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Abstract. Although they have been studied for a long time, distributed signature protocols have
garnered renewed interest in recent years in view of novel applications to topics like blockchains.
Most recent works have focused on distributed versions of ECDSA and over variants of Schnorr
signatures, however, and in particular, little attention has been given to constructions based on post-
quantum secure assumptions like the hardness of lattice problems. A few lattice-based threshold
signature and multi-signature schemes have been proposed in the literature, but they either rely on
hash-and-sign lattice signatures (which tend to be comparatively inefficient), use expensive generic
transformations, or only come with incomplete security proofs.

In this paper, we construct several lattice-based distributed signing protocols with low round com-
plexity following the Fiat–Shamir with Aborts (FSwA) paradigm of Lyubashevsky (Asiacrypt 2009).
Our protocols can be seen as distributed variants of the fast Dilithium-G signature scheme and the
full security proof can be made assuming the hardness of module SIS and LWE problems. A key
step to achieve security (unexplained in some earlier papers) is to prevent the leakage that can occur
when parties abort after their first message—which can inevitably happen in the Fiat–Shamir with
Aborts setting. We manage to do so using homomorphic commitments.

Exploiting the similarities between FSwA and Schnorr-style signatures, our approach makes the
most of observations from recent advancements in the discrete log setting, such as Drijvers et
al.’s seminal work on two-round multi-signatures (S&P 2019). In particular, we observe that the
use of commitment not only resolves the subtle issue with aborts, but also makes it possible to
realize secure two-round n-out-of-n distributed signing and multi-signature in the plain public key
model, by equipping the commitment with a trapdoor feature. The construction of suitable trapdoor
commitment from lattices is a side contribution of this paper.

Keywords: threshold signatures, n-out-of-n distributed signatures, multi-signatures, lattice-based
cryptography, Fiat–Shamir with aborts, trapdoor commitments.
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1 Introduction

In recent years, distributed signing protocols have been actively researched, motivated by many new
applications for instance in the blockchain domain. One of the main motivations to construct a distributed
signature is reducing the risk of compromising the secret key, which could occur in various ways, for
instance as a result of attacks on cryptographic devices. In this paper, we study two similar classes of
distributed signing protocols that can be constructed from standard lattice-based computational hardness
assumptions, namely n-out-of-n distributed signature schemes and multi-signature schemes.

n-out-of-n signature. An n-out-of-n signature is a special case of general t-out-of-n threshold signature.
At a high level, the parties involved in n-out-of-n signature first invoke a key generation protocol in a
way that each individual party Pj learns a share skj of the single signing key sk, but sk is unknown to
anyone, and then they interact with each other to sign the message of interest. The required security
property can be informally stated as follows: If all n parties agree to sign the message then they always
produce a single signature that can be verified with a single public key pk; if at most n − 1 parties are
corrupted, it is not possible for them to generate a valid signature. Several recent works have studied
threshold versions of ECDSA, arguably the most widely deployed signature scheme, both in the 2-out-of-2
variant [Lin17,DKLs18,CCL+19] and in the more general t-out-of-n case [GGN16,GG18,LN18,DKLs19,
DKO+19,CCL+20,CMP20,GKSS20,DJN+20,GG20].

However it is well known that ECDSA does not withstand quantum attacks since it is based on
discrete log, and it is therefore important to study post-quantum alternatives which support threshold
signing. Despite this, very few works have considered n-out-of-n (or t-out-of-n) lattice-based signatures.
Bendlin et al. [BKP13] proposed a threshold protocol to generate Gentry–Peikert–Vaikuntanathan signa-
ture [GPV08]; Boneh et al. [BGG+18] developed a universal thresholdizer that turns any signature scheme
into a non-interactive threshold one, at the cost of using relatively heavy threshold fully homomorphic
encryption.

Fiat–Shamir with aborts. Neither of the above previous papers investigated signatures following the
Fiat–Shamir with Aborts (FSwA) paradigm due to Lyubashevsky [Lyu09,Lyu12], which was specifically
designed for lattice-based signatures and is nowadays one of the most efficient and popular approaches
to constructing such schemes. Recall that in standard Fiat-Shamir signatures, the scheme is based on an
underlying 3-move Σ-protocol where transcripts are of form (w, c, z) and where c is a random challenge.
This interactive protocol is then turned into a non-interactive signature scheme by choosing the challenge
as the hash of the first message w and the message to be signed. The FSwA paradigm follows the same
approach, with the important difference that the signer (prover) is allowed to abort the protocol after
seeing the challenge. Only the non-aborting instances are used for signatures, and it turns out that this
allows the signer to reduce the size of the randomness used and hence reduces signature size. This comes
at the cost of marginally larger signing time because some (usually quite small) fraction of the protocol
executions are lost due to aborts.

Examples of single-user schemes based on FSwA include Dilithium [LDK+19] and qTESLA [BAA+19],
which are round-3 and round-2 candidates of the NIST Post-Quantum Cryptography Standardization
process. Cozzo and Smart [CS19] recently estimated the concrete communication and computational
costs required to build a distributed version of these schemes by computing Dilithium and qTESLA with
generic multi-party computation. They pointed out inherent performance issue with MPC due to the
mixture of both linear and non-linear operations within the FSwA framework.

Given all this, an obvious open question is to construct secure n-out-of-n protocols specifically tailored
to the FSwA, while also achieving small round complexity.

Multi-signature. A multi-signature protocol somewhat resembles n-out-of-n signature and allows a
group of n parties holding a signing key sk1, . . . , skn to collaboratively sign the same message to obtain a
single signature. However, multi-signature protocols differ from n-out-of-n signing in the following ways:
(1) there is no dedicated key generation protocol, and instead each party Pj locally generates its own
key pair (pkj , skj) and publish pkj before signing (so-called the plain public-key model [BN06]), (2) the
group of signing parties is usually not fixed, and each party can initiate the signing protocol with a
dynamically chosen set of parties associated with L = {pk1, . . . , pkn}, and (3) the verification algorithm
usually doesn’t take a single fixed public key, and instead takes a particular set of public keys L that
involved in the signing protocol. Hence, roughly speaking, multi-signatures have more flexibility than
n-out-of-n signatures in terms of the choice of co-signers, at the cost of larger joint public key size and
verification time (unless more advanced feature like key aggregation [MPSW19] is supported).
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Schnorr vs FSwA. There is a long line of research that starts from Schnorr’s signature scheme [Sch90]
and follows the standard Fiat–Shamir paradigm to build distributed signatures [SS01, NKDM03, AF04,
GJKR07, KG20] and multi-signatures [MOR01, BN06, BCJ08, MWLD10, STV+16, MPSW19, NRSW20,
NRS20]. In particular, Drijvers et al. [DEF+19] recently discovered a flaw of the existing two-round
Schnorr-based multi-signatures, with a novel concurrent attack relying on the generalized birthday al-
gorithm of Wagner [Wag02]. They accordingly proposed mBCJ scheme, a provably secure variant of
Bagherzhandi et al.’s BCJ scheme [BCJ08].

Unlike distributed n-out-of-n signatures, several three or four-round multi-signatures based on FSwA
are already present in the literature. Bansarkhani and Sturm [BS16] extended the Güneysu–Lyubashevsky–
Pöppelmann (GLP) [GLP12] signature and proposed the first multi-signature following the FSwA paradigm,
which was recently followed by multiple similar variants [MJ19, TLT19, TE19, FH19, FH20]. Relying on
the syntactic similarities between Schnorr and FSwA-style signatures, these protocols essentially borrow
the ideas of Schnorr-based counterparts; for instance, [BS16] can be considered as a direct adaptation of
Bellare–Neven’s three-round Schnorr-like multi-signature [BN06]. However, as explained below, the secu-
rity proofs of all these protocols are either incomplete or relying on a non-standard hardness assumption,
where the underlying problem only emerges in the Fiat–Shamir with aborts setting. Therefore, we are also
motivated to construct a provably secure multi-signature protocol within this paradigm, while making
the most of useful observations from the discrete log setting.

Issue with “aborts”. We first observe that there is an inherent issue when constructing distributed
FSwA signatures. Just like earlier constructions in the discrete log setting [BN06, NKDM03] previous
FSwA multi-signatures ask all parties to start doing what is essentially a single-user FSwA signature,
and always reveal the first “commit” message of the underlying Σ-protocol. Then all these messages are
added up and the sum is hashed, together with the message to be signed, in order to obtain the challenge.
This means that all executions are revealed, whether they abort or not. An important issue with the
FSwA approach is that, currently there is no known general way to prove the underlying Σ-protocol
zero-knowledge in case of aborts [BCK+14, §3.2], [ESS+19, §4], [BBE+18, BBE+19], [Lyu19, p.26]. As
a result, the signer should not reveal any of the aborted executions since otherwise the scheme cannot
be proved secure. This issue is not serious in a single-user scheme, since the Σ-protocol is made non-
interactive in the random oracle model anyway and there is no reason why the signer would reveal aborted
executions.

In an interactive setting, the standard approach to circumvent the issue is to send a commitment
to the first Σ-protocol message and only reveal it if the rejection sampling is successful. However, the
previous FSwA multi-signatures skipped this subtle step. Thus the concurrent work by Fukumitsu and
Hasegawa [FH20] (who constructed a FSwA-style multi-signature proven secure in QROM) had to rely
on an additional non-standard assumption (which they call “rejected LWE”), while publicly available
security proofs of other similar constructions [BS16, FH19, TLT19, MJ19, TE19] do not explain how to
simulate the aborted executions. Despite the lack of such discussion in the proofs there are no known
concrete attacks against the existing schemes, and it may be that one could patch the problem by making
additional non-standard assumptions, or by carefully choosing the parameter such that the additional
assumptions hold unconditionally. Still, it is paramount to strive to find protocols which can be proven
secure relying on well-established computational hardness assumptions like LWE and SIS.

1.1 Contributions

FSwA-based distributed signatures with full security proof. In this paper we construct FSwA-
type n-out-of-n distributed and multi-signature protocols solely relying on the hardness of learning with
errors (LWE) and short integer solution (SIS) problems. Our constructions can be seen as distributed
variants of the fast Dilithium-G signature scheme [DLL+18]. As a first step, we circumvent the aborts issue
mentioned above by utilizing Baum et al.’s additively homomorphic commitment scheme [BDL+18], which
is currently the most efficient construction based on lattices and relies on the hardness of Module-LWE
and Module-SIS problems. This results in a provably secure, three-round n-out-of-n signature protocol
DS3

3.
3 It is still an open question whether the aborts issue can instead be resolved by careful parameter choice, allowing

to simulate the rejected transcripts without any additional assumptions. But we are aware of on-going work in
this direction. If the question is answered in the affirmative our three-round protocol could be proven secure
even without a commitment. However, the use of homomorphic commitment is crucial for constructing our new
two-round protocols, which is our main contribution.
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First two-round protocols. Previous FSwA-based multi-signatures required at least three rounds of
interaction. On the other hand, as most recent discrete log-based solutions indicate [DEF+19, KG20,
NRSW20,NRS20], two rounds is a natural goal because this clearly seems to be minimal for a distributed
signature protocol based on the Fiat-Shamir paradigm: we first need to determine what should be hashed
in order to get the challenge in the underlying Σ-protocol. This must (for security) include randomness
from several players and hence requires at least one round of interaction. After this we need to determine
the prover’s answer in the Σ-protocol. This cannot be computed until the challenge is known and must
(for security) require contributions from several players, and we therefore need at least one more round.

In this paper, we show that the application of homomorphic commitment not only resolves the issue
with aborts, but also makes it possible to reduce the round complexity to two rounds. We do this by
adding a trapdoor feature to the commitment scheme (a separate contribution that we discuss in more
detail below). This results in a two-round, n-out-of-n signature protocol DS2 presented in Section 3. With
a slight modification this n-out-of-n protocol can be also turned into a two-round multi-signature scheme
in the plain public key model. We describe a multi-signature variant MS2 in Appendix D.

Our main two-round result highlights several important similarities and differences which emerge when
translating a discrete log-based protocol to lattice-based one. The approaches taken in our two-round
protocols are highly inspired by mBCJ discrete log-based multi-signature by Drijvers et al. [DEF+19] In
particular, we observe that it is crucial for two-round protocols to use per-message commitment keys
(as in mBCJ) instead of a single fixed key for all signing attempts (as in the original BCJ [BCJ08]),
because otherwise the proof doesn’t go through. Drijvers et al. only presented a full security proof for
the protocol in the key verification model, in which each co-signer has to submit a zero-knowledge proof
of knowledge of the secret key. Our protocols confirm that a similar approach securely transfers to the
lattice setting even under different security models: distributed n-out-of-n signature with dedicated key
generation phase, and multi-signature in the plain public key model.

Lattice-based trapdoor commitment. As mentioned above, we turn Baum et al.’s scheme into a
trapdoor commitment in Section 4, so that the two-round protocols DS2 and MS2 are indeed instan-
tiable with only lattice-based assumptions. We make use of the lattice trapdoor by Micciancio and Peik-
ert [MP12] to generate a trapdoor commitment key in the ring setting. The only modification required
is that the committer now samples randomness from the discrete Gaussian distribution instead of the
uniform distribution. This way, the committer holding a trapdoor of the commitment key can equiv-
ocate a commitment to an arbitrary message by sampling a small randomness vector from the Gaus-
sian distribution. Such randomness is indeed indistinguishable from the actual randomness used in the
committing algorithm. Since only a limited number of lattice-based trapdoor commitment schemes are
known [GSW13,CHKP10,DM14,GVW15,LNTW19] our technique may be of independent interest.

1.2 Technical Overview

Our protocols are based on Dilithium signature scheme, which works over rings R = Z[X]/(f(X)) and
Rq = Zq[X]/(f(X)) defined with an appropriate irreducible polynomial f(X) (see preliminaries for more
formal details). Here we go over the core ideas of our construction by considering simple 2-out-of-2 signing
protocols. The protocols below can be generalized to an n-party setting in a straightforward manner. We
assume that each party Pj for j = 1, 2 owns a secret signing key share sj ∈ R`+k which has small
coefficients, and a public random matrix Ā = [A|I] ∈ R

k×(`+k)
q . The joint public verification key is

defined as t = Ā(s1 + s2) mod q. In the actual protocols the public key t also needs to be generated in a
distributed way, but here we omit the key generation phase for brevity’s sake.

Naive approach. We first present a naive (insecure) way to construct a 2-party signing protocol from
FSwA. If the reader is familiar with CoSi Schnorr multi-signature [STV+16] this construction is essentially
its lattice-based, 2-out-of-2 variant. In this protocol the parties Pj for j = 1, 2 involved in signing the
message µ work as follows.
1. Pj samples a randomness yj from some distribution D`+k defined over R`+k (which is typically the

uniform distribution over a small range or discrete Gaussian), and then sends out the first message
of FSwA wj = Āyj mod q.

2. Pj locally derives a joint challenge c ← H(w1 + w2, µ, t) and performs the rejection sampling
RejSamp(csj , zj) with zj = csj + yj ; if the result of RejSamp(csj , zj) is “reject” then Pj sets zj := ⊥.
After exchanging zj ’s if z1 = ⊥ or z2 = ⊥ (i.e., either of the parties aborts), then the protocol restarts
from the step 1.
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DS3 executed by P2(s2, (Ā, t), ck, µ)

y2 ←$D`+k; w2 ← Āy2

com2 ← Commitck(w2; r2)

h2 ← H(com2) h2

h1

com2

Check H(com1) = h1
com1

c← H(com1 + com2, µ, t)
z2 ← cs2 + y2

If RejSamp(cs2, z2) = 0:
(z2, r2)← (⊥,⊥)

z2, r2

If z1 = ⊥ ∨ z2 = ⊥ : restart z1, r1

Output (com1 + com2, z1 + z2,

r1 + r2) as a signature

DS2 executed by P2(s2, (Ā, t), µ)

y2 ←$D`+k; w2 ← Āy2

ck ← H(µ, t)

com2 ← Commitck(w2; r2) com2

com1

c← H(com1 + com2, µ, t)
z2 ← cs2 + y2

If RejSamp(cs2, z2) = 0:
(z2, r2)← (⊥,⊥)

z2, r2

If z1 = ⊥ ∨ z2 = ⊥ : restart z1, r1

Output (com1 + com2, z1 + z2,

r1 + r2) as a signature

Fig. 1. Comparison of different instantiations of FSwA-based 2-party signing protocols

3. Each party outputs (w, z) := (w1 + w2, z1 + z2) as a signature on µ.
Note that the rejection sampling step is needed to make the distribution of zj independent of a secret
sj . The verification algorithm checks that the norm of z is small, and that Āz− ct = w (mod q) holds,
where the challenge is recomputed as c← H(w, µ, t). One can easily check that the signature generated
as above satisfies correctness, thanks to the linearity of the SIS function fĀ(x) = Āx mod q. However, we
observe that an attempt to give a security proof fails due to two problems. Suppose the first party P̃1 is
corrupt and let us try to simulate the values returned by honest P2, whenever queried by the adversary.

First, since the protocol reveals w2 whether P2 aborts or not, the joint distribution of rejected tran-
script (w2, c,⊥) has to be simulated. As mentioned earlier, there is no known way to simulate it; in
fact, the honest verifier zero knowledge (HVZK) of FSwA is only proven for “non-aborting” cases in
the original work by Lyubashevsky [Lyu09, Lyu12, Lyu19] and its successors. Note that the obvious fix
where players hash the initial messages and only reveal them if there is no abort will not work here: the
protocols need to add the initial messages together before obtaining the challenge c in order to reduce
signature size, only the sum is included in the signature. So with this approach the initial messages must
be known in the clear before the challenge can be generated.

