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Abstract. An efficient scalar multiplication algorithm is a crucial com-
ponent of elliptic curve cryptosystems. In this paper we propose a scalar
multiplication algorithm based on scalar recodings that is regular in na-
ture and provides resistance against simple power analysis attacks. Our
scalar multiplication algorithm is made from two scalar recoding algo-
rithms called Recode and Align. Recode is the generalization of the signed
non-zero bit recoding algorithm given by Hedabou, Pinel and Bénéteau
in 2005. It recodes the k-ary representation of the given scalar into a
signed nonzero form by means of a small lookup table. On the other
hand, Align is the generalized k-ary version of the sign-aligned columns
recoding algorithm given by Faz-Hernández, Longa and Sánchez in 2014.
It recodes the k-ary representation of a scalar in such a way that the sign
of each of its digits agrees a given {1,−1}-valued sequence of signs. When
analyzing the choice of k ∈ {2, 3}, we find some theoretical evidence that
k = 3 may offer better performance in certain scenarios.
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1 Introduction

Elliptic curves have been commonly used in Diffie-Hellman (DH) type crypto-
graphic key exchange protocols [6]. The runtime of Elliptic curve Diffie Hellman
key exchange protocol (ECDH) and other elliptic curve cryptosystems are dom-
inated by the scalar multiplication operations that can either be a single or a
d-dimensional (e.g. Strauss’s Algorithm [24]) in nature. We focus our work on
a variable scalar and fixed base (VS-FB) setting of such algorithms that com-
putes

∑d−1
i=0 aiPi, where the input scalars ai are unknown while the points Pi

are fixed in advance. A few examples of this setting would be split and comb
algorithm [17, 22, 26], d-MUL [12]. Algorithms in this setting have a wide vari-
ety of applications, including the first round of ECDH, signature generation in
the Elliptic Curve Digital Signature Algorithm (ECDSA) [15], and computing



the kernel generator in the first round of Supersingular Isogeny-based Diffie-
Hellman (SIDH) key exchange [13]. The double-and-add algorithm is the most
basic scalar multiplication algorithm available. This algorithm is not often used
in cryptography due to its severe security flaws (discussed below), but it serves
as a prototype for many modern algorithms used in practice. The algorithm is
extremely versatile since no preprocessing is required. Generalizations and im-
provements on this algorithm can be seen in the window methods of [5], signed
digit recodings of [14, 20, 23], and regular recodings of [16, 19, 21]. Furthermore,
the scalar(s) may be written in k-ary as opposed to binary, in which the doubling
operation is replaced with a k-multiplication.

The setting of VS-FB particularly benefits from optimization techniques since
multiples of the base points Pi may be computed in advance for use during the
runtime of the algorithm. One immediate consequence of this fact is that any
single dimensional scalar multiplication aP with a having n bits may be com-
puted using a d dimensional scalar multiplication algorithm which computes∑d−1

i=0 aiPi, where Pi = 2i·n/dP and the bits of ai are bits i · n/d through
(i + 1)n/d − 1 of a for 0 ≤ i < d. The points Pi may be precomputed in
advance since the point P is fixed. The flexibility of choosing d offers a time and
memory tradeoff, where higher values of d generally produce faster algorithms
but require storing more points. Algorithms that use this process include regu-
lar recoding algorithms like split and comb method [17,18,26], d-MUL [12] and
regular recoding in [8, 11, 25] to switch from single to multi dimensional VS-FB
scalar multiplication algorithm since they help split large scalars into smaller
ones and recodes them to achieve side channel protection to some extent.

When selecting a scalar multiplication algorithm for use in cryptography, care
must often be taken to ensure that the algorithm does not weaken the security
of the cryptosystem. In ECDH for instance, an attacker deploying side-channel
analysis (such as simple power analysis) will gain information about the bits
of the scalar through any trivial operations performed in the main loop. We
therefore often require scalar multiplication algorithms used in cryptography to
be regular, so that each iteration of the main loop performs the same operations,
independent of the input. See [3] for a survey of attack types and protection
mechanisms. One method that such algorithms (Double and Add or Strauss’s
algorithm) can be made regular is by recoding the scalars into a representation
which contains no 0 column. For Strauss’s Algorithm only one such scalar, say a0,
needs such a recoding since then a nontrivial addition will always be performed.
Such recoding methods often make use of negative digits in the representation
of the scalars, referred to as signed digit recodings, and have been studied as
early as the 1950s in [2,4]. For elliptic curves, having signed digits in the scalars
is not an issue since the cost of point inversion P 7→ −P is negligible. In 2001
Möller in [19] gave a nonzero base k recoding by iteratively changing the value
of any zero digit ai,j to −k and exchanging the digits (ai,`, . . . , ai,j+1) for those
of (ai,`, . . . , ai,j+1)2+1. Okeya and Takagi in 2003 gave another regular recoding
based on window method which converts the width-w NAF to an SPA-resistant
addition chain. Joye and Tunstall in [16] gave two similar nonzero recoding
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methods for scalars represented in base k = 2m, one using signed digits (referred
to as JT algorithm) and one unsigned digit sets, resulting in a regular (single
dimensional) scalar multiplication algorithm. In the unsigned case the scalar is
recoded to have digits in the set {1, 2, . . . , 2m − 1}, which is valid for all integer
scalars; in the signed case the recoded scalar has digits in {±1,±3, . . . ,±(2m −
1)}, but the recoding is limited only to odd scalars.

Another recoding algorithm, also known as signed non-zero bit recoding, was
presented by Hedabou, Pinel and Bénéteau in [11]. Here, a scalar a is recoded
by replacing any string in its binary representation of the form (1, 0, . . . , 0, 1)
of length at least 3 with the equal length string (1, 1,−1,−1, . . . ,−1). Then a
standard double-and-add algorithm can be used, which is now regular since there
are no 0 digits. On an elliptic curve, no additional storage of points is required
since the cost of point inversion is negligible.

In the multidimensional setting, a0 may be recoded to a nonzero represen-
tation to give side channel protection as above. Since this recoding of a0 al-
ready makes the resulting algorithm regular, the remaining scalars a1, . . . , ad−1
may then use a recoding which increases efficiency by means of reducing the
storage space required by the algorithm. This was achieved for the binary ver-
sion of Straus’s Algorithm by Faz-Hernandez, Longa, and Sanchez in [7], in
which the authors perform a sign alignment on the scalars. This sign align-
ment recodes each scalar ai, 1 ≤ i < d, into a form bi so that either bi,j = 0
or Sign(bi,j) = Sign(b0,j) for each digit bi,j of bi. The point added on itera-
tion j of the main loop of the scalar multiplication algorithm then becomes∑d−1

i=0 bi,jPi = Sign(b0)
∑d−1

i=0 |bi,j |Pi. Since point inversion is negligible, this
modification allows one to store only the points

∑d−1
i=0 ciPi with 0 ≤ ci < 2 and

c0 = 1. Compared to only performing a nonzero recoding on a0, this sign align-
ment reduces the storage requirements from 2d points down to 2d−1 points, all of
which may be precomputed. This additional recoding on scalars a1, . . . , ad−1 is
referred to as Sign-Aligned Columns (SAC) recoding, in reference to the matrix
visualization of Straus’s Algorithm. The work of [7] also reports on an efficient,
side-channel protected implementation of the scalar multiplication algorithm us-
ing a nonzero recoding of a0 and SAC recoding for a1, . . . , ad−1 in the case d = 4
on a GLV-GLS [9,10] twisted Edwards curve over Fp2 .

