
A Detailed Report on the Overhead of Hardware
APIs for Lightweight Cryptography

Patrick Karl and Michael Tempelmeier
Chair of Security in Information Technology

Technical University of Munich, Germany
{patrick.karl, michael.tempelmeier}@tum.de

Abstract—The “Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness” (CAESAR)
was the first cryptographic competition that required
designers to use a mandatory hardware API for their
implementations. Recently, a similar hardware API for the
NIST Lightweight Cryptography (LWC) project was pro-
posed. Both APIs feature an accompanying development
package to help designers implementing the API.

In this paper, we have an in-depth look on these pack-
ages. We analyze the features of both packages, discuss
their resource utilization, and demonstrate their impact
on Ascon128, SpoC-64, and Gimli implementations on a
modern Artix-7 FPGA. Finally, we provide some tweaks
and enhancements to further optimize the development
package for the LWC API.

I. INTRODUCTION

As embedded systems and sensor networks become
ubiquitous, the demand for resource and energy effi-
cient cryptography increases. Therefore, in 2016, the
NIST initiated the Lightweight Cryptography project
(LWC) for Authenticated Encryption with Associated
Data (AEAD) and Hash functions [1]. Its goal is to
identify suitable cryptographic primitives that can be
efficiently implemented in hardware and software. By
the year of 2019, 57 algorithms were submitted. 56 of
those were considered as first round candidates and 32
were selected for the currently ongoing second round,
which focuses on benchmarking the candidates in terms
of security and performance.

For a fair comparison of cryptographic software im-
plementations, benchmarking suits like SUPERCOP [2]
were introduced during the ECRYPT Stream Cipher
Project (eSTREAM) [3]. For hardware implementations,
this idea was realized in the Automated Tool for Hard-
ware EvaluatioN (ATHENa) [4]. However, a benchmark-
ing suite, that finds the best synthesis parameter, is
not enough for a fair comparison of different hardware
implementations; especially, if they all make different

assumptions on the used interface. Thus, a common
hardware interface is needed [5].

The first proposal for a uniform hardware interface
was during the SHA-3 competition [6]. Also for the Post-
Quantum project an hardware API was proposed [7].

During the CAESAR contest, a hardware API for
AEAD [8] was proposed, and for the first time, of-
ficially included into a cryptographic competition. A
corresponding development package for hardware imple-
mentations [9] increased the design process significantly.
This enabled a fair comparison of different hardware
implementations in [10].

Consequently, also for the NIST Lightweight Cryptog-
raphy project a Hardware API [11] with corresponding
development package [12] was proposed. This develop-
ment package is based on the CAESAR development
package but adds additional features and claims to be
more resource efficient.

In the following, we analyze whether this claim holds
true and show the impact of the development packages
on exemplary designs. We show, that modifying the
development package can lead to false impressions on
resource requirements. However, under equal precon-
ditions the API and its development package provide
useful content towards a fair comparison of hardware
implementations. Finally, we propose some minor mod-
ifications for the Development Package.

II. RELATED WORK

In [8], a Hardware API for high-speed implementa-
tions for the CAESAR contest was proposed. In addi-
tion to that, the authors provided a development pack-
age for hardware implementations. The current release
also introduces a much requested extension to support
lightweight cipher cores [9]. With this extension, several
CAESAR lightweight candidates were implemented and
evaluated in [13].



This release is also used in the implementations
of [14], where three NIST LWC candidates, i.e. SpoC,
Spook and GIFT-COFB are evaluated with respect to
their resource consumption and performance, and finally
compared to CAESAR lightweight candidates.

In [10], a hardware benchmarking framework was
presented that incorporates the CAESAR API package
on a real SoC. Eleven hardware implementations of the
final round CAESAR candidates were evaluated with
respect to area and throughput. In [15], this framework
was extended to also provide power and energy mea-
surements.

Although, there has been a lot of research on pro-
viding an environment for fair comparison of hardware
implementations, to the best of our knowledge, there is
no work that analyzes the efficiency of the environment
itself, i.e. the API development package.

III. API COMPLIANT DEVELOPMENT PACKAGE

In order to speed up the design process of hardware
implementations, the CAESAR and LWC API both
feature a corresponding development package and an
Implementer’s Guide [9], [16]. As the LWC development
package emerged from the CAESAR package, both de-
signs consist of the same modules, i.e. the PreProcessor,
a FIFO, the PostProcessor and the Cipher/CryptoCore1.

Figure 1 provides an overview of the structure and
the modules in the CAESAR and LWC development
packages. The PreProcessor receives data via the public-
data-input (pdi) and secret-data-input (sdi) ports. It
then removes the header information and stimulates the
CipherCore which implements the actual cryptographic
primitive. The PostProcessor receives the cipher’s output,
adds API specific header data and sends it to the data-
output (do) port. Parts of the pdi-header is passed from
PreProcessor to PostProcessor via the FIFO. In the
following we will refer to that FIFO as HeaderFifo.

