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Abstract

The Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme is currently the most
efficient method to perform approximate homomorphic computations over real and complex
numbers. Although the CKKS scheme can already be used to achieve practical performance for
many advanced applications, e.g., in machine learning, its broader use in practice is hindered by
several major usability issues, most of which are brought about by relatively high approximation
errors and the complexity of dealing with them.

We present a reduced-error CKKS variant that removes the approximation errors due to
the Learning With Errors (LWE) noise in the encryption and key switching operations. We
propose and implement its Residue Number System (RNS) instantiation that has a lower error
than the original CKKS scheme implementation based on multiprecision integer arithmetic.
While formulating the RNS instantiation, we also develop an intermediate RNS variant that
has a smaller approximation error than the prior RNS variant of CKKS. The high-level idea of
our main RNS-related improvements is to remove the approximate scaling error using a novel
procedure that computes level-specific scaling factors. The rescaling operations and scaling
factor adjustments in our implementation are done automatically.

We implement both RNS variants in PALISADE and compare their approximation error
and efficiency to the prior RNS variant. Our results for uniform ternary secret key distribution,
which is the most efficient setting included in the community homomorphic encryption security
standard, show that the reduced-error CKKS RNS implementation typically has an approxima-
tion error that is 6 to 9 bits smaller for computations with multiplications than the prior RNS
variant. The results for the sparse secret setting, which was used for the original CKKS scheme,
imply that our reduced-error CKKS RNS implementation has an approximation error up to 12
bits smaller than the prior RNS variant.
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1 Introduction

The Cheon-Kim-Kim-Song (CKKS) homomorphic encryption (HE) scheme is currently the most
efficient method to perform approximate homomorphic computations over real and complex num-
bers [14]. The CKKS scheme can already be used to achieve practical performance for many
advanced applications, e.g., in machine learning for genomics [5, 6, 23, 24]. Its broader use in prac-
tice is hindered by several major usability issues. One of the main challenges is the approximation
error inherent to almost every operation in CKKS. A significant error is introduced during encryp-
tion and keeps growing as computations are performed. To minimize the growth of approximation
error, the original CKKS scheme introduced a rescaling operation [14]. But the rescaling operation
brought about several other usability issues, e.g., the need for a user to decide when rescaling
should be called to achieve desired precision and optimize the efficiency. Another major challenge
is specific to the rescaling approximation error in the Residue Number System (RNS) variants of
CKKS, which are preferred in practice for better efficiency [6, 11].

Approximation errors in CKKS. All approximation errors in both multiprecision and RNS
CKKS are summarized in Table 1. Here, we briefly describe each approximation error.

Table 1: Approximation errors in the original CKKS and prior RNS CKKS vs our variants of
CKKS and RNS CKKS. The errors rencode, efresh, and eks in our variants get scaled down by
∆ (∆`), and hence their contribution becomes negligible. In reduced-error CKKS, the dominant
source of approximation error is rrs. The addition of existing error f in unary operations is omitted
for brevity.

Errors in CKKS Errors in RNS CKKS
Algorithm Original CKKS [14] Ours Prior RNS CKKS [6,11] Ours

Encode rencode, rfloat rfloat rencode, rfloat rfloat

Encrypt efresh - efresh -
Add f+ = f1 + f2 f+ f+ f+

Mult. f×
∆ ≈

m2f1+m1f2+eks

∆
f×
∆

f×
∆`

f×
∆`

Automorphism eks - eks -
Rescale rrs rrs rrs, u∆ rrs

Decrypt - - - -
Decode rfloat rfloat rfloat rfloat

Scalar Add f + rencode, rfloat f , rfloat f + rencode, rfloat f , rfloat

Scalar Mult. f×c/∆ ≈ mcf+mrencode

∆ f×c/∆ f×c/∆` f×c/∆`

Crosslevel Add f+ f+ f+, u∆ f1,×c/∆` + f2

Crosslevel Mult. f×/∆ f×/∆ f×/∆`, u∆ ≈ m2f1,×c+m1f2+eks

∆`

The security of the CKKS scheme is based on the Ring Learning With Errors (RLWE) problem,
where Gaussian noise is introduced to achieve the desired hardness properties [14]. In the case of
CKKS, this LWE noise modifies the least significant bits of the plaintext during encryption, hence
resulting in a lossy encryption scheme. If the ciphertext ct encrypts a plaintext m, the decryption of
ct outputs a noisy result m̃ = m+f . The central problem in CKKS is to keep the error f relatively
small to meet the desired precision requirements. We will refer to this type of approximation
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error caused by LWE noise as an LWE approximation error. The LWE approximation errors are
introduced during encryption and key switching, and will be denoted as efresh and eks, respectively.

For leveled HE schemes, there is another source of noise related to the integer-division rounding
during the modulus switching operation. This noise depends on the norm of the secret key. In
CKKS, modulus switching is called rescaling as it effectively rescales the underlying encrypted
plaintext and drops a certain number of least significant bits from the message. Due to the lossy
nature of CKKS, this rescaling noise brings about an approximation error. We call this error as
a rescaling rounding error, and denote it by rrs. There is another related procedure in CKKS
called modular reduction, which does modulus switching without scaling the encrypted message
(or noise). This operation does not introduce any noise/approximation error, and is not included
in Table 1.

Besides LWE and rescaling rounding errors, there are other sources of errors that contribute to
the output approximation error in the CKKS scheme. In the encoding and decoding procedures,
these sources of error arise from precision limitations, e.g., if using double to represent real numbers.
We call these errors as precision errors and will denote them as rfloat. Precision errors can be reduced
by increasing the floating-point precision in computations. The encoding procedure also includes
another rounding error caused by converting (rounding) encoded real-number plaintexts to integer
plaintexts. We will call this error rencode.

The RNS variants of CKKS introduce another approximation error caused by approximate
scaling in the rescale operation. The RNS variants use a chain of small primes qi that are only
approximately close to the scaling factor ∆ = 2p, and the differences between qi and 2p bring about
this approximation error, which will be denoted as u∆. This error is typically few bits higher
than the LWE approximation error, and hence the RNS variants have a lower precision than the
multiprecision integer instantiation of CKKS.

Addition and multiplication essentially add up approximation errors of both input cipher-
texts, resulting in an increased approximation error in the output ciphertext by at most 1 bit
(in the worst case of two correlated ciphertexts). There are also somewhat special types of addi-
tion/multiplication called scalar and crosslevel addition/multiplication. Their approximation errors
are shown in Table 1 and explained in more detail further in the paper.

To better understand the contribution of our work, note that u∆ > {efresh, eks} > rrs. We
intend to remove u∆, efresh, and eks, hence effectively reducing the output approximation error to
the rescaling rounding error rrs and its accumulation from multiple ciphertexts.

Our work. The main goal of our work is to modify the CKKS scheme and its RNS variants
to systematically remove many of the approximation errors listed in Table 1, achieving a major
reduction in the output approximation error and significantly improving the overall usability of the
scheme. Before our work, it had been widely believed that CKKS is hard to use in practice because
of many sources of approximation errors and the complexity of dealing with them, as illustrated in
a recent talk by Yongsoo Song at the Simons Institute [28].

Our first idea is to redefine the multiplication operation in CKKS as

ctmult′ = Mult′(ct1, ct2) = Mult (Rescale(ct1,∆),Rescale(ct2,∆)) .

Reordering the rescaling and multiplication operations this way, i.e., reversing the order of
multiplication and rescaling in the original CKKS scheme, brings about several benefits. First, if we
rescale before the first multiplication, we can remove (scale down) the prior encoding approximation
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errors, the LWE encryption approximation error, and any addition and key switching approximation
errors if these operations are performed before the first multiplication. If we decrypt the ciphertext
before the first multiplication, i.e., in computations without multiplications, we will only observe the
effect of the floating-point precision error rfloat, which for the case of double-precision floating-point
numbers (52 bits of precision) would typically be about 48-50 bits. Second, delaying the rescaling
operation until the following multiplication (in computations with multiplications) enables us to
eliminate key-switching approximation errors. The only approximation errors that are left in the
non-RNS CKKS are the rescaling rounding error rrs, accumulated error due to additions (after first
multiplication) and multiplications, and a relatively small floating-point precision error rfloat.

Our second idea is to redefine the rescaling operation in RNS by introducing different scaling
factors ∆` at each level to eliminate the approximate scaling error u∆. The main algorithmic
challenges in the implementation of this idea are related to handling various computation paths,
such as adding two ciphertexts that are several levels apart (referred to as crosslevel addition), and
finding the prime moduli qi that do not lead to the divergence of the level-specific scaling factor
towards zero or infinity for deeper computations. While addressing these challenges, we also restrict
(automate) rescaling to being done right before multiplication (following our definition of Mult′).
We also redefine the addition operation to include a scalar multiplication and rescaling to bring
two ciphertexts to the same scaling factor. We fully automate these procedures in our software
implementation, achieving the same practical precision as in the non-RNS CKKS instantiation, as
seen in Table 1.

We also provide an efficient implementation of our reduced-error (RE) CKKS variant in RNS
along with an intermediate RNS variant that is faster, but at the expense of increasing the output
approximation error. Table 2 shows representative results for four different benchmarks: addition
of multiple vectors, summation over a vector, binary tree multiplication, and evaluation of a poly-
nomial over a vector. These results suggest that the reduced-error CKKS RNS implementation has
an approximation error around 7 bits smaller (we observed values in the range from 6 to 9 bits) for
computations with multiplications than the prior RNS variant. For computations without a mul-
tiplication, the approximation error can be up to 20 bits lower than in the prior RNS variant. As
compared to the original CKKS using multiprecision integer arithmetic, our reduced-error CKKS
RNS implementation has an error that is smaller by about 4 and up to 20 bits for computations
with multiplications and without multiplications, respectively. Performance results in Section 5
demonstrate that the runtime of our RE-CKKS RNS implementation is 1.2x to 1.9x slower than
the prior RNS variant, which is a relatively small cost paid for the increased precision. This cost
can be offset by a decreased ciphertext modulus (lower ring dimension) if the same precision is con-
sidered, effectively achieving same or better performance in many practical cases. For comparison,
the runtime improvement of RNS-HEEAN over the multiprecision HEAAN implementation was 8.3
times for multiplication [11], and the precision gain of the multiprecision HEAAN implementation
over RNS-HEAAN is only half of what we report in our work.