The second problem is more generic and could also occur in the standard Fiat–Shamir-style two party
signing: if P2 sends out w2 first, then the simulator does not know w1. In FS-style constructions, the usual
strategy for signing oracle query simulation is to first sample a challenge c by itself, generate a simulated
transcript (w2, c, z2) by invoking a special HVZK simulator on c, and then program the random oracle
H such that its output is fixed to a predefined challenge c. In the two-party setting, however, derivation
of the joint challenge c = H(w1 + w2, µ, t) requires contribution from P̃1 and thus there is no way
for the simulator to program H in advance. Not only the proof doesn’t go through, but also this naive
construction is amenable to a concrete attack, which allows malicious P̃1 to create a valid forgery by
adaptively choosing w1 after seeing w2. In Appendix E we describe this attack relying on a variant of
Wagner’s generalized birthday problem [Wag02,HJ10].

Homomorphic commitment to simulate aborts. We now present an intermediate provably secure
protocol that circumvents the above issues. See DS3 in Fig. 1. To address the first issue with aborts, each
player Pj now commits to an initial Σ-protocol message wj using an additively homomorphic commitment
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comj . Thanks to the hiding property, each party leaks no useful information about wj until the rejection
sampling is successful, and thus it is now possible to simulate a rejected transcript (comj , c,⊥). Then Pj
broadcasts a hash based commitment to comj , to deal with the second issue. Once all parties have done
this, comj ’s are revealed in the next round and checked against the hashes. Once the comj ’s are known,
they can be added together in a meaningful way by the homomorphic property, and we then hash the
sum and the message to get the challenge. The verification now receives a signature consisting of three
elements (com, z, r) and simply checks that Āz− ct (mod q) and r form a correct opening to com, where
the challenge is recomputed as c← H(com, µ, t).

We note that the extra round for hash commitment is a standard technique, previously used in multiple
three-round protocols, such as Nicolosi et al. [NKDM03] and Bellare and Neven [BN06] in the discrete log
setting, and Bansarkhani and Sturm [BS16] in their FSwA-based instantiation. This way, the simulator
for honest P2 can successfully extract corrupt P̃1’s share com1 by keeping track of incoming queries to H
(when modeled as a random oracle), and program H such that H(com1 + com2, µ, t) := c before revealing
com2. For the completeness, in Appendix F we provide a formal security proof for DS3 by showing a
reduction to Module-LWE without relying on the forking lemma [PS00, BN06]. This is made possible
by instantiating the construction with unconditionally binding commitment, which allows us to avoid
rewinding the adversary and apply the lossy identification technique by Abdalla et al. [AFLT16].

One efficiency issue is, that the protocol has to be restarted until all parties pass the rejection sampling
step simultaneously. All previous FSwA-based multi-signatures also had the same issues, but we can
mitigate by running sufficiently many parallel executions of the protocol at once, or by carefully choosing
the parameters for rejection sampling. To further reduce the number of aborts, we chose to instantiate
the protocol with Dilithium-“G” [DLL+18] instead of the one submitted to NIST competition [LDK+19].

Trapdoor commitment to avoid the extra round. Although DS3 is secure, the first round of
interaction may seem redundant, since the parties are essentially “committing to a commitment”. We
show that the extra hash commitment round can be indeed dropped by adding a trapdoor feature to the
commitment scheme, which allows the so-called straight-line simulation technique by Damg̊ard [Dam00].
We present our main two-round protocol DS2 in Fig. 1. This way, the simulation of honest P2 does not
require the knowledge of corrupt P̃1’s commitment share; instead, the simulator can now simply send
a commitment com2 (to some random value) and then later equivocate to an arbitrary value using the
known trapdoor td associated with a trapdoored commitment key tck. Concretely, the simulator need not
program the random oracle this time, and instead derives a challenge c ← H(com1 + com2, µ, t) as the
real honest party would do. Now the simulator invokes a (special) HVZK simulator with c as input, to
obtain a transcript (w2, c, z2). With some constant probability it equivocates com2 to w2, or otherwise
sends out ⊥ to simulate aborts. We also stress that the per-message commitment key ck ← H(µ, t) is
crucial in the two-round protocol; if a single ck is used across all signing attempts, then a concurrent
attack similar to the one against the naive construction becomes applicable (see Appendix E). Unlike
the three-round protocol, we present a security proof relying on the forking lemma and we reduce the
security to both Module-SIS and Module-LWE assumptions; since a trapdoor commitment can at most
be computationally binding, we must extract from the adversary two different openings to the same
commitment in order to be able to reduce security to the binding property. We leave for future work a
tighter security proof for the two-round protocol.

Two-round multi-signature. We can now convert to a two-round multi-signature scheme in the plain
public key model: following Bellare–Neven [BN06] the protocol now generates per-user challenges cj =
H(tj ,

∑
j comj , µ, L) for each user’s public key tj ∈ L, instead of interactively generating the fixed joint

public key t in advance. The verification algorithm is adjusted accordingly: given (com, z, r) and a list
of public keys L, the verifier checks that Āz −

∑
j cjtj (mod q) and r form a correct opening to com,

where cj ’s are recomputed as in the signing protocol. Appendix D formally describes our MS2 protocol
with security proof.

1.3 Related Work

The FSwA paradigm was first proposed by Lyubashevsky [Lyu09, Lyu12] and many efficient signa-
ture schemes following this framework have been devised, such as GLP [GLP12], BLISS [DDLL13],
Dilithium [LDK+19] and qTESLA [BAA+19]. Bansarkhani and Sturm [BS16] extended GLP signature
and proposed the first multi-signature following the FSwA paradigm. Since then several variants appeared
in the literature: four-round protocol with public key aggregation [MJ19], three-round protocol with tight
security proof [FH19] and proof in QROM [FH20], ID-based blind multi-signature [TLT19] and ID-based
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proxy multi-signature [TE19]. However, as mentioned earlier the security proofs for all these multi-
signatures are either incomplete or rely on a non-standard heuristic assumption. Choi and Kim [CK16]
proposed a linearly homomorphic multi-signature from lattices trapdoors. Kansal and Dutta [KD20] con-
structed a single-round multi-signature scheme relying on the hardness of SIS, which was soon after
broken by Liu et al. [LTT20]. Several lattice-based threshold ring signatures exist in the literature, such
as Cayrel et al. [CLRS10], Bettaieb and Schrek [BS13], and Torres et al. [TSSK20]. Döroz et al. [DHSS20]
devised lattice-based aggregate signature schemes relying on rejection sampling. Very recently, Esgin et
al. [EEE20] developed FSwA-based adaptor signatures with application to blockchains.

Our two-round protocols rely on trapdoor commitment to enable the straight-line simulation of ZK.
The trick is originated in a concurrent ZK proof by Damg̊ard [Dam00] and similar ideas have been exten-
sively used in the ZK literature [BKLP15,CPS+16,COSV17b,COSV17a], to turn honest verifier ZK proof
into full-fledged ZK. Moreover, recent efficient lattice-based ZK proofs [dLS18,ESS+19,YAZ+19,BLS19,
ESLL19] also make use of Baum et al.’s additively homomorphic commitment. The issue of revealing the
first “commit” message in the FSwA framework has been also discussed by Barthe et al. [BBE+18] in the
context of masking countermeasure against side-channel attacks, and they used Baum et al.’s commitment
to circumvent the issue. The homomorphic lattice-based trapdoor commitment could also be instantiated
with GSW-FHE [GSW13], homomorphic trapdoor functions [GVW15], Chameleon hash [CHKP10,DM14]
or mercurial commitment [LNTW19].
Comparison with Bendlin et al. [BKP13] An entirely different approach to constructing threshold
signatures based on lattices relies not on the Fiat–Shamir with aborts paradigm, but on GPV hash-and-
sign signatures [GPV08]. This approach was introduced by Bendlin et al. in [BKP13], who described
how to implement Peikert’s hash-and-sign signatures [Pei10] in a multiparty setting. Compared to the
approach in this paper, it has the advantage of realizing the same distributed signature scheme (e.g., with
the same size bound for verification) independently of the number of parties, and in particular, signature
size does not grow with the number of parties. Moreover, it supports more general access structure than
the full threshold considered in this paper (although their protocol does not withstand dishonest majority
for the sake of information-theoretic security, while our protocol does tolerate up to n−1 corrupt parties).
Its main downside, however, is that the most expensive part of Peikert’s signing algorithm, namely the
offline lattice Gaussian sampling phase, is carried out using generic multiparty computation (this is the
first step of the protocol πPerturb described in [BKP13, Fig. 23]). This makes it difficult to estimate the
concrete efficiency of Bendlin et al.’s protocol, but since the Peikert signature scheme is fairly costly even
in a single-user setting, the protocol is unlikely to be practical.

In contrast, while our protocols do use discrete Gaussian sampling, it is only carried out locally by
each party, and it is Gaussian sampling over Z rather than a lattice, which is considerably less costly.
Furthermore, while we also use lattice trapdoors as a proof technique in the trapdoor commitment scheme
of our two-round protocol, trapdoor Gaussian sampling is never carried out in the actual protocol, only
in the simulation (the actual protocol has no trapdoor). Thus, our protocols entirely avoid the expensive
machinery present in Bendlin et al.’s scheme, and have a fully concrete instantiation (at the cost of
signatures increasing in size with the number of parties).

2 Preliminaries

Notations. For positive integers a and b such that a < b we use the integer interval notation [a, b]
to denote {a, a+ 1, . . . , b}; we use [b] as shorthand for [1, b]. If S is a set we write s←$S to indicate
sampling s from the uniform distribution defined over S; if D is a probability distribution we write
s←$D to indicate sampling s from the distribution D; if we are explicit about the set S over which the
distribution D is defined then we write D(S); if A is an algorithm we write s← A to indicate assigning
an output from A to s.

2.1 Polynomial Rings and Discrete Gaussian Distribution

In this paper most operations work over rings R = Z[X]/(f(X)) and Rq = Zq[X]/(f(X)), where q is a
modulus, N is a power of two defining the degree of f(X), and f(X) = XN + 1 is the 2N -th cyclotomic
polynomial. Following [DLL+18], we consider centered modular reduction mod ±q: for any v ∈ Zq, v′ = v
mod ±q is defined to be a unique integer in the range [−bq/2c , bq/2c] such that v′ = v mod q. We define
the norm of v ∈ Zq such that ‖v‖ := |v mod ±q|. Now we define the Lp-norm for a (vector of) ring
element v = (

∑N−1
i=0 vi,1X

i, . . . ,
∑N−1
i=0 vi,mX

i)T ∈ Rm as follows.
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‖v‖p :=
∥∥(v0,1, . . . , vN−1,1, . . . , v0,m, . . . , vN−1,m)T

∥∥
p
.

We rely on the following key set Sη ⊆ R parameterized by η ≥ 0 consisting of small polynomials.

Sη = {x ∈ R : ‖x‖∞ ≤ η}

Moreover the challenge set C ⊆ R parameterized by κ ≥ 0 consists of small and sparse polynomials,
which will be used as the image of random oracle H0.

C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ}

The discrete Gaussian distribution over Rm is defined as follows.

Definition 1 (Discrete Gaussian Distribution over Rm). For x ∈ Rm, let ρv,s(x) = exp (−π ‖x− v‖22 /s2)
be a Gaussian function of parameters v ∈ Rm and s ∈ R. The discrete Gaussian distribution Dm

v,s centered
at v is

Dm
v,s(x) := ρv,s(x)/ρv,s(Rm)

where ρv,s(Rm) =
∑

x∈Rm ρv,s(x).

In what follows we omit the subscript v if v = 0 and write Dm
s as a shorthand. When s exceeds the

so-called smoothing parameter η(Rm) ≤ ω(
√

log(mN)) of the ambient space, then the discrete Gaussians
DRm−v,s = Dm

v,s−v supported on all cosets of Rm are statistically close, and hence Dm
s behaves qualita-

tively like a continuous Gaussian of standard deviation σ = s/
√

2π. The condition on s will be satisfied
for all the discrete Gaussians in this paper, and hence σ = s/

√
2π will be called the standard deviation

(even though it technically holds only up to negligible error). For the same reason, we will always be in
a setting where the following fact [MP13, Theorem 3.3] [ESLL19, Lemma 9] holds.

Lemma 1 (Sum of Discrete Gaussian Samples). Suppose s exceeds the smoothing parameter by a
factor ≥

√
2. Let xi for i ∈ [n] be independent samples from the distribution Dm

s . Then the distribution
of x =

∑
i xi is statistically close to Dm

s
√
n

.

2.2 Lattice Problems

Below we define two standard lattice problems over rings: module short integer solution (MSIS) and learn-
ing with errors (MLWE). We also call them MSIS/MLWE assumption if for any probabilistic polynomial-
time adversaries the probability that they can solve a given problem is negligible.

Definition 2 (MSISq,k,`,β problem). Given a random matrix A←$Rk×`q find a vector x ∈ R`+kq \ {0}
such that [A|I] · x = 0 and ‖x‖2 ≤ β.

Definition 3 (MLWEq,k,`,η problem). Given a pair (A, t) ∈ Rk×`q ×Rkq decide whether it was generated
uniformly at random from Rk×`q × Rkq , or it was generated in a way that A←$Rk×`q , s←$S`+kη and
t := [A|I] · s.

2.3 Fiat–Shamir with Aborts Framework and Dilithium-G

Algorithm 1 Key generation
Require: pp = (Rq, k, `, η, B, σ,M)
Output: (sk, pk)
1: A←$Rk×`q

2: Ā := [A|I] ∈ Rk×(`+k)
q

3: (s1, s2)←$S`η × Skη ; s :=
[
s1
s2

]
4: t := Ās
5: sk := s
6: pk := (Ā, t)
7: return (sk, pk)

Algorithm 2 Signature verification
Require: pk, (z, c), µ, pp
1: If ‖z‖2 ≤ B and c = H0(Āz− ct, µ, t):
2: return 1
3: Otherwise: return 0

Algorithm 3 Signature generation
Require: sk, µ, pp = (Rq, k, `, η, B, σ,M)
Output: valid signature pair (z, c)

1: (y1,y2)←$D`
s ×Dk

s ; y :=
[
y1
y2

]
2: w := Āy
3: c← H0(w, µ, t)
4: z := cs + y
5: With prob. min

(
1, D`+k

s (z)/(M ·D`+k
cs,σ(z))

)
:

6: return (z, c)
7: Restart otherwise

9



Algorithm 4 RS
1: v←$h
2: z←$Dm

v,s

3: With prob. min
(
1, Dm

s (z)/(M ·Dm
v,s(z))

)
:

4: return (z,v)
5: Otherwise:
6: return (⊥,⊥)

Algorithm 5 SimRS
1: v←$h
2: z←$Dm

s

3: With prob. 1/M :
4: return (z,v)
5: Otherwise:
6: return (⊥,⊥)

Algorithm 6 Trans(sk, c)
1: y←$D`+k

s

2: w := Āy
3: z := cs + y
4: With prob. min

(
1, D`+k

s (z)/(M ·D`+k
cs,s (z))

)
:

5: return (w, c, z)
6: Otherwise:
7: return (⊥, c,⊥)

Algorithm 7 SimTrans(pk, c)
1: z←$D`+k

s

2: w := Āz− ct
3: With prob. 1/M :
4: return (w, c, z)
5: Otherwise:
6: return (⊥, c,⊥)

We present a non-optimized version of Dilithium-G signature scheme in Algorithms 1 to 3, on which
we base our distributed signing protocols. The random oracle is defined as H0 : {0, 1}∗ → C. Due to
Lemma 2 below the maximum L2-norm of the signature z ∈ R`+k is set to B = γσ

√
(`+ k)N , where the

parameter γ > 1 is chosen such that the probability γ(`+k)Ne(`+k)N(1−γ2)/2 is negligible.

Lemma 2 ( [Lyu12]). For any γ > 1, Pr[‖z‖2 > γσ
√
mN : z←$Dm

s ] < γmNemN(1−γ2)/2.

The following claim by Lyubashevsky (adapted from [Lyu12, Thoerem 4.6]) is crucial for the signing
oracle of FSwA to be simulatable, and also to decide the standard deviation σ as well as the expected
number of repetitions M . For instance, setting α = 11 and t = 12 leads to M ≈ 3. Although M
is asymptotically superconstant, t increases very slowly in practice, and hence M behaves essentially
like a constant for practical security parameters (in the literature, it is often taken as 12 to ensure
e−t

2/2 < 2−100, thereby ensuring > 100 bits of security).

Lemma 3 (Rejection Sampling Lemma [Lyu12]). Let V ⊆ Rm be a set of polynomials such that
for all v ∈ V , it holds that ‖v‖2 ≤ T , and let h : V → R be a probability distribution. Fix some t such
that t = ω(

√
log(mN)) and t = o(log(mN)). For any α > 0 if σ = αT and M = et/α+1/(2α2) then the

statistical distance between two output distributions of RS (Algorithm 4) and SimRS (Algorithm 5) is at
most e−t2/2/M , which is negligible. Moreover, the probability that RS outputs (z,v) 6= (⊥,⊥) is at least
(1− e−t2/2)/M , which is noticeable.

We now present a supporting lemma which is required for Dilithium-G to be UF-CMA secure. This is
almost a direct consequence of Lemma 3 and a similar result appears in [KLS18, Lemma 4.3] to prove the
security of Dilithium signature instantiated with the uniform distribution. We remark that the simulator
in Algorithm 7 can only simulate transcripts of non-abort executions in the underlying interactive Σ-
protocol; in fact, if Trans output w in case of rejection as it’s done in the interactive protocol then there
is no known method to simulate the joint distribution of (w, c,⊥) [BCK+14, Lyu19] (without assuming
some ad-hoc assumptions like rejection-DCK [BBE+18] or rejected-LWE [FH20]).