Although both packages have the same structure,
they slightly differ in their implemented features. As
mentioned in [16], the LWC packages fully supports hash
algorithms. In addition to that, a width conversion fea-
ture is provided. Therefore, we distinguish between two
different interfaces. The pdi, sdi and do ports make up
the external interface, whereas the connection between
Pre- and PostProcessor and CipherCore will be referred
to as internal interface. The CAESAR package already
supported multiple interface widths. However, there was

1The module was renamed from CipherCore in CAESAR to
CryptoCore in LWC.

Cipher Core

Po
st

-P
ro

ce
ss

o
r

P
re

-P
ro

ce
ss

o
r

FIFO

pdi

pdi_valid

pdi_ready

sdi

sdi_valid

sdi_ready

do

do_valid

do_ready

w

w

w

clk rst

Fig. 1: Modules and Overview of the CAESAR/LWC
Development Package.

no distinction between external and internal interfaces,
such that both had the same width. With the width
conversion feature in the LWC package, a designer can
configure different widths for the internal and external
interface. Thus, the same test framework can be used
for CipherCore implementations with different data path
widths. Width conversion also allows integrating 8- or
16-bit ciphers into – in embedded systems widely used –
32-bit designs. As the community demanded support for
8- and 16-bit external interfaces, they are also supported.

With the additional features implemented, the question
of how the development packages compare in terms of
resource consumption arises. On the one hand, more
features require more resources. On the other hand, an
API for lightweight applications should not dominate the
resource cost of the actual cipher implementation.

IV. RESOURCE ANALYSIS

In order to evaluate the effects of the additional
features and the lightweight rework of the development
package, we synthesized the underlying modules of both
support packages with different I/O widths in standalone
mode. That means, only the module itself without the
possibility of optimizations across module borders is
synthesized. For synthesis we used the Xilinx Vivado
Design Suite v.2018.3 with default synthesis parameters
for an Artix-7 FPGA. The resource consumption of
FPGA designs is stated in terms of (Slice-) LUTs and
(Slice-) registers, i.e. Flip-Flops. However, there are two
types of Slice-LUTs. Whereas both types can be used
for implementing logic, only one of them can be used
as a memory element, i.e. LUTRAM. Therefore, we will
abbreviate the overall number of occupied Slice-LUTs
as LUTs, of which a subset will be explicitly used as
LUTRAM.

A. PreProcessor

The PreProcessor’s synthesis results are shown in
the upper part of Table I. For the 32-bit PreProcessor



version it shows that the LWC version requires less
LUTs but two additional Flip-Flops (FFs) compared to
the CAESAR design. The additional registers implement
flags used for hash support in the LWC version. The 16-
and 8-bit versions both consume more LUTs. The 16-bit
version consumes one additional FF whereas the 8-bit
version saves 22 FFs. By using the width conversions
feature, additional FFs are required. However, a conver-
sion from 32-bit to 16- or 8-bit still consumes less LUTs
than a plain 16- or 8-bit version. This is due to the fact
that the 32-bit FSM implementation requires less logic
than the 16- or 8-bit implementation.

B. PostProcessor

The LWC PostProcessor can be implemented to make
use of two different flags, either the last_flit or the
end_of_block signal, to determine the end of a transmis-
sion. They are both passed from the CryptoCore to the
PostProcessor. The last_flit version allows using multiple
data segments per message, thus allowing message sizes
larger than 216 − 1 bytes, which is required to fulfill
the NIST requirement to support at least messages of
250−1 bytes. The end_of_block version however is more
resource efficient but only allows transmitting messages
up to 216−1 bytes, which is sufficient for most use cases.
Although the PostProcessor in the lightweight version
of the CAESAR package could make similar differenti-
ations, the corresponding PreProcessor does not support
splitting messages over multiple segments. Therefore, a
different analysis of the PostProcessor is omitted and the
default implementation with the last_flit flag is used. The
PostProcessor synthesis results are shown in the lower
part of Table I.

For the last_flit configuration, the LWC PostProcessor
requires in general more LUTs and FFs compared to the
CAESAR version. The only exception is the FF require-
ment in the 8-bit case, where the LWC version saves
11 FFs. As one can expect, using the width conversion
functionality results in an additional overhead, because
the PostProcessor requires additional resources for data
alignment.

When using the end_of_block flag, the LWC Post-
Processor saves a significant amount of FFs compared
to the CAESAR version, while still implementing the
same functionality regarding message sizes. Even if the
PostProcessor is configured to convert between internal
and external widths, the amount of required FFs is
reduced compared to the last_flit version. The 32- and
16-bit versions without conversion save LUTs, whereas
the 8-bit version and the ones with width conversion

require more LUTs compared to the plain CAESAR
versions.