Although the original CKKS scheme was instantiated for sparse ternary secrets [14], we use
uniform ternary secrets as the main setting in our work because the sparse secrets are not currently
included in the homomorphic encryption security standard [2], and hybrid attacks specific to the
sparse setting were recently devised [17, 27]. This choice has a direct effect on the precision gain
one gets from our RE-CKKS variant. Our theoretical estimates suggest that in the sparse setting
the precision gain for a computation with multiplications becomes about 6-8 bits (higher than 4
bits that we observe for uniform ternary secrets). Some representative experimental results for the
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Table 2: Representative results showing the precision of our RE-CKKS RNS implementation vs
original CKKS and prior CKKS RNS variant for the HE-standard-compliant setting of uniform
ternary secrets; ∆i ≈ 240.

Computation Prior CKKS RNS [6,11] CKKS [14] RE-CKKS RNS (our work)∑32
i=0 xi 23.9 23.9 43.8∑2048
i=0 xi 21.1 21.1 40.4∏16
i=1 xi 17.8 22.4 26.0∑64
i=0 xi 14.9 17.4 21.3

Table 3: Representative results showing the precision of our RE-CKKS RNS implementation vs
original CKKS and prior CKKS RNS variant for sparse ternary secrets (this setting was used in
the original CKKS construction [14]); ∆i ≈ 240.

Computation Prior CKKS RNS [6,11] CKKS [14] RE-CKKS RNS (our work)∑32
i=0 xi 24.6 24.6 44.6∑2048
i=0 xi 22.1 22.1 42.0∏16
i=1 xi 17.8 23.2 29.7∑64
i=0 xi 14.9 18.2 25.0

sparse setting, which align with our theoretical estimates, are illustrated in Table 3. Note that the
precision gain of our RE-CKKS RNS implementation gets as high as 12 bits over the prior RNS
variant.

We also implemented RE-CKKS in the HEAAN library [13], which uses multiprecision arith-
metic for rescaling, and ran precision experiments there for selected computations. The observed
precision improvement of RE-CKKS over CKKS [14] was approximately the same (within 0.2 bits)
as in our PALISADE implementation.

Contributions. Our contributions can be summarized as follows:

• We propose a reduced-error variant of CKKS that reduces the approximation error compared
to the original CKKS scheme by 4 bits and 6-8 bits for uniform and sparse ternary secrets,
respectively. The main idea of our modifications is to redefine the multiplication operation
by “reversing” the order of multiplication and rescaling.

• We adapt this variant to RNS, while keeping the precision roughly the same, by developing a
novel procedure that computes different scaling factors for each level and performs rescaling
automatically. This procedure required a development of an original algorithm for finding
the RNS primes that keep the scaling factor as close to the starting value as possible, thus
preventing the divergence of the scaling factor towards zero or infinity for practical numbers
of levels. The procedure also required several algorithms for handling ciphertexts at different
levels.

• While developing the RNS variant of reduced-error CKKS, we propose an intermediate RNS
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variant that has a higher approximation error but runs faster. Both of our RNS variants have
errors that are lower than the prior RNS variant [6, 11].

• We implement both RNS variants in PALISADE and make them publicly available.

Related Work. The CKKS scheme was originally proposed in [14] and implemented in the
HEEAN library [13] using a mixture of multiprecision and RNS arithmetic. The main drawback in
the original implementation was the use of multiprecision integer arithmetic for rescaling and some
other operations, which is in practice less efficient than the so-called RNS variants [3, 20]. Then
several homomorphic encryption libraries independently developed and implemented RNS variants
of CKKS, including RNS-HEAAN [12], PALISADE [1], SEAL [26], and HELib [21]. The typical
RNS variant [6, 11], which is based an approximate rescaling, works with small primes qi that are
only approximately close to the actual scaling factor, which introduces an approximation error that
is higher than the LWE error present in the original CKKS and its HEAAN implementation. The
main differences between various RNS variants are primarily in how key switching is done. The doc-
umentation of the SEAL library also mentioned the idea of using different scaling factors for each
ciphertext but did not provide any (automated) procedure to work with different scaling factors in
practice (our paper shows that this can be very challenging and requires the development of new
algorithms). A somewhat different approach is implemented in HELib [4]: the noise estimation ca-
pability originally written for the Brakersky-Gentry-Vaikuntanathan [8] scheme is used to estimate
the current approximation error, the scaling factors are tracked for each ciphertext, and decisions
regarding each rescaling are made based on the current values of error estimate and scaling factor,
and desired precision. The main drawback of this approach is that encrypted complex values need
to be close to one in magnitude for this logic to work properly, limiting the practical use of this
method. Bossuat et al. [?] recently proposed a scale-invariant polynomial evaluation method for
removing the RNS scaling error in polynomial evaluation, but this method is not general enough
to be applied to all CKKS operations, in contrast to the approach proposed in this work.

Li and Micciancio recently showed that IND-CPA security may not be sufficient for CKKS in
scenarios where decryption results are shared, and demonstrated practical key recovery attacks for
these scenarios [25]. To mitigate these attacks, PALISADE has changed its CKKS implementation
to add Gaussian noise during decryption, which is proportional to the current approximation noise.
All improvements proposed in this work apply to this modified CKKS instantiation to the same
extent as to the original CKKS, because they effectively reduce the magnitude of the current
approximation noise, which is used as the basis for choosing the standard deviation for the added
Gaussian noise.

Cohen et al. explored the idea of reducing the LWE error in CKKS by using fault-tolerant
computations over the reals [15]. The high-level idea is to run multiple computations for the same
encrypted values and then compute the average. While this is theoretically possible, the practical
performance costs would be high enough to make this approach impractical. In contrast, our idea
of rescaling before multiplication has a very small performance cost compared to this approach.

1.1 Organization

The rest of the paper is organized as follows. Section 2 provides the necessary background on the
original CKKS scheme and its RNS instantiation. Section 3 describes our reduced-error CKKS
variant. Section 4 details our RNS instantiation of the reduced-error CKKS variant, focusing
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on RNS-specific algorithms. Section 5 discusses implementation details and experimental results.
Section 6 concludes the paper.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. For complex z, we denote by ‖z‖2 =
√
zz̄ its

`2 norm. For an integer Q, we identify the ring ZQ with (−Q/2, Q/2] as a representative interval.
For a power-of-two N , we denote cyclotomic rings R = Z[X]/(XN + 1), S = R[X]/(XN + 1), and
RQ := R/QR. Ring elements are in bold, e.g. a.

We use a← χ to denote the sampling of a according to a distribution χ. The distribution χ is
called uniform ternary if all the coefficients of a← χ are selected uniformly from {−1, 0, 1}. This
distribution is commonly used for secret key generation as it is the most efficient option conforming
to the HE standard [2]. A sparse ternary distribution corresponds to the case when h coefficients
are randomly chosen to be non-zero and all others are set to zero, where h is the Hamming weight.
The sparse ternary secret distribution was used in the original CKKS scheme [14]. We say that the
distribution χ is discrete Gaussian with standard deviation σ if all coefficients of a← χ are selected
from discrete Gaussian distribution with standard deviation σ. Discrete Gaussian distribution is
commonly used to generate error polynomials to meet the desired hardness requirement [2].

For radix base ω and `-level modulus Q`, let us define the decomposition of a ∈ RQ` byWD` (a)
and powers of ω, PW` (a). Let dnum = dlogω(Q`)e, then for a ∈ RQ` :

WD`(a) =
(

[a]ω,
[⌊a
ω

⌋]
ω
, . . . ,

[⌊ a

ωdnum−1

⌋]
ω

)
∈ Rdnum,

PW`(a) =
(

[a]Q` , [a · ω]Q` , . . . , [a · ω
dnum−1]Q`

)
∈ Rdnum

Q`
.

For any (a, b) ∈ R2
` , WD` and PW` satisfy the following congruence relation:

〈WD` (a) ,PW` (b)〉 ≡ a · b (mod Q`).

2.1 CKKS Scheme

The original CKKS scheme is formulated for cyclotomic polynomial rings R = Z[X]/
〈
XN + 1

〉
,

where N is a ring dimension that is a power of two 1. With a scaling factor ∆ = 2p and a zero-level
modulus q0 = 2p0 (usually q0 is taken to be larger than ∆ for correct decryption), a modulus at the
level ` is typically defined as Q` = 2p0+`·p = q0 ·∆`, i.e., the scheme works with residue rings RQ` =
R/Q`R = ZQ` [X]/

〈
XN + 1

〉
. We denote M = 2N , and by Z∗M = {x ∈ ZM : gcd(x,M) = 1} the

unit multiplication group in ZM . The canonical embedding τ : S → CN is defined as τ (a) =(
a(ζj)

)
j∈Z∗M

for ζ = exp (2πi/M). It’s `∞-norm is called the canonical embedding norm and is

denoted as ‖a‖can = ‖τ (a)‖∞. For a power-of-two n ≤ N/2, we also define mappings τ ′n : S → Cn
used to encode and decode a vector of length n in the CKKS scheme [10, 14]. The algorithms
are [14,22]:

• Setup(1λ). For an integer L ≥ 0 that corresponds to the largest ciphertext modulus level,
given the security parameter λ, output the ring dimension N . Set the small distributions
χkey, χerr, and χenc over R for secret, error, and encryption, respectively.

1CKKS also supports general cyclotomic rings but they are typically less efficient.
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• KeyGen. Sample a secret s ← χkey, a random a → RQL , and error e ← χerr. Set the secret
key sk← (1, s) and public key pk← (b,a) ∈ R2

QL
, where b← −a · s + e (mod QL).

The hybrid key switching [22] is selected because it is more efficient than the GHS approach
used in the original CKKS scheme [11,14] and incurs a smaller approximation error than the digit
decomposition approach [9] for relatively large digits, which are often required for the efficient
instantiation of this key switching method.

• KeySwitchGensk(s′). For a power-of-two P that corresponds to the auxiliary modulus, sample
a random a′k ← RPQL and error e′k ← χerr. For a predefined power-of-two base ω, output
the switching key as

swk = (swk0, swk1) =
({

b′k
}dnum−1

k=0
,
{
a′k
}dnum−1

k=0

)
∈ R2×dnum

PQL
,

where
b′k ← −a′k · s + e′k + P · PWL

(
s′
)
k

(mod PQL)

and dnum = dlogω(QL)e. Set evk← KeySwitchGensk(s2). Set rk(κ) ← KeySwitchGensk(s(κ)).

• KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q`

, swk = (swk0, swk1) 2 output(
c0 +

⌈
〈WD` (c1) , swk0〉

P

⌋
,

⌈
〈WD` (c1) , swk1〉

P

⌋)
(mod Q`).

To keep the noise from key switching small, we can take P ≈ ω.

• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output ct← v ·pk+(m + e0, e1)
(mod QL).

• Decsk(ct). For ct = (c0, c1) ∈ R2
Q`

, output m̃ = c0 + c1 · s (mod Q`).

• CAdd(ct, x). For ct = (b,a) ∈ R2
Q`

with scaling factor ∆`′ and scalar x ∈ Cn, first encode x

with same scaling factor m = Encode(x,∆`′), and output ctcadd ← (b + m,a) (mod Q`).

• Add(ct1, ct2). For ct1, ct2 ∈ R2
Q`

, output ctadd ← ct1 + ct2 (mod Q`).

• CMult(ct, x). For ct = (c0, c1) ∈ R2
Q`

and scalar x ∈ Cn, first encode x, m = Encode(x,∆)
and output ctcmult ← (c0 ·m, c1 ·m) (mod Q`).

• Multevk(ct1, ct2). For cti = (bi,ai) ∈ R2
Q`

,
let (d0,d1,d2) = (b1 · b2,a1 · b2 + a2 · b1,a1 · a2) (mod Q`). Output

ctmult ← (d0,d1) + KeySwitchevk(0,d2) (mod Q`).

• Autrk(κ)(ct, κ). For ct = (b,a) ∈ R2
Q`

and automorphism index κ, output

ctaut ← (b(κ), 0) + KeySwitchrk(κ)(0,a
(κ)) (mod Q`).

2We can adapt swk to perform key switching for level ` < L.
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• Rescale(ct, ∆`′). For a ciphertext ct ∈ R2
Q`

and a rescaling factor ∆`′ , output ct′ ←
⌈
∆−`

′ · ct
⌋

(mod Q`−`′).

Typically rescaling operation is done after multiplication and by one level.

The CKKS scheme supports an efficient packing of n (up to N/2) real numbers into a single
ciphertext. The encoding and decoding operations are defined as follows:

• Encode(x, ∆). For x ∈ Cn, output the polynomial m←
⌈
τ
′−1
n (∆ · x)

⌋
∈ R.

• Decode(m, ∆). For a plaintext m ∈ R, output the polynomial x← τ ′n(m/∆) ∈ Cn.

2.2 RNS Representation

Our implementation utilizes the Chinese Remainder Theorem (referred to as integer CRT) represen-
tation to break multi-precision integers in Zq into vectors of smaller integers to perform operations
efficiently using native (64-bit) integer types. The integer CRT representation is also often referred
to as the Residue-Number-System (RNS) representation. We use a zero level modulus q0 and a
chain of same-size prime moduli q1, q2, . . . , qL satisfying qi ≡ 1 mod 2N for i = 1, . . . , L. Here, the
modulus Q` is computed as

∏`
i=0 qi. All polynomial multiplications are performed on ring elements

in the polynomial CRT representation where all integer components are represented in the integer
CRT basis.

2.3 CKKS Scheme in RNS

RNS CKKS variants perform all operations in RNS. In other words, the power-of-two modulus
Q` = 2p0+`·p is replaced with

∏`
i=0 qi, where qi’s are chosen as described above to support efficient

number theoretic transforms (NTT) for converting native-integer polynomials w.r.t. each CRT
modulus from coefficient representation to the evaluation one, and vice versa. The primes qi for
i = 1, . . . , ` are chosen to be as close to 2p as possible to minimize the error introduced by rescaling.

The two major changes in the RNS instantiation compared to the CKKS scheme deal with
rescaling and key switching.

Rescaling in RNS. To efficiently perform rescaling in RNS from Q` to Q`−1, the scaling down
by 2p is replaced with scaling down by q`. For i ∈ [L], qi are chosen, such that 2p/qi is in the range
(1− 2−ε, 1 + 2−ε), where ε is kept as small as possible. The new rescaling operation to scale down
by one level is defined as

• Rescale(ct, q`). For a ciphertext ct ∈ R2
` , output ct′ ←

⌈
q−1
` · ct

⌋
(mod Q`−1).

The maximum approximation error introduced by rescaling from ` to `− 1 is∣∣q−1
` ·m− 2−p ·m

∣∣ ≤ 2−ε ·
∣∣2−p ·m∣∣ .

To minimize the cumulative approximation error growth in deeper computations, one can also
alternate qi w.r.t. 2p. For instance, if q1 < 2p, then q2 > 2p and q3 < 2p, etc. [6, 11]
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Key Switching in RNS. To take advantage of RNS, we have to modify certain operations, such
as base ω decomposition, to make them RNS-friendly. We use the hybrid key switching method
described in [22]. Instead of the base ω decomposition, RNS digit decomposition is used. First, we

use the partial products {Q̃j}0≤j<dnum = {
∏(j+1)α−1
i=jα qi}0≤j<dnum, where α = (L + 1)/dnum for a

pre-fixed parameter dnum. For level ` and dnum′ = d(`+ 1)/αe we then have:

WD′`(a) =

[aQ̃0

Q`

]
Q̃0

, . . . ,

[
a
Q̃dnum′−1

Q`

]
Q̃dnum′−1

 ∈ Rdnum′ ,

PW ′`(a) =

[aQ`
Q̃0

]
Q`

, . . . ,

[
a

Q`

Q̃dnum′−1

]
Q`

 ∈ Rdnum′

Q`
.

For any (a, b) ∈ R2
` , WD

′
` and PW ′` satisfy the following congruence relation:〈
WD′` (a) ,PW ′` (b)

〉
≡ a · b (mod Q`).

This key switching procedure is similar to the one used in CKKS with the only difference in
the decomposition method.

• KeySwitchGensk(s′). For auxiliary modulus P =
∏k
i=0 pi, sample a random a′k ← RPQL and

error e′k ← χerr. For a pre-fixed parameter dnum, output the switching key as

swk = (swk0, swk1) =
({

b′k
}dnum−1

k=0
,
{
a′k
}dnum−1

k=0

)
∈ R2×dnum

PQL
,

where
b′k ← −a′k · s + e′k + P · PW ′

(
s′
)
k

(mod PQL).

• KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q`

, swk = (swk0, swk1) 3 output(
c0 +

⌈
〈WD′` (c1) , swk0〉

P

⌋
,

⌈
〈WD′` (c1) , swk1〉

P

⌋)
(mod Q`).

To keep the noise from key switching small, we can take P ≈ maxj(Q̃j).

3 Reducing the Approximation Error in the CKKS Scheme

We first describe all approximation errors in the original CKKS scheme (for the case of uniform
ternary secrets and hybrid key switching) and then we discuss how many of these errors can be
removed. We choose the uniform ternary secret distribution (in contrast to sparse ternary secrets)
because sparse ternary secrets are not currently supported by the HE standard [2], and uniform
ternary secrets are the most efficient option that is supported by the HE standard. The hybrid key
switching [19,22] is selected because it is more efficient than the GHS approach used in the original
CKKS scheme and incurs a smaller approximation error than the digit decomposition approach [9]
for relatively large digits, which are required for the efficient instantiation of the digit decomposition
key switching method.

3We can adapt swk to perform key switching for level ` < L.
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3.1 Approximation Errors in the CKKS Scheme

Encryption & Decryption. In the original CKKS [14] scheme, to encode the message x ∈ Cn,
we apply the inverse embedding transformation µ = τ

′−1
n (x) ∈ S and then scale µ by a factor

∆ = 2p and round to obtain the plaintext m := d∆ · µc ∈ R. To encrypt m with the public key
pk, we sample v ← χenc and e0, e1 ← χerr, and output

ct = Enc(m) = pk · v + (e0 + m, e1) ∈ R2
Q.

The full process is as follows

x
τ
′−1
n (·)−−−−→ µ

d·×∆c−−−−→m
Encpk(·)
−−−−−→ ct.

To decrypt the ciphertext ct, we need to compute the inner product with sk modulo Q:

m̃ = Decsk (ct (m)) = [〈ct, sk〉]Q = c0 + c1 · s ∈ RQ.

To decode m̃, we divide it by ∆, i.e., µ̃ = m̃/∆, and apply the embedding transformation x̃ = τ ′n(µ̃):

ct
Decsk(·)−−−−−→ m̃

·÷∆−−→ µ̃
τ ′n(·)−−−→ x̃.

There are several sources of errors that contribute to the output error x̃ − x. The τ
′−1
n and

τ ′n maps are exact in theory, but in practice introduce precision (rounding) errors that depend on
the floating-point precision and the value of n. We omit these errors for now, as we can always
reduce them by increasing the floating-point precision. The same applies to multiplication ×∆ and
division ÷∆ in the encoding and decoding parts. However, in the encoding procedure, we do not
only scale, but also round the scaled value, and the rounding introduces an approximation error
rencode with ‖rencode‖∞ ≤ 1/2. Public key encryption introduces a fresh encryption (LWE) error
efresh. After encryption, the ciphertext ct satisfies the following relation:

c0 + c1 · s = m + efresh = ∆ · µ+ rencode + efresh = ∆ · µ+ fenc ∈ RQ.

Instead of analyzing f , e, r, it is more natural to analyze the scaled errors φ = f/∆, ε = e/∆,
ρ = r/∆ since the division by the scaling factor is part of the decoding procedure, and the scaled
error is the one that is related to the error before applying the τ ′n transformation in the decoding.
In what follows, we will mainly refer to ε instead of e.

One way to reduce the contribution of fenc is to increase the scaling factor ∆ of the scheme.
To keep the encryption secure under the RLWE problem, we need to increase the ring dimension in
the underlying lattice problem, which may be inefficient in many cases.

We also provide a heuristic bound for fresh encryption noise/approximation error. It will be
used for estimating the reduction of approximation error in our CKKS variant.

Lemma 3.1 Given a uniform ternary secret key s, we have the following heuristic bound for fresh
encryption noise:

‖fenc‖can ≤
32

3

√
6σN + 6σ

√
N.