While the savings gained from this technique is extraordinary given the min-
imal amount of preprocessing required for recoding scalars a1, . . . , ad−1, the au-
thors of [7] develop this method specifically for the case of a binary representation
of the scalars and extending the technique to higher bases remains untouched.
While generalizing the recoding and sign alignment of scalars to base k is an
interesting mathematical problem on its own, such a generalization would allow
for a scalar multiplication algorithm which has fewer iterations in the main loop
at the cost of increased storage. Given a recoding algorithm valid for a general
base k, the base could then be chosen as needed for a target application in a
time/memory tradeoff.
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1.1 Contributions

The contributions we present in this work can be summarized as follows.

1. We generalize the signed and nonzero scalar recoding of [11] from base 2 to a
general base k ≥ 2. This recoding takes the k-ary representation (a0,`−1, . . . , a0,0)
of a positive `-digit scalar a0 not divisible by k as input, and outputs a nonzero
representation (b0,`, . . . , b0,0) of a0 for which b0,j ∈ {±1,±2, . . . ,±(k−1)} for 0 ≤
j < `, b0,` = 1, and (b0,`, . . . , b0,0)k = a0. We present the recoding as Algorithm 1,
called Recode, and provide mathematical foundation for its correctness. The digit
recoding of Recode relies on lookups in a small table and is side-channel resistant
to some extent. Our algorithm is more versatile than the JT algorithm, where
the input scalar must be an odd integer and the base k is of the form k = 2m.
In general our recoding is different from JT when running each algorithm with
k = 2m.
2. We generalize the sign-alignment algorithm for `-digit scalars a1, . . . , ad−1
given in [7] from base 2 to a general base k ≥ 2. After a0 is recoded to b0 through
the Recode algorithm, our sign-alignment algorithm recodes the k-ary represen-
tation (ai,`−1, . . . , ai,0) of each scalar ai for 1 ≤ i < d into a form (bi,`, . . . , bi,0).
This recoded form has the properties that bi,j ∈ {0,±1,±2, . . . ,±(k − 1)} for
0 ≤ j < `, bi,` ∈ {0, 1}, either bi,j = 0 or Sign(bi,j) = Sign(b0,j) for 0 ≤ j ≤ `,
and (bi,`, . . . , bi,0)k = (ai,`−1, . . . , ai,0)k. The sign-alignment algorithm is given
in a naive form in Algorithm 2, called Align, for which we provide a correctness
proof. To our knowledge, sign-alignment was only handled for k = 2 and the
correctness proof was not provided. We derive a side-channel resistant form of
Align and present it in Algorithm 3, called OptimizedAlign.
3. We use Recode and OptimizedAlign to build a multidimensional scalar multi-
plication algorithm, Algorithm 4, which computes aP for a point P of order m
in an abelian group G and any integer a ∈ [1,m). Our algorithm uses a digit
base k, which should be relatively prime to m, and a dimension d as parameters.
After performing precomputation and recoding stages in a regular fashion, the
scalar multiplication then proceeds as a regular sequence of w steps, with each
step performing a point multiplication K by k and a nontrivial point addition
A in G, for a total computational cost of w(K +A). The algorithm requires a
table of points in G of size (k − 1)kd−1 to be precomputed and stored, which
may be done offline based on the values of P , k, and d.
4. We report on the performance of our scalar multiplication algorithm under
this setup, and also when applying the split and comb method. We compare the
efficiency of using our scalar multiplication algorithm over elliptic curves in the
VS-FB setting for k = 2 and k = 3. Finally, we analyze under what conditions
using k = 3 will outperform k = 2, when Twisted Edwards curves with projective
coordinates are used.

In Section 2 we introduce the algorithm Recode and prove many facts result-
ing in its correctness. Section 3 details the sign alignment algorithm Align and its
correctness proof, as well as an optimized version OptimizedAlign. Finally, in Sec-
tion 4 we give our scalar multiplication algorithm and analyze its performance
in the VS-FB scenario.
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2 New Nonzero Digit Representations

The goal of this section is to detail the Recode algorithm, which is given in
Section 2.2 along with a correctness proof. Before that, we prove a few theoret-
ical results on strings of integers in Section 2.1 which will assist in proving the
correctness of Recode.

2.1 Theoretical Results

The majority of this section deals with strings of integers having certain forms,
which we formally define below.

Definition 1. For ` a non-negative integer, an `-String is defined as a sequence
of integers of length `. The set of all strings is denoted by S = {(a`−1, . . . , a1, a0)| ` ∈
N, ai ∈ Z for 0 ≤ i ≤ `− 1}. The unique 0-String is called the empty string.

We use || to denote the concatenation of two strings:

(a`1−1, . . . , a0) || (b`2−1, . . . , b0) := (a`1−1, . . . , a0, b`2−1, . . . , b0).

For length 1 strings in the context above we will often omit the parentheses, i.e.,
we write a0 || (b`2−1, . . . , b0) instead of (a0) || (b`2−1, . . . , b0).

Definition 2. For k ∈ Z+ with k ≥ 2, we define an integer-valued function
(−)k, called k-ary value, on the set of strings as (−)k : S → Z by

(a`−1, a`−2, . . . , a1, a0) 7→
`−1∑
i=0

aik
i.

Remark 1. We note that Definition 2 yields a many-to-one function. In partic-
ular, the string obtained from the traditional k-ary representation of a positive
integer z is included in the preimage set of z under our function in Definition 2.

The k-ary representation of any integer can be easily defined in terms of the
above k-ary value function, which we include here for reference.

Definition 3. For k ≥ 2, the k-ary representation of a positive integer a ∈ Z+

is defined to be the unique `-String S = (a`−1, . . . , a0) such that ` = dlog2(a)e,
ai ∈ {0, 1, . . . , (k − 1)} for 0 ≤ i < ` with a`−1 6= 0, and (S)k = a.

One of the ultimate goals of our Recode algorithm will be to give a nonzero
representation of an integer as an `-String. Therefore it makes sense to give
specific attention to strings which contain 0 and strings which do not.

