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Abstract

Almost perfect nonlinear functions possess the optimal resistance to the differen-
tial cryptanalysis and are widely studied. Most known APN functions are obtained
as functions over finite fields F2n and very little is known about combinatorial con-
structions in Fn

2 . In this work we proposed two approaches for obtaining quadratic
APN functions in Fn

2 . The first approach exploits a secondary construction idea,
it considers how to obtain quadratic APN function in n + 1 variables from a given
quadratic APN function in n variables using special restrictions on new terms. The
second approach is searching quadratic APN functions that have matrix form par-
tially filled with standard basis vectors in a cyclic manner. This approach allowed
us to find a new APN function in 7 variables. Also, we conjectured that a quadratic
part of an arbitrary APN function has a low differential uniformity. This conjecture
allowed us to introduce a new subclass of APN functions, so-called stacked APN
functions. We found cubic examples of such functions for dimensions up to 6.

1 Introduction

Let us recall some definitions. Let Fn
2 be the n-dimensional vector space over F2. A

function F from Fn
2 to Fm

2 , where n and m are integers, is called a vectorial Boolean
function. If m = 1 such a function is called Boolean. Every vectorial Boolean function F
can be represented as an ordered set of m coordinate functions F = (f1, . . . , fm), where fi
is a Boolean function in n variables. Any vectorial function F can be represented uniquely
in its algebraic normal form (ANF):

F (x) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
,
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where P(N) is a power set of N = {1, . . . , n} and aI ∈ Fm
2 . The algebraic degree of a

given function F is the degree of its ANF: deg (F ) =max{|I| : aI 6= 0, I ∈ P(N)}. If
algebraic degree of a function F is not more than 1 then F is called affine. If for an affine
function F it holds F (0) = 0 then F is called linear. If algebraic degree of a function F
is equal to 2 then F is called quadratic.

We can put the finite field F2n in one-to-one correspondence to the vector space Fn
2 and

consider vectorial Boolean functions as functions over F2n . Then any vectorial function
F has the unique univariate polynomial representation over F2n :

F (x) =
2n−1∑
i=0

λix
i, λj ∈ F2n .

Two vectorial functions F and G are extended affinely equivalent (EA-equivalent) if
F = A1 ◦ G ◦ A2 + A where A1, A2 are affine permutations on Fn

2 and A is an affine
function. Two functions F and G are called Carlet-Charpin-Zinoviev [7] equivalent (CCZ-
equivalent) if their graphs {(x, y) ∈ Fn

2×Fn
2

∣∣ y = F (x)} and {(x, y) ∈ Fn
2×Fn

2

∣∣ y = G(x)}
are affinely equivalent, that is, if there exists an affine automorphism A = (A1, A2) of
Fn
2 × Fn

2 such that y = F (x)⇔ A2(x, y) = G(A1(x, y)).
Let F be a vectorial Boolean function from Fn

2 to Fn
2 . For vectors a, b ∈ Fn

2 , where
a 6= 0, consider the value

δ(a, b) =
∣∣{ x ∈ Fn

2

∣∣ F (x+ a) + F (x) = b}
∣∣.

Denote by ∆F the following value:

∆F = max
a6=0, b∈Fn

2

δ(a, b).

Then F is called differentially ∆F -uniform function. The smaller the parameter ∆F is
the better the resistance of a cipher containing F as an S-box to differential cryptanalysis.
For the vectorial functions from Fn

2 to Fn
2 the minimal possible value of ∆F is equal to

2. In this case the function F is called almost perfect nonlinear (APN). This notion was
introduced by K. Nyberg in [9].

APN functions are widely studied by many researchers, but there is still a significant
list [6] of important open questions, such as lower and upper bounds on the number of
APN functions, an upper bound on algebraic degree of an APN function [4], the existence
of bijective APN functions in even dimensions, etc. We are especially interested in two
open problems that are devoted to constructing APN functions. The first one is to find
secondary constructions of APN functions, in particular, it was stated as Problem 3.8 in
[6]. The second problem is to find new constructions of APN functions in vectorspace Fn

2 ,
since almost all the known constructions of this class are found only as polynomials over
the finite fields, and to the best of our knowledge, the only approach to such combinatorial
constructions was proposed in [8].