Proof. See Appendix B. Note that for the sparse ternary secret setting with Hamming weight h,
the bound would be formulated as ‖fenc‖can ≤ 8

√
2σN + 6σ

√
N + 16σ

√
hN [14].
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Addition. The addition procedure ctadd = Add(ct1, ct2) for two ciphertexts at the same level ` is
done as component-wise addition and leads to the following relation:

cadd,0 + cadd,1 · s = ∆ · (µ1 + µ2) + (f1 + f2) ∈ RQ` .

The addition does not introduce any additional errors, but instead adds the errors together,
which is exactly what happens in the unencrypted case of adding two approximate numbers to-
gether.

Scalar Addition. The scalar addition procedure ctcadd = CAdd(ct, const) leads to the following
relation:

ccadd,0 + ccadd,1 · s = ∆ · (µ+ µconst) + (f + rencode) ,

where Encode(const,∆) = ∆µconst + rencode. In addition to the encoding error, the scalar addition
also introduces a floating-point precision error. Both errors in the scalar addition are relatively
small compared to the ciphertext error.

Key Switching. There are several known key switching procedures

ctks = KeySwitchswk(ct),

which switch the ciphertext ct satisfying the relation:

c0 + c1 · s1 = ∆ · µ+ f ∈ RQ` ,

to the ciphertext ctks satisfying the relation:

cks,0 + cks,0 · s2 = ∆ · µ+ f + eks ∈ RQ` .

The key switching step introduces an LWE-related error eks.

Lemma 3.2 For the key switching method described in Section 2.1, we have the following heuristic
bound for key switching noise:

‖eks‖can ≤
8
√

3 · dnum · ωσN
3P

+
√

3N +
8
√

2N

3
.

Proof. See Appendix B. Note that for the sparse ternary secret setting with Hamming weight h,

the bound would be formulated as ‖eks‖can ≤ 8
√

3·dnum·ωσN
3P +

√
3N + 8

√
hN
3 .

Multiplication. The multiplication procedure ctmult = Mult(ct1, ct2) for two ciphertexts at the
same level ` is done in two steps: tensoring and key switching. The ciphertext after tensoring
satisfies the following equation:

ctensor,0 + ctensor,1 · s + ctensor,2 · s2 ≡ (∆ · µ1 + f1) · (∆ · µ2 + f2) = ∆2 · µ1µ2 + f× ∈ RQ` .

In the tensoring step the error term f× is approximate multiplication error of (∆ · µi + fi) for the
unencrypted case. Hence tensoring does not introduce new approximation errors.

11



The key switching part switches ct′ = (0, ctensor,2) as a ciphertext under the key s2 to the
ciphertext ct′′ = KeySwitchevk(ct′) under the key s, and the result is added to (ctensor,0, ctensor,1).
The ciphertext after the key switching satisfies the following equation:

cmult,0 + cmult,1 · s ≡ ∆2 · µ1µ2 + f× + eks = ∆2 · µ1µ2 + fmult ∈ RQ` ,

where
fmult = ∆ · (µ1f2 + µ2f1) + f1f2 + eks = f× + eks,

and since the scaling factor becomes ∆2 after multiplication, we have the following relation for the
scaled error:

φmult =
fmult

∆2
= µ1φ2 + µ2φ1 + φ1φ2 +

εks

∆
= φ× +

εks

∆
. (1)

In Equation (1), we see that the scaled switching error εks is divided by ∆. We can perform the
key switching procedure in such a way that the term eks is much smaller than ∆, which makes the
impact of φmult essentially the same as the impact of φ× in an unencrypted case.

Scalar Multiplication. The scalar multiplication procedure ctcmult = CMult(ct, const) is de-
scribed using the following relation:

ccmult,0 + ccmult,1 · s = ∆2 · (µµconst) + ∆ · (µconstf + µrencode) + frencode

= ∆2 · µµconst + fcmult ∈ RQ` ,

where Encode(x,∆) = ∆ · µconst + rencode, fcmult = ∆ · (µconstf + µrencode) + frencode = f×c, and
φcmult = µρencode + µconstφ+ φρencode = φ×c.

Rescaling. In the CKKS scheme the main reason for rescaling is not to manage the noise, as
in the case of the Brakerski-Gentry-Vaikuntantanathan (BGV) scheme [8], but to scale down the
encrypted message and truncate some least significant bits. The size of the encrypted message
increases after multiplication and decreases after rescaling. Other operations, like additions or
rotations, do not affect the magnitude of the message. So we should balance multiplications and
rescaling operations to control the magnitude of message and its precision. Normally it is advised
to perform a rescaling right after each multiplication.

The rescaling procedure ctrs = Rescale(ct,∆) for a ciphertext at level ` is done by dividing by
the scaling factor and rounding. The procedure is as follows:

ctrs = Rescale(ct,∆) =
(⌈c0

∆

⌋
,
⌈c1

∆

⌋)
=
(c0

∆
+ r0,

c1

∆
+ r1

)
,

where r0 and r1 are error terms introduced by rounding, with coefficients in [−1/2, 1/2].
The ciphertext after the multiplication and rescaling procedure ctmult+rs = Rescale(Mult(ct1, ct2),∆)

satisfies the following relation:

cmult+rs,0 + cmult+rs,1 · s ≡
(∆ · µ1 + f1) · (∆ · µ2 + f2) + eks

∆
+ r0 + r1s

= ∆ · µ1µ2 + fmult+rs ∈ RQ`−1
,
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where

fmult+rs =
f×
∆

+
eks

∆
+ r0 + r1s =

f×
∆

+
eks

∆
+ rrs,

φmult+rs = φ× +
εks

∆
+ ρrs,

where rrs = r0 +r1s is the rounding error, and ρrs = rrs/∆ is the scaled rounding error. Thus after
the rescaling procedure, the scaled approximation error εks/∆ is negligible and gets completely
absorbed by the rounding error ρrs.

Lemma 3.3 Given a uniform ternary secret key s, we have the following heuristic bound for the
rounding error that is introduced by rescaling

‖rrs‖can ≤
√

3N +
16
√

2N

3
.

Proof. See Appendix B. Note that for the sparse ternary secret setting with Hamming weight h,

the bound would be formulated as ‖rrs‖can ≤
√

3N + 8
√

hN
3 [14].

Modulus Reduction. The CKKS scheme also has a modulus reduction procedure that does not
change the message or approximation error. This modulus reduction procedure is done simply by
evaluating the ciphertext ct at modulus Q` modulo smaller modulus Q`′ . As Q`′ |Q`, the method
does not introduce any additional errors.

Automorphism (Rotation & Conjugation). Similar to the multiplication procedure, the
automorphism procedure ctaut = Autrk(κ)(ct, κ) is done in two steps: automorphism κ and key
switching. The ciphertext after automorphism satisfies the following relation:

c
(κ)
0 + c

(κ)
1 · s(κ) ≡ ∆ · µ(κ) + f (κ) ∈ RQ` .

The key switching part switches ct′ = (0, c
(κ)
1 ) as a ciphertext under the key s(κ) to the ciphertext

ct′′ = KeySwitchrk(κ)(ct′) under the key s, and the result is added to (c
(κ)
0 , 0). The ciphertext after

the key switching satisfies the following equation:

caut,0 + caut,1 · s ≡ ∆ · (µ(κ)) + f (κ) + eks = ∆ · µ(κ) + faut ∈ RQ` ,

where

faut = f (κ) + eks and φaut =
faut

∆
= φ(κ) + εks.

In case of automorphism operations, the key switching error εks is not negligible anymore compared
to φ(κ), as the scaling factor in the case of automorphism is not squared but stays the same.
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3.2 Eliminating LWE and Encoding Approximation Errors

One can see that the rescaling operation does not necessarily need to be done right after the
multiplication, and instead can be done right before the next multiplication (or before decryption).
In other words, we do not rescale after the multiplication and keep the scaling factor as ∆2. For
the first level, we can encrypt the message µ with the scaling factor ∆2 to make the encryption
noise negligible. The ciphertext ct will satisfy the following relation:

c0 + c1 · s ≡
⌈
∆2 · µ

⌋
+ efresh = ∆2 · µ+ f ′ ∈ RQ` .

All other operations, like additions and automorphisms, are done the same way. The approxi-
mation errors will be summed together and in practice will be much smaller than the scaling factor
∆2. The rescaling operation is done right before the next multiplication so that the scaled LWE
and encoding errors are dominated by the rounding error after the rescaling. So we can make all
LWE and encoding errors negligible compared to the rounding rescaling errors, starting with the
second level.

As the rescaling operation is performed right before the multiplication, we can treat it as part of
the multiplication. We can redefine the multiplication Mult′ as a combination of rescaling operations
and multiplication:

ctmult′ = Mult′(ct1, ct2) = Mult (Rescale(ct1,∆),Rescale(ct2,∆)) .

With this new definition of Mult′, we keep the same number of levels while slightly increasing
the modulus for the fresh ciphertext from q0 ·∆L to q0 ·∆L+1. We also ensure that fresh encryption
noise and key switching noise, which appear after multiplication or automorphism operations, will
be negligible and absorbed by the rescaling rounding error. In other words, we can eliminate
all LWE and encoding approximation errors, by making them negligible compared to rescaling
rounding errors.

We also reduce the total rounding error when we add ciphertexts. If we perform the rescaling
right after multiplication, the rounding error is introduced for each ciphertext and the rescaling
errors will be added when we perform addition of the ciphertexts. In the case of the new multipli-
cation Mult′, we do rescaling after the additions, and hence we end up only with a single rounding
error.

With the modified multiplication, the encryption of a message µ at level ` will satisfy the
following condition:

c0 + c1s ≡ ∆2 · µ+ f ′.