Definition 4. An `-String is Good if all of its entries are non-zero. An `-String
is Bad if it has the form (0, 0, . . . , 0, j) where j is nonzero and ` ≥ 2. For
simplicity we will often refer to these as GoodStrings and BadStrings, respectively.
We note that an `-String could be neither good nor bad, and that the empty string
is vacuously a GoodString.
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Lemma 1. Let S` = (a`−1, ..., a0) be an `-String with ` ≥ 1 and a0 6= 0. Then
S` can be written as a concatenation of GoodStrings and BadStrings.

Proof. We apply induction on `. For the base case, ` = 1 implies S` = (a0)
where a0 6= 0 which is clearly a concatenation of 0 many BadStrings and a single
GoodString. While doing the induction step we start tracing the entries towards
its decreasing index. If S` is a GoodString then we are done; otherwise, let i be
the largest integer such that ai = 0 with 1 ≤ i ≤ `−1. Since a0 6= 0, there exists
an integer 0 ≤ j < i which is the largest integer such that aj 6= 0. By such choice
of i and j, the substring B := (ai, ..., aj) is a BadString and the substring

G :=

{
(a`−1, ..., ai+1) if i < `− 1

empty string if i = `− 1

is a GoodString since at 6= 0 for all t = i+ 1, i+ 2, . . . , `− 1. Now we have

S` = (a`−1, . . . , ai+1) || (ai, . . . , aj) ||S′`′ = G ||B ||S′`′ ,

where the `′-String S′`′ is the remaining part of S` with 0 ≤ `′ < `. When `′ = 0
we have that S′`′ is the empty string, and we can conclude S` = G||B so that
the result holds. Otherwise, for `′ > 0, we apply our inductive hypothesis on S′`′
and conclude that S` is a concatenation of GoodStrings and BadStrings.

Remark 2. In Lemma 1 we separate a GoodString from a BadString by taking all
the non-zero entries within a GoodString from the end of a BadString until the
beginning of the next BadString tracing from left to right. Thus in the represen-
tation of an `-String we can never obtain two consecutive GoodStrings and as a
result representing the `-String as a concatenation of GoodStrings and BadStrings
in this way is unique.

We now define a function which replaces BadStrings with equivalent GoodStrings.

Definition 5. Let k, ` ≥ 2 and S1 and S2 be the set of BadStrings and GoodStrings
respectively. We define a function F : S1 ∪ S2 → S2 as follows: for S` =
(c`−1, . . . , c0) with ci ∈ {0, 1, . . . , (k − 1)}, set

F (S`) =

{
S` if S` is a GoodString
(1,−(k − 1), . . . ,−(k − 1),−(k − c0)) if S` is a BadString

where the lengths of S` and F (S`) are equal.

Notice that the output of F is indeed a GoodString.

Lemma 2. If S` is any GoodString or BadString, then (S`)k = (F (S`))k.

Proof. When S` is a GoodString we have F (S`) = S` and the result is clear.
Suppose now that S` is a BadString with S` = (0, 0, . . . , 0, j). We have

(S`)k = (0, 0, . . . , 0, j)k = k`−1 · 0 + k`−2 · 0 + · · ·+ k1 · 0 + k0 · j = j
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and

(F (S`))k = k`−1 · 1− k`−2 · (k − 1)− · · · − k1 · (k − 1)− k0 · (k − j)
= k`−1 − (k − j)− (k − 1)(k`−2 + · · ·+ k) = j. (1)

Lemma 3. Let S`u , S`v , and S`w be `u, `v and `w-Strings, respectively, with S`v

being a GoodString or BadString and `u, `w ≥ 0, `v > 0. Then

(S`u ||S`v ||S`w)k = (S`u ||F (S`v )||S`w)k.

Proof. By Lemma 2 we have

(S`u ||S`v ||S`w)k = (S`u)k · k`v+`w + (S`v )k · k`w + (S`w)k

= (S`u)k · k`v+`w + (F (S`v ))k · k`w + (S`w)k

= (S`u ||F (S`v )||S`w)k.

Theorem 1. Let S` = (a`−1, . . . , a1, a0) be the k-ary representation of N ∈ Z+

with k - N . Let S`n || · · · ||S`1 be the decomposition of S` into GoodStrings and
BadStrings given by Lemma 1. Then

N = (S`n || · · · ||S`1)k = (F (S`n)|| · · · ||F (S`1))k.

Remark 3. For all 1 ≤ i ≤ n, the entries of F (S`i) lie in the set {±1, . . . ,±(k −
1)}.

Proof. By definition of the ai we have

N = (a`−1, a`−2, . . . , a1, a0)k = (S`n || · · · ||S`1)k.

We define a new `-String from the S`i as

S′` := (F (S`n)|| · · · ||F (S`1)) = (b`−1, b`−2, . . . , b1, b0)

so that bi 6= 0 for all i by to the definition of F . We apply Lemma 3 on each of the
n GoodStrings or BadStrings in S` where at each time we replace S`i by F (S`i).
At the end of n number of steps the new recoded string is (F (S`n)|| · · · ||F (S`1)).
At each of these steps the k-ary value of the updated string remains the same
according to Lemma 3 by the equation

(S`u ||S`v ||S`w)k = (S`u ||F (S`v )||S`w)k.

While doing so we follow three different settings following Lemma 3

1. We begin with applying the function F according to Definition 5 on S`n by
setting S`v=s`n

, S`u to be an empty string and S`w = S`n−1 || · · · ||S`1 .
2. In the intermediate steps we set S`u = F (S`n)|| · · · ||F (S`i+1), S`v = S`i and
S`w = S`i−1 || · · · ||S`1 for the intermediate applications 2 ≤ i ≤ n− 1

3. And at the final step we set S`u = F (S`n)|| · · · ||F (S`2) , S`v = S`1and S`w

is an empty string

Therefore, we can conclude

N = (S`n || · · · ||S`1)k = (F (S`n)|| · · · ||F (S`1))k.
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x0

x1
0 1 2 3 · · · m · · · k − 1

0 −(k − 1) −(k − 1) −(k − 2) −(k − 3) · · · −(k −m) · · · −(k − (k − 1))

1 1 1 2 3 · · · m · · · (k − 1)
...

...
...

...
...

...
...

...
...

j 1 1 2 3 · · · m · · · (k − 1)
...

...
...

...
...

...
...

...
...

k − 1 1 1 2 3 · · · m · · · (k − 1)
Table 1. Lookup table where the entry in row x0 and column x1 represents the value
of M(x0,x1).