In this work we propose two approaches for generating quadratic APN functions in
Fn
2 . The first approach considers the algebraic normal form of a given quadratic APN

function G in n variables and extends it into an ANF of a quadratic function F in n+ 1
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variables, using special restrictions on coefficients of new terms. In the second method
we consider special matrices that are partially filled with vectors of standard basis and
search for corresponding APN functions using the same idea of restrictions. Using this
approach we found previously unknown (in the sense of CCZ-equivalence) quadratic APN
function for n = 7. Generally, quadratic APN functions are not suitable as secure S-boxes
due to the low algebraic degree, but obtaining new quadratic representatives can lead
us to another useful functions. This is very important for even n > 8, since new APN
permutations CCZ-equivalent to quadratic functions can be found for these dimensions
[3].

In the last part of the work we conjectured that a quadratic part of an arbitrary APN
function has a low differential uniformity. We introduced the new notion of stacked APN
function and for dimensions up to 6 found such functions using quadratic APN functions
obtained with approaches mentioned above.

2 On secondary approach to search for quadratic APN functions

Since EA-equivalence preserves APNness, it is always possible to omit linear and constant
terms in the algebraic normal form of a given APN function. We shall then consider
quadratic vectorial Boolean functions that have only quadratic terms in their ANF. The
following known result gives a necessary condition on the ANF of a given APN function.

Theorem 1. [1] Let F = (f1, . . . , fn) be an APN function in n variables. Then every
quadratic term xixj, where i 6= j, appears at least in one coordinate function of F .

This property motivated us to suggest the following construction of quadratic APN
functions. Let G = (g1, . . . , gn) be a quadratic APN-function in n variables. Consider
vectorial function F = (f1, . . . , fn, fn+1) in n+ 1 variables such that:

f1 = g1 +
n∑

i=1

α1,ixixn+1;

. . .

fn = gn +
n∑

i=1

αn,ixixn+1;

fn+1 = gn+1 +
n∑

i=1

αn+1,ixixn+1,

(1)

where α1,i . . . , αn+1,i ∈ F2 for i = 1, . . . , n and gn+1 =
∑

16j<k6n βj,kxjxk for some
fixed βj,k ∈ F2. Note that if α1,i, . . . , αn,i are such that each term xixn+1 appears at least
in one of the coordinate functions f1, . . . , fn, then the necessary condition of Theorem 1
is held for the constructed function F . Since the exhaustive search for the given APN
function becomes complicated starting from n = 6, there is a need to find necessary and
sufficient conditions on new coefficients of F .

Let us denote the lexicographically ordered elements of Fn
2 as x0, . . . , x2

n−1. Since all
the values G(x0), . . . , G(x2

n−1) of the function G are known, we can represent values of
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the constructed function F only through unknown coefficients αi,k and some constant
terms. Since F is an APN function, for a nonzero a all sums F (x) + F (x + a) and
F (y) + F (y + a), where x 6= y and x 6= y + a, should be pairwise different. This fact
applies special restrictions on coefficients αi,k. For the convenient representation of these
restrictions further we consider the following matrix approach that was proposed by Beth
and Ding in [1].

Each quadratic vectorial function G in n variables can be considered as a symmetric
matrix G = (gij), where each element gij ∈ Fn

2 is a vector of coefficients corresponding to
term xixj in the algebraic normal form of G and all diagonal elements gii are null.

t is necessary to mention that these matrices also were used in [11] and [10] to construct
and classify a lot of new quadratic APN functions over finite fields.

Example 2. For n = 3 let us consider function G = (g1, g2, g3) = (x1x2, x2x3, x1x3)

=

1
0
0

 · x1x2 +

0
0
1

 · x1x3 +

0
1
0

 · x2x3.

Then the corresponding matrix G is the following:

G =

(000) (100) (001)
(100) (000) (010)
(001) (010) (000)



It is necessary to mention that these matrices also were used in [11] and [10] to con-
struct and classify a lot of new quadratic APN functions over finite fields. Using these
matrices the APN property can be formulated in the following way:

Proposition 3. Let G be the matrix that corresponds to quadratic vectorial function G.
Then function G is APN if and only if x · (G · a) 6= 0 for all x 6= a, where a, x ∈ Fn

2 and
a 6= 0.

In terms of matrices method (1) can be considered as an extension of a given G with
an extra bit that represents gn+1 in every element and an extra pair of row and column
that represents a set of new terms xixn+1.