Lemma 4 (Non-abort Special Honest Verifier Zero Knowledge). Suppose T is defined as follows:
if s ∈ S`+kη is sampled uniformly at random, it holds that T ≥ ‖cs‖2 with overwhelming probability for
any c ∈ C. Fix some t such that t = ω(

√
log(mN)) and t = o(log(mN)). For any α > 0 if σ = αT

and M = et/α+1/(2α2), then for any c ∈ C the output distributions of Trans(sk, c) (Algorithm 6) and
SimTrans(pk, c) (Algorithm 7) are statistically indistinguishable, where (pk, sk) = ((Ā, t), s) is output
from Algorithm 1.

Proof. Suppose a set Vs =
{
v ∈ R`+k : v = cs for c ∈ C

}
for a fixed signing key s ∈ S`+kη chosen uni-

formly at random. Due to the choice of T Lemma 3 ensures that the statistical distance would be negligible
if both algorithms output v ∈ Vs instead of c. Since for every v ∈ Vs there exists a unique c ∈ C such
that cs = v holds [Lyu12,DLL+18], replacing the output with c doesn’t increase the statistical distance.
Finally, outputting w doesn’t affect the statistical distance either since the underlying identification pro-
tocol is commitment recoverable [KLS18] and therefore w can be simply reconstructed using c, z and pk
anyway.
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2.4 Trapdoor Homomorphic Commitment Scheme

Below we formally define a trapdoor commitment scheme. In Appendix B.1 we also define standard
security requirements like hiding and binding, as well as the two additional properties required by our
protocols: additive homomorphism and uniform key. The lattice-based commitments described in Sec-
tion 4 indeed satisfy all of them. The uniform property is required since our protocols rely on commitment
key derivation via random oracles mapping to a key space Sck , and thus its output distribution should
look like the one from CGen. Many other standard schemes like Pedersen commitment [Ped92] trivially
satisfy this property. The additive homomorphism is also needed to preserve the algebraic structure of
the first “commit” message of FSwA.

Definition 4 (Trapdoor Commitment Scheme). A trapdoor commitment scheme TCOM consists
of the following algorithms.
– CSetup(1λ)→ cpp: The setup algorithm outputs a public parameter cpp defining sets Sck , Smsg, Sr, Scom

and the distribution D(Sr) from which the randomness is sampled.
– CGen(cpp)→ ck: The key generation algorithm that samples a commitment key from Sck.
– Commitck(msg; r)→ com: The committing algorithm that takes a message msg ∈ Smsg and random-

ness r ∈ Sr as input and outputs com ∈ Scom. We simply write Commitck(msg) when it uses r sampled
from D(Sr).

– Openck(com, r,msg) → b: The opening algorithm outputs b = 1 if the input tuple is valid, and b = 0
otherwise.

– TCGen(cpp) → (tck, td): The trapdoor key generation algorithm that outputs tck ∈ Sck and the
trapdoor td ∈ Std.

– TCommittck(td)→ com: The trapdoor committing algorithm that outputs a commitment com ∈ Scom.
– Eqvtck(td, com,msg)→ r: The equivocation algorithm that outputs randomness r ∈ Sr.

A trapdoor commitment is said to be secure if it is unconditionally hiding, computationally binding, and
for any msg ∈ Smsg, the statistical distance εtd between (ck,msg, com, r) and (tck,msg, com′, r′) is neg-
ligible, where cpp ← CSetup(1λ); ck ← CGen(cpp); r←$D(Sr); com ← Commitck(msg; r) and (tck, td) ←
TCGen(cpp); com′ ← TCommittck(td); r′ ← Eqvtck(td, com′,msg).

2.5 Security Notions for n-out-of-n Signature and Multi-Signature

We first define the n-out-of-n distributed signature protocol and its security notion. The game-based
security notion below is based on the one presented by Lindell [Lin17] for two-party signing protocol.
Our definition can be regarded as its generalization to n-party setting. Following Lindell, we assume that
the key generation can be invoked only once, while many signing sessions can be executed concurrently.
The main difference is that, in our protocols all players have the same role, and therefore we fix wlog
the index of honest party and challenger to n, who has to send out the message first in each round of
interaction. This way, we assume that the adversary A who corrupts P1, . . . , Pn−1 is rushing by default
(i.e., A is allowed to choose their own messages based on Pn’s message).

Definition 5 (Distributed Signature Protocol). A distributed signature protocol DS consists of the
following algorithms.
– Setup(1λ) → pp: The set up algorithm that outputs public parameters pp on a security parameter λ

as input.
– Genj(pp) → (skj , pk) for each j ∈ [n]: The interactive key generation algorithm that is run by party
Pj. Each Pj runs the protocol on public parameters pp as input. At the end of the protocol Pj obtains
a secret key share skj and public key pk.

– Signj(sid, skj , pk, µ) → σ for each j ∈ [n]: The interactive signing algorithm that is run by by party
Pj. Each Pj runs the protocol on session ID sid, its signing key share skj, public key pk, and message
to be signed µ as input. We also assume that the algorithm can use any state information obtained
during the key generation phase. At the end of the protocol Pj obtains a signature σ as output.

– Ver(σ, µ, pk)→ b: The verification algorithm that takes a signature, message, and a single public key
pk and outputs b = 1 if the signature is valid and otherwise b = 0.
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ExpDS-UF-CMA
DS (A)

1 : Mset ← ∅

2 : pp← Setup(1λ)

3 : (µ∗, σ∗)← AO
DS
n (·,·)(pp)

4 : b← Ver(µ∗, σ∗, pk)
5 : return (b = 1) ∧ µ∗ /∈ Mset

ExpMS-UF-CMA
MS (A)

1 : Mset ← ∅

2 : pp← Setup(1λ)
3 : (sk, pk)← Gen(pp)

4 : (µ∗, σ∗, L∗)← AO
MS(·,·)(pk, pp)

5 : b← Ver(µ∗, σ∗, L∗)
6 : return (b = 1) ∧ pk ∈ L∗ ∧ (µ∗, L∗) /∈ Mset

Fig. 2. DS-UF-CMA and MS-UF-CMA experiments. The oracles ODS
n and OMS are described in Figs. 3

and 4. In the left (resp. right) experiment, Mset is the set of all inputs µ (resp. (µ,L)) such that
(sid, µ) (resp. (sid, (µ,L))) was queried by A to its oracle as the first query with identifier sid 6= 0
(resp with any identifier sid). Note that pk in the left experiment is the public verification key output
by Pn when it completes Genn(pp).

Oracle ODS
n (sid,m)

The oracle is initialized with public parameters pp generated by Setup algorithm. The variable flag is initially
set to false.
Key Generation Upon receiving (0,m), if flag = true then return ⊥. Otherwise do the following:

– If the oracle is queried with sid = 0 for the first time then it initializes a machine M0 running the
instructions of party Pn in the distributed key generation protocol Genn(pp).

– IfM0 has been already initialized then the oracle hands the machineM0 the next incoming message
m and returns M0’s reply. If M0 concludes with local output (skn, pk), then set flag = true.

Signature Generation Upon receiving (sid,m) with sid 6= 0, if flag = false then return ⊥. Otherwise do
the following:

– If the oracle is queried with sid for the first time then parse the incoming message m as µ. It
initializes a machine Msid running the instructions of party Pn in the distributed signing protocol
Signn(sid, skn, pk, µ). The machineMsid is initialized with the key share and any state information
stored by M0 at the end of the key generation phase. The message µ to be signed is included in
Mset. If Pn sends the first message in the signing protocol, then this message is the oracle reply.

– If Msid has been already initialized then the oracle hands the machine Msid the next incoming
message m and returns the next message sent byMsid . IfMsid concludes with local output σ, then
the output obtained by Msid is returned.

Fig. 3. Honest party oracle for the distributed signing protocol.

Oracle OMS(sid,m)

The oracle is initialized with public parameters pp generated by Setup algorithm.
Signature Generation Upon receiving (sid,m) do the following:

– If the oracle is queried with sid for the first time then parse the incoming message m as (µ,L). If
pk /∈ L then it returns ⊥. Otherwise it initializes a machine Msid running the instructions of party
P in the multi-signature protocol Sign(sid, sk, pk, µ, L). The machine Msid is initialized with the
key pair (sk, pk) and any state information obtained during Gen(pp). The pair (µ,L) is included in
Mset. If P sends the first message in the signing protocol, then this message is the oracle reply.

– If Msid has been already initialized then the oracle hands the machine Msid the next incoming
message m and returns the next message sent byMsid . IfMsid concludes, then the output obtained
by Msid is returned.

Fig. 4. Honest party oracle for the multi-signature protocol.
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Definition 6 (DS-UF-CMA Security). A distributed signature protocol DS is said to be DS-UF-CMA
(distributed signature unforgeability against chosen message attacks) secure, if for any probabilistic poly-
nomial time adversary A, its advantage

AdvDS-UF-CMA
DS (A) := Pr

[
ExpDS-UF-CMA

DS (A)→ 1
]

is negligible in λ, where ExpDS-UF-CMA
DS (A) is described in Fig. 2.

Next we define the standard security notion of multi-signature protocol in the plain public-key model.
The following definitions are adapted from [BN06], but the syntax is made consistent with n-out-of-n
signing. The main difference from the distributed signature is, that there is no interactive key generation
protocol anymore and the adversary is not required to fix its key pair at the beginning of the game.
Accordingly, the adversary can dynamically choose a set of public keys involving the challenger’s key,
and query the signing oracle to receive signatures. On the other hand, assuming that key aggregation is
not always supported the verification algorithm takes a set of public keys, instead of a single combined
public key as in the prior case. We also note that n is now the number of maximum number of parties
involved in a single execution of signing protocol, since the size of L may vary depending on a protocol
instance.

Definition 7 (Multi-signature Protocol). A multisignature protocol MS consists of the following
algorithms.
– Setup(1λ)→ pp: The set up algorithm that outputs a public parameter pp on a security parameter λ

as input.
– Gen(pp)→ (sk, pk): The non-interactive key generation algorithm that outputs a key pair on a public

parameter pp as input.
– Sign(sid, sk, pk, µ, L) → σ: The interactive signing algorithm that is run by a party P holding a key

pair (sk, pk). Each P runs the protocol on session ID sid, its signing key sk, public key pk, message
to be signed µ, and a set of co-signers’ public keys L as input. At the end of the protocol P obtains a
signature σ as output.

– Ver(σ, µ, L)→ b: The verification algorithm that takes a signature, message, and a set of public keys
and outputs b = 1 if the signature is valid and otherwise b = 0.

Definition 8 (MS-UF-CMA Security). A multisignature protocol MS is said to be MS-UF-CMA (mul-
tisignature unforgeability against chosen message attacks) secure, if for any probabilistic polynomial time
adversary A, its advantage

AdvMS-UF-CMA
MS (A) := Pr

[
ExpMS-UF-CMA

MS (A)→ 1
]

is negligible in λ, where ExpMS-UF-CMA
MS (A) is described in Fig. 2.

3 DS2: Two-round n-out-of-n Signing from Module-LWE and Module-SIS

3.1 Protocol specification and overview

This section presents our main construction: provably secure two-round n-out-of-n protocol DS2 =
(Setup, (Genj)j∈[n], (Signj)j∈[n],Ver), formally specified in Fig. 5. As mentioned in Section 2.5 all players
have the same role and hence we only present n-th player’s behavior. The protocol is built on top of
additively homomorphic trapdoor commitment scheme TCOM with uniform key (see Definition 4 and
Appendix B.1 for the formal definitions), and we will describe concrete instances of TCOM later in
Section 4. We go over high-level ideas for each step below.
Parameter setup. We assume that a trusted party invokes DS2.Setup(1λ) that outputs a set of public
parameters described in Table 1 as well as the parameter for commitment scheme cpp (which is obtained
by internally invoking TCOM.CSetup(1λ)). Most parameters commonly appear in the literature about
the Fiat–Shamir with aborts paradigm (e.g. [DLL+18, Lyu12]) and we therefore omit the details here.
The bit length l1 and l2 should be sufficiently long for the random oracle commitments to be secure. The
only additional parameters are Bn and Mn, which we describe below in Section 3.2.
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Fig. 5. Distributed n-out-of-n signature scheme.

Protocol DS2.Genn(pp)

The protocol is parameterized by public parameters described in Table 1 and relies on the random oracles H1 : {0, 1}∗ →
{0, 1}l1 and H2 : {0, 1}∗ → {0, 1}l2 .
Matrix Generation

1. Sample a random matrix share An ←$Rk×`q and generate a random oracle commitment gn ← H1(An, n). Send
out gn.

2. Upon receiving gj for all j ∈ [n− 1] send out An.
3. Upon receiving Aj for all j ∈ [n− 1]:

a. If H1(Aj , j) 6= gj for some j then send out abort.

b. Otherwise set public random matrix Ā := [A|I] ∈ Rk×(`+k)
q , where A :=

∑
j∈[n] Aj .

Key Pair Generation
1. Sample a secret key share sn ←$S`+kη and compute a public key share tn := Āsn, respectively, and generate a

random oracle commitment g′n ← H2(tn, n). Send out g′n.
2. Upon receiving g′j for all j ∈ [n− 1] send out tn.
3. Upon receiving tj for all j ∈ [n− 1]:

a. If H2(tj , j) 6= g′j for some j then send out abort.
b. Otherwise set a combined public key t :=

∑
j∈[n] tj

If the protocol does not abort, Pn obtains (skn, pk) = (sn, (Ā, t)) as local output.

Protocol DS2.Signn(sid, skn, pk, µ)

The protocol is parameterized by public parameters described in Table 1 and relies on the random oracles H0 : {0, 1}∗ →
C and H3 : {0, 1}∗ → Sck . The protocol assumes that DS2.Genn(pp) has been previously invoked. If a party halts with
abort at any point, then all Signn(sid, skn, pk, µ) executions are aborted.
Inputs

1. Pn receives a unique session ID sid, skn = sn, pk = (Ā, t) and message µ ∈ {0, 1}∗ as input.
2. Pn verifies that sid has not been used before (if it has been, the protocol is not executed).
3. Pn locally computes a per-message commitment key ck ← H3(µ, t).

Signature Generation Pn works as follows:
1. Compute the first message as follows.

a. Sample yn ←$D`+k
s and compute wn := Āyn.

b. Compute comn ← Commitck(wn; rn) with rn ←$D(Sr).
c. Send out comn.

2. Upon receiving comj for all j ∈ [n− 1] compute the signature share as follows.
a. Set com :=

∑
j∈[n] comj .

b. Derive a challenge c← H0(com, µ, t).
c. Computes a signature share zn := csn + yn.
d. Run the rejection sampling on input (csn, zn), i.e., with probability

min
(
1, D`+k

s (zn)/(M ·D`+k
csn,s(zn))

)
send out (zn, rn); otherwise send out restart and go to 1.

3. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj) for all j ∈ [n− 1] compute
the combined signature as follows
a. For each j ∈ [n− 1] reconstruct wj := Āzj − ctj and validate the signature share:

‖zj‖2 ≤ B and Openck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z :=

∑
j∈[n] zj and r :=

∑
j∈[n] rj .

If the protocol does not abort, Pn obtains a signature (com, z, r) as local output.

Algorithm DS2.Ver(com, z, r, µ, pk)

Upon receiving a message µ, signature (com, z, r), and combined public key pk = (Ā, t), generate a commitment
key ck ← H3(µ, t), derive a challenge c ← H0(com, µ, t) and reconstruct w := Āz − ct. Then accept if ‖z‖2 ≤
Bn and Openck(com, r,w) = 1.
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Parameter Description

n Number of parties
N A power of two defining the degree of f(X)

f(X) = XN + 1 The 2N -th cyclotomic polynomial
q Prime modulus
R = Z[X]/(f(X)) Cyclotomic ring
Rq = Zq[X]/(f(X)) Ring
k The height of random matrices A
` The width of random matrices A
γ Parameter defining the tail-cut bound
B = γσ

√
N(`+ k) The maximum L2-norm of signature share zj ∈ R`+k for j ∈ [n]

Bn =
√
nB The maximum L2-norm of combined signature z ∈ R`+k

κ The maximum L1-norm of challenge vector c
C =

{
c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ

}
Challenge space where |C| =

(
N
κ

)
2κ

Sη =
{
x ∈ R : ‖x‖∞ ≤ η

}
Set of small secrets

T = κη
√
N(`+ k) Chosen such that Lemma 4 holds

α Parameter defining σ and M

σ = s/
√

2π = αT Standard deviation of the Gaussian distribution
t = ω(

√
log(mN)) ∧ t = o(log(mN)) Parameter defining M such that Lemma 3 holds

M = et/α+1/(2α2) The expected number of restarts until a single party can proceed
Mn = Mn The expected number of restarts until all n parties proceed simultaneously
cpp Parameters for commitment scheme honestly generated with CSetup

l1, l2, l4 Output bit lengths of random oracles H1,H2 and H4

Table 1. Parameters for our distributed signature protocols.