2.2 Recoding Algorithm

In the previous section we have built a theory of replacing all zero entries within
an `-String with signed non-zero entries so that the k-ary value of the `-String
remains unchanged. While doing this we trace down all BadStrings, since only
BadStrings contains zeroes in an `-String, from left to right and replace each
of them with a GoodString. Due to the fact that the length of each of the
GoodStrings or BadStrings are very likely to be different makes this tracing pro-
cess irregular. Therefore, building an algorithm following the tracing process
that has such a lack of uniformity will make it vulnerable against side chan-
nel attacks such as simple power analysis. Thus we need to build an algorithm
that replaces BadStrings by GoodStrings keeping the k-ary value unchanged in
a uniform manner. To give it a regular structure, we use the lookup table given
in Table 1, called the k-ary table. While generating the signed non-zero digit
representation of a given `-String S` = (a`−1, . . . , a0), Algorithm 1 traces two
entries ai, ai−1 from left to right and replaces ai−1 by the (i, i − 1)-th entry of
the k-ary table. Since at each step we are tracing two entries at a time and
replace one entry by a table look up, this gives a regularity to the algorithm
and makes it resistant against attacks like simple power analysis. We call this
algorithm Recode. The output of Recode on input (a`−1, . . . a1, a0) is exactly

Recode(a`−1, . . . a1, a0) = (1,M(0,a`−1),M(a`−1,a`−2), . . . ,M(a1,a0)). (2)

Note that all rows of Table 1 after the first are identical. Therefore we can
compress it to a 2×k table where the two rows of the compressed table is identical
with the top two rows of Table 1. We can replace the second digit(left to right) of
the two consecutive entries (ai+1, ai) of an `-String by the (ai+1, χ(ai))-th entry
of the compressed table where χ is the indicator function defined in Section 3.2,
which eventually equals the (ai+1, ai)-th entry of Table 1.

Before we state and prove the next Lemma we introduce the following nota-
tion. For a string S`+1 = (c`, c`−1, c`−2, . . . , c0), we define S`+1 ∼ (`, `− 1) to be
the string S`+1 with the entries with index ` and `− 1 removed:

S`+1 ∼ (`, `− 1) := (c`−2, . . . , c0).
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Algorithm 1 Recode

Input: k ∈ N with k ≥ 2, and a string of digits (a`−1, . . . , a1, a0) with each ai ∈
{0, 1, . . . , k − 1} and a0 6= 0.

Output: A string s = (s`, s`−1, . . . , s1, s0) with si ∈ {±1,±2, . . . ,±(k − 1)}, and
(s`, s`−1, . . . , s1, s0)k = (a`−1, . . . , a1, a0)k

1: M ← GenTable(k)
2: for i = 0 to `− 2 do
3: si ←M(ai+1,ai)

4: end for
5: s`−1 ←M(0,a`−1)

6: s` ← 1
7: return s

Lemma 4. For 1 ≤ i ≤ n, let S`i = (ci`i−1, · · · , c
i
0) be either a GoodString or a

BadString. Then

Recode(S`n || · · · ||S`1) = Recode(S`n) || T`n−1|| · · · ||T`1 ,

where
T`i =M(ci+1

0 ,ci`i−1)
||(Recode(S`i) ∼ (`i, `i − 1))

for all 1 ≤ i < n.

Note that each Recode(S`i) is an (`i+1)-String, and so the removal operation
∼ is well-defined here.

Proof. Running Algorithm 1 with input S`n || · · · ||S`1 gives exactly the output

Recode(S`n || · · · ||S`1) = S′`n ||S
′
`n−1
|| · · · ||S′`1 ,

where

S′`n = (1,M(0,cn`n−1)
,M(cn`n−1,c

n
`n−2)

,M(cn`n−2,c
n
`n−3)

, . . . ,M(cn1 ,c
n
0 )
) and

S′`i = (M(ci+1
0 ,ci`i−1)

,M(ci`i−1,c
i
`i−2)

, M(ci`i−2,c
i
`i−3)

, . . . ,M(ci1,c
i
0)
) for i < n.

For i < n, we can directly compute

S′`i = (M(ci+1
0 ,ci`i−1)

,M(ci`i−1,c
i
`i−2)

, . . . ,M(ci1,c
i
0)
)

=M(ci+1
0 ,ci`i−1)

||
((

1,M(0,ci`i−1)
,M(ci`i−1,c

i
`i−2)

, . . . ,M(ci1,c
i
0)

)
∼ (`i, `i − 1)

)
=M(ci+1

0 ,ci`i−1)
||
(
Recode(S`i) ∼ (`i, `i − 1)

)
= T`i .

Finally, by Equation 2 we have S′`n = Recode(S`n).

Lemma 5. Let an `-String S` be written as S`n || . . . ||S`1 where S`i = (ci`i−1, · · · , c
i
0)

is either a GoodString or a BadString for all 1 ≤ i ≤ n. We define

T`i =M(ci+1
0 ,ci`i−1)

||(Recode(S`i) ∼ (`i, `i − 1))
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for all 1 ≤ i < n as in Lemma 4. Then for all i ∈ {1, 2, . . . , n − 1} we have
T`i = F (S`i), where F is given in Definition 5.

Proof. By Equation 2 the full output of the Recode algorithm on input S`i is
Recode(S`i) =

(
1,M(0,ci`i−1)

, . . . ,M(ci1,c
i
0)

)
. We therefore have

T`i =
(
M(ci+1

0 ,ci`i−1)
||(Recode(S`i) ∼ (`i, `i − 1))

)
= (M(ci+1

0 ,ci`i−1)
,M(ci`i−1,c

i
`i−2)

,M(ci`i−2,c
i
`i−3)

, . . . ,M(ci1,c
i
0)
).

Using the definition of M we can directly compute the M values above. Recall
that each cij is nonzero when S`i is a GoodString, each cij is zero for j > 0 when
S`i is a BadString, and every ci0 is always nonzero. For 1 < j < `i, we then have

M(ci+1
0 ,ci`i−1)

=

{
1 if S`i is a BadString
ci`i−1 if S`i is a GoodString,

M(cij ,c
i
j−1)

=

{
−(k − 1) if S`i is a BadString
cij−1 if S`i is a GoodString,

M(ci1,c
i
0)

=

{
−(k − ci0) if S`i is a BadString
ci0 if S`i is a GoodString.

By replacing each M table lookup with its value, we get

T`i =

{
(1,−(k − 1), . . . ,−(k − 1),−(k − ci0)) if S` is a BadString
(ci`i−1, c

i
`i−2, . . . , c

i
1, c

i
0) if S` is a GoodString.

The right hand side in the above equation is exactly F (S`i).

Lemma 6. If S` is any GoodString or BadString, then Recode(S`)k = (S`)k.

Proof. Suppose first that S` is a BadString of length ` with S` = (0, 0, . . . , 0, a)
for some a ∈ {1, 2, . . . , k − 1}. Since M(0,a) = −(k − a) and M(0,0) = −(k − 1),
the output of Recode is

Recode(S`n) = (1,−(k − 1),−(k − 1), . . . ,−(k − 1),−(k − a))︸ ︷︷ ︸
`+1

.

