees

In this section we focused on the computational cost associated to a resultant compu-
tation via remainder trees. Resultants are required by the

√
élu procedures xISOG and

xEVAL.
Formally, each one of the two resultants required by Algorithm 2 and Algorithm 3,

corresponds to the computation of ResZ(f(Z), g(Z)) such that f, g ∈ Fq[Z], deg f = b′ ≈
b and deg g = 2b. Our goal in this Appendix is that of deriving the cost of the resultant
computation in terms of b. For the sake of simplicity, let us assume deg f = b.

It is important to highlight that the modular polynomial reduction required at each
node in the remainder tree, can be performed via reciprocal computations (for more
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Algorithm 5 Large composite degree isogeny construction

Require: a supersingular Montgomery curve E/Fp2 : By
2 = x3 + Ax2 + x, a kernel point generator R

on E/Fp2 of order L := `1
e1 · `2e2 · · · `nen , and a strategy S

Ensure: the degree-L isogenous curve E/〈R〉
1: Set L′ as in Equation 2 // S must be determined by L′

2: ramifications← [R] // list of points to be evaluated
3: moves← [0]; k ← 0
4: e← #L′ // e must be equal to #S + 1
5: // Outer loop: Each `i is processed ei times
6: for i := 0 to #S − 1 do
7: prev ← sum(moves)
8: // Inner loop: computing the kernel point generator
9: while prev < (e− 1− i) do

10: moves.append(Sk)
11: V ← last element of ramifications
12: for j := prev to prev + Sk do
13: V ← [L′j ]V
14: end for
15: ramifications.append(V ) // New point to be evaluated

prev ← prev + Sk

16: k ← k + 1
17: end while
18: G← last element of ramifications
19: 〈G〉 ← KPS(G)
20: E ← xISOG(E, `e−1−i, 〈G〉)
21: // Inner loop: evaluating points
22: for j := 0 to #moves− 1 do
23: ramificationsj ← xEVAL(ramificationsj , 〈G〉)
24: end for
25: moves.pop()
26: ramifications.pop()
27: end for
28: G← the unique element of ramifications
29: 〈G〉 ← KPS(G)
30: E ← xISOG(E, `0, 〈G〉)
31: return E
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details see [3, p. 27, §17]). For example, the modular polynomial reduction g mod f
requires two degree-b polynomial multiplications modulo xb, one constant multiplication
by a degree-b polynomial, and the reciprocal computation modulo xb (that is, 1/f mod
xb). In turn, the cost of a reciprocal computation modulo xb can be estimated by the
expenses associated to two degree-(b/2) polynomial multiplications modulo xb/2, one
constant multiplication by a degree-(b/2) polynomial, and another reciprocal, but this
time modulo x(b/2). The above implies that a reciprocal modulo xb should be computed
recursively. Its associated running time complexity equation is given as,

T (b) = T

(
b

2

)
+ 2t

(
b

2

)
+
b

2
,

where t(b) denotes the polynomial multiplication cost of two degree-b polynomials modulo
xb. Now, assuming that a Karatsuba polynomial multiplication is used, it follows that

T (b) ≈ T
(
b

2

)
+ 2

(
b

2

)log2(3)

+
b

2
= T

(
b

2

)
+

2

3
blog2(3) +

b

2

=

log2(b)∑
i=0

(
2

3

(
b

2i

)log2(3)

+
b

2i+1

)

=

(
2

3
blog2(3)

) log2(b)∑
i=0

1

3i
+

(
b

2

) log2(b)∑
i=0

1

2i

=

(
1− 1

3log2(b)+1

)
blog2(3) +

(
1− 1

2log2(b)+1

)
b .

Hence, the polynomial reduction g mod f is expected to have a running time of((
3− 1

3log2(b)+1

)
blog2(3) +

(
2− 1

2log2(b)+1

)
b
)
field multiplications.