Let f ′/∆2 = φ′. After Mult′ operation we have:

cmult′,0 + cmult′,1s ≡
(

∆2 · µ1 + f ′1
∆

+ rrs,1

)
·
(

∆2 · µ2 + f ′2
∆

+ rrs,2

)
+ eks

=
(
∆ ·
(
µ1 + φ′1

)
+ rrs,1

)
·
(
∆ ·
(
µ2 + φ′2

)
+ rrs,2

)
+ eks

= ∆2 · µ1µ2 + fmult′ ,

where

fmult′ = ∆2 ·
(
µ1φ

′
2 + µ2φ

′
1 + φ′1φ

′
2

)
+

+ ∆ ·
((
µ1 + φ′1

)
rrs,2 +

(
µ2 + φ′2

)
rrs,1

)
+ rrs,1rrs,2 + eks,

φmult′ = µ1

(
φ′2 + ρrs,2

)
+ µ2

(
φ′1 + ρrs,1

)
+
(
φ′1 + ρrs,1

) (
φ′2 + ρrs,2

)
+
εks

∆
.
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Remark We can also substitute ∆2 in fresh encryption with a tighter scaling factor ∆ ·∆′, where
∆′ = 2p

′
< 2p = ∆. We need to choose ∆′ in such a way that the sum of all LWE errors during

the computations on the level L, including fresh encryption noise, is smaller than ∆′. In this case,
in Mult′ on the first level we need to do rescaling by ∆′ instead of ∆. The modulus QL for the
fresh ciphertext will be increased by a smaller factor ∆′ and become QL = q0 ·∆L ·∆′. We use this
tighter scaling factor ∆′ in our implementation.

3.3 Theoretical Estimates of Error Reduction

Computation without multiplications. If only additions and automorphism operations are
performed, no rescaling errors introduced and the LWE noise is the main source of approximation

error. With standard parameters σ = 3.2, P = ω = Q
1/3
L , from Lemma 3.1 the fresh encryption

error is bounded by ≈ 83.6N , and from Lemma 3.2 the key switching error is bounded by ≈ 44.3N .
The total number of error bits is log(83.6αN +44.3βN), where α is the number of fresh ciphertexts
used, and β is the number of automorphism operations performed. The extra modulus ∆′ in
Reduced-Error (RE) CKKS is taken to fully absorb the error: ∆′ > 83.6αN + 44.3βN . The total
error before decryption is bounded by rfloat, which is in practice only 2-5 bits less than the precision
of floating-point arithmetic. This is illustrated by the experimental results presented in Tables 4
and 5 for ∆ ≈ 250.

Computation with multiplications. The extra modulus ∆′ used during encryption in RE-
CKKS effectively reduces the encryption noise from fresh efresh to rescaling rrs at the first multipli-
cation step. From Lemmas 3.1 and 3.3, we have the following ratio of the upper bounds for fresh
encryption and rescaling rounding errors (for the case of uniform ternary secrets):

log

(
efresh

rrs

)
≈ log

(
32
3

√
6σN + 6σ

√
N

√
3N + 8

√
2N
3

)
≈ log

(
4
√

3σ
)
≈ 4.5.

At the next multiplication, the input error for RE-CKKS can be estimated as

f ′mult+rs ≈ (µ1rrs,2 + µ2rrs,1) + rrs

as compared to
fmult+rs ≈ (µ1efresh,2 + µ2efresh,1) + rrs

for the original CKKS scheme. As rrs,i � efresh,i, the rescaling rounding error typically has no
effect on multiplications in the original CKKS, while in the case of RE-CKKS, rrs still gives a
significant contribution. In practice, this implies there may be a small decline in the precision gain
of RE-CKKS over CKKS for subsequent multiplications (typically not more than 0.5 bits), but this
decline will become progressively smaller for further multiplications as the rounding errors from
prior multiplications accumulate, and the current error will become much larger than the rounding
error rrs.

Hence in theory the upper bound of RE-CKKS error is about 4.5 bits smaller than the upper
bound of CKKS error after the first multiplication, and it may slighly decline for further multi-
plications. This is consistent with the implementation results presented in Section 5, where the
RE-CKKS error is about 4 bits smaller than the CKKS error across different circuits with multi-
plications, and we also observe a decline of precision gain from 4 (for first multiplication) to 3.5
bits (for deeper multiplications) for a binary tree multiplication benchmark (Table 6).
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Note that in the sparse ternary secret key setting with Hamming weight h = 64, the precision
gain of RE-CKKS over CKKS is higher:

log

(
efresh

rrs

)
≈ log

8
√

2σN + 6σ
√
N + 16σ

√
hN

√
3N + 8

√
hN
3

 ≈ log

(
√

6σ

√
N

h

)
≈ 1

2
logN.

For example, for N = 214 the gain of RE-CKKS over CKKS is about 7 bits. But since the
sparse setting is not currently supported by the HE standard [2], we implement and examine the
uniform ternary secret setting instead.

4 Reducing the Approximation Error in the RNS Instantiation of
CKKS

In this section, we describe the procedures needed for eliminating the scaling factor approximation
error in RNS and apply the RE-CKKS improvements presented in Section 3 to the RNS setting.

4.1 Eliminating the Scaling Factor Approximation Error in RNS CKKS

For the RNS setting, the noise control is more challenging as instead of a suitable ciphertext
modulus Q = 2p0+p·L = q0 · ∆L, we should use a ciphertext modulus Q =

∏L
i=0 qi - product of

primes qi. The rescaling operation is done by dividing by qi, which are no longer powers of two.
The works [6, 11] that independently developed RNS variants of CKKS suggested to keep the

scaling factor ∆ constant, and pick the RNS moduli qi close to ∆.
Let qi be such that ∆/qi = 1 + αi, where |αi| is kept as small as possible. Consider again the

multiplication procedure with rescaling at some level `:

cmult+rs,0 + cmult+rs,1s ≡
(∆ · µ1 + f1) · (∆ · µ2 + f2) + eks

q`
+ rrs

= ∆ · µ1µ2 + u∆ +
f×
q`

+
eks

q`
+ rrs = ∆ · µ1µ2 + fmult+rs,

where

u∆ = α` ·∆ · µ1µ2,fmult+rs = u∆ +
f×
q`

+
eks

q`
+ rrs.

The scaling factor error term u∆ appears here due to the difference between the scaling factor
∆ and prime q`, and typically is the largest among the summands in the RNS instantiation of
CKKS. We can see that u∆ depends on the distribution of specially chosen prime numbers, and
is hence hard to control. We can consider optimizing the prime moduli selection to minimize the
scaling factor error at each level. But if we consider operations over ciphertexts at different levels,
we would have to deal with different scaling factor errors and the optimal configuration of prime
moduli would be different. This implies that we would have to analyze the noise growth and find
an optimal configuration of prime moduli for each specific computation circuit separately. A more
detailed discussion of this issue is provided in Appendix A.
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Using a Different Scaling Factor for Each Level. There is a way to eliminate the scaling
factor error completely. As moduli qi are public, we can integrate u∆ into the scaling factor and
adjust the scaling factor after each rescaling. Let the ciphertext ct encrypt µ at some level ` with
the scaling factor ∆`. The ciphertext ct satisfies the following relation:

c0 + c1 · s ≡ d∆` · µc+ efresh = ∆` · µ+ fenc (mod Q`).

With different scaling factors at different levels, we no longer have the approximate scaling
error. However, as the evaluation circuits are often quite complex, we now face different problems.
Depending on the order of rescaling operations when evaluating the circuit, we can have different
scaling factors for ciphertexts at the same level or different final scaling factors.

A naive solution to resolve these problems is to adjust the scaling factors at the same level by
multiplying by corresponding constants. This seems to be highly inefficient and could double the
number of levels in the worst case, as we would need to introduce an extra scalar multiplication for
many normal operations.

Instead, we enforce the rescaling to be done automatically right after each multiplication of
ciphertexts. With this automated rescaling, we ensure that all ciphertexts at the same level have
the same scaling factors. The ciphertext after the multiplication procedure with rescaling

ctmult+rs = Rescale (Mult (ct1, ct2) , q`) ,

will satisfy the following relation:

cmult+rs,0 + cmult+rs,1s ≡
(∆` · µ1 + f1) · (∆` · µ2 + f2) + eks

q`
+ rrs

= ∆`−1 · µ1 · µ2 + fmult+rs (mod Q`−1),

where fmult+rs = f×
q`

+ eks
q`

+ rrs and ∆`−1 :=
∆2
`
q`
.

The following table shows how the scaling factors change during the computations depending
on the level of the ciphertext:

Level fresh ∆` OR after Mult + Rescale

L ∆L = qL
L− 1 ∆L−1 = ∆2

L/qL = qL
L− 2 ∆L−2 = ∆2

L−1/qL−1 = q2
L/qL−1

· · · · · ·
` ∆` = ∆2

`+1/q`+1

· · · · · ·
0 ∆0 = ∆2

1/q1

The choice of the initial scaling factor ∆L = qL will become clear from below.

Handling the Operations between Ciphertexts at Different Levels. With the approach
of automated rescaling, we always get the same scaling factors for the same level. However, we
still have to deal with ciphertexts at different levels, i.e., with different scaling factors. Let us say
we have two ciphertexts ct1, ct2 with levels `1 > `2 and scaling factors ∆`1 and ∆`2 . We have to
adjust them to be at level `2 and to have the scaling factor ∆`2 .
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• Adjust (ct1, `2) . For a ciphertext ct1 with level `1 and scaling factor ∆`1 , drop moduli {q`2+2, . . . , q`1},
multiply the result by a constant

⌈
∆`2
·q`2+1

∆`1

⌋
=

∆`2
·q`2+1

∆`1
+ δ, with δ ∈ [−1/2, 1/2] and finally

rescale by q`2+1.

Let a ciphertext ct1 = (c0, c1) satisfy the following relation:

c0 + c1 · s = ∆`1 · µ+ f (mod Q`1).

The adjustment procedure ctadjust = Adjust (ct1, `2) for a ciphertext ct1 leads to the following
relation:

cadjust,0 + cadjust,1 · s =
1

q`2+1
(∆`1 · µ+ f) ·

(
∆`2 · q`2+1

∆`1

+ δ

)
+ rrs = ∆`2 · µ+ fadjust (mod Q`2),

with fadjust =
∆`2
∆`1
· f +

δ∆`1
·µ+δf

q`2+1
+ rrs, where the second error term is introduced by scalar

multiplication and the error rrs is introduced by the rescaling. Consider scaled errors f/∆` = φ(`),
r/∆` = ρ(`), e/∆` = ε(`), then we have

φ
(`2)
adjust = φ(`1) +

δ∆`1 · µ
∆2
`2+1

+
δφ(`2+1)

∆`2+1
+ ρ

(`2)
rs . (2)

We now can redefine addition and multiplication operations for ciphertexts at different levels.