Computing the k-ary value results in a telescoping sum:

(Recode(S`))k = [1 · k`] + [−(k − 1) · k`−1] + · · ·+ [−(k − 1) · k] + [−(k − a)]
= k` + [−k` + k`−1] + · · ·+ [−k2 + k] + [−k + a] = a = (S`)k.

This proves the statement when S` is a BadString. Suppose now that S` is a
GoodString with S` = (a`−1, a`−2, . . . , a1, a0) for some ai ∈ {1, 2, . . . , k − 1} for
all 0 ≤ i ≤ `− 1. Since M(ai+1,ai) = ai the output of Recode is mostly the same
as the input, but we must account for the 0 that is initially prepended. We have
M(0,a`−1) = −(k − a`−1), and so

Recode(S`) = (1,−(k − a`−1), a`−2, . . . , a1, a0)

10



When taking the k-ary value, the “1” and the “k” in the expression above cancel
each other:

(Recode(S`))k = [1 · k`] + [−(k − a`−1) · k`−1] + (a`−2, . . . , a1, a0)k

= a`−1 · k`−1 + (a`−2, . . . , a1, a0)k = (S`)k.

This proves the statement when S` is a GoodString and concludes the proof.

Theorem 2. Let S` = (a`−1, . . . , a0) be the k-ary representation of some N ∈ N
with k - N . Write S` = S`n || · · · ||S`1 with each S`i a GoodString or BadString.
Then Recode(S`) = Recode(S`n)||F (S`n−1

)|| . . . ||F (S`1), and

1. (Recode(S`))k = N ,
2. Recode(S`) has entries in {±1, . . . ,±(k − 1)},
3. the length of Recode(S`) is `+ 1.

Proof. As in Lemma 4 we define

T`i =M(ci+1
0 ,ci`i−1)

||(Recode(S`i) ∼ (`i, `i − 1))

for each 1 ≤ i < n. Applying Recode with Lemmas 4 and 5, we get

Recode(S`) = Recode(S`n || · · · ||S`1) = Recode(S`n)||T`n−1 || · · · ||T`1
= Recode(S`n)||F (S`n−1)|| · · · ||F (S`1). (3)

Taking the k-ary value, we have

(Recode(S`))k = (Recode(S`n)||F (S`n−1)|| · · · ||F (S`1))k

= (Recode(S`n))k · k
∑n−1

j=1 `i+1 + (F (S`n−1
)|| · · · ||F (S`1))k.

Now we apply Theorem 1 on (S`n−1
|| · · · ||S`1)k and Lemma 6 on Recode(S`n) to

get

(F (S`n−1
)|| · · · ||F (S`1))k = (S`n−1

|| · · · ||S`1)k, (Recode(S`n))k = (S`n)k

and conclude Recode(S`)k = (S`)k = N , proving the first claim.
To show claim 2, we examine Equation (3). Each F (S`n) has entries in K =

{±1, . . . ,±(k− 1)} by definition, and the proof of Lemma 6 explicitly computes
the value of Recode(S`n), from which one can see it also has values in K.

By examining Algorithm 1, it should be clear that the length of the output
array B is exactly `+ 1, which shows claim 3.

3 Generalized Sign Aligned Recoding Algorithm

In Section 2 we introduced an algorithm that recodes the k-ary representation
of an integer into a signed non-zero digit representation. As was discussed in
Section 1, it is desirable to have a sign aligned recoding algorithm which yields
a better storage complexity for our scalar multiplication algorithm. This section
will introduce a sign-alignment algorithm for a general base k and prove its
correctness.
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Algorithm 2 Align

Input: k ∈ N with k ≥ 2; a sign sequence s = (s`, s`−1, . . . , s0) with each si ∈ {−1, 1}
and s` = 1; and a = (a`−1, . . . , a0) with each ai ∈ {0, 1, . . . , k − 1}.

Output: A string b = (b`, b`−1, . . . , b0) with bi ∈ {0,±1,±2, . . . ,±(k − 1)}, with
(b`, b`−1 . . . , b0)k = (a`−1, . . . , a0)k, and either bi = 0 or Sign(bi) = si for all i.

1: bi ← ai for i = 0, 1, . . . , `− 1.
2: b` ← 0.
3: for i = 0 to `− 1 do
4: if bi = k then
5: bi ← 0
6: bi+1 ← bi+1 + 1
7: else
8: if si = 1 then
9: bi ← bi
10: bi+1 ← bi+1

11: else
12: if bi = 0 then
13: bi ← bi
14: bi+1 ← bi+1

15: else
16: bi ← −(k − bi)
17: bi+1 ← bi+1 + 1
18: end if
19: end if
20: end if
21: end for
22: return b

3.1 Basic Sign-Aligned Recoding

A sign sequence is any `-String consisting of 1’s and −1’s. Suppose S` = (a`−1,
. . . , a0) is the k-ary representation of a positive integer N , and that S` is recoded
using Recode to a new representation (b`, . . . , b0). In this section, we detail Algo-
rithm 2, called Align, and its supporting mathematical proof. For a given length
`+1 sign-sequence (s`, . . . , s0), the Align algorithm recodes an `-String with en-
tries in {0, 1, . . . , k − 1} so that the sign of each of its the entries agrees with
the sign sequence. In the scalar multiplication algorithm presented in Section 4,
we will take (Sign(b`), . . . ,Sign(b0)) as the sign sequence. The following theorem
makes this discussion more precise and serves as a correctness statement for
Algorithm 2.

Theorem 3. Let ξ`+1 = (s`, . . . , s0) such that si ∈ {1,−1} with s` = 1, and let
S` = (a`−1, . . . , a0) with ai ∈ {0, 1, . . . , k − 1}. Let Align(ξ`+1, S`) = (b`, . . . , b0).
Then:

1. For 0 ≤ i < ` we have bi ∈ (−k, k) ∩ Z, and b` ∈ {0, 1},
2. For 0 ≤ i ≤ `, either bi = 0 or Sign(bi) = si,
3. (b`, b`−1, . . . , b0)k = (a`−1, . . . , a0)k.
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Proof. We first prove claims (1.) and (2.). Notice that during the algorithm every
entry of b with the exception of b0 is updated exactly twice (though sometimes
to the same value), with bi being updated on iterations i − 1 (by a “bi+1 ←”
update rule) and i (by a “bi ←” update rule).

We’ll first prove the claims true for b0, which is only modified on iteration
i = 0. At the start of the algorithm b0 is initialized with value a0, which lies in the
set {0, 1, . . . , k − 1} by assumption, and so the conditional statement “b0 = k"
cannot evaluate to true. In the Else branch on line 7, if s0 = 1 then b0 is to
remain unmodified from its value of a0 and the claims are true. Alternatively we
have s0 = −1. Then either b0 = a0 = 0 and its value is left unchanged and the
claims are true, or b0 = a0 ∈ {1, . . . , k−1} in which case the final value becomes
−(k− a0) ∈ {−1,−2, . . . ,−(k− 1)} and Sign(b0) = −1 = s0. This proves claims
(1.) and (2.) for i = 0.