Key generation. The key generation DS2.Genn essentially follows the approach by Nicolosi et al. [NKDM03]
for two-party Schnorr signing. Upon receiving public parameters, all participants first interactively gener-
ate a random matrix A ∈ Rk×`q , a part of Dilithium-G public key. This can be securely done with simple
random oracle commitments4; as long as there is at least one honest party sampling a matrix share
correctly, the resulting combined matrix is guaranteed to follow the uniform distribution. For the exact
same reason, the exchange of public key shares is done with random oracle. This way, we can prevent
the adversary from choosing some malicious public key share depending on the honest party’s share (the
so-called rogue key attack [MOR01]). Furthermore, the party’s index j is concatenated with the values to
be hashed for the sake of “domain separation” [BDG20]. This way, we prevent rushing adversaries from
simply sending back the hash coming from the honest party and claiming that they know the preimage
after seeing the honest party’s opening.
Signature generation. The first crucial step of DS2.Signn in Fig. 5 is commitment key generation at
Inputs 3; in fact, if instead some fixed key ck was used for all signing attempts, one could come up with a
sub-exponential attack that outputs a valid forgery with respect to the joint public key t. In Appendix E
we sketch a variant of the concurrent attack due to Drijvers et al. [DEF+19]. The original attack was
against two-round Schnorr multi-signatures including BCJ scheme [BCJ08], but due to the very similar
structure of FSwA-based lattice signatures an attack would become feasible against a fixed-key variant of
DS2. This motivates us to derive a message-dependent commitment key, following Drivers et al.’s mBCJ
scheme.

Then the signing protocol starts by exchanging the first “commit” messages of Σ-protocol, from which
all parties derive a single joint challenge c ∈ C via a random oracle. As we discussed earlier no participants
are allowed to reveal wj until the rejection sampling phase, and instead they send its commitment comj ,
which is to be opened only if the signature share zj passes the rejection sampling. Finally, the comj ’s
and rj ’s are added together in a meaningful way, thanks to the homomorphic property of commitment
scheme.
Verification and correctness. Thanks to the linearity of underlying scheme and homomorphism of
the commitment, the verifier only needs to validate the sum of signature shares, commitments and

4 We remark that the “commitments” generated by H1 and H2 in Fig. 5 are not randomized, and therefore
they are not hiding. In our protocol, however, all committed values have high min-entropy and this is indeed
sufficient for the security proof to hold. Alternatively, one could cheaply turn them into full-fledged secure and
extractable commitments by additionally hashing random strings that are to be sent out during the opening
phase [Pas03].
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randomness. Here the Euclidean-norm bound Bn is set according to Lemma 1; if all parties honestly
follow the protocol then the sum of n Gaussian shares is only

√
n times larger (while if we employed

the plain Dilithium as a base scheme then the bound would grow almost linearly). Hence together with
the tail-cut bound of Lemma 2 it is indeed sufficient to set Bn =

√
nB for the correctness to hold with

overwhelming probability. To guarantee perfect correctness, the bound check can be also done during the
signing protocol so that it simply restarts when the generated signature is too large (which of course only
happens with negligible probability and shouldn’t matter in practice).

3.2 Asymptotic efficiency analysis

Number of aborts and signature size. As indicated in Table 1 the probability that all participants
simultaneously proceed is 1/Mn = 1/Mn, where 1/M is the probability that each party asks to proceed.
To make Mn reasonably small, say Mn = 3, we should set α ≥ 11n [DLL+18], leading to σ ≥ 11nT . This
already increases the boundB of each signature share linearly compared to a non-distributed signature like
Dilithium-G. In addition, we should set the bound Bn for combined signature to

√
nB for the correctness

to hold, and thus the SIS solution that we find in the security reduction grows by a factor of n3/2.
This translates to a signature size increase of a factor of roughly5 O(logn), so the scaling in terms

of the number of parties is reasonable. In addition, when using the trapdoor commitment scheme of
Section 4, one can substantially reduce the signature size by using the common Fiat–Shamir trick of
expressing the signature as (c, z, r) instead of (com, z, r), and carrying out the verification by first re-
computing the commitment using the randomness r, and then checking the consistency of the challenge:
c

?= H0(com, µ, t). This keeps signature size close to the original Dilithium-G, despite the relatively large
size of commitments.

We expect that a number of further optimizations are possible to improve the efficiency of this protocol
in both asymptotic and concrete terms (e.g., by relying on stronger assumptions like (Mod-)NTRU),
although this is left for further work. Accordingly, we also leave for further work the question of providing
concrete parameters for the protocol, since the methodology for setting parameters is currently a moving
target (e.g., the original parameters for Dilithium-G are not considered up-to-date), there is arguably no
good point of comparison in the literature (in particular, no previous lattice-based two-round protocol),
and again, a concrete instantiation would likely rely on stronger assumptions to achieve better efficiency
anyway.
Round complexity. If this protocol is used as is, it only outputs a signature after the three rounds
with probability 1/Mn (which is 1/3 with the parameters above). As a result, to effectively compute a
signature, it has to be repeated Mn times on average, and so the expected number of rounds is in fact
larger than 2 (2Mn = 6 in this case). One can of course adjust the parameters to reduce Mn to any
constant greater than 1, or even to 1 + o(1) by picking e.g. α = Θ(n1+ε); this results in an expected
number of rounds arbitrarily close to 2. Alternatively, one can keep a 2-round protocol while ensuring
that the parties output a signature with overwhelming probability, simply by running sufficiently many
parallel executions of the protocol at once: λ · log Mn

Mn−1 parallel executions suffice if λ is the security
parameter. The same remark applies analogously to the three-round protocol DS3 of Appendix F.

3.3 Security

The formal security claim for our DS2 protocol is given below.

Theorem 1. Suppose the trapdoor commitment scheme TCOM is secure, additively homomorphic and
has uniform keys. For any probabilistic polynomial-time adversary A that initiates a single key generation
protocol by querying ODS2

n with sid = 0, initiates Qs signature generation protocols by querying ODS2
n

with sid 6= 0, and makes Qh queries to the random oracle H0,H1,H2,H3, the protocol DS2 of Fig. 5 is
DS-UF-CMA secure under MSISq,k,`+1,β and MLWEq,k,`,η assumptions, where β = 2

√
B2
n + κ.

5 To be more precise, since the verification bound scales as n3/2, one should also increase q by the same bound to
avoid arithmetic overflow. This makes the MSIS problem harder, but the MLWE easier if the dimension is kept
unchanged. To keep the same security level, one should therefore also increase N by a factor of 1 + O( logn

log q0
)

where q0 is the value of q in the single-user setting. Therefore, one could in principle argue that signature size
actually scales as O(log2 n). However, one typically chooses q0 > 220, and therefore even in settings with billions
of parties, logn

log q0
< 2. Thus, one can effectively regard N as independent of n.

16



We give a sketch of the security proof. The full proof with concrete security bound is given in Ap-
pendix C. We also remark that its multi-signature variant MS2 (Appendix D) can be proven secure relying
on essentially the same idea. We show that given any efficient adversary A that creates a valid forgery
with non-negligible probability, one can break either MSISq,k,`+1,β assumption or computational binding
of TCOM.
Key generation simulation. For the key generation phase, since the public key share of the honest
signer tn is indistinguishable from the vector sampled from Rkq uniformly at random due to MLWEq,k,`,η
assumption, the honest party oracle simulator can replace tn with such a vector. Therefore, the dis-
tribution of combined public key t =

∑
j∈[n] tj is also indistinguishable from the uniform distribution.

Thanks to the random oracle commitment, after the adversary has submitted g′j for each j ∈ [n − 1]
one can extract the adversary’s public key share tj , with which the simulator sets its share a poste-
riori tn := t −

∑
j∈[n−1] tj and programs the random oracle accordingly H2(tn, n) := g′n. Using the

same argument, one can set a random matrix share An := A −
∑
j∈[n−1] Aj given a resulting random

matrix A←$Rk×`q . Now we can embed an instance of MSISq,k,`+1,β , which is denoted as [A′|I] with
A′←$R

k×(`+1)
q . Due to the way we simulated the joint public key (A, t) is uniformly distributed in

Rk×`q × Rkq , so replacing it with a MSISq,k,`+1,β instance doesn’t change the view of adversary at all, if
A′ is regarded as A′ = [A|t].
Signature generation simulation. The oracle simulation closely follows the one for mBCJ [DEF+19].
Concretely, the oracle simulator programs H3 so that for each signing query it returns tck generated via
(tck, td) ← TCGen(cpp), and for the specific crucial query that is used to create a forgery it returns
an actual commitment key ck ← CGen(cpp), which has been received by the reduction algorithm as
a problem instance of the binding game. This way, upon receiving signing queries the oracle simulator
can send out a “fake” commitment comn ← TCommittck(td) at the first round, and then the known
trapdoor td allows to later equivocate to a simulated first message of the Σ-protocol after the joint
random challenge c ∈ C has been derived; formally, it samples a simulated signature share zn←$D`+k

s

and then derives randomness as rn ← Eqvtck(td, comn,wn := Āzn − ctn). On the other hand, when the
reduction obtains two openings after applying the forking lemma it can indeed break the binding property
with respect to a real commitment key ck.
Forking lemma. Our proof is relying on the forking lemma [PS00, BN06]. This is mainly because we
instantiated the protocol with a trapdoor commitment, which inevitably implies that the binding is only
computational. Hence to construct a reduction that breaks binding, we do have to make the adversary
submit two valid openings for a single commitment under the same key, which seems to require some
kind of rewinding technique. After applying the forking lemma, the adversary submits two forgeries
with distinct challenges c∗ 6= ĉ∗, with which we can indeed find a solution to MSISq,k,`+1,β , or otherwise
break computational binding wrt ck. Concretely, after invoking the forking lemma, we obtain two forgeries
(com∗, z∗, r∗, µ∗) and ( ˆcom∗, ẑ∗, r̂∗, µ̂∗) such that c∗ = H(com∗, µ, t) 6= H( ˆcom∗, µ̂∗, t) = ĉ∗, com∗ = ˆcom∗,
µ∗ = µ̂∗, and H(µ∗, t) = H(µ̂∗, t) = ck. Since both forgeries are verified, we have ‖z∗‖2 ≤ Bn∧‖ẑ∗‖2 ≤ Bn,
and

Openck(com∗, r∗, Āz∗ − c∗t) = Openck(com∗, r̂∗, Āẑ∗ − ĉ∗t) = 1.

If Āz∗ − c∗t 6= Āẑ∗ − ĉ∗t then it means that computational binding is broken wrt a commitment key
ck. Suppose Āz∗ − c∗t = Āẑ∗ − ĉ∗t. Rearranging it leads to

[A|I|t]
[
z∗ − ẑ∗
ĉ∗ − c∗

]
= 0.

Recalling that [A′|I] = [A|t|I] is an instance of MSISq,k,`+1,β problem, we have found a valid solution if
β =

√
(2Bn)2 + 4κ, since ‖z∗ − ẑ∗‖2 ≤ 2Bn and 0 < ‖ĉ∗ − c∗‖2 ≤

√
4κ.

4 Lattice-Based Commitments
In this section, we describe possible constructions for the lattice-based commitment schemes used in our
protocols. The three-round protocol DS3 of Appendix F requires a statistically binding, computationally
hiding homomorphic commitment scheme, whereas the two-round protocol DS2 of Section 3 needs a sta-
tistically hiding trapdoor homomorphic commitment scheme. We show that both types of commitments
can be obtained using the techniques of Baum et al. [BDL+18]. More precisely, the first type of commit-
ment scheme is a simple variant of the scheme of [BDL+18], in a parameter range that ensures statistical
instead of just computational binding. The fact that such a parameter choice is possible is folklore, and
does in fact appear in an earlier version of [BDL+18], so we do not claim any novelty in that regard.
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The construction of a lattice-based trapdoor commitment scheme does not seem to appear in the
literature, but we show that it is again possible by combining [BDL+18] with Micciancio–Peikert style
trapdoors [MP12]. To prevent statistical learning attacks on the trapdoor sampling, however, it is im-
portant to sample the randomness in the commitment according to a discrete Gaussian distribution, in
contrast with Baum et al.’s original scheme.

4.1 Statistically Binding Commitment Scheme

We first describe a statistically binding commitment scheme from lattices. The scheme, described in
Fig. 7, is a simple variant of the scheme from [BDL+18], that mainly differs in the choice of parameter
regime: we choose parameters so as to make the underlying SIS problem vacuously hard, and hence the
scheme statistically binding. Another minor change is the reliance on discrete Gaussian distributions, for
somewhat more standard and compact LWE parameters. The correctness and security properties, as well
as the constraints on parameters, are obtained as follows.
Correctness. By construction. We select the bound B as Ω(s ·

√
m′ ·N). By [MP12, Lemma 2.9], this

ensures that the probability to retry in the committing algorithm is negligible.
Statistically binding. Suppose that an adversary can construct a commitment f on two distinct mes-
sages x 6= x′, with the associated randomness r, r′. Since x 6= x′, the correctness condition ensures that
r and r′ are distinct and of norm ≤ B, and satisfy Â1 · (r − r′) ≡ 0 (mod q). This means in particular
that there are non zero elements in the Euclidean ball Bm′(0, 2B) of radius 2B in Rm

′

q that map to 0 in
Rmq . But this happens with negligible probability on the choice of Â1 when

∣∣Bm′(0, 2B)
∣∣/qmN = 2−Ω(N).

Now
∣∣Bm′(0, 2B)

∣∣ = o
(
(2πe/m′N)m′N/2 · (2B)m′N

)
. Hence, picking for example m′ = 2m, we get:∣∣Bm′(0, 2B)

∣∣
qmN

�
(4πe ·B2

mNq

)mN
,

and the condition is satisfied for example with q > 8πeB2/mN .
Computationally hiding. The randomness r can be written in the form

[
r1 r2 s

]T where r1 ∈ Rmq ,
r2 ∈ Rkq , s ∈ Rm′−m−kq are all sampled from discrete Gaussians of parameter s. The commitment elements
then become:

f1 = r1 + Â′1 ·
[
r2
s

]
f2 = r2 + Â′2 · s + x,

and distinguishing those values from uniform are clearly instances of decision MLWE. Picking k = m,
m′ = 2m, s = Θ(

√
mN), B = Θ(mN), q = Θ

(
(mN)3/2) yields a simple instatiation with essentially

standard security parameters.

4.2 Trapdoor Commitment Scheme

We now turn to the construction of a trapdoor commitment scheme with suitable homomorphic properties
for our purposes. Our proposed scheme is described in Fig. 6. It is presented as a commitment for a single
ring element x ∈ Rq. It is straightforward to extend it to support a vector x ∈ Rkq , but the efficiency gain
from doing so is limited compared to simply committing to each coefficient separately, so we omit the
extension.

We briefly discuss the various correctness and security properties of the scheme, together with the
constraints that the various parameters need to satisfy. In short, we need to pick the standard deviation of
the coefficients of the trapdoor matrix R large enough to ensure that the trapdoor key is statistically close
to a normal commitment key; then, the randomness r in commitments should have large enough standard
deviation to make commitments statistically close to uniform (and in particular statistically hiding), and
also be sampleable using the trapdoor. These are constraints on s̄ and s respectively. Finally, the bound B
for verification should be large enough to accomodate valid commitments, and small enough compared to
q to still make the scheme computationally binding (which corresponds to the hardness of an underlying
Ring-SIS problem). Let us now discuss the properties one by one.
Correctness. By construction. We select the bound B as C · s ·

√
N(
√
`+ 2w + 1) where C ≈ 1/

√
2π

is the constant in [MP12, Lemma 2.9]. By that lemma, this ensures that the probability to retry in the
committing algorithm is negligible (and in particular, the distribution of r after the rejection sampling is
statistically close to the original Gaussian).
Computationally binding. Suppose that an adversary can construct a commitment f on two distinct
messages x 6= x′, with the associated randomness r, r′. Since x 6= x′, the correctness condition ensures
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Protocol Lattice-based Commitment Scheme

CSetup(1λ) takes a security parameter and outputs cpp = (N, q, s̄, s, B, `, w).
CGen(cpp) takes a commitment parameter and samples â1,1 ←$R×q (a uniform invertible element of Rq)

and â1,j ←$Rq for j = 2, . . . , `+ 2w, â2,j ←$Rq for j = 3, . . . , `+ 2w. It then outputs:

Â =
[
â1,1 â1,2 â1,3 · · · â1,`+2w

0 1 â2,3 · · · â2,`+2w

]
as ck.

Commitck(x) takes x ∈ Rq and samples a discrete Gaussian vector of randomness r←$D`+2w
s . It then

outputs

f = Â · r +
[

0
x

]
∈ R2

q .

To ensure perfect correctness, retry unless ‖r‖2 ≤ B.
Openck(f , r, x) takes commitments, randomness and message, and checks that

f = Â · r +
[

0
x

]
and ‖r‖2 ≤ B.

TCGen(cpp) takes a commitment parameter and samples Ā ∈ R2×`
q of the form:

Ā =
[
ā1,1 ā1,2 ā1,3 · · · ā1,`

0 1 ā2,3 · · · ā2,`

]
where all the āi,j are uniform in Rq, except ā1,1 which is uniform in R×q . It also samples R←$D`×2w

s̄

with discrete Gaussian entries. It then outputs R as the trapdoor td and Â =
[
Ā|G − ĀR

]
as the

commitment key tck, where G is given by:

G =
[

1 2 · · · 2w−1 0 0 · · · 0
0 0 · · · 0 1 2 · · · 2w−1

]
∈ R2×2w.

TCommittck(td) simply returns a uniformly random commitment f ←$R2×1
q . There is no need to keep a

state.
Eqvtck(R, f , x) uses the trapdoor discrete Gaussian sampling algorithm of Micciancio–Peikert [MP12, Al-

gorithm 3] (or faster variants such as the one described in [GM18]) to sample r←$DΛ⊥u (Â),s according
to the discrete Gaussian of parameter s supported on the lattice coset:

Λ⊥u (Â) =
{
z ∈ R`+2w : Â · z ≡ u (mod q)

}
where u = f −

[
0
x

]
.

Fig. 6. Equivocable variant of the commitment from [BDL+18].

that r and r′ are distinct and of norm ≤ B, and satisfy Â1 · (r−r′) ≡ 0 (mod q) where Â1 is the first row
of Â. Therefore, the vector z = r − r′ is a solution of the Ring-SIS problem with bound 2B associated
with Â1 (or equivalently, to the MSISq,1,`+2w−1,2B problem), and finding such a solution is hard.