• CrossLevelAdd(ct1, ct2) If `1 = `2, output Add(ct1, ct2), else w.l.o.g. `1 > `2. We first adjust
ct1 to level `2, ct′1 = Adjust(ct1, `2), and then output Add(ct′1, ct2).

• CrossLevelMult(ct1, ct2) If `1 = `2, output Mult(ct1, ct2), else w.l.o.g. `1 > `2. We first adjust
ct1 to level `2, ct′1 = Adjust(ct1, `2), and then output Mult(ct′1, ct2).

In Equation (2), we want ∆`1 and ∆`2+1 to be close to each other to keep the error φ
(`2)
adjust small.

Choosing the Primes to Avoid the Divergence of Scaling Factors. We initially tried to
reuse the alternating logic for selecting the prime moduli in the CKKS RNS instantiations [6, 11],
which was introduced to minimize the approximate scaling error. The algorithm showing this logic
is listed in Algorithm 1. However, the scaling factors chosen using this logic diverge after ≈ 20 or
≈ 30 levels (for double-precision floats used in our implementation), as illustrated in Figure 1. As
soon as the scaling factor significantly deviates from 2p, the scaling factor quickly diverges from 2p

either towards 0 or infinity due to the exponential nature of scaling factor computation (the scaling
factor is squared at each level). As this situation is not acceptable, we had to devise alternative
algorithms.

To address this problem, we developed two other algorithms (Algorithms 2 and 3) where instead
of minimizing the difference between ∆` and 2p, we minimize the difference between two subsequent
scaling factors. Algorithm 2 directly applies this logic. Algorithm 3 refines this logic by also
alternating the selection of moduli w.r.t to the previous scaling factor (first a larger prime modulus is
selected, then a smaller modulus, etc.), i.e., it combines Algorithms 1 and 2 to further minimize the
error introduced by the deviation of the current scaling factor. Figure 1 shows that the deviation of
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Algorithm 1 Selection of RNS prime moduli in RNS-HEAAN [11] and PALISADE [6]; FirstPrime finds the
first prime modulus qL > 2p such that qL = 1 (mod 2N). PreviousPrime and NextPrime decrement/increment
with step 2N until a prime modulus is found.

1: procedure SelectModuli(N,L, p, p0)
2: qL := FirstPrime(p, 2N)
3: qnext := qL
4: qprev := qL
5: flip := 0
6: for ` = L− 1, . . . , 1 do
7: if flip (mod 2) = 0 then
8: q` := PreviousPrime(qprev, 2N)
9: qprev := q`

10: else
11: q` := NextPrime(qnext, 2N)
12: qnext := q`

13: flip := flip + 1

14: q0 := PreviousPrime(p0, 2N)

Algorithm 2 Selecting the prime moduli using the closest-prime-to-scaling-factor logic; FirstPrime finds the
first prime modulus qL > 2p such that qL = 1 (mod 2N). PreviousPrime and NextPrime decrement/increment
with step 2N until a prime modulus is found. ClosestPrime chooses the nearest between PreviousPrime and
NextPrime.

1: procedure SelectModuli(N,L, p, p0)
2: qL := FirstPrime(p, 2N)
3: ∆L := qL
4: ∆L−1 := qL
5: for ` = L− 2, . . . , 1 do

6: ∆` :=
(∆`+1)2

q`+1

7: q` := ClosestPrime(d∆`c − [d∆`c]2N + 1, 2N)

8: q0 := PreviousPrime(p0, 2N)
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Algorithm 3 Selecting the prime moduli using a hybrid of Algorithms 1 and 2; FirstPrime finds the first
prime modulus qL > 2p such that qL = 1 (mod 2N). PreviousPrime and NextPrime decrement/increment
with step 2N until a prime modulus is found.

1: procedure SelectModuli(N,L, p, p0)
2: qL := FirstPrime(p, 2N)
3: ∆L := qL
4: ∆L−1 := qL
5: flip := 0
6: for ` = L− 2, . . . , 1 do

7: ∆` :=
(∆`+1)2

q`+1

8: if flip (mod 2) = 0 then
9: q` := PreviousPrime(d∆`c − [d∆`c]2N + 1, 2N)

10: else
11: q` := NextPrime(d∆`c − [d∆`c]2N + 1, 2N)

12: flip := flip + 1

13: q0 := PreviousPrime(p0, 2N)

the scaling factors from 2p is very small for both Algorithms 2 and 3 up to 50 levels. Eventually both
algorithms diverge, but it happened after 200 levels for all ring dimensions N we ran experiments
for. As Algorithm 3 has smoother behaviour, we chose it for our implementation.

Note that we chose ∆L = qL to reuse this scaling factor at level L− 1, hence getting one level
for “free” (without squaring and division).

In our implementation we also added a condition to check that the scaling factor does not
diverge much from 2p. PALISADE throws an exception if the scaling factor is within a factor of 2
of 2p.

4.2 Applying the Reduced-Error CKKS Modifications

With different scaling factors at different levels, we no longer have the approximate scaling error.
Hence now we can apply the RE-CKKS techniques to further reduce the approximation error. For
the original CKKS scheme, we considered the idea of modified multiplication where rescaling is
done right before the next multiplication. The same idea can be adapted to the RNS instantiation
of CKKS to reduce the LWE related noise:

ctmult′ = Mult′ (ct1, ct2) = Mult (Rescale (ct1, q`) ,Rescale (ct2, q`)) .

With the modified multiplication, we also ensure that the ciphertexts at the same level have
the same scaling factor, as we do not shuffle Rescale and Mult operations, but just delay the Rescale
operation to be done right before next Mult, instead of right after the multiplication. This delay of
the Rescale operation has the same effect as eliminating LWE errors in RE-CKKS.

For level L, we add an extra modulus q′ satisfying q′ = 1 (mod 2N), such that the sum of all
LWE errors during the computations at level L, including fresh encryption noise, is smaller than
q′. The following table shows how the scaling factors change during a computation depending on
the level of the ciphertext:

With the modified multiplication, the encryption of a message µ at level ` will satisfy the
following condition (for an encryption with an extra level we need to substitute ∆2

` with ∆L ·∆′):
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Figure 1: Deviation of scaling factors from the base value 2p for p = 40 and p = 50 and different values of
ring dimension N ; threshold corresponds to a factor of 2x change.
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Level fresh ∆` OR after Mult′

L ∆L ·∆′ = qL · q′
L− 1 ∆2

L = q2
L

L− 2 ∆2
L−1 = q2

L

· · · · · ·
`+ 1 ∆2

`

· · · · · ·
0 ∆2

1

c0 + c1s ≡ ∆2
` · µ+ f ′.

Let f ′/∆2
` = φ′(`). After Mult′ operation we have:

cmult′,0 + cmult′,1s ≡
(

∆2
` · µ1 + f ′1

q`
+ r1,rs

)
·
(

∆2
` · µ2 + f ′2

q`
+ r2,rs

)
+ eks

=
(

∆`−1 ·
(
µ1 + φ

′(`)
1

)
+ r1,rs

)
·
(

∆`−1 ·
(
µ2 + φ

′(`)
2

)
+ r2,rs

)
+ eks

= ∆2
`−1 · µ1µ2 + fmult′ ,

where

fmult′ = ∆2
`−1 ·

(
µ1φ

′(`)
2 + µ2φ

′(`)
1 + φ

′(`)
1 φ

′(`)
2

)
+

+ ∆`−1 ·
((
µ1 + φ

′(`)
1

)
rrs,2 +

(
µ2 + φ

′(`)
2

)
rrs,1

)
+ rrs,1rrs,2 + eks,

φmult′ = µ1

(
φ
′(`)
2 + ρ

(`−1)
rs,2

)
+ µ2

(
φ
′(`)
1 + ρ

(`−1)
rs,1

)
+
(
φ
′(`)
1 + ρ

(`−1)
rs,1

)(
φ
′(`)
2 + ρ

(`−1)
rs,2

)
+
ε
(`−1)
ks

∆`−1
.

Handling the Operations between Ciphertexts at Different Levels for Reduced-Error
CKKS. The same approach as in Section 4.1 can be applied to handle the operations between
ciphertexts at different levels.

• Adjust (ct1, `2). For a ciphertext ct1 at level `1 and scaling factor ∆2
`1

, drop moduli {q`2+2, . . . , q`1},

multiply the result by a constant

⌈
∆2
`2
·q`2+1

∆2
`1

⌋
=

∆2
`2
·q`2+1

∆2
`1

+δ, where δ ∈ [−1/2, 1/2], and finally

rescale by q`2+1.

Let a ciphertext ct1 = (c0, c1) satisfy the following relation:

c0 + c1 · s = ∆2
`1 · µ+ f ′ (mod Q`).

The adjustment procedure ctadjust = Adjust (ct1, `2) for a ciphertext ct1 leads to the following
relation:

cadjust,0 + cadjust,1 · s =

(
∆2
`1
· µ+ f ′

)
q`2+1

·

(
∆2
`2
· q`2+1

∆2
`1

+ δ

)
+ rrs = ∆2

`2 · µ+ f ′adjust (mod Q`2),
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with

f ′adjust =
∆2
`2

∆2
`1

· f ′ +
δ∆2

`1
· µ+ δf ′

q`2+1
+ rrs,

where the second error term is introduced by scalar multiplication and error rrs is introduced by
the rescaling. Then we have

φ
′(`2)
adjust = φ

′(`1) +
δ∆2

`1
· µ

∆2
`2+1∆`2

+
δφ
′(`2+1)

∆`2

+
ρ

(`2)
rs

∆`2

.

We see that the rescaling part ρ
(`2)
rs

∆`2
becomes negligible.

5 Implementation Details and Results

We implemented both proposed RNS variants of CKKS in PALISADE and evaluated their perfor-
mance using four representative benchmarks: addition of multiple vectors, summation over a vector,
component-wise multiplication of multiple vectors, evaluation of a polynomial over a vector.

We introduce the following notation to distinguish between different RNS variants of CKKS:

• Reduced-Error CKKS with Delayed Exact (RE-CKKS-DE) rescaling: includes all techniques
for reducing the approximation error presented in this work;

• CKKS with Delayed Exact (CKKS-DE) rescaling: includes only the RNS-specific techniques
described in Section 4.1 + delayed rescaling;

• CKKS with Immediate Approximate (CKKS-IA) rescaling: classical RNS variant, as imple-
mented in RNS-HEAAN and prior versions of PALISADE.