Example 4. For the considered APN function G = (g1, g2, g3) = (x1x2, x2x3, x1x3) we
choose null gn+1 and construct APN function F = (f1, f2, f3, f4) in 4 variables, where:

f1 = g1;
f2 = g2 + x3x4;
f3 = g3 + x2x4 + x3x4;
f4 = x1x4 + x3x4.
Then the corresponding matrix F is the following:
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F =


(0000) (1000) (0010) (0001)
(1000) (0000) (0100) (0010)
(0010) (0100) (0000) (0111)
(0001) (0010) (0111) (0000)


Consider a quadratic APN function G and the corresponding n×n matrix G. Denote

the vector of nonzero coefficients for new variables as α = (α1, . . . , αn), where αi ∈ Fn+1
2 .

Let us fix gn+1 and construct (n+ 1)× (n+ 1) matrix F by adding (α1, . . . , αn, 0) to G as
the last column and the last row and adding new bit to every element of G according to
the choice of gn+1. Let us denote as G ′ the submatrix (fij) of F , such that i, j < n+1. Let
〈X〉 denote the linear span of an arbitrary set X ⊆ Fn

2 and F be the quadratic vectorial
function corresponding to the constructed matrix F . Then the following proposition is
true.

Proposition 5. F is APN if and only if α · a′ does not belong to 〈G ′ · a′〉 for all a′ ∈ Fn
2 ,

a′ 6= 0.

Let us note that Proposition 5 shows how to obtain restrictions on new coefficients in
the convenient form.

For the given k ∈ N let us consider the following sets:

Si,k = {αi + v | v ∈ 〈G ′ · (ei + ek)〉};
Si,j,k = {αi + αj + v | v ∈ 〈G ′ · (ei + ej + ek)〉};
. . .

S1,2,...,k−1,k = {α1 + α2 + . . .+ αk−1 + v | v ∈ 〈G ′ · (e1 + e2 + . . .+ ek−1 + ek)〉},
where e1, . . . , en is the standard basis in Fn

2 . Let us call a vector α = (α1, . . . , αn),
where αi ∈ Fn+1

2 , admissible for matrix G ′ if it satisfies the condition in Proposition 5. We
call a sequence (α∗1, . . . , α

∗
k), where α∗i ∈ Fn+1

2 , to be k-admissible for some k 6 n, if vector
α∗ = (α∗1, . . . , α

∗
k,0, . . . ,0) of length n is admissible for all nonzero a′ = (a′1, . . . , a

′
n) ∈ Fn

2

such that a′k+1 = 0, . . . , a′n = 0. An n-admissible sequence can be considered as an
admissible vector of length n. Consider an APN function G in n variables and a fixed
gn+1.

Proposition 6. The number of quadratic APN functions that can be obtained from func-
tion G using the construction from (1) is equal to the number of admissible vectors
α = (α1, . . . , αn) for matrix G ′.

It can be seen that there are 2n+1− | 〈G ′ · (e1)〉 | vectors α1 such that (α1) is 1-
admissible. The following proposition shows how to obtain the number of admissible
vectors:

Proposition 7. Let (α1, α2, . . . , αk−1) be the (k − 1)-admissible sequence for some k <
n+ 1. Then there exist

2n+1− | 〈G ′ · (ek)〉 ∪ {
k−1⋃
i=1

Si,k} ∪ {
⋃

16i<j<k,

Si,j,k} ∪ . . . ∪ S1,2,...,k−1,k |

vectors αk such that sequence (α1, α2, . . . , αk−1, αk) is k-admissible.
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Also, our method can be extended to the case when G is not an APN function, but
the ANF of G and gn+1 together contain all possible quadratic terms. The following
proposition describes the necessary condition on the choice of such functions.

Proposition 8. Let G be a quadratic vectorial function in n variables and F be an APN
function in n+1 variables that it is obtained from G using construction (1). Then ∆G 6 4.

For example, for differentially 4-uniform function G = (g1, g2, g3, g4, g5), where:
g1 = x1x2 + x3x5 + x4x5;
g2 = x1x3 + x4x5;
g3 = x2x3 + x1x4 + x3x5 + x4x5;
g4 = x2x4 + x1x5 + x4x5;
g5 = x3x4 + x2x5 + x4x5.
and g6 contains all the terms xixj, where i < j 6 n, we obtained 13 CCZ classes of

APN functions among constructed functions. Let us recall that there exist only 13 CCZ
classes of quadratic APN functions in dimension 6.