Note that since the first entry of Â1 is invertible, one can put it in the form [A|I] without loss of
generality to express it directly as an MSIS problem in the sense of Definition 2. It also reduces tightly
to standard Ring-SIS, because a random row vector in R`+2w

q contains an invertible entry except with
probability at most (N/q)`+2w = 1/NΩ(logN), which is negligible.

Statistically hiding. It suffices to make sure that

Â ·D`+2w
s ≈s U(R2

q)

with high probability on the choice of Â. This is addressed by [LPR13, Corollary 7.5], which shows that
it suffices to pick s > 2N · q(2+2/N)/(`+2w).

Indistinguishability of the trapdoor. To ensure that the commitment key Â generated by TCGen
is indistinguishable from a regular commitment key, it suffices to ensure that ĀR is statistically close
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to uniform. Again by [LPR13, Corollary 7.5], this is guaranteed for s̄ > 2N · q(2+2/N)/`. By setting
` = w = dlog2 qe, we can thus pick s̄ = Θ(N).
Equivocability. It is clear that an r sampled according to the given lattice coset discrete Gaussian
is distributed as in the regular commitment algorithm (up to the negligible statistical distance due to
rejection sampling). The only constraint is thus on the Gaussian parameter that can be achieved by the
trapdoor Gaussian sampling algorithm. By [MP12, §5.4], the constraint on s is as follows:

s ≥ ‖R‖ · ω(
√

logN)

where ‖R‖ ≤ C · s̄
√
N(
√
`+
√

2w + 1) by [MP12, Lemma 2.9]. Thus, one can pick s = Θ(N3/2 log2N).
From the previous paragraphs, we can in particular see that the trapdoor commitment satisfies the

security requirements of Definition 4. Thus, to summarize, we have proved the following theorem.

Theorem 2. The trapdoor commitment scheme of Fig. 6, with the following choice of parameters:

s̄ = Θ(N) s = Θ(N3/2 log2N) B = Θ(N2 log3N)
` = w = dlog2 qe q = N2+ε (ε > 0, q prime).

is a secure trapdoor commitment scheme assuming that the MSISq,1,`+2w−1,2B problem is hard.

Note that we did not strive for optimality in the parameter selection; a finer analysis is likely to lead to
a more compact scheme.

Furthermore, although the commitment has a linear structure that gives it homomorphic features,
we need to increase parameters slightly to support additive homomorphism: this is because the standard
deviation of the sum of n randomness vectors v is

√
n times larger. Therefore, B (and accordingly q)

should be increased by a factor of
√
n to accomodate for n-party additive homomorphism. For constant

n, of course, this does not affect the asymptotic efficiency.
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Protocol Lattice-based statistically binding commitment

CSetup(1λ) takes a security parameter and outputs cpp = (q,N, k,m,m′, η).

CGen(cpp) takes a commitment parameter and outputs ck consisting of Â1 ∈ Rm×m
′

q and Â2 ∈ Rk×m
′

q .

Â1 = [Im|Â′1] where Â′1 ←$Rm×(m′−m)
q

Â2 = [0k×m|Ik|Â′2] where Â′2 ←$Rk×(m′−m−k)
q

Commitck(x) takes x ∈ Rkq , samples the randomness vector r←$Dm′
s and outputs[

f1
f2

]
=
[
Â1

Â2

]
· r +

[
0m
x

]
.

Openck(f1, f2,x, r) checks that [
f1
f2

]
=
[
Â1

Â2

]
· r +

[
0m
x

]
and ‖r‖2 ≤ B

Fig. 7. Statistically binding homomorphic commitment from [BDL+18]

A Lattice-based Statistically Binding Commitment

In Fig. 7, we give a formal specification of our statistically binding variant Baum et al.’s commitment
scheme [BDL+18].

B Additional Preliminaries

B.1 Additional Properties for Commitment Scheme

In this subsection, we formally define the standard security requirements for a commitment scheme and
two additional properties required by our protocols.
Definition 9 (Security of Commitment Scheme). A commitment scheme COM is said to be secure
if the following properties hold.
– Correctness It is correct if for any msg ∈ Smsg

Pr
[
Openck(com, r,msg)→ 1 : cpp ← CSetup(1λ); ck ← CGen(cpp)

r←$D(Sr); com ← Commitck(msg; r)

]
= 1.

– Hiding It is unconditionally (resp. computationally) hiding if the following probability is negligible for
any probabilistic adversary (resp. probabilistic polynomial-time adversary) A = (A1,A2).

εhide :=

∣∣∣∣∣∣∣∣Pr

 b = b′ :

cpp ← CSetup(1λ); ck ← CGen(cpp)
(msg0,msg1)← A1(ck, cpp)
b←$ {0, 1}; com ← Commitck(msgb)
b′ ← A2(com)

− 1
2

∣∣∣∣∣∣∣∣
– Binding It is unconditionally (resp. computationally) binding if the following probability is negligible

for any probabilistic adversary (resp. probabilistic polynomial-time adversary) A.

εbind := Pr

msg 6= msg′
Openck(com, r,msg)→ 1
Openck(com, r′,msg′)→ 1

:
cpp ← CSetup(1λ)
ck ← CGen(cpp)
(com,msg, r,msg′, r′)← A(ck)


In particular, unconditionally binding implies that the following probability is also negligible, since
otherwise unbounded adversaries can simply check all possible values in Scom, Smsg and Sr to find a
tuple that breaks binding.

εubind := Pr


∃(com, r,msg, r′,msg′) :
msg 6= msg′
Openck(com, r,msg)→ 1
Openck(com, r′,msg′)→ 1

: cpp ← CSetup(1λ)
ck ← CGen(cpp)
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Definition 10 (Uniform Key). A commitment key is said to be uniform if the output of CGen(cpp)
follows the uniform distribution over the key space Sck.

Definition 11 (Additive Homomorphism). A commitment is said to be additively homomorphic if
for any msg,msg′ ∈ Smsg

Pr

Openck(com + com′, r + r′,msg + msg′)→ 1 :

cpp ← CSetup(1λ)
ck ← CGen(cpp)
r←$D(Sr); r′←$D(Sr)
com ← Commitck(msg; r)
com′ ← Commitck(msg′; r′)

 = 1.

B.2 General Forking Lemma

We restate the general forking lemma from [BN06].

Lemma 5 (General Forking Lemma). Let Q be a number of queries and C be a set of size |C| > 2.
Let B be a randomized algorithm that on input x, h1, . . . , hQ returns an index i ∈ [0, Q] and a side
output out. Let IGen be a randomized algorithm that we call the input generator. Let FB be a forking
algorithm that works as in Fig. 8 given x as input and given black-box access to B. Suppose the following
probabilities.

acc := Pr[i 6= 0 : x← IGen(1λ);h1, . . . , hQ←$C; (i, out)← B(x, h1, . . . , hQ)]
frk := Pr[b = 1 : x← IGen(1λ); (b, out, ˆout)← FB(x)]

Then

frk ≥ acc ·
(

acc
Q
− 1
|C|

)
.

Alternatively,

acc ≤ Q

|C|
+
√
Q · frk.

Algorithm FB(x)

Upon receiving x
1. Pick a random coin ρ for B.
2. Generate h1, . . . , hQ ←$C.
3. (i, out)← B(x, h1, . . . , hQ; ρ).
4. If i = 0 then return (0,⊥,⊥).
5. Regenerate ĥi, . . . , ĥQ ←$C.
6. (̂i, ˆout)← B(x, h1, . . . , hi−1, ĥi, . . . , ĥQ; ρ).
7. If i = î and hi 6= ĥi then return (1, out, ˆout)
8. Else return (0,⊥,⊥).

Fig. 8. The forking algorithm FB

C Security Proof for DS2

Here we give a full security proof for our two-round protocol DS2. See Fig. 5 for the protocol specification.
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Theorem 1. Suppose the trapdoor commitment scheme TCOM is secure, additively homomorphic and
has uniform keys. For any probabilistic polynomial-time adversary A that initiates a single key generation
protocol by querying ODS2

n with sid = 0, initiates Qs signature generation protocols by querying ODS2
n

with sid 6= 0, and makes Qh queries to the random oracle H0,H1,H2,H3, the protocol DS2 of Fig. 5 is
DS-UF-CMA secure under MSISq,k,`+1,β and MLWEq,k,`,η assumptions, where β = 2

√
B2
n + κ. Concretely,

using other parameters specified in Table 1, the advantage of A is bounded as follows.

AdvDS-UF-CMA
DS2

(A) ≤ e · (Qh +Qs + 1) ·
(

(Qh +Qs)εtd +Qs ·
e−t

2/2

M
+ AdvMLWEq,k,`,η

+ (Qh + 1)Qh
2l1+1 + Qh

qk`N
+ n

2l1 + (Qh + 1)Qh
2l2+1 + Qh

qkN
+ n

2l2

+ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) ·
(
εbind + AdvMSISq,k,`+1,β

))

Proof. Given A against DS2 we show that its advantage AdvDS-UF-CMA
DS2

(A) is negligible by constructing a
reduction. Without loss of generality we assume that Pn is an honest party. Our first goal is to construct
an algorithm B around A that simulates the behaviors of Pn without using honestly generated key pairs.
Then we invoke the forking algorithm FB from Lemma 5 to obtain two forgeries with distinct challenges,
which allow to construct a solution to MSISq,k,`+1,β or to break computational binding of commitment
scheme TCOM. We present the resulting B in Fig. 9, together with its subroutines Figs. 10 to 14. Below
we discuss how to realize this via several intermediate hybrids.
G0 Random oracle simulation. We assume that B receives random samples hi←$C for each i ∈ [Qh+

Qs+1] as input. The random oracles H0 : {0, 1}∗ → C, H1 : {0, 1}∗ → {0, 1}l1 , H2 : {0, 1}∗ → {0, 1}l2
and H3 : {0, 1}∗ → Sck are simulated as follows. The table HTi is initially empty. The B also maintains
a counter ctr which is initially set to 0. Note that the slightly involved simulation of H0 below will
come into play when the forking lemma is applied; this way, the adversary A’s view is indeed identical
until the forking point in two executions.

H0(x) 1. Parse x as (com, µ, t); 2. Make a query H3(µ, t), so that HT3[µ, t] is immediately set;
3. If HT0[com, µ, t] = ⊥ then increment ctr and set HT0[com, µ, t] := hctr ; 4. Return
HT0[com, µ, t].

H1(x) If HT1[x] is not set let HT1[x]←$ {0, 1}l1 . Return HT1[x].
H2(x) If HT2[x] is not set let HT2[x]←$ {0, 1}l2 . Return HT2[x].

H3(µ, t) If HT3[µ, t] is not set let HT3[µ, t]←$Sck . Return HT3[µ, t].

Honest party oracle simulation. In this game B behaves exactly like a single honest party in
DS2; concretely, it simulates an oracle ODS2

n (Fig. 3) which internally invokes instructions of Genn
and Signn according to Fig. 5, respectively.
Forgery. When A outputs a forgery (com∗, z∗, r∗, µ∗) at the end B proceeds as follows.
1. If µ∗ ∈ Mset then B halts with output (0,⊥)
2. Make queries ck∗ ← H3(µ∗, t) and c∗ ← H0(com∗, µ∗, t)
3. If Openck∗(com∗, Āz∗ − c∗t, r∗) 6= 1 or ‖z∗‖2 > Bn then B halts with output (0,⊥).
4. Find if ∈ [Qh+Qs+1] such that c∗ = hif and B halts with output (if , out = (com∗, c∗, z∗, r∗, µ∗, ck∗))

Let Pr[Gi] denote a probability that B doesn’t output (0,⊥) at the game Gi. Then we have

Pr[G0] = AdvDS-UF-CMA
DS2

(A).

G1 This game is identical to G0 except at the following points.
Random oracle simulation. Simulation of the random oracle H3 is analogous to Drijvers et
al. [DEF+19] The core idea is to make sure that all sign queries can be responded with trapdoor
commitments, which can be equivocated to an arbitrary plaintext later, and that the forgery submit-
ted by A involves the actual commitment key. In this game B initially generates a single commitment
key ck ←$Sck . Then upon receiving a query (µ, t) to H3, B tosses a biased coin that comes out heads
with probability $ and tails with 1−$. If the coin comes out heads, then B invokes TCGen to gen-
erate a commitment key–trapdoor pair (tck, td), stores tck and td in tables HT3[µ, t] and TDT[µ, t],
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respectively, and returns tck; if it comes out tails, then B stores a predefined ck in HT3[µ, t] and
returns ck. The complete description of random oracle simulation is presented in Fig. 11.
Honest party oracle simulation. The B differs from the prior one at the following steps in
DS2.Signn.

Inputs 3 Call H3(µ, t) to obtain tck. If TDT[µ, t] = ⊥ (i.e., TCGen was not called) then set a
flag bad4 and halt with output (0,⊥). Otherwise obtain the trapdoor td ← TDT[µ, t]
Signature Generation 1.b. Call comn ← TCommittck(td) instead of committing to wn.
Signature Generation 2.c. After computing zn := csn+yn derive randomness rn ← Eqvtck(td, comn,wn).

Forgery. When A outputs a successful forgery (com∗, z∗, r∗, µ∗) at the end, we modify the step 3 of
G0 as follows.

Forgery 3 If Openck∗(com∗, Āz∗ − c∗t, r∗) 6= 1 or ‖z∗‖2 > Bn then B halts with output (0,⊥).
If TDT[µ∗, t] 6= ⊥ (i.e., TCGen was called for a query H3(µ∗, t)) then set bad5 and B halts with
output (0,⊥).

Note that due to the way H3 is simulated, if B does not output (0,⊥) it is now guaranteed that
ck∗ = ck = H3(µ∗, t). Recalling that TCOM is secure (Definition 4) we have

Pr[G1] ≥ $Qh+Qs · (1−$) · Pr[G0]− (Qh +Qs) · εtd

because the simulation is only successful if the random oracle H3 internally uses TCGen for all but
one queries to H3 (both directly and indirectly via H0 and Signn) and if H3 uses a predefined ck
for a single crucial query (µ∗, t) associated with forgery; in other words, it is only successful if
neither bad4 nor bad5 is set above. Note that by setting $ = (Qh + Qs)/(Qh + Qs + 1) since
(1/(1 + 1/(Qh +Qs)))Qh+Qs ≥ 1/e for Qh +Qs ≥ 0 we obtain

Pr[G1] ≥ Pr[G0]
e(Qh +Qs + 1) − (Qh +Qs) · εtd.

G2 This game is identical to G1 except at the following points.
Honest party oracle simulation. The B doesn’t honestly generate zn anymore and instead simu-
lates the rejection sampling as follows.

Signature Generation 1.a. B does nothing here.
Signature Generation 2.c. Sample zn←$D`+k

s and derive randomness rn ← Eqvtck(td, comn,wn :=
Āzn − ctn).
Signature Generation 2.d. With probability 1/M send out (zn, rn). Otherwise send out restart.

The signature share zn simulated this way is statistically indistinguishable from the real one because
of special HVZK property of the underlying identification scheme. In other words, we can directly
apply the result of Lemmas 3 and 4. Hence we have

|Pr[G2]− Pr[G1]| ≤ Qs ·
e−t

2/2

M
.

G3 At this stage, notice that the signing queries are simulated according to SimSignn in Fig. 14, and it
doesn’t rely on the actual secret key share sn anymore. So our next goal is to simulate the generation
of tn without using sn. In this game B first picks the resulting random matrix A ∈ Rk×`q and defines
its own share An a posteriori, after extracting adversary’s committed shares A1, . . . ,An−1. This can
be done by searching the recorded random oracle queries in HT1. Note that the distributions of A and
An haven’t changed from the previous game. The formal simulation strategy is described in Matrix
Generation section of Fig. 13. Since G3 is identical to G2 from adversary A’s point of view except
at the bad events marked there, we have

|Pr[G3]− Pr[G2]| ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] ≤ (Qh + 1)Qh
2l1+1 + Qh

qk`N
+ n

2l1

where Pr[bad1] corresponds to the probability that at least one collision occurs during at most Qh
queries to H1 made by A or B, which is at most ((Qh + 1)Qh/2)/2l1 ; Pr[bad2] is the probability that
programming the random oracle H1 fails, which happens only if H1(An, n) has been previously asked
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by A during at most Qh queries to H1, and the probability that guessing a uniformly random An

by chance is at most 1/qk`N for each query; Pr[bad3] is the probability that A has predicted one of
the n− 1 outputs of random oracle H1 without making a query to it, which could only happen with
probability at most n/2l1 .

G4 This game is identical to G3 except that B simply picks the random public key share tn←$Rkq
during the key generation phase, instead of computing tn = Āsn where sn←$S`+kη . As A follows the
uniform distribution over Rk×`q , if the adversary A can distinguish G3 and G4 then we can use A as
a distinguisher that breaks MLWEq,k,`,η assumption; hence we have

|Pr[G4]− Pr[G3]| ≤ AdvMLWEq,k,`,η .

G5 In this game B first picks the resulting public key t randomly from Rkq and defines its own share tn a
posteriori, after extracting adversary’s committed shares t1, . . . , tn−1. This can be done by searching
the recorded random oracle queries in HT2. Note that the distributions of t and tn haven’t changed
from the previous game. The formal simulation strategy is described in Key Pair Generation
section of Fig. 13. Since G5 is identical to G4 from adversary A’s point of view except at the bad ′
events marked there, we have

|Pr[G5]− Pr[G4]| ≤ Pr[bad ′1] + Pr[bad ′2] + Pr[bad ′3] ≤ (Qh + 1)Qh
2l2+1 + Qh

qkN
+ n

2l2

where the bounds are calculated just as in G3.