Note that the approximation error of CKKS-DE is approximately the same as the error of the
multiprecision CKKS implementation in the HEAAN library. In our comparison of experimentally
observed precision for CKKS-DE in PALISADE vs CKKS in the HEAAN library for selected
computations (where delayed rescaling in CKKS-DE did not give any advantage to PALISADE
over HEAAN), we did not observe differences higher than 0.2 bits, and the differences we saw were
not statistically significant.

5.1 Setting the Parameters

The coefficients of error polynomials were sampled using the discrete Gaussian distribution with
distribution parameter σ = 3.2. We used uniform ternary distribution for secrets, which is the most
efficient setting that is compliant with the HE standard [2].

As noted previously, Q′L for RE-CKKS is larger than QL for original CKKS by ∆′. The value
of ∆′ in our experiments is approximately 220. This may lead to a doubled ring dimension for
RE-CKKS as compared to CKKS in regions where the effective ciphertext modulus PQ′L is close
to the LWE work factor threshold between two subsequent ring dimensions (see Table 1 of [2]
for the threshold values). However, we can accommodate for this difference when selecting the
auxiliary moduli for hybrid key switching, paying a relatively small price in the performance of key
switching. For example, when we look at the benchmarks of addition of multiple vectors (Table 4)
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and summation over a vector (Table 5), we get QL ≈ 240, Q′L ≈ 260, and P ≈ 260, which implies
that the effective ciphertext modulus for CKKS is ≈ 2100 while for RE-CKKS it is ≈ 2120. The
threshold for N = 212 in the uniform ternary secret setting is ≈ 2109. We can change the effective
modulus for RE-CKKS by reducing P to 249 or less, which reduces the effective modulus to 2109

or lower, allowing us to use the same ring dimension as for CKKS.

5.2 Software Implementation and Experimental Setup

We implemented all proposed RNS variants of CKKS in PALISADE v1.10. The evaluation en-
vironment was a commodity desktop computer system with an Intel(R) Core(TM) i7-9700 CPU
@ 3.00GHz and 64 GB of RAM, running Ubuntu 18.04 LTS. The compiler was g++ 9.3.0. All
experiments were executed in the single-threaded mode.

We ran the experiments in the full packing mode, i.e., we packed a vector x ∈ CN/2 of
size N/2 per ciphertext. The entries xi were randomly generated from the complex unit circle
{z ∈ C : ‖z‖2 = 1}. To estimate the precision after the decryption output x̃, we evaluated the
average of ‖xi − x̃i‖2 and then computed the absolute value of logarithm of it.

5.3 Experimental Results

Table 4: Comparison of precision and runtime when computing
∑k

i=0 xi for Reduced-Error CKKS
with Delayed Exact (RE-CKKS-DE) rescaling, CKKS with Delayed Exact (CKKS-DE) rescaling,
and CKKS with Immediate Approximate (CKKS-IA) rescaling RNS variants; CKKS-DE has the
same approximation error as the multiprecision CKKS implementation in the HEAAN library
and CKKS-IA is equivalent to the RNS implementation in RNS-HEAAN and previous versions of
PALISADE; ∆i ≈ 2p, q0 ≈ 260,∆′ ≈ 220,K = dlogQLe , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA
p k logN K prec. time logN K prec. time prec. time

40

2 12 60 45.8 0.04 ms 12 40 25.9 0.02 ms 25.9 0.02 ms
4 12 60 45.3 0.11 ms 12 40 25.4 0.06 ms 25.4 0.04 ms
8 12 60 44.9 0.24 ms 12 40 24.9 0.12 ms 24.9 0.08 ms
16 12 60 44.3 0.51 ms 12 40 24.4 0.25 ms 24.4 0.17 ms
32 12 60 43.8 1.06 ms 12 40 23.9 0.51 ms 23.9 0.34 ms
64 12 60 43.3 2.2 ms 12 40 23.4 1.07 ms 23.4 0.74 ms

50

2 13 70 48.1 0.08 ms 13 50 34.9 0.04 ms 34.9 0.03 ms
4 13 70 48.4 0.22 ms 13 50 34.4 0.11 ms 34.4 0.07 ms
8 13 70 48.0 0.48 ms 13 50 33.9 0.23 ms 33.9 0.16 ms
16 13 70 49.6 1.04 ms 13 50 33.4 0.53 ms 33.4 0.34 ms
32 13 70 48.9 2.16 ms 13 50 32.9 1.1 ms 32.9 0.76 ms
64 13 70 48.1 4.42 ms 13 50 32.4 2.17 ms 32.4 1.54 ms

Addition of multiple vectors. Table 4 compares the precision and runtimes for the use case of
adding k vectors together for all four RNS variants. This use case does not require any key switching
and rescaling operations, and illustrates the pure effect of eliminating fresh LWE encryption noise.
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The precision of RE-CKKS-DE is about 20 bits higher than for CKKS at ∆i ≈ 240 for all considered
values of k, which implies that ∆′ = 220 gives us a direct improvement in precision. For ∆i ≈ 250,
we get a smaller improvement in precision because of the 52-bit precision of the double-precision
floating-point arithmetic used to represent real numbers. The precision is reduced from 52 to
roughly 48-49 bits because of the decoding error rfloat. The runtime slowdown of RE-CKKS-DE vs
CKKS-DE for both values of ∆i is exactly 2x because RE-CKKS-DE works with two RNS limbs
(the regular one + the extra modulus ∆′). This slowdown for ∆i ≈ 240 can be removed by working
with a composite modulus q0∆′ ≈ 260 as it fits a single 64-bit word. But we did not implement this
optimization as it only works for special cases, and the runtime of about 1 ms is already very small
for practical purposes. There is also some performance improvement for CKKS-IA as compared to
CCKS-DE, but it is determined by how the code is written (extra memory allocations in the case
of CCKS-DE) and has no algorithmic cause.

Table 5: Comparison of precision and runtime when computing
∑N/2

i=0 xi for RE-CKKS-DE, CKKS-
DE, and CKKS-IA RNS variants (see Table 4 for the definition of RNS variants); ∆i ≈ 2p ≈ q0,∆

′ ≈
220,K = dlogQLe , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA
p logN K prec. time logN K prec. time prec. time
40 12 60 40.4 17.33 ms 12 40 21.1 8.94 ms 21.1 8.89 ms
50 13 70 47.2 38.67 ms 13 50 28.3 19.79 ms 28.3 19.77 ms

Summation over a vector. Table 5 shows the precision and runtimes for the computation
adding up all components of a vector. This use case requires key switching but does not need to
rescale as there are no multiplications involved. We can see that the precision improvement of RE-
CKKS-DE over CKKS-DE is still about 20 bits for ∆i ≈ 240 and it is slightly smaller for ∆i ≈ 250

due to the floating-point approximation error. This implies that ∆′ removes both encryption and
key switching LWE approximation errors, and we only deal with the floating-point precision error
here. The runtime slowdown of RE-CKKS-DE compared to all other RNS variants is slightly under
2x. It can be attributed to the extra modulus ∆′ and increased computational complexity of hybrid
key switching related to this.

Binary tree multiplication. Table 6 illustrates the precision and runtimes for the case of binary
tree multiplication. This use case examines the effect of reduced approximation error for the
multiplication operation followed by key switching and rescaling. First, we want to point out
that the precision improvement of RE-CKKS-DE over CKKS-DE is about 3.5 to 4 bits (with
the highest precision gain after the first multiplication), as theoretically predicted in Section 3.3.
Second, CKKS-DE gains additional 3 to 6 bits over CKKS-IA. This implies that the RE-CKKS-
DE RNS variant can be up to 9 bits more precise than the prior RNS variants. The performance
penalty of higher precision varies between 1.2x and 1.6x, which is a relatively small cost.

Evaluation of a polynomial over a vector. Table 7 shows the precision and runtimes for the
case of evaluating a polynomial over a vector of real numbers, which is a very common operation
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Table 6: Comparison of precision and runtime when computing
∏2k

i=1 xi for RE-CKKS-DE, CKKS-
DE, and CKKS-IA RNS variants (see Table 4 for the definition of RNS variants); ∆i ≈ 2p, q0 ≈
260,∆′ ≈ 220,K = dlogQLe , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA
p k logN K prec. time logN K prec. time prec. time

40

1 13 120 28.9 5.61 ms 13 100 24.9 3.24 ms 21.8 4.01 ms
2 14 160 27.1 47.85 ms 14 140 23.4 32.93 ms 20.1 34.25 ms
3 14 200 26.5 0.14 s 14 180 22.9 99.47 ms 20.7 0.1 s
4 14 240 26.0 0.38 s 14 220 22.4 0.29 s 17.8 0.29 s
5 14 280 25.4 0.91 s 14 260 21.9 0.73 s 17.3 0.73 s
6 14 320 24.9 2.29 s 14 300 21.4 1.79 s 15.9 1.78 s
7 15 360 23.4 11.27 s 15 340 19.9 8.94 s 14.3 8.86 s

50

1 13 130 38.9 6.22 ms 13 110 34.9 3.17 ms 32.8 4 ms
2 14 180 37.1 47.83 ms 14 160 33.4 32.77 ms 32.3 34.23 ms
3 14 230 36.5 0.14 s 14 210 32.9 0.1 s 29.0 0.1 s
4 14 280 36.0 0.38 s 14 260 32.4 0.29 s 29.5 0.29 s
5 14 330 35.4 0.97 s 14 310 31.9 0.73 s 27.7 0.73 s
6 15 380 33.9 4.8 s 15 360 30.4 3.76 s 27.3 3.73 s
7 15 430 33.4 11.3 s 15 410 29.9 8.94 s 25.9 8.85 s

Table 7: Comparison of precision and runtime when computing
∑k

i=0 xi for RE-CKKS-DE, CKKS-
DE, and CKKS-IA RNS variants (see Table 4 for the definition of RNS variants); ∆i ≈ 2p, q0 ≈
260,∆′ ≈ 220,K = dlogQLe , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA
p k logN K prec. time logN K prec. time prec. time