Now, the remainder tree of f and g is constructed going from its root all the way to
its leaves. To do this, at the i-th level of the remainder tree 2i modular reductions of
the form g mod f such that deg f ≈ b

2i
and deg g ≈ 2 deg f, must be performed. Their

combined cost is given as,

R(b, i) :=
(
2i
)((

3− 1

3log2(b/2
i)+1

)(
b

2i

)log2(3)

+

(
2− 1

2log2(b/2
i)+1

)(
b

2i

))

=
(
2i
)((

3− 1

3log2(b)−i+1

)(
blog2(3)

3i

)
+

(
2− 1

2log2(b)−i+1

)(
b

2i

))

= 3blog2(3)

((
2

3

)i

−
(

2i

3log2(b)

))
+

(
2− 2i

2log2(b)+1

)
b .

Furthermore, the cost of the remainder tree construction can be done with about
R(b) :=

∑log2(b)
i=0 R(b, i) field multiplications. In particular,
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R(b) = 9blog2(3)

(
1−

(
2

3

)log2(b)+1

−
(
2log2(b)+1

3log2(b)+1

))
+

(
2 log2(b)−

2log2(b)+1

2log2(b)+1

)
b

= 9blog2(3)

(
1− 2

(
2

3

)log2(b)+1
)

+
(
2 log2(b)− 1

)
b .

Finally, once the remainder tree has been constructed, the next step is to multiply
all its leaves, which has an extra cost of b field multiplications, and produces that the
Resultant ResZ(f(Z), g(Z)) computation requires a total of(

9blog2(3)

(
1− 2

(
2

3

)log2(b)+1
)

+ 2b log2(b)

)
M.

On the other hand, the polynomials required in the root of the remainder tree can
be obtained via product trees at a cost of

((
1− 1

3log2(b)+1

)
blog2(3)

)
field multiplications.

C B-SIDH primes

1. Example 2. of [12, section 5.2], we named it as B-SIDHp253:

p = 0x1935BECE108DC6C0AAD0712181BB1A414E6A8AAA6B510FC29826

190FE7EDA80F,

M = 42 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011 · 14207 · 28477
· 76667, and

N = 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449 · 33461 · 51193.

2. Example 3. of [12, section 5.2], we named it as B-SIDHp255:

p = 0x76042798BBFB78AEBD02490BD2635DEC131ABFFFFFFFFFFFFFFF

FFFFFFFFFFFF,

M = 455 · 5 · 72 · 67 · 223 · 4229 · 9787 · 13399 · 21521 · 32257 · 47353,
and

N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107 · 109 · 131 · 137 · 197 · 199
· 227 · 251 · 5519 · 9091 · 33997 · 38201.

3. Example 5. of [12, section 5.3], we named it as B-SIDHp247:

28



p = 0x46B27D6FAE96ED4A639E045B7D2C3CA33F476892ADAFF87B9B6E

AE5EE1FFFF,

M =
(
42 · 52 · 7 · 23 · 79 · 107 · 307 · 2129

)4 · 79012, and
N = 3 · 11 · 17 · 241 · 349 · 421 · 613 · 983 · 1327 · 1667 · 2969 · 3769 ·

4481 · 4649 · 4801 · 4877 · 5527 · 6673 · 7103 · 7537 · 7621.

4. Example 6. of [12, section 5.3], we named it as B-SIDHp237:

p = 0x1B40F93CE52A207249237A4FF37425A798E914A74949FA343E8E

A487FFFF,

M = 43 ·
(
4 · 34 · 17 · 19 · 31 · 37 · 532

)6
, and

N = 7 · 13 · 43 · 73 · 103 · 269 · 439 · 881 · 883 · 1321 · 5479 · 9181 ·
12541 · 15803 · 20161 · 24043 · 34843 · 48437 · 62753 · 72577.

5. Lucky proposal of [4, appendix A], we named it as B-SIDHp257:

p = 0x1E409D8D53CF3BEB65B5F41FB53B25EBEAF37761CD8BA9966841

50A40FFFFFFFF,

M = 416 · 521 · 7 · 11 · 163 · 1181 · 2389 · 5233 · 8353 · 10139 · 11939 ·
22003 · 25391 · 41843, and

N = 356 · 31 · 43 · 59 · 271 · 311 · 353 · 461 · 593 · 607 · 647 · 691 · 743 ·
769 · 877 · 1549.
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