Forking lemma. At this stage, notice that the key generation query is simulated according to SimGenn
in Fig. 13. Our goal is to embed a challenge commitment key ck ← CGen(cpp) and an instance of
MSISq,k,`+1,β , which is denoted as [A′|I] with A′←$R

k×(`+1)
q . As in G5 the combined public key (A, t)

is uniformly distributed in Rk×`q × Rkq , replacing it with MSISq,k,`+1,β instance doesn’t change the view
of adversary at all, if A′ is regarded as A′ = [A|t]. Moreover, thanks to the simulation of H3 it is
guaranteed that ck follows the uniform distribution over Sck which is perfectly indistinguishable from
honestly generated ck ← CGen(cpp) (since the keys are uniform). Hence we define the input generator
IGen of forking lemma such that it outputs the instance (ck,A, t).

Now we prove the theorem by constructing B′ around B in Fig. 9 that either (1) breaks binding of
commitment wrt ck, or (2) finds a solution to MSISq,k,`+1,β on input A′ = [A|t]. The B′ invokes the
forking algorithm FB on input (ck,A, t) from Lemma 5. Then with probability frk we immediately get
two forgeries out = (com∗, c∗, z∗, r∗, µ∗, ck∗) and ˆout = ( ˆcom∗, ĉ∗, ẑ∗, r̂∗, µ̂∗, ĉk

∗
), where frk satisfies

Pr[G5] = acc ≤ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) · frk.

By construction of B and FB we have com∗ = ˆcom∗, µ∗ = µ̂∗ and c∗ 6= ĉ∗; until the forking point
ctr = if the adversary A’s view is identical in two executions. Moreover, due to the simulation of H0
we also guarantee that ck∗ = ĉk

∗
= ck since H3(µ∗, t) and H3(µ̂∗, t) should have been invoked right

before the fork. Since both forgeries are verified under the same commitment key ck, we have ‖z∗‖2 ≤
Bn ∧ ‖ẑ∗‖2 ≤ Bn and

Openck(com∗, r∗, Āz∗ − c∗t) = Openck(com∗, r̂∗, Āẑ∗ − ĉ∗t) = 1.

If Āz∗ − c∗t 6= Āẑ∗ − ĉ∗t then B′ can break computational binding with respect to ck, which succeeds
with probability at most εbind. If Āz∗ − c∗t = Āẑ∗ − ĉ∗t, rearranging it leads to

[A|I|t]
[
z∗ − ẑ∗
ĉ∗ − c∗

]
= 0.

Recalling that [A′|I] = [A|t|I] is an instance of MSISq,k,`+1,β problem, we have found a valid solution if
β =

√
(2Bn)2 + 4κ, since ‖z∗ − ẑ∗‖2 ≤ 2Bn and 0 < ‖ĉ∗ − c∗‖2 ≤

√
4κ. Putting two cases together, we

get
frk ≤ εbind + AdvMSISq,k,`+1,β

.
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Algorithm B((ck,A, t), h1, . . . , hQh+Qs+1)

The algorithm is initialized with empty hash tables HTi for i = 0, . . . , 3, trapdoor table TDT, a set of queried messages
Mset = ∅, and a counter ctr = 0.
Honest party oracle simulation Upon receiving a query of the form (sid,m) from A, reply the query as described

in SimODS2
n (sid,m) (Fig. 10). If SimODS2

n halts with output (0,⊥) then B also halts with output (0,⊥).
Random oracle simulation Upon receiving a query to the random oracles from A, reply the query as described in

Fig. 11.
Forgery Upon receiving a forgery (com∗, z∗, r∗, µ∗) from A:

1. If µ∗ ∈ Mset then B halts with output (0,⊥)
2. Make queries ck∗ ← H3(µ∗, t) and c∗ ← H0(com∗, µ∗, t)
3. If Openck∗(com∗, Āz∗ − c∗t, r∗) 6= 1 or ‖z∗‖2 > Bn then B halts with output (0,⊥). If TDT[µ∗, t] 6= ⊥ (i.e.,

TCGen was called for a query H3(µ∗, t)) then set bad5 and B halts with output (0,⊥).
4. Find if ∈ [Qh +Qs + 1] such that c∗ = hif and B halts with output (if , out = (com∗, c∗, z∗, r∗, µ∗, ck∗))

Fig. 9. The algorithm simulating the view of A in ExpDS-UF-CMA
DS2 (A) experiment

Oracle SimODS2
n (sid,m)

The simulator is initialized with public parameters pp generated by Setup algorithm. The variable flag is initially set
to false.
Key Generation Upon receiving (0,m), if flag = true then return ⊥. Otherwise do the following:

– If the oracle is queried with sid = 0 for the first time then it initializes a machineM0 running the instructions
SimGenn(pp,A, t) (Fig. 13).

– If M0 has been already initialized then the oracle hands the machine M0 the next incoming message m and
returnsM0’s reply. IfM0 fails with output (0,⊥) at any point then the oracle stops the simulation with output
(0,⊥). If M0 concludes SimGenn(pp,A, t) with local output (tn, pk), then set flag = true.

Signature Generation Upon receiving (sid,m) with sid 6= 0, if flag = false then return ⊥. Otherwise do the following:
– If the oracle is queried with sid for the first time then parse the incoming message m as µ. It initializes a

machine Msid running the instructions of SimSignn(sid, tn, pk, µ) (Fig. 14). The machine Msid is initialized
with the key share and any state information stored by M0. The message µ to be signed is included in Mset.
If Pn sends the first message in the signing protocol, then this message is the oracle reply.

– If Msid has been already initialized then the oracle hands the machine Msid the next incoming message m
and returns the next message sent byMsid . IfMsid fails with output (0,⊥) at any point then the oracle stops
the simulation with output (0,⊥). IfMsid concludes with local output σ, then the output obtained byMsid is
returned.

Fig. 10. Honest party oracle simulator for DS2.

Algorithm Random Oracle Simulation

H0(x)
1. Parse x as (com, µ, t)
2. Make a query H3(µ, t)
3. If HT0[com, µ, t] = ⊥ then increment ctr and set HT0[com, µ, t] := hctr

4. Return HT0[com, µ, t]
H1(x)

1. If HT1[x] = ⊥ then set HT1[x]←$ {0, 1}l1

2. Return HT1[x]
H2(x)

1. If HT2[x] = ⊥ then set HT2[x]←$ {0, 1}l2

2. Return HT2[x]
H3(x)

1. Parse x as (µ, t)
2. If HT3[µ, t] = ⊥:

– With probability $ compute (tck, td) ← TCGen(cpp), store the trapdoor in TDT[µ, t] := td and set
HT3[µ, t] := tck.

– With probability 1−$, set HT3[µ, t] := ck.
3. Return HT3[µ, t]

Fig. 11. Random oracle simulator for DS2.
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Algorithm SearchHashTable

Upon receiving the hash table HT together with hash values (h1, . . . , hn−1):
1. If for some j ∈ [n− 1] the preimage of hj doesn’t exist in HT then set the flag alert.
2. If for some j ∈ [n− 1] more than one preimages of hj exist in HT then set the flag bad.
3. Return (alert, bad,m1, . . . ,mn−1), where for each j ∈ [n − 1] if there is no mj such that HT[mj ] = hj then

mj = ⊥, and otherwise mj is defined such that HT[mj ] = hj .

Fig. 12. Routine for searching hash tables.

Algorithm SimGenn(pp,A, t)

Matrix Generation
1. Sample gn ←$ {0, 1}l1 and send out gn.
2. Upon receiving gj for all j ∈ [n− 1] proceed as follows:

a. Invoke SearchHashTable in Fig. 12 on input HT1 and (g1, . . . , gn−1) to obtain
(alert, bad1, (A1, 1), . . . , (An−1, n− 1)).

b. If the flag bad1 is set then simulation fails with output (0,⊥).
c. If the flag alert is set then pick An ←$Rk×`q . Otherwise using a predefined matrix A define An := A −∑n−1

j=1 Aj .

– If HT1[An, n] has been already set then set bad2 and simulation fails with output (0,⊥).
– Otherwise program the random oracle HT1[An, n] := gn and send out An.

3. Upon receiving Aj for all j ∈ [n− 1]:
a. If H1(Aj , j) 6= gj for some j then send out abort.
b. If alert is set and H1(Aj , j) = gj for all j then set bad3 and simulation fails with output (0,⊥).

c. Otherwise set a public random matrix Ā := [A|I] ∈ Rk×(`+k)
q .

Key Pair Generation
1. Sample g′n ←$ {0, 1}l2 and send out g′n.
2. Upon receiving g′j for all j ∈ [n− 1] proceed as follows:

a. Invoke SearchHashTable in Fig. 12 on input HT2 and (g′1, . . . , g′n−1) to obtain
(alert′, bad ′1, (t1, 1), . . . , (tn−1, n− 1)).

b. If the flag bad ′1 is set then simulation fails with output (0,⊥).
c. If the flag alert′ is set then pick tn ←$Rkq . Otherwise using a predefined public key t define tn := t −∑n−1

j=1 tj .

– If HT2[tn, n] has been already set then set bad ′2 and simulation fails with output (0,⊥).
– Otherwise program the random oracle HT2[tn, n] := g′n and send out tn.

3. Upon receiving tj for all j ∈ [n− 1]:
a. If H2(tj , j) 6= g′j for some j then send out abort.
b. If alert′ is set and H2(tj , j) = g′j for all j then set bad ′3 and simulation fails with output (0,⊥).

If neither the protocol aborts nor the simulation fails, the simulator obtains public key share tn and pk = (Ā, t) as
local output.

Fig. 13. Key generation simulator for DS2
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Algorithm SimSignn(sid, tn, pk, µ)

The simulator is parameterized by public parameters described in Table 1 and relies on the random oracles
H0 : {0, 1}∗ → C and H3 : {0, 1}∗ → Sck . The simulator assumes that SimGenn(pp,A, t) (Fig. 13) has
been previously invoked. If the simulator halts with abort at any point, then all SimSignn(sid, tn, pk, µ)
executions are aborted.
Inputs

1. The simulator receives a unique session ID sid, tn, pk = (Ā, t) and message µ ∈ {0, 1}∗ as input.
2. The simulator verifies that sid has not been used before (if it has been, the protocol is not executed).
3. The simulator locally computes a per-message commitment key by querying a random oracle tck ←

H3(µ, t). If TDT[µ, t] = ⊥ (i.e., TCGen was not called) then set bad4 and simulation fails with
output (0,⊥). Otherwise obtain the trapdoor td ← TDT[µ, t].

Signature Generation
1. Compute the first message as follows.

a. Compute comn ← TCommittck(td).
b. Send out comn.

2. Upon receiving comj for all j ∈ [n− 1] compute the signature share as follows.
a. Set com :=

∑
j∈[n] comj .

b. Derive a challenge c← H0(com, µ, t).
c. Computes a simulated signature share zn ←$D`+k

s and derive randomness rn ←
Eqvtck(td, comn,wn = Āzn − ctn).

d. With probability 1/M send out (zn, rn); otherwise send out restart and go to 1.
3. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj) for all j ∈ [n−1]

compute the combined signature as follows
a. For each j ∈ [n− 1] reconstruct wj := Āzj − ctj and validate the signature share:

‖zj‖2 ≤ B and Opentck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z :=

∑
j∈[n] zj and r :=

∑
j∈[n] rj .

If neither the protocol aborts nor the simulation fails, the simulator obtains a signature (com, z, r) as local
output.

Fig. 14. Signature generation simulator for DS2.

31



D MS2: Two-round Multi-signature in the Plain Public Key Model

In this section we describe our two-round multi-signature scheme MS2. The main difference from n-out-of-
n signature is that, the protocol requires no interactive key generation at all, and instead for each signing
execution a party receives a set of public keys L together with a message to be signed. As the number of
participants may change for each signing attempt, in this section we define n to be the maximum number
of signers allowed in a single execution of signing protocol, i.e., only L of cardinalty at most n is a valid
input.

Now we present concrete specifications of MS2 = (Setup,Gen,Sign,Ver). The Setup works just like the
one for DS2, but it additionally outputs a matrix Ā = [A|I] as part of public parameters, so we assume
that Ā is generated by a trusted third party (if the generation of Ā has to be done in a distributed way
then parties can invoke a matrix generation protocol in Fig. 5 instead and a signer only uses Ā as long
as it participated in the generation of Ā). Then Gen algorithm is the same as Algorithm 1, except that it
takes Ā as input and outputs sk = s and pk = t. In a multi-signature scheme, the indices assigned to the
signers are just local references to the cosigners participating in a particular protocol instance [BN06],
and therefore we wlog assume that each signer assign the index n to itself, and consider other signers’
indices as 1, . . . , n′−1, where n′ = |L| ≤ n. The signing protocol Sign and verification Ver are described in
Fig. 15. The only difference from DS2.Signn and DS2.Ver is that signature shares are now constructed from
per-user challenges, instead of a single common challenge for all co-signers (just as Bellare–Neven [BN06]
or Bagherzandi et al. [BCJ08] did). Therefore, the random oracle simulation below is more involved than
in the proof for Theorem 1. On the other hand, as MS2 has no interactive key generation, the proof only
requires much simpler key generation simulation. Therefore, the concrete security bound in the following
theorem is slightly better than the previous case.

Theorem 3. Suppose the trapdoor commitment scheme TCOM is secure, additively homomorphic and
has uniform keys. For any probabilistic polynomial-time adversary A that initiates Qs signature generation
protocols by querying OMS2

n , and makes Qh queries to the random oracle H0,H3, the protocol MS2 of
Fig. 15 is MS-UF-CMA secure under MSISq,k,`+1,β and MLWEq,k,`,η assumptions, where β = 2

√
B2
n + κ.

Concretely, using other parameters specified in Table 1, the advantage of A is bounded as follows.

AdvMS-UF-CMA
MS2

(A) ≤ e · (Qh +Qs + 1) ·
(

(Qh +Qs)εtd +Qs ·
e−t

2/2

M
+ AdvMLWEq,k,`,η

+ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) ·
(
εbind + AdvMSISq,k,`+1,β

))

Proof. As this proof has a significant overlap with the one for DS2, we highlight the differences in purple.
To avoid redundancy we do not present the resulting reduction algorithm in a separate box, but it should
be clear from the hybrid argument below.

Given A against MS2 we show that its advantage AdvMS-UF-CMA
MS2

(A) is negligible by constructing a
reduction. Without loss of generality we assume that Pn is an honest party. Our first goal is to construct
an algorithm B around A that simulates the behaviors of Pn without using honestly generated key pairs.
Then we invoke the forking algorithm FB from Lemma 5 to obtain two forgeries with distinct challenges,
which allow to construct a solution to MSISq,k,`+1,β or to break computational binding of commitment
scheme TCOM. Below we discuss how to realize this via several intermediate hybrids.
G0 Key generation. The B first generates its key pair by invoking pp ← Setup(1λ) and (skn, pkn) :=

(sn, tn)← Gen(pp). Then A is given (pp, pkn) as input.

Random oracle simulation. We assume that B receives random samples hi←$C for each i ∈
[Qh +Qs + 1] as input. The random oracles H0 : {0, 1}∗ → C and H3 : {0, 1}∗ → Sck are simulated as
follows. The table HTi is initially empty. The B also maintains a counter ctr which is initially set to 0.
Note that the simulation of H0 below will come into play when the forking lemma is applied; this way,
the adversary A’s view is indeed identical until the forking point in two executions. Concretely, the
simulation below follows the proof for Bagherzandi et al. [BCJ08]’s discrete log-based multi-signature
BCJ, except that a query to H3 is interleaved.

H0(x)
1. Parse x as (t, com, µ, L)
2. Make a query H3(µ,L)
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Protocol MS2.Sign(sid, skn, pkn, µ, L)

The protocol is parameterized by public parameters described in Table 1 and matrix Ā, and relies on the
random oracles H0 : {0, 1}∗ → C and H3 : {0, 1}∗ → Sck . The protocol assumes that MS2.Gen(pp) has been
previously invoked. If a party halts with abort at any point, then all Sign(sid, skn, pkn, µ, L) executions are
aborted.
Inputs

1. Pn receives a unique session ID sid, skn = sn, pk = tn, message µ ∈ {0, 1}∗ and a list of public keys
L as input. If n′ := |L| > n or tn /∈ L then send out abort. Otherwise parse L as {t1, . . . , tn′−1, tn}.

2. Pn verifies that sid has not been used before (if it has been, the protocol is not executed).
3. Pn locally computes a per-message commitment key ck ← H3(µ,L).

Signature Generation Pn works as follows:
1. Compute the first message as follows.

a. Sample yn ←$D`+k
s and compute wn := Āyn.

b. Compute comn ← Commitck(wn; rn) with rn ←$D(Sr).
c. Send out comn.

2. Upon receiving comj for all j ∈ [n′ − 1] compute the signature share as follows.
a. Set com :=

∑
j∈[n′−1] comj + comn.

b. Derive a challenge cn ← H0(tn, com, µ, L).
c. Computes a signature share zn := cnsn + yn.
d. Run the rejection sampling on input (cnsn, zn), i.e., with probability

min
(
1, D`+k

s (zn)/(M ·D`+k
cnsn,s(zn))

)
send out (zn, rn); otherwise send out restart and go to 1.

3. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj) for all j ∈ [n′−1]
compute the combined signature as follows
a. For each j ∈ [n′ − 1] derive a per-user challenge cj ← H0(tj , com, µ, L), reconstruct wj :=

Āzj − cjtj and validate the signature share:

‖zj‖2 ≤ B and Openck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z :=

∑
j∈[n′−1] zj + zn and r :=

∑
j∈[n′−1] rj + rn.