40

2 13 120 28.4 7 ms 13 100 24.3 3.37 ms 21.8 4.14 ms
4 14 160 26.1 50.88 ms 14 140 22.2 35.63 ms 19.4 29.39 ms
8 14 200 24.8 0.13 s 14 180 21.0 0.1 s 19.1 75.14 ms
16 14 240 23.6 0.29 s 14 220 19.8 0.26 s 16.9 0.17 s
32 14 280 22.4 0.64 s 14 260 18.6 0.58 s 16.3 0.38 s
48 14 320 21.8 1.12 s 14 300 17.9 1.05 s 15.1 0.67 s
64 14 320 21.3 1.33 s 14 300 17.4 1.26 s 14.9 0.82 s

50

2 13 130 38.4 7.69 ms 13 110 34.3 3.36 ms 32.8 4.14 ms
4 14 180 36.0 51.19 ms 14 160 32.1 35.8 ms 29.5 29.48 ms
8 14 230 34.8 0.13 s 14 210 31.0 0.1 s 28.0 75.42 ms
16 14 280 33.6 0.29 s 14 260 29.8 0.26 s 27.7 0.17 s
32 14 330 32.4 0.68 s 14 310 28.6 0.58 s 26.4 0.38 s
48 15 380 30.8 2.34 s 15 360 26.9 2.21 s 26.1 1.4 s
64 15 380 30.3 2.78 s 15 360 26.4 2.65 s 25.6 1.72 s

in CKKS as a polynomial approximation is often used to approximate ”hard”, nonlinear functions,
such as logistic function, multiplicative inverse, sine wave, etc. This use case examines the combined
effect of multiplications and cross-level additions. We can observe that the precision gain of RE-
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CKKS-DE over CKKS-DE is still 3.5-4 bits. The precision gain of CKKS-DE over CKKS-IA is
less pronounced in this case (not higher than 3 bits). The performance penalty is the worst for
smaller-degree polynomials (up to 1.9x), but drops to 1.6x for larger-degree polynomials.

6 Concluding Remarks

Our results suggest that a relatively high precision can be achieved for RE-CKKS in RNS for signif-
icantly smaller scaling factors than in the original CKKS scheme and its prior RNS variants. This
implies RE-CKKS requires smaller ciphertext moduli (lower ring dimension) to achieve the same
precision as the original CKKS or its RNS instantiation, which may also yield certain performance
improvements over the prior approach if the same output precision is considered.

Another benefit of RE-CKKS is that it can be used to increase the CKKS bootstrapping pre-
cision in RNS variants of CKKS, which is currently a major practical limitation for the RNS
instantiations of CKKS [22]. For example, the extra 6 to 9 bits and 10 to 12 bits for uniform and
sparse secrets, respectively, may provide enough room for more accurate polynomial approxima-
tions of the modular reduction function. But the precision improvements in CKKS bootstrapping
require careful modifications at various stages of the bootstrapping procedure, e.g., in the scaling
operations. Hence this problem deserves a separate study and is beyond the scope of our present
work.

The main motivation of our study was to improve the usability of the CKKS scheme by elimi-
nating several approximation errors and automating the execution of rescaling. We believe we have
achieved this goal, and consider our work as a significant step towards making the CKKS scheme
more practical. For instance, all operations related to rescaling or the approximation error man-
agement are completely hidden from the application developer in our PALISADE implementation,
and the API for CKKS is the same as for integer-arithmetic homomorphic encryption schemes,
such as Brakersky-Gentry-Vaikuntanathan [8] and Brakerski/Fan-Vercauteren [7, 18] schemes.
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A Approximate Scaling Error in RNS

Consider approximate plaintexts m1 = 2p · µ1 + e1 and m2 = 2p · µ2 + e2.
When we multiply the plaintexts, we get

m1 ·m2 ≈ 22p · µ1µ2 + 2p · µ1e2 + 2p · µ2e1.

Choose RNS moduli qi such that 2p/qi stays in the range (1− 2−ε, 1 + 2−ε), where 2−ε is kept
as small as possible.

The rescaling at level ` for both cases can be written as (the rounding error is ignored in this
analysis)

m1 ·m2

2p
≈ 2p · µ1µ2 + µ1e2 + µ2e1,

m1 ·m2

q`
≈ 22p

q`
· µ1µ2 +

2p

q`
· µ1e2 +

2p

q`
· µ2e1.

If we ignore the noise terms, the difference between m1·m2
2p and m1·m2

q`
can be written as∣∣∣∣2p · µ1µ2 −

22p

q`
· µ1µ2

∣∣∣∣ ≤ 2−ε · 2p · µ1µ2 = 2p−ε · µ1µ2.

In other words, we introduce an approximation error of roughly p− ε bits. In the RNS variants,
p− ε is typically larger than the number of bits in the CKKS LWE approximation error. In other
words, ∣∣2−ε · 2p · µ1µ2

∣∣ > |µ1e2|+ |µ2e1| .

Next we show what happens when we apply two rescaling operations. We use εi for each qi.
First, we multiply two approximate plaintexts (after initial approximate rescaling by q`) and get
the following scaling factor (

2p + 2p−ε`
)2 ≈ 22p + 22p−ε`+1.
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After second rescaling, we have (the noise terms are dropped for simplicity):
⌈
m1·m2
q`

⌋ ⌈
m3·m4
q`

⌋
q`−1

 ≈ ∣∣∣∣∣
⌈

2p + 2p−ε`+1

q`−1
·

(
2p ·

4∏
i=1

µi

)⌋∣∣∣∣∣
≈

∣∣∣∣∣
⌈

2p

q`−1

(
1 + 2−ε`+1

)
·

(
2p ·

4∏
i=1

µi

)⌋∣∣∣∣∣
≈

∣∣∣∣∣
⌈(

1 + 2−ε`−1
)
·
(
1 + 2−ε`+1

)
·

(
2p ·

4∏
i=1

µi

)⌋∣∣∣∣∣
≈

∣∣∣∣∣
⌈(

1 + 2−ε`−1 + 2−ε`+1
)
·

(
2p ·

4∏
i=1

µi

)⌋∣∣∣∣∣ .
So the error in this case is bounded by

(
2−ε`−1 + 2−ε`+1

)
·

∣∣∣∣∣
⌈

2p ·
4∏
i=1

µi

⌋∣∣∣∣∣ .
After three rescaling operations, we have

(
2−ε`−2 + 2−ε`−1+1 + 2−ε`+2

)
·

∣∣∣∣∣
⌈

2p ·
8∏
i=1

µi

⌋∣∣∣∣∣ .
This analysis implied that all moduli are incrementally (monotonously) increased or decreased,

which is the worst case. In the RNS variants of CKKS [6, 11], we alternate the moduli w.r.t. 2p.
So instead we should expect something like this.

After two rescaling operations:

(
−2−ε`−1 + 2−ε`+1

)
·

∣∣∣∣∣
⌈

2p ·
4∏
i=1

µi

⌋∣∣∣∣∣
After three rescaling operations:

(
2−ε`−2 − 2−ε`−1+1 + 2−ε`+2

)
·

∣∣∣∣∣
⌈

2p ·
8∏
i=1

µi

⌋∣∣∣∣∣
In this case, the approximation error grows more slowly. For instance, if we assume that

ε`−2 ≈ ε`−1 ≈ ε`, then the error after 3 rescaling operations will be roughly 3x the error after the
first rescaling operation, whereas in the monotonic case it would be about 7x. In reality, the values
of current ε` become progressively smaller and, hence, the first error term becomes larger. The
optimal choice of moduli is more involving. So in the implementation we use a relatively simple
alternating logic, and the largest values of ε` are used for the initial levels (last RNS moduli) to
keep the approximation error as small as possible.

Although one could find the optimal value of prime moduli that would give the lowest approx-
imation error for the logic described above, in practical scenarios we deal with two methods for
modulus switching: rescaling and simple level reduction (w/o rescaling). In this case, the choice of
prime moduli resulting in the lowest approximation error may be different from the scenarios with
normal rescaling only.

30



B Proofs of Lemmas

We follow the heuristic approach in [14,16,19]. Assume that a polynomial a is sampled from some
distribution with independent and identically distributed entries. Since a(ζM ) is the inner product
of coefficient vector of a and fixed vector (1, ζM , . . . , ζ

N−1
M ) of Euclidean norm

√
N , the random

variable a(ζM ) has variance σ2N , where σ2 is the variance of each coefficient of a. Moreover, we
can assume that a(ζM ) is distributed similarly to a gaussian distribution over complex plane since
it is a sum of many independent and identically distributed entries. We will use the following bound
‖a‖can ≤ 6σ

√
N for the canonical embedding norm of a. For a multiplication of two independent

polynomials a, b close to gaussian distributions with variances σ2
1 and σ2

2, we will use a high-
probability bound ‖a · b‖can ≤ 16σ1σ2N .
Proof of Lemma 3.1. We choose binary v ← χenc, and discrete gaussian e0, e1 ← χerr, then set
ct = v ·pk+(m+e0, e1). The bound of ffresh of fresh encryption noise is computed by the following
inequality

‖ffresh‖can = ‖v · e + e0 + e1 · s‖can ≤ ‖v · e‖can + ‖e0‖can + ‖e1 · s‖can

≤ 16 ·
√

2

3
σN + 6σ

√
N + 16 ·

√
2

3
σN =

32

3

√
6σN + 6σ

√
N.

QED.
Proof of Lemma 3.2. The key switching noise comes from the error terms {e′} in swk1 and from
rounding parts that we denote by r0, r1 with coefficients smaller than 1/2. The bound of eks of key
switching noise is computed by the following inequality

‖eks‖can =

∥∥∥∥〈WD` (c1) , e′〉
P

+ r0 + r1 · s
∥∥∥∥can

≤
∥∥∥∥〈WD` (c1) , e′〉

P

∥∥∥∥can

+ ‖r0‖can + ‖r1 · s‖can

≤ 16 · dnum · ωσN√
12P

+ 6 ·
√

1

12
N + 16 ·

√
1

12

√
2

3
N

=
8
√

3 · dnum · ωσN
3P

+
√

3N +
8
√

2N

3
.

QED.
Proof of Lemma 3.3. The bound of rrs is computed by the following inequality

‖rrs‖can = ‖r0 + r1 · s‖can ≤ ‖r0‖can + ‖r1 · s‖can

≤ 6 ·
√

1

12
N + 16 ·

√
1

12

√
2

3
N =

√
3N +

8
√

2N

3

QED.
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