Now fix an index 1 ≤ j ≤ ` − 1 to examine. As previously stated, bj is
modified only on iterations i = j−1 and i = j using separate sets of rules. All of
the “bi+1 ←” update rules either leave the variable unchanged or increment it by
1, and we will handle each case separately. First suppose on iteration i = j − 1
that bj remains unchanged, so that at the start of iteration i = j we have
bj = aj ∈ {0, 1, . . . , k − 1}. Here we cannot have bi = k, so we proceed into the
Else branch of line 7. There are three separate cases to consider:

1. sj = 1: then no update to bi is performed and bj ’s final value is aj .
2. sj = −1 and bj = 0: then bj is assigned final value 0.
3. sj = −1 and bj ∈ {1, 2, . . . , k−1}: then bj is assigned final value −(k−aj) ∈
{−1,−2, . . . ,−(k − 1)}.

In each case above claims (1.) and (2.) of the theorem are satisfied.
Now suppose that iteration i = j − 1 takes the action “bi+1 ← bi+1 + 1”,

so that at the start of iteration i = j we have bj = aj + 1 ∈ {1, 2, . . . , k}.
Here it’s possible that bi = k, in which event bj gets final value 0. Otherwise,
the cases proceed identical to the previous paragraph except that the option
bj = 0 is eliminated. In all cases claims (1.) and (2.) are therefore satisfied for
b0, . . . , b`−1.

The final digit b` is initialized to 0 and is only modified on the final iteration
i = ` − 1 by one of the “bi+1 ←” update rules. Consequently it can only have
value 0 or 1. Note that s` = 1 by assumption. This proves claims (1.) and (2.)
for all digits.

We prove claim (3.) by showing inductively that it holds true upon completion
of each iteration of the main loop, and will therefore hold true at the end of the
algorithm. The first line of the algorithm initializes b with value a, serving as
the base case of the induction. The branching structure of the algorithm gives
four possible cases to consider, two of which leave the value of b unmodified.
We consider the two nontrivial cases below. In the following, we let bij denote
the value of the variable bj at the time of completion of the i-th iteration of the
algorithm. Let 0 ≤ i ≤ `− 1 be fixed.

The first nontrivial case is if bi−1i = k. In this case the update rules give
bii = 0 and bii+1 = bi−1i+1 +1, and all other values of b remain unchanged from the
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previous iteration giving bij = bi−1j for j 6= i, i+ 1. We then have

(bi`, . . . , b
i
i+1, b

i
i, . . . , b

i
0)k = (bi−1` , . . . , bi−1i+1 + 1, 0, . . . , bi−10 )k

= (bi−1` , . . . , bi−1i+1, k, . . . , b
i−1
0 )k (same k-ary value)

= (bi−1` , . . . , bi−1i+1, b
i−1
i , . . . , bi−10 )k

= (a`−1, . . . , a0)k. (by inductive hypothesis)

The remaining case is when si = −1 and bi−1i 6= 0, where the new values
become bii = −(k − b

i−1
i ) and bii+1 = bi−1i+1 + 1. Here we get

(bi`, . . . , b
i
i+1, b

i
i, . . . , b

i
0)k = (bi−1` , . . . , bi−1i+1 + 1,−(k − bi−1i ), . . . , bi−10 )k

= (bi−1` , . . . , bi−1i+1, b
i−1
i , . . . , bi−10 )k (same k-ary value)

= (a`−1, . . . , a0)k. (by inductive hypothesis)

In all cases claim (3.) is satisfied. This completes the induction and concludes
the proof.

3.2 Optimized Regular Sign-Alignment

In this section, we present an alternate form of Algorithm 2 which is more re-
sistant against side-channel attacks. As written, Algorithm 2 contains numerous
branches which are heavily dependent upon the input string, which can poten-
tially be exploited in side channel attacks.

To get started, we notice that each of the conditional statements in Algo-
rithm 2 are a check for equality between two values. All of these checks can be put
under the same umbrella by introducing an indicator function χ : Z → {0, 1},
whose value is defined to be

χ(x) =

{
1 if x = 0
0 if x 6= 0.

The function χ can be used to transform conditional statements of a certain
form into arithmetic evaluations in the following manner:

if a = b then
var ← X

else
var ← Y

−→ var ← χ(a− b) ·X + (1− χ(a− b)) · Y

assuming that X and Y have numeric values. By repeatedly replacing the in-
nermost conditional statements in Algorithm 2 with their equivalent arithmetic
expressions as above and simplifying, we arrive at Algorithm 3. This version of
Align makes three calls to the indicator function χ before computing the new
value of b, and completely eliminates the branching based on secret data seen in
Algorithm 2. Therefore, if both χ and integer arithmetic are implemented in a
constant-time fashion, we obtain better side-channel resilience with Algorithm 3.
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Algorithm 3 OptimizedAlign(s, a)

Input: k ∈ N with k ≥ 2; a sign sequence s = (s`, s`−1, . . . , s0) with each si ∈ {−1, 1}
and s` = 1; and a = (a`−1, . . . , a0) with each ai ∈ {0, 1, . . . , k − 1}.

Output: A string b = (b`, b`−1, . . . , b0) with bi ∈ {0,±1,±2, . . . ,±(k − 1)}, with
(b`, b`−1 . . . , b0)k = (a`−1, . . . , a0)k, and either bi = 0 or Sign(bi) = si for all i.

1: bi ← ai for i = 0, 1, . . . , `− 1.
2: b` ← 0.
3: for i = 0 to `− 1 do
4: u1 ← χ(bi − k)
5: u2 ← χ(si − 1)
6: u3 ← χ(bi)
7: v ← (1− u1) · (1− u2) · (1− u3)
8: bi ← (1− u1) · bi − v · k
9: bi+1 ← bi+1 + u1 + v
10: end for
11: return b

4 Cryptographic Applications

Algorithm 6 presents our scalar multiplication algorithm, which uses Recode (Al-
gorithm 1) and OptimizedAlign (Algorithm 3) from the previous sections. Any
cryptographic protocol which requires a VS-FB scalar multiplication computa-
tion is a suitable application for our algorithm; see Section 1 for examples of
such protocols. If the precomputation stage has low cost (which may be the case
on a curve with efficient endomorphisms, for instance), Algorithm 6 would also
be suitable for applications in the VS-VB setting. In this section, we analyze
Algorithm 6 and its cost in terms of both run time and storage. We also discuss
choosing the parameters k and d, and the choice of curve and coordinate system
which result in a more efficient algorithm.

Throughout this section we will use the following notation for the cost of
various operations: a,m, s, and i will respectively denote the costs of addi-
tion/subtraction, multiplication, squaring, and inversion in a fixed field F; we
will use A,D,T, and K to respectively denote the elliptic curve operations of
point addition, doubling, tripling, and general multiplication by k on some fixed
elliptic curve E.