If the protocol does not abort, Pn obtains a signature (com, z, r) as local output.

Algorithm MS2.Ver(com, z, r, µ, L)

Upon receiving a message µ, signature (com, z, r), and a set of public keys L, if |L| > n then reject the
signature. Otherwise for each j such that tj ∈ L derive a per-user challenge cj ← H0(tj , com, µ, L) and
reconstruct w := Āz−

∑
j
cjtj . Then accept if ‖z‖2 ≤ Bn and Openck(com, r,w) = 1.

Fig. 15. Two-round multi-signature secure in the plain public key model.
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3. If HT0[t, com, µ, L] = ⊥:
(a) If t, tn ∈ L:
∗ For each tj ∈ L \{tn}, set HT0[tj , com, µ, L]←$C.
∗ Increment ctr and HT0[tn, com, µ, L] := hctr .

(b) Otherwise, set HT0[t, com, µ, L]←$C

4. Return HT0[t, com, µ, L]

H3(x) If HT3[µ,L] is not set let HT3[µ,L]←$Sck . Return HT3[µ,L].

Honest party oracle simulation. In this game B behaves exactly like a single honest party in MS2;
concretely, it simulates an oracle OMS2 (Fig. 4) which internally invokes instructions of Sign according
to Fig. 15.
Forgery. When A outputs a forgery (com∗, z∗, r∗, µ∗, L∗) at the end B proceeds as follows.
1. If (µ∗, L∗) ∈ Mset or |L∗| > n then B halts with output (0,⊥)
2. If tn /∈ L∗ then B halts with output (0,⊥)
3. Make queries ck∗ ← H3(µ∗, L∗). Let n∗ := |L∗| ≤ n and parse L∗ as

{
t∗1, . . . , t∗n∗−1, tn

}
. For each

j ∈ [n∗ − 1], make queries c∗j ← H0(tj , com∗, µ∗, L∗) and c∗n ← H0(tn, com∗, µ∗, L∗).

4. If Openck(com∗, r∗, Āz∗ −
∑
j∈[n∗−1] c

∗
jt∗j − c∗ntn) 6= 1 or ‖z∗‖2 > Bn then B halts with output

(0,⊥).
5. Find if ∈ [Qh+Qs+1] such that c∗n = hif and B halts with output (if , out = (com∗,{c∗}j∈[n∗−1], c

∗
n,

z∗, r∗, µ∗, L∗, ck∗))
Let Pr[Gi] denote a probability that B doesn’t output (0,⊥) at the game Gi. Then we have

Pr[G0] = AdvMS-UF-CMA
MS2

(A).

G1 This game is identical to G0 except at the following points.
Random oracle simulation.

H3(x) 1. Parse x as (µ,L)
2. If HT3[µ,L] = ⊥:

(a) With probability$ compute (tck, td)← TCGen(cpp), store the trapdoor in TDT[µ,L] :=
td and set HT3[µ,L] := tck.

(b) With probability 1−$, set HT3[µ,L] := ck.
3. Return HT3[µ,L]

Honest party oracle simulation. The B differs from the prior one at the following steps in
MS2.Signn.

Inputs 3 Call H3(µ,L) to obtain tck. If TDT[µ,L] = ⊥ (i.e., TCGen was not called) then set a
flag bad4 and halt with output (0,⊥). Otherwise obtain the trapdoor td ← TDT[µ,L]
Signature Generation 1.b. Call comn ← TCommittck(td) instead of committing to wn.
Signature Generation 2.c. After computing zn := cnsn+yn derive randomness rn ← Eqvtck(td, comn,wn).

Forgery. When A outputs a successful forgery (com∗, z∗, r∗, µ∗, L∗) at the end, we modify the step
4 of G0 as follows.

Forgery 4 If Openck(com∗, r∗, Āz∗ −
∑
j∈[n∗−1] c

∗
jt∗j − c∗ntn) 6= 1 or ‖z∗‖2 > Bn then B halts

with output (0,⊥). If TDT[µ∗, L∗] 6= ⊥ (i.e., TCGen was called for a query H3(µ∗, L∗)) then set
bad5 and B halts with output (0,⊥).

Note that due to the way H3 is simulated, if B does not output (0,⊥) it is now guaranteed that
ck∗ = ck = H3(µ∗, L∗). Recalling that TCOM is secure (Definition 4) we have

Pr[G1] ≥ $Qh+Qs · (1−$) · Pr[G0]− (Qh +Qs) · εtd

because the simulation is only successful if the random oracle H3 internally uses TCGen for all but
one queries to H3 (both directly and indirectly via H0 and Signn) and if H3 uses a predefined ck
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for a single crucial query (µ∗, L∗) associated with forgery; in other words, it is only successful if
neither bad4 nor bad5 is set above. Note that by setting $ = (Qh + Qs)/(Qh + Qs + 1) since
(1/(1 + 1/(Qh +Qs)))Qh+Qs ≥ 1/e for Qh +Qs ≥ 0 we obtain

Pr[G1] ≥ Pr[G0]
e(Qh +Qs + 1) − (Qh +Qs) · εtd.

G2 This game is identical to G1 except at the following points.
Honest party oracle simulation. The B doesn’t honestly generate zn anymore and instead simu-
lates the rejection sampling as follows.

Signature Generation 1.a. B does nothing here.
Signature Generation 2.c. Sample zn←$D`+k

s and derive randomness rn ← Eqvtck(td, comn,wn :=
Āzn − cntn).
Signature Generation 2.d. With probability 1/M send out (zn, rn). Otherwise send out restart.

The signature share zn simulated this way is statistically indistinguishable from the real one because
of special HVZK property of the underlying identification scheme. In other words, we can directly
apply the result of Lemmas 3 and 4. Hence we have

|Pr[G2]− Pr[G1]| ≤ Qs ·
e−t

2/2

M
.

G3 At this stage, notice that the simulated signing query responses don’t rely on the actual secret key
share sn anymore. So our next goal is to simulate the generation of tn without using sn.
This game is identical to G3 except that B simply picks the random public key share tn←$Rkq
during the key generation phase, instead of computing tn = Āsn where sn←$S`+kη . As A follows the
uniform distribution over Rk×`q , if the adversary A can distinguish G2 and G3 then we can use A as
a distinguisher that breaks MLWEq,k,`,η assumption; hence we have

|Pr[G3]− Pr[G2]| ≤ AdvMLWEq,k,`,η .

Forking lemma. Our goal is to embed a challenge commitment key ck ← CGen(cpp) and an instance
of MSISq,k,`+1,β , which is denoted as [A′|I] with A′←$R

k×(`+1)
q . As in G3 the matrix and public key

(A, tn) is uniformly distributed in Rk×`q ×Rkq , replacing it with MSISq,k,`+1,β instance doesn’t change the
view of adversary at all, if A′ is regarded as A′ = [A|tn]. Moreover, thanks to the simulation of H3 it
is guaranteed that ck follows the uniform distribution over Sck which is perfectly indistinguishable from
honestly generated ck ← CGen(cpp) (since the keys are uniform). Hence we define the input generator
IGen of forking lemma such that it outputs the instance (ck,A, tn).

Now we prove the theorem by constructing B′ around B that either (1) breaks binding of commitment
wrt ck, or (2) finds a solution to MSISq,k,`+1,β on input A′ = [A|tn]. The B′ invokes the forking algorithm
FB on input (ck,A, tn) from Lemma 5. Then with probability frk we immediately get two forgeries out =
(com∗,{c∗}j∈[n∗−1], c

∗
n, z∗, r∗, µ∗, L∗, ck∗) and ˆout = ( ˆcom∗,{ĉ∗}j∈[n̂∗−1], ĉ

∗
n, ẑ∗, r̂∗, µ̂∗, L̂∗, ĉk

∗
), where frk

satisfies

Pr[G3] = acc ≤ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) · frk.

By construction of B and FB we have com∗ = ˆcom∗, µ∗ = µ̂∗, n∗ = n̂∗, L∗ = L̂∗ =
{
t∗1, . . . , t∗n∗−1, tn

}
,

c∗j = ĉ∗j for each j ∈ [n∗ − 1], and c∗n 6= ĉ∗n ; until the forking point ctr = if the adversary A’s view is
identical in two executions. Moreover, due to the simulation of H0 we also guarantee that ck∗ = ĉk

∗
= ck

since H3(µ∗, L∗) and H3(µ̂∗, L̂∗) should have been invoked right before the fork. Since both forgeries are
verified under the same commitment key ck, we have ‖z∗‖2 ≤ Bn ∧ ‖ẑ∗‖2 ≤ Bn and

Openck(com∗, r∗, Āz∗ −
∑

j∈[n∗−1]

c∗jt∗j − c∗ntn)

=Openck(com∗, r̂∗, Āẑ∗ −
∑

j∈[n∗−1]

c∗jt∗j − ĉ∗ntn) = 1.
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If Āz∗− c∗ntn 6= Āẑ∗− ĉ∗ntn then B′ can break computational binding with respect to ck, which succeeds
with probability at most εbind. If Āz∗ − c∗ntn = Āẑ∗ − ĉ∗ntn, rearranging it leads to

[A|I|tn]
[
z∗ − ẑ∗
ĉ∗n − c∗n

]
= 0.

Recalling that [A′|I] = [A|tn|I] is an instance of MSISq,k,`+1,β problem, we have found a valid solution if
β =

√
(2Bn)2 + 4κ, since ‖z∗ − ẑ∗‖2 ≤ 2Bn and 0 < ‖ĉ∗n − c∗n‖2 ≤

√
4κ. Putting two cases together, we

get
frk ≤ εbind + AdvMSISq,k,`+1,β

.

E Potential Wagner-like Attack on Naive Two-round Protocols

Below we sketch a variant of the concurrent attack originally described by Drijvers et al. [DEF+19].
The original attack was against two-round discrete log-based multi-signatures including CoSi [STV+16]
and BCJ [BCJ08], but due to the very similar structure of FSwA lattice signatures an attack would
become feasible against naive two-round instantiations (albeit with sub-exponential computational costs
due to reliance on a K-list sum algorithm). Since such naive FSwA-based constructions do not exist in
the literature, we do not go into details of the efficiency analysis of the concurrent attack. The attack
sketched here should be treated as a motivating discussion about why our two-round protocols rely on a
message-dependent commitment key in Figs. 5 and 15.
Attack on a naive construction from Section 1.2. For simplicity we consider the attack on two-
party signing, but the same strategy also works similarly in a general n-party setting. Let s̃1 and s2 be
the key shares of adversary and honest party, respectively, and let t = Ā(s̃1 + s2) be the combined public
key. The adversary initiates K − 1 concurrent signing sessions on the same message µ. Then for each
session i ∈ [K−1], the honest party submits w(i)

2 = Āy(i)
2 . Here the adversary does not immediately send

back its own commitment share. Instead, by only interacting with the random oracle H0 the adversary
tries to find a message µ∗ and w̃(1)

1 , . . . , w̃(K−1)
1 ∈ Rkq such that the following holds.

c∗ := H0(w∗, µ∗, t) = H0(w̃(1)
1 + w(1)

2 , µ, t) + ...+ H0(w̃(K−1)
1 + w(K−1)

2 , µ, t)

where the adversary defines w∗ := w(1)
2 + . . . + w(K−1)

2 . Because the random oracle outputs consist
of C =

{
c ∈ ZN : ‖c‖1 = κ ∧ ‖c‖∞ = 1

}
, finding such inputs amounts to solving a variant of Wagner’s

generalized birthday problem (GBP) [Wag02, HJ10] instantiated over (C,+), when K is chosen to be a
power of two. (Note that in the discrete log setting GBP is instantiated over a group (Zq,+).) Then the
adversary resumes the pending sessions by sending back such w̃(i)

1 for i ∈ [K − 1]. The honest signer for
each session returns its signature share

z(i)
2 = y(i)

2 + c(i)s2

where c(i) = H0(w̃(i)
1 + w(i)

2 , µ, t). Finally the adversary outputs

z∗ = z(1)
2 + ...+ z(K−1)

2 + c∗s̃1 = y(1)
2 + ...+ y(K−1)

2 + c∗(s̃1 + s2)

as a forgery on µ∗ together with w∗. Now let us check that (w∗, z∗) satisfies the verification condition.
Thanks to the collision found by a GBP solver, and by construction of w∗ and z∗, it holds that Āz∗−c∗t =
w∗. Note that the adversary should take extra care of the norm of z∗ by bounding the number of sessions
K − 1; the small ‖z∗‖ is part of the verification condition, while ‖z∗‖ grows for large K. For this reason
there should be some tradeoffs for K, since the larger the K is, the lower the complexity of GBP algorithm
becomes. This means that, since the norm bound in verification has to be increased according to n (see
Section 3.2), the attack also becomes efficient in an n-party setting, which allows to choose larger K when
n− 1 parties are corrupt.

We also remark that the attack can be completed only when the honest party passes the rejection
sampling simultaneously in all K − 1 concurrent sessions, because otherwise the attacker doesn’t receive
all z(i)

2 values required for forgery. Hence there is another tradeoff here: if the success rate of rejection
sampling is set low then the protocol has more round complexity, while it mitigates the concurrent attack,
and vice versa.
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Attack on a variant of DS2 with fixed commitment key. When a single commitment key ck is reused
for all signing attempts in DS2 (Fig. 5) then a similar concurrent attack becomes applicable. This time for
each session i ∈ [K−1], the honest party submits com(i)

2 = Commitck(w(i)
2 ; r(i)

2 ) where w(i)
2 = Āy(i)

2 . Then
the adversary interacts with the random oracle H0 to find a message µ∗ and ˜com(1)

1 , . . . , ˜com(K−1)
1 ∈ Scom

such that the following holds (with a GBP solver).

c∗ := H0(com∗, µ∗, t) = H0( ˜com(1)
1 + com(1)

2 , µ, t) + ...+ H0( ˜com(K−1)
1 + com(K−1)

2 , µ, t)

where the adversary defines com∗ := com(1)
2 + . . .+ com(K−1)

2 .
Then the adversary resumes the pending sessions by sending back such ˜com(i)

1 for i ∈ [K − 1]. The
honest signer for each session returns its signature share together with commitment opening r(i)

2

z(i)
2 = y(i)

2 + c(i)s2

where c(i) = H0( ˜com(i)
1 + com(i)

2 , µ, t). Finally the adversary outputs

z∗ = z(1)
2 + ...+ z(K−1)

2 + c∗s̃1 = y(1)
2 + ...+ y(K−1)

2 + c∗(s̃1 + s2)

r∗ = r
(1)
2 + ...+ r

(K−1)
2

as a forgery on µ∗ together with com∗. Thanks to the collision found by a GBP solver and due to the
additive homomorphism of commitment, it holds that Openck(com∗, r∗, Āz∗ − c∗t) = 1.

If the protocol derives a per-message commitment key via random oracle H3 : {0, 1}∗ → Sck as our
protocols (as well as mBCJ) do, the attack becomes nontrivial; now the tuple (com∗, r∗, Āz∗− c∗t) has to
be verified with respect to the message-dependent key ck∗ ← H3(µ∗, t), which of course shouldn’t collide
with ck ← H3(µ, t) thanks to the random oracle.

F DS3: Three-round Distributed Signature Protocol from Module-LWE

F.1 Protocol Specification and Overview

As an important stepping stone towards our main two-round constructions, we give a detailed description
of provably secure three-round, n-out-of-n distributed signature protocol DS3 = (Setup, (Genj)j∈[n], (Sign)j∈[n],Ver),
formally specified in Fig. 16. Key generation and verification are identical to DS2 (see Fig. 5). The proto-
col is built on top of additively homomorphic commitment scheme COM = (CSetup,CGen,Commit,Open)
with uniform key (see Section 2 for the formal definition), and we describe concrete instances of COM in
Section 4.

The only difference from DS2 is that, the signing protocol now involves an extra round where par-
ticipants exchange a hash of comj , and later check that everyone knows the correct preimage. This is a
standard technique used in Bellare and Neven [BN06] (or its GLP-based variant [BS16]) The intuition be-
hind this seemingly redundant step is analogous to the rogue key attack; without this step the adversary
might be able to adaptively choose a malicious c̃om after seeing the honest party’s share. However, this
extra round can be indeed dropped by instantiating the protocol with a trapdoor commitment scheme
(see Section 3). We remark that generating a per-message commitment key as in 3 is not necessary for
the three-round protocol and one could alternatively use a single fixed ck ← CGen(cpp) generated by the
trusted party. However, this step becomes crucial for the two-round protocols to be secure.

F.2 Security

We give a security proof for DS3 by instantiating the protocol with an unconditionally binding commit-
ment scheme and by setting the parameters so that the underlying SIS problem becomes vacuously hard.
Here we give a sketch of our proof. First, thanks to the computational hiding of COM, the oracle simulator
can replace the commitment share comn of honest party Pn with a commitment to some random vector
in Rkq in case it wants to abort. For non-abort executions we can essentially invoke the special HVZK
simulator of Algorithm 7 to answer the oracle queries from the adversary. Hence we can indeed simulate
the honest execution of Pn.

The core idea for proving the soundness essentially follows the lossy identification technique by Abdalla
et al. [AFLT16]; since the public key share of the honest signer tn is indistinguishable from the vector
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Protocol DS3.Signn(sid, skn, pk, µ)

The protocol is parameterized by public parameters described in Table 1 and relies on the random oracles H0 :
{0, 1}∗ → C, H3 : {0, 1}∗ → Sck and H4 : {0, 1}∗ → {0, 1}l4 . The protocol assumes that DS3.Genn(pp) has
been previously invoked. If a party halts with abort at any point, then all Signn(sid, skn, pk, µ) executions
are aborted.
Inputs

1. Pn receives a unique session ID sid, skn = sn, pk = (Ā, t) and message µ ∈ {0, 1}∗ as input.
2. Pn verifies that sid has not been used before (if it has been, the protocol is not executed).
3. Pn locally computes a per-message commitment key ck ← H3(µ, t).