It can be seen that every quadratic APN function can be obtained using construction
from(1). It is worth mentioning that when n = 3, 4 and 5 for APN functions that are CCZ
classes representatives we obtained all the possible classes of quadratic APN functions for
4, 5 and 6 variables from the classification [2] and large variety of classes for constructing
from 6 to 7 variables.

Note that for the given APN function G in n variables we have 2
(n2−n)

2 possibilities
to choose gn+1. It is interesting that the choice of gn+1 affects the capability to obtain
APN function F in n + 1 variables, the number of such constructed functions and the
variety of different CCZ-classes among constructed classes. For example, when n = 5
and gn+1 is null both quadratic CCZ-representatives give us the only one CCZ-class for 6
variables (class 11 in the list from [2]). At the same time, when gn+1 contains all quadratic
terms xixj, these functions give 13 CCZ-classes of quadratic APN functions in 6 variables.
Unfortunately, for n > 7 it becomes computationally harder to choose the proper initial
function and gn+1 and to obtain a large amount of generated functions. It seems that
method (1) is not so efficient on large dimensions.

3 On cyclic approach to search for quadratic APN functions

Let us introduce another approach for constructing quadratic APN functions using matrix
representation from previous section. Let e1, . . . , en be the standard basis in Fn

2 . For the
given n consider the following matrix with elements from Fn

2 :

T =



0 e1 e2 e3 . . . en−2 en−1
e1 0 e3 e4 . . . en−1 en
e2 e3 0 e5 . . . en t3,n
e3 e4 e5 0 . . . t4,n−1 t4,n
...

...
...

...
. . .

...
...

en−2 en−1 en tn−1,4 . . . 0 tn−1,n
en−1 en tn,3 tn,4 . . . tn,n−1 0


,
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where ti,j = tj,i and ti,j denote some unknown elements in Fn
2 .

Our aim is to find values of missed matrix elements such that matrix T represents
APN function. We can apply the approach with restrictions from the previous section.
Without loss of generality let us consider the first unknown element of matrix T that is t3,n.
According to Proposition 5 the last column of T should satisfy (en−1, en, t3,n, . . . , 0) · a′ /∈
〈T ′ · a′〉, where a′ ∈ Fn−1

2 , a′ 6= 0 and T ′ = T \ (en−1, en, t3,n, . . . , 0). If we consider all
a′ = a′1, . . . , a

′
n−1 such that a′3 = 1 and a′i = 0, if i > 3, we obtain restrictions on the

value of t3,n that are independent from any other unknown element of T . Repeating this
procedure step by step for every new element after fixing values of previous variables ti,j
allows us to obtain all possible fillings for the given matrix T .

For n = 3, 4 and 5 this construction covered all quadratic CCZ classes of APN func-
tions. For n = 6 it covered 11 out of 13 classes. Unfortunately, for larger dimensions the
number of generated functions dropped dramatically and the construction covers only 7
classes for n = 7 and only one class for n = 8. As a consequence, we consider the following
generalization of this construction.

Let T be the same matrix that contains k unknown elements. Consider the diagonal
that contains all elements en in T . It is easy to see that we can remove any element en
from this diagonal and apply the above procedure to the new matrix with k+ 1 unknown
elements. Moreover, we can remove any number of elements from T and the more elements
are deleted the more APN functions can be constructed using this matrix.

For n = 6 when we removed one element en from the diagonal in T the new matrix
had already covered all 13 CCZ classes of quadratic APN functions. For n = 7 and the
matrix that has no elements en on the diagonal we generated 2341888 quadratic APN
functions. We have found a new CCZ class for n = 7 among obtained functions. Here we
provide a representative of this class in the univariate form:

F (x) = a100x+a88x2 +a89x3 +a107x4 +a57x5 +a98x6 +a56x8 +a9x9 +a58x10 +a60x12 +
a109x16 + a47x17 + a44x18 + a27x20 + a91x24 + a71x32 + a96x33 + a101x34 + a7x36 + a12x40 +
a34x48 + a66x64 + a4x65 + a4x66 + a73x68 + a73x72 + a56x80 + a20x96,

where a is the primitive element whose minimal polynomial over F27 is x7 + x+ 1.

4 The differential uniformity of quadratic parts of APN func-
tions and the class of stacked APN functions

Let F be a vectorial Boolean function of algebraic degree d. Then it can be represented as
sum F = F (c) +F (1) +F (2) + . . .+F (d), where each function F (j) contains only monomials
of algebraic degree j and F (c) is a constant term. We observed that if F is an APN
function then its quadratic part F (2) has a low differential uniformity.