4.1 Explanation of Algorithm 4

Our scalar multiplication algorithm uses an integer parameter k ≥ 2, for which
the input scalar is written in base k and recoded, and an integer parameter d ≥ 2,
which is used to split the input scalar into d subscalars for sign alignment. The
base point P of the algorithm should have order m relatively prime to k, where
P is a point of an abelian group G, with m having ` = dlog2(m)e bits. The input
scalar a is an integer in [1,m), and the algorithm returns aP as output. We let
w :=

⌈
d` logk(2)e

d

⌉
, which will determine the length in digits of each subscalar.

We briefly explain the details of Algorithm 4 as follows.
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Algorithm 4 Scalar Multiplication
Input: An integer k ≥ 2, a point P of order m relatively prime to k in an abelian

group G, with ` = dlog2(m)e; a scalar a ∈ [1,m); an integer d ≥ 2 determining the
number of subscalars, with w :=

⌈
dlogk(2

`)e
d

⌉
.

Output: aP .

Precomputation Stage
1: T [uk+v]← (ud−1k

(d−1)w+ · · ·+u2k
2w+u1k

w+v)P for all v ∈ [1, k), u ∈ [0, kd−1)
where (ud−1, . . . , u1) is the k-ary representation of u.

Recoding Stage
2: if a mod k = 0 then
3: a← m− a
4: P ← −P
5: end if
6: (adw−1, . . . , a0)← k-ary representation of a, padded with sufficiently many zeroes

on the left.
7: (b1w, . . . , b

1
0)← Recode(aw−1, . . . , a0)

8: (biw, . . . , b
i
0) ← OptimizedAlign(Sign(b1w), . . . , Sign(b

1
0)), (aiw−1, . . . , a(i−1)w)) for

2 ≤ i ≤ d.
9: Bi ← |bdi kd−1 + bd−1

i kd−2 + · · ·+ b2i k + b1i | for 0 ≤ i ≤ w.

Evaluation Stage
10: Q← T [Bw]
11: for i = w − 1 to 0 by −1 do
12: Q← kQ
13: Q← Q+ Sign(b1i ) · T [Bi]
14: end for
15: return Q

In the Precomputation Stage of Algorithm 4, specific multiples of P are com-
puted which will be used in the main loop of the algorithm (on line 13). For
0 ≤ i < d, let Pi = kiwP . Then line 1 computes all points in the set

{ud−1Pd−1 + · · ·+ u1P1 + vP0 : 0 ≤ ui < k, 1 ≤ v < k} (4)

and arranges them into a table T . For a fixed base algorithm (such as the first
round of ECDH) this step will be performed offline at no cost, and so we do not
go into details on how the computation of the points in this set is carried out.

In the Recoding Stage, the scalar a is recoded using Recode and OptimizedAlign
from the previous sections, which gives our scalar multiplication algorithm its
regular structure. Note that the input scalar a can be any integer in [1,m), while
the input to Recode requires k not to divide a. To address this restriction, we
simply compute aP as (m − a)(−P ) when a ≡ 0 mod k; we’ve included the
restriction that k and m be relatively prime specifically to solve this problem,
since in such a case k cannot divide both a and m− a simultaneously. Lines 2–5
use this approach to ensure that k does not divide a. Afterwards, a is written in
k-ary as a = (adw−1, . . . , a0)k (padded with zeroes if necessary) and partitioned
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into d subscalars; let a(i) := (aiw−1, . . . , a(i−1)w) for 1 ≤ i ≤ d. On line 7 the
Recode algorithm is invoked on a(1) with base k (note that a0 6= 0 since by this
step a is not divisible by k) to get an output b(1) with the properties of Theo-
rem 2. Next a sign alignment is performed on each of the remaining subscalars
a(2), . . . , a(d) on line 8 to find b(2), . . . , b(d), each of which satisfies the properties
of Theorem 3 with respect to the signs of the digits of b(1). Finally line 9 collects
the digits of the b(j) into new scalars Bi which give the entries of the lookup
table T to be used in the evaluation stage.

The last lines 10–14 of Algorithm 4 define the Evaluation Stage. This stage
proceeds by performing one point multiplication by k and one point addition in
G on each iteration of the loop by use of the Bi. Due to the sign alignment of
the scalars the sum involved is either an addition or subtraction based on the
sign of b(1)i .

For a small example of how Algorithm 4 computes aP for a scalar a, we refer
readers to Appendix A.

4.2 General Cost Analysis

Here we derive general costs involved in Algorithm 4 for a general group G in
terms of storage and computation. The main storage cost involved is due to
line 1, where all points in the set given in Equation 4 are required to be stored
in the table T . The number of points in this set is exactly (k − 1)kd−1. Storage
costs involved during runtime are that of storing the digits of a, the digits of the
recoded scalars b(i), the integers Bi, and the point Q; we assume these costs are
negligible in comparison to the size of the table T and therefore ignore them.

The computational costs involved in lines 2–9 deal mainly with small integer
arithmetic (including the operations involved in Recode and OptimizedAlign), and
we assume the construction of T in line 1 is performed offline at no cost, like in
the VS-FB setting. Therefore, we only consider the computational costs involved
in the evaluation stage. The loop contains w iterations, which each perform a
single point multiplication by k and point addition (we assume inversion in G is
negligible, such as on an elliptic curve). This gives a total cost of w(K +A) =⌈
d` logk(2)e

d

⌉
(K+A). We summarize these costs as:

Algorithm 4 Storage Cost: (k − 1)kd−1 points of G, (5)

Algorithm 4 Computation Cost:
⌈
d` logk(2)e

d

⌉
(K+A). (6)

The split and comb method is a well-known general-use VS-FB algorithm
generally attributed to Yao [26] and Pippenger [22] in 1976. Lim and Lee im-
proved upon this method in [17] to give an efficient special case in 1994. The
split and comb method further subdivides each of the d subscalars into v subsub-
scalars, increasing the storage space linearly in v with the benefit of reducing the
number of K operations required. Algorithm 4 can be modified to use the split
and comb method by partitioning the (biw, . . . , b

i
0) strings into v many blocks,
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padding with 0’s if necessary. New integers Bi,j can be derived in a similar way,
and the main loop performs 1K and vA per iteration, with fewer iterations total.
See [17] for further details on the split and comb method. The total costs for
Algorithm 4 modified with the split and comb method are:

Storage Cost: v(k − 1)kd−1 points of G. (7)

Computational Cost:
⌈
d` logk(2)e

d

⌉
A+

(⌈
dd` logk(2)e/de+ 1

v

⌉
− 1

)
K. (8)

4.3 Concluding Remarks

An interesting question to ask is under what scenario will k = 3 outperform
k = 2 in our algorithm (Algorithm 4 with the split and comb modification) at
the same storage level?