Signature Generation Pn works as follows:
1. Compute the first message as follows.

a. Sample yn ←$D`+k
s and compute wn := Āyn.

b. Compute comn ← Commitck(wn; rn) with rn ←$D(Sr), and hn ← H4(comn).
c. Send out hn.

2. Upon receiving hj for all j ∈ [n− 1] send out comn.
3. Upon receiving comj for all j ∈ [n− 1] compute the signature share as follows.

a. If H4(comj) 6= hj for some j ∈ [n− 1] send out abort.
b. Set com :=

∑
j∈[n] comj .

c. Derive a challenge c← H0(com, µ, t).
d. Computes a signature share zn := csn + yn.
e. Run the rejection sampling on input (csn, zn), i.e., with probability

min
(
1, D`+k

s (zn)/(M ·D`+k
csn,s(zn))

)
send out (zn, rn); otherwise send out restart and go to 1.

4. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj) for all j ∈ [n−1]
compute the combined signature as follows
a. For each j ∈ [n− 1] reconstruct wj := Āzj − ctj and validate the signature share:

‖zj‖2 ≤ B and Openck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z :=

∑
j∈[n] zj and r :=

∑
j∈[n] rj .

If the protocol does not abort, Pn obtains a signature (com, z, r) as local output.

Fig. 16. Three-round distributed signing protocol.
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sampled from Rkq uniformly at random due to the LWE assumption, the oracle simulator can replace
tn with such a vector (i.e. a lossy key). Moreover, thanks to the programmability and extractability
of random oracle commitments in the key generation phase, the oracle simulator can even sample the
resulting combined public key t from the uniform distribution in advance and set its share tn a posteriori
depending on the other shares. Now, the unconditional binding of COM guarantees that there cannot
exist commitments having two openings except a negligible fraction on the random choice of ck. (See
Definition 9. Also recall that we defined a uniform key in Definition 10, so the keys given by the random
oracle are perfectly indistinguishable from the ones from CGen.) Finally, we argue that on the random
choice of joint public key (A, t) there cannot exist two valid transcripts that share the first message of
the underlying Σ-protocol (i.e. w ∈ Rkq ) except a negligible fraction. In that case, the only way for an
adversary to come up with a forgery is to luckily receive a specific challenge c ∈ C from the random
oracle H0, which can only happen with probability 1/|C|.

The last step of the security proof essentially follows the one for Dilithium-QROM given by Kiltz,
Lyubashevsky and Schaffner [KLS18], and we impose an additional condition on the modulus q so that
the polynomials of small norm are invertible in the ring Rq [LS18]6. We also remark that Fukumitsu and
Hasegawa [FH19] also attempted a tight security reduction for their Dilithium-like three-round multi-
signature scheme, although the proof disregards the simulation of rejected transcripts. Since the rest of
their proof seems sound, by applying an additively homomorphic commitment as we do one could patch
the proof, while losing the reduction tightness due to the use of computational hiding of commitment
scheme.

Theorem 4. Suppose the commitment scheme COM is unconditionally binding, computationally hiding,
uniform, additively homomorphic, and the output of committing algorithm Commit has ξ-bit min-entropy.
Assume the modulus q satisfies q = 5 mod 8, 2Bn <

√
q/2 and 2κ <

√
q/2. For any probabilistic

polynomial-time adversary A that initiates a single key generation protocol by querying ODS3
n with sid = 0,

initiates Qs signature generation protocols by querying ODS3
n with sid 6= 0, and makes Qh queries to the

random oracle H0,H1,H2,H3,H4, the protocol DS3 = (Setup, (Genj)j∈[n], (Sign)j∈[n],Ver) is DS-UF-CMA
secure under MLWEq,k,`,η assumption.

Proof. Suppose we are given A that breaks DS3 with advantage AdvDS-UF-CMA
DS3

(A). Without loss of
generality we assume that Pn is an honest party. Our first goal is to construct an algorithm B around A
that simulates the behaviors of Pn without using honestly generated key pairs. In Fig. 17 we present the
resulting oracle simulator SimSignn which are eventually invoked by B. The simulation of key generation
is done just as in the proof for DS2 (see Fig. 13). Below we discuss how these are derived via several
intermediate hybrid games.

G0 Random Oracle simulation. The random oracles H0 : {0, 1}∗ → C, H1 : {0, 1}∗ → {0, 1}l1 ,
H2 : {0, 1}∗ → {0, 1}l2 , H3 : {0, 1}∗ → Sck and H4 : {0, 1}∗ → {0, 1}l4 are are simulated as follows.

Hi(x) The table HTi is initially empty. When queried with x, if HTi[x] is set then return HTi[x].
Otherwise sample y from Hi’s image uniformly at random and return HTi[x] := y.

Honest party oracle simulation. In this game B behaves exactly like a single honest party in
DS3; concretely, it simulates an oracle ODS3

n (Fig. 3) which internally invokes instructions of Genn
and Signn according to Fig. 5 and Fig. 16, respectively.
Forgery. When A outputs a forgery (µ∗, com, z, r) at the end B first generates a commitment key
ck ← H3(µ∗, t), derives a challenge c← H0(com, µ∗, t) and reconstructs w = Āz− ct. Then B checks
µ∗ /∈ Mset and the verification condition

‖z‖2 ≤ Bn and Openck(com, r,w) = 1.

If the forgery is verified then B outputs 1. Otherwise B outputs 0. Let Pr[Gi] denote a probability
that B returns 1 at the game Gi. Then we have

Pr[G0] = AdvDS-UF-CMA
DS3

(A).

G1 In this game we modify B from the prior game so that it first picks a random challenge c←$C and
computes its own signature share zn without interacting with adversary. Then the oracle proceeds
as in the previous game and sends out hash commitment hn. Upon receiving h1, . . . , hn−1, the oracle

6 This condition could be actually relaxed somewhat by applying the result due to Nguyen [Ngu19]

39



searches the hash table HT0 to check if there exists the corresponding preimages com1, . . . , comn−1.
If it’s successful, then let com =

∑
j comj and program the random oracle so that HT0[com, µ, t] := c.

Otherwise simulation fails. Since G1 is identical to G0 from adversary A’s point of view except at
the bad events marked in Fig. 17, we have

|Pr[G1]− Pr[G0]| ≤ Pr[bad4] + Pr[bad5] + Pr[bad6]

≤ (Qh + nQs + 1)2

2l4+1 +Qs

(
Qh + nQs

2ξ + Qh +Qs
2ξ + n

2l4

)
where Pr[bad4] corresponds to the probability that at least one collision occurs during at most Qh +
nQs queries to H4 made by A or B; Pr[bad5] is the probability that programming the random oracle
H0 fails at least once during Qs trials due to either of two cases: 1) H4(comn) has been asked by A
during at most Qh + nQs queries to H4 (and therefore A knows com and could query H0(com, µ, t)
deliberately), which could succeed with probability at most 1/2ξ for each query, or 2) HT0[com, µ, t]
has been set by A or B by chance during at most Qh+Qs prior queries to H0, which could happen with
probability at most (Qh +Qs)/2ξ; Pr[bad6] is the probability that A has predicted one of the n− 1
outputs of random oracle H4 without making a query to it, which could only happen with probability
at most n/2l4 for each sign query. We remark that the above probability bound is essentially a special
case of the one given by [BN06].

G2 In this game we modify B from the prior game so that if zn gets rejected then it commits to some
uniformly random vector wn ∈ Rkq and sends out hash of corresponding commitment hn = H4(comn),
where comn ← Commitck(wn; rn) and rn←$D(Sr). Note that the adversary cannot distinguish this
simulated comn from the real one due to the hiding property of commitment. In other words, we have

|Pr[G2]− Pr[G1]| ≤ Qs · εhide.

G3 In this game B doesn’t honestly generate zn anymore and instead simulates the rejection sampling
as follows. With probability 1 − 1/M (i.e., simulation of rejection), it generates commitment comn

to wn←$Rkq as before. Otherwise it samples zn from D`+k
s and computes wn = Āzn − ctn. The

signature share zn generated this way is indistinguishable from the real one because of the special
HVZK property of the underlying identification scheme. In other words, we can directly apply the
result of Lemmas 3 and 4. Hence we have

|Pr[G3]− Pr[G2]| ≤ Qs ·
e−t

2/2

M
.

At this point B simulates the honest party’s behavior during signature generation by following
SimSignn in Fig. 17.

G4 Now notice that signing phase doesn’t rely on the actual secret key share sn anymore. So the next
step is to simulate the key generation phase without using sn. This can be done just as in Fig. 13
used for the security proof of two-round protocol, and hence

|Pr[G4]− Pr[G3]| ≤ AdvMLWEq,k,`,η + (Qh + 1)Qh
2l1+1 + Qh

qk`N
+ n

2l1

+ (Qh + 1)Qh
2l2+1 + Qh

qkN
+ n

2l2 .

Now B entirely simulates the behaviors of honest party by invoking SimGenn (Fig. 13) and SimSignn
(Fig. 17), which don’t rely on the secret key share sn. We would like to evaluate the upper bound of
Pr[G4]. We first argue that the following probability is negligible.

Pr
A←$Rk×`q ,t←$Rkq ,ck ←$Sck

∃(com, c, z, r, c′, z′, r′) :
c 6= c′ ∧ ‖z‖2 ≤ Bn ∧ ‖z′‖2 ≤ Bn

∧ Openck(com, r, Āz− ct)
= Openck(com, r′, Āz′ − c′t) = 1

 (1)

Case 1: Āz − ct 6= Āz′ − c′t. In this case, (1) is bounded by the probability that there exists some
commitment having two openings over random choice of ck, which should be bounded by negligible εubind
if the commitment key is uniform (and hence ck ←$Sck can be regarded as if it was generated from CGen)
and if unconditionally binding holds (see Definition 9).
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Case 2: Āz − ct = Āz′ − c′t. Let z1 ∈ R`q, z2 ∈ Rkq , z′1 ∈ R`q, z′2 ∈ Rkq be such that z =
[
z1
z2

]
and

z′ =
[
z′1
z′2

]
, we have

A(z1 − z′1) + z2 − z′2 = (c− c′)t

where we used the fact that Ā = [A|I]. Hence, the probability (1) in this case is bounded by

2 · |C̄| · (4Bn + 1)(`+k)N

qkN

by applying Lemma 6 with z̄ = z− z′, c̄ = c− c′, β = 2Bn, and

C̄ = {c̄ ∈ R : c̄ = c− c′ ∧ c ∈ C ∧ c′ ∈ C ∧ c 6= c′} .

If the event for (1) doesn’t occur, then it means that for given com ∈ Scom there exists at most one
transcript that verifies. In that case A has at most a 1/|C| chance of obtaining the correct challenge for
each query to H0 with input (com, µ∗, t) if µ∗ /∈ Mset.

Since A makes at most Qh queries to H0 and H3 in total and B makes a single query to H0 and H3 at
the forgery phase, we have

Pr[G4] ≤ (Qh + 1)
(
εubind + 2 · |C̄| · (4Bn + 1)(`+k)N

qkN
+ 1
|C|

)
.

The following lemma is a slightly modified version of Lemma 4.6 of [KLS18]. The main difference is
that we use the Euclidean norm instead of ∞-norm.

Lemma 6. Let β be a positive integer less than
√
q/2 and C̄ be a set of elements in R \ {0} with

coefficients less than
√
q/2. If q = 5 mod 8 then

Pr
A←$Rk×`q ,t←$Rkq

[∃(z̄1, z̄2, c̄) ∈ R`q ×Rkq × C̄ : Az̄1 + z̄2 = c̄t ∧ ‖z̄‖2 ≤ β] ≤ 2 · |C̄| · (2β + 1)(`+k)N

qkN

where z̄ =
[
z̄1
z̄2

]
.

Proof. Case z̄1 = 0. Since 0 ≤ ‖c̄‖∞ ≤
√
q/2 and q = 5 mod 8, Lemma 2.2 by Lyubashevsky and

Seiler [LS18] guarantees that c̄ is invertible in Rq. In this case the probability is upper-bounded by

Pr
t←$Rkq

[∃(z̄2, c̄) ∈ Rkq × C̄ : z̄2 = c̄t ∧ ‖z̄2‖2 ≤ β]

= Pr
t←$Rkq

[∃(z̄2, c̄) ∈ Rkq × C̄ : c̄−1z̄2 = t ∧ ‖z̄2‖2 ≤ β]

≤
∑

z̄2∈Rkq ,c̄∈C̄

Pr
t←$Rkq

[c̄−1z̄2 = t ∧ ‖z̄2‖2 ≤ β]

≤
∑

z̄2∈Rkq ,c̄∈C̄

Pr
t←$Rkq

[c̄−1z̄2 = t ∧ ‖z̄2‖∞ ≤ β]

=|C̄| ·
(

2β + 1
q

)kN
Case z̄1 6= 0. Let a ∈ Rkq ,A′ ∈ R

k×(`−1)
q be such that [a|A′] = A and z̄ ∈ Rq, z̄′1 ∈ R`−1

q be such

that
[
z̄
z̄′1

]
= z̄1. Assuming wlog that z̄ is non-zero, it is guaranteed that z̄ is invertible in Rq since
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‖z̄‖∞ ≤ ‖z̄‖2 ≤ β ≤
√
q/2. Hence we obtain the following upper-bound.

Pr
A←$Rk×`q ,t←$Rkq

[∃(z̄1, z̄2, c̄) ∈ R`q ×Rkq × C̄ : Az̄1 + z̄2 = c̄t ∧ ‖z̄‖2 ≤ β]

= Pr
a ←$Rq,A′ ←$R

k×(`−1)
q ,t←$Rkq

[∃(z̄, z̄′1, z̄2, c̄) ∈ Rq ×R`−1
q ×Rkq × C̄ : z̄a + A′z̄′1 + z̄2 = c̄t ∧ ‖z̄‖2 ≤ β]

= Pr
a ←$Rq

[∃(z̄, z̄′1, z̄2, c̄) ∈ Rq ×R`−1
q ×Rkq × C̄ : a = z̄−1(c̄t−A′z̄′1 − z̄2) ∧ ‖z̄‖2 ≤ β]

≤
∑

z̄1∈R`q\{0},z̄2∈Rkq ,c̄∈C̄

Pr[a = z̄−1(c̄t−A′z̄′1 − z̄2) ∧ ‖z̄‖2 ≤ β]

≤
∑

z̄1∈R`q\{0},z̄2∈Rkq ,c̄∈C̄

Pr[a = z̄−1(c̄t−A′z̄′1 − z̄2) ∧ ‖z̄‖∞ ≤ β]

≤
∑

z̄1∈R`q\{0},z̄2∈Rkq ,c̄∈C̄

Pr[a = z̄−1(c̄t−A′z̄′1 − z̄2) ∧ ‖z̄‖∞ ≤ β]

≤|C̄| · (2β + 1)(`+k)N

qkN

Putting the two cases together we obtain the result.
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Algorithm DS3.SimSignn(sid, tn, pk, µ)

The simulator is parameterized by public parameters described in Table 1 and relies on the random or-
acles H0 : {0, 1}∗ → C,H3 : {0, 1}∗ → Sck and H4 : {0, 1}∗ → {0, 1}l4 . The simulator assumes that
SimGenn(pp,A, t) (Fig. 13) has been previously invoked. If the simulator halts with abort at any point,
then all SimSignn(sid, tn, pk, µ) executions are aborted.
Inputs

1. The simulator receives a unique session ID sid, tn, pk = (Ā, t) and message µ ∈ {0, 1}∗ as input.
2. The simulator verifies that sid has not been used before (if it has been, the protocol is not executed).
3. The simulator locally computes a per-message commitment key by querying a random oracle ck ←

H3(µ, t).
Signature Generation

1. Compute the first message as follows.
a. With probability 1 − 1/M , sample wn ←$Rkq ; otherwise sample zn ←$D`+k

σ , define wn :=
Āzn − ctn and set the flag accept. Then generate a commitment comn ← Commitck(wn; rn)
with rn ←$D(Sr), and its hash hn ← H4(comn).

b. Send out hn.
2. Upon receiving hj for all j ∈ [n− 1]:

a. Invoke SearchHashTable in Fig. 12 on input HT4 and (h1, . . . , hn−1) to obtain
(alert, bad4, com1, . . . , comn−1).

b. If the flag bad4 is set then simulation fails.
c. If the flag alert is set then send out comn.
d. Otherwise define com :=

∑
j∈[n] comj and

– If HT0[com, µ, t] has been already set then simulation fails and set the flag bad5.
– Otherwise program the random oracle HT0[com, µ, t] := c and send out comn.

3. Upon receiving comj for all j ∈ [n− 1]:
a. If H4(comj) 6= hj for some j, then send out abort.
b. If alert is set and H4(comj) = hj holds for all j then simulation fails and set the flag bad6.
c. Otherwise send out (zn, rn) if the flag accept is set; otherwise send out restart.

4. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj) for all j ∈ [n−1]
compute the combined signature as follows.
a. For each j ∈ [n− 1] reconstruct wj := Āzj − ctj and validate the signature share:

‖zj‖2 ≤ B and Openck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z :=

∑
j∈[n] zj and r :=

∑
j∈[n] rj .

If neither the protocol aborts nor the simulation fails, the simulator obtains a signature (com, z, r) as
local output.

Fig. 17. Simulated signature generation for DS3
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