Conjecture 9. Let F be an APN function in n variables, where 4 6 n 6 7. Then
∆F (2) 6 4.

The conjecture is true for n = 4. When n = 8, 9 there were found APN functions
F (e.g. Kasami power functions for n = 8 and Inverse function for n = 9) such that
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∆F (2) = 8. Nevertheless, for these large dimensions the differential uniformity of quadratic
parts is still quite low. Further we consider only functions without affine terms.

Proposition 10. Let F be an APN function in n variables, where F = F (2) +F (3) + . . .+
F (d). If H = F + F (2) = (0, . . . , 0, hj, 0, . . . , 0) for some 1 6 j 6 n, then ∆F (2) 6 4.

For n = 4, 6 there exist cubic APN functions such that H = F + F (2) = (0, . . . , 0, hj,
0, . . . , 0) for some 1 6 j 6 n. Examples of such F and F (2) for n = 4 can be found in
Table 1. An example of F for n = 6 is the following:

f1 = x1x2 + x4x6 + x5x6 + x2x3x5;

f2 = x1x3 + x3x5 + x4x5 + x2x6 + x5x6;

f3 = x2x3 + x1x4 + x4x5 + x5x6;

f4 = x2x4 + x1x5 + x3x5 + x2x6 + x3x6 + x4x6 + x5x6;

f5 = x3x4 + x2x5 + x3x5 + x4x5 + x1x6 + x2x6 + x3x6 + x5x6;

f6 = x3x5 + x2x6 + x5x6.

Let us note that these simple results allow us to use quadratic APN or differentially
4-uniform functions to construct functions of higher degrees, particularly, cubic APN
functions. The observation on low differential uniformity of quadratic parts of APN
functions motivated us to introduce a new subclass of APN functions.

Definition 11. Let F = F (2) + . . .+F (d) be an APN function of algebraic degree d. If all
functions F −F (d), F −F (d)−F (d−1), . . . , F −F (d)−F (d−1)− . . .−F 3 are APN functions
then F is called a stacked APN function.

Let us describe possible approaches to constructing stacked APN functions of degree
3. Let H be a cubic vectorial function in n variables with no affine or quadratic terms.
Then H =

∑
i,j,k aijkxixjxk, where 1 6 i < j < k 6 n and aijk ∈ Fn

2 . Let ai1j1k1 be
an arbitrary nonzero coefficient in the ANF of H. Let us call H a cubic shift if for all
1 6 i < j < k 6 n vector aijk is null or equal to ai1j1k1 .

For n = 4, 5 we implemented the search of cubic APN functions F = F (2) + F (3) such
that F (3) is some cubic part and F (2) is an APN quadratic function, that is constructed
using the cyclic matrix T from the previous section. For n = 6 we implemented the similar
search, but F (3) was a cubic shift since it is computationally hard to search through all
the possible cubic parts. We have found a large amount of cubic stacked APN functions
for n = 4, 5, 6. Some examples are listed in Table 1.

It is worth mentioning that for quadratic APN functions from differenet different CCZ
classes for n = 6 we have found more than 70 000 cubic stacked APN functions and all
these functions belong to the same CCZ-class that is the only known class that does not
contain quadratic functions (class number 13 in the list from [2]), despite that all 14 CCZ
classes contains (see [5]) cubic representatives.
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Table 1: Examples of stacked cubic APN functions (both F and F (2) are APN).§

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F (x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 11 12
F (2)(x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F (x) 0 0 0 1 0 2 4 7 0 4 10 15 19 21 28 27
0 8 16 25 11 1 29 22 15 3 17 28 31 17 6 9

F (2)(x) 0 0 0 1 0 2 4 7 0 4 10 15 19 21 29 26
0 8 16 25 11 1 31 20 15 3 21 24 23 25 9 6

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

F (x) 0 0 0 1 0 2 4 13 0 4 8 7 16 22 28 27
0 8 16 19 9 3 29 22 45 33 53 56 52 58 40 45
0 16 60 45 26 8 34 59 55 35 3 28 61 43 13 26
5 29 41 58 22 12 62 37 31 3 59 38 28 2 60 41

F (2)(x) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27
0 8 16 25 9 3 29 22 45 33 53 56 52 58 40 39
0 16 60 45 26 8 34 49 55 35 3 22 61 43 13 26
5 29 41 48 22 12 62 37 31 3 59 38 28 2 60 35
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