To investigate this we now compare the computational costs for the k = 2 and
k = 3 settings assuming approximately the same amount of total storage space.
We choose 256-bit scalar and denote the cost of the point doubling, tripling and
addition operations as D, T and A respectively. We use parameters d2, v2 for
the k = 2 setting and d3, v3 for k = 3 setting. This leads to solving the following
inequality, subject to the equal storage constraint:

⌈
256 log3 2

d3

⌉
A+


⌈
256 log3 2

d3

⌉
+ 1

v3

− 1

T ≤
⌈
256

d2

⌉
A+


⌈
256
d2

⌉
+ 1

v2

− 1

D

(9)

3d3−12v3 ≈ 2d2−1v2 (10)

To derive a concrete solution, we specialize to the case of Twisted Edwards
curves using points in projective coordinates. Here, we assume table elements
are stored with Z value 1 and therefore use the cost values of A = 9m + 1s,
D = 3m + 4s, and T = 9m + 3s (see [1]), and assume 1s = 0.8m. We then
solve Approximation 10 to obtain v3 ≈ 2d2−2v2

3d3−1 , substitute this expression into
inequality 9, and consider the two cases d2 = d3 = 2 and d2 = d3 = 4. For
these cases, we find v2 ≥ 6 for d2 = d3 = 2 and v2 ≥ 13 for d2 = d3 = 4.
Taking d2 = 2 and v2 = 6 yields a storage level of 21 · 6 = 12 points, while
d2 = 4 and v2 = 13 gives a storage level of 23 · 13 = 108 points; these storage
sizes are certainly feasible for implementation, and so k = 3 may indeed be more
desirable than k = 2 in realistic scenarios. Table 2 lists some other cases where
k = 3 outperforms k = 2 at comparable storage levels.

4.4 Future Work

Throughout this section we considered only Twisted Edwards curves and projec-
tive coordinates for representing points, and we focused on the VS-FB setting.
Other curve and coordinate choices may be more suitable for certain scenarios,
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k = 2 k = 3

d v2 Storage Cost Per Bit v3 Storage Cost Per Bit

2
6 12 5.41 2 12 4.88
9 18 5.24 3 18 4.30
12 24 5.14 4 24 3.99
54 108 4.95 18 108 3.28
108 216 4.92 36 216 3.19

4
13 104 2.55 2 108 2.46
20 160 2.52 3 162 2.15
27 216 2.50 4 216 2.01

Table 2. Fixing d = 2 and 4 the run time in terms of cost per bit unit for k = 3 is
better than k = 2 when the storage i.e the number of precomputed points is equal (or
approximately equal)

such as using a tripling-oriented Doche-Icart-Kohel curve in the k = 3 setting,
or using a mixing of projective and extended coordinates on Twisted Edwards
curves in the k = 2 setting. A careful analysis of the performance of Algorithm 4
will be required for both scenarios before a clear winner can be determined.

A detailed C implementation would also be very insightful to see how our
theoretical costs reflect the timings achieved in practice, for both VS-FB and
VS-VB settings.

A Example of Algorithm 4

Let P be point in an abelian group, such as an elliptic curve over a finite field Fp,
and that |P | = m with ` = dlog2(m)e = 15. Then scalars in [1,m) are represented
with length dlog3(2`)e = 10, appending leading 0s if necessary. Suppose we run
Algorithm 4 with inputs P , a = 39907, d = 4 and k = 3. Notice k does not
divide a, so the exact value of m is irrelevant. The length of each subscalar
is determined as w = d`/de = d10/4e = 3. Algorithm 4 computes 39907P as
follows.

Precomputation Stage: According to Algorithm 4 we first precompute a
table T of points of the form

T [uk + v] = (u3, u2, u1, v)kwP = (u3k
3w + u2k

2w + u1k
w + v)P

for v = 1, 2 and u ∈ [0, 33) where (u3, u2, u1) is the k-ary representation of u.
Recoding Stage: The k-ary representation of a = 39907 is (2, 0, 0, 0, 2,

0, 2, 0, 0, 1). We pad dw − ` = 4 · 3 − 10 = 2 many 0’s on its left to get
(0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1). The string is then split into d = 4 many 3-Strings
A1, A2, A3, A4, shown below. Recode is then applied to A1 = (0, 0, 1) to get the
nonzero scalar b1 = (1,−2,−2,−2), and Align (or OptimizedAlign) is applied to
A2, A3, A4 with the sign sequence

Sign(b1) = (Sign(1),Sign(−2),Sign(−2),Sign(−2)) = (1,−1,−1,−1),
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i b1 b2 b3 b4 Bi T [Bi] si Q← 3Q Q← Q+ siT [Bi]

3 1 1 0 1 31 19711P — — 19711P
2 −2 0 0 −2 56 39368P −1 59133P 59133P − 39368P = 19765P
1 −2 −2 0 −2 62 39422P −1 59295P 59295P − 39422P = 19873P
0 −2 −1 0 −1 32 19712P −1 59619P 59619P − 19712P = 39907P

Table 3. Evaluation stage of Algorithm 4 for input a = 39907, k = 3, and d = 4.

to get sign-aligned scalars b2, b3, and b4. This process can be visualized in matrix
form as: 

A1

A2

A3

A4

 =


0 0 1
2 0 2
0 0 0
0 0 2


} Recode−−−−−−→ Align−−−−−−→


1 −2 −2 −2
1 0 −2 −1
0 0 0 0
1 −2 −2 −1

 =


b1

b2

b3

b4


Note that the above 4×3matrix is the matrix used in Straus’ algorithm. The final
step of the recoding stage is to compute B0,B1,B2,B3. These are determined by
interpreting the columns of the 4× 4 matrix above in base k, with the top row
being the least significant digit and B0 corresponding to the rightmost column.
Specifically, the Bi are derived as follows. For convenience, the corresponding
table entries and the signs si = Sign(b1i ) are also listed.

B0 = |(−1, 0,−1,−2)3| = 32, T [32] = 19712P, s0 = −1,
B1 = |(−2, 0,−2,−2)3| = 62, T [62] = 39422P, s1 = −1,
B2 = |(−2, 0, 0,−2)3| = 56, T [56] = 39368P, s2 = −1,
B3 = |( 1, 0, 1, 1)3| = 31, T [31] = 19711P.

Evaluation Stage: It can be easily verified that the following equality holds:

39907P = T [31] · 33 + s2T [56] · 32 + s1T [62] · 31 + s0T [32].

In the evaluation stage Algorithm 4 computes 39907P in a triple-and-add manner
using the above equality. We stress that in general the T [Bi] are never zero, so
trivial additions never occur. We therefore initialize a point Q to have value
Q = T [B3] = T [31] = 19711P , and then proceed in an alternating sequence of
tripling Q and adding/subtracting the appropriate T [Bi] to Q. Each of the steps
are given in Table 3.
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