As the message size of lightweight ciphers is unlikely
to exceed 216− 1 bytes, the end_of_block version is the
appropriate configuration in terms of efficiency.

Module I/O Width CAESAR LWC
ext. int. LUT FF LUT FF

PreProcessor

32 32 95 33 88 35

16 16 111 24 124 25

8 8 137 56 159 34

32 16 – – 114 37

32 8 – – 111 39

PostProcessor
(last_flit)

32 32 87 20 92 28

16 16 77 21 86 22

8 8 67 42 111 31

32 16 – – 105 45

32 8 – – 112 54

PostProcessor
(end_of_block)

32 32 – – 67 12

16 16 – – 62 6

8 8 – – 78 15

32 16 – – 81 29

32 8 – – 88 38

TABLE I: Resource comparison of Pre- and PostProces-
sor.

C. HeaderFifo

For the LWC package, the design of the HeaderFifo
has been replaced after routing problems occurred on
some hardware platforms. The development package of
the CAESAR API supports a feature where the tag
verification is performed inside the PostProcessor and
thus, the tag is passed from the PreProcessor to the
PostProcessor. That means, the HeaderFifo must be large
enough to buffer the tag plus the header information. For
the provided dummy ciphers the tag is 128-bits. There-
fore, the minimum size of the fifo would be 128 bits
plus the size of two additional words for the header. In
other words, a 32-bit implementation of a cipher with
128-bit tag requires a fifo with a depth of 6 words.
As the fifo depths must be of power of two, a fifo
buffering 8 words would suffice. That still differs by a
factor of 128 from the default 1024 word configuration
which might lead to suboptimal design optimization.
However, for reasons of comparison, the CAESAR and
LWC HeaderFifos were set to a depth of 4 words which
is the default configuration in the LWC package. The



standalone synthesis results for different word widths
are shown in Table II. It shows a significant decrease in
resource consumption for all of the three word widths.

W CAESAR LWC
LUT FF LUTRAM LUT FF LUTRAM

32 110 39 64 32 7 24

16 61 23 32 20 7 12

8 37 15 16 16 7 8

TABLE II: Synthesis results for the HeaderFifo, 4 words
(LWC default).

D. CipherCore / CryptoCore

Both development packages provide a dummy cipher
implementation to demonstrate the design’s functionality.
For the AEAD scheme, they implement the same spec-
ification; whereas hash support is only implemented in
the LWC CryptoCore. Just as for the other modules, we
synthesized the Cipher/CryptoCore as standalone mod-
ules to compare them. Since the LWC API supports hash
functionality, the corresponding core was synthesized
twice. The first version is unchanged, i.e. with hash
support, whereas in the second run the CryptoCore’s
hash_in port was removed. Internally tying the hash_in
flag to zero allows the synthesis tool to remove most of
the logic required for hash support.

Table III shows the results for all three word sizes.
It shows, that the savings of the LWC core depend on
the configuration. In the 32-bit version, the LWC saves
resource even if hash functionality is implemented. For
the 8-bit case, the LWC core uses around 50 extra LUTs
when implementing hash functionality and 7 extra LUTs
when deactivating it. The reason for that difference is the
impact of the LUTRAM. Whereas the CAESAR core
makes use of 5 internal RAMs, the LWC core only uses
3 RAMs, i.e. 60%. As the absolute number of allocated
LUTRAM cells decreases, the savings of the LWC core
also decrease.

Comparing the LWC versions with and without hash
support also shows that the absolute cost of the additional
hash support stays relatively equal. This shows that in
relative terms, additional features become more costly
the smaller the overall design is.

E. Bringing it together

Standalone synthesis prevents the tool from optimizing
logic across module borders. In order to compare the
development packages of both APIs, we synthesized the

W CAESAR LWC (with/without hash)
LUT FF LUTRAM LUT FF LUTRAM

32 524 119 160 458/405 96/94 96/96

16 317 113 80 347/301 97/95 48/48

8 209 113 40 258/216 98/95 24/24

TABLE III: Synthesis results of the provided Cipher-
Core (CAESAR) and CryptoCore (LWC).

whole package with its corresponding dummy cipher
implementations: First, both HeaderFifos were set to
a depth of 1024, which is the default value in the
CAESAR package. The synthesis results are shown in
Table IVa. For every width, the LWC design consumes
less resources. Although only a few LUTs are saved in
the 8-bit version, the 32-bit version saves 622 LUTs,
which is a saving of about 31% compared to CAESAR’s
LUTs. Reason for that is again, the huge amount of
LUTRAM allocation in the CAESAR version. The LWC
PostProcessor was configured to make use of the last_flit
flag, supporting multi-segment messages2. Hash support
was enabled in the LWC version as a mechanism for
disabling hash was not intended in the original package.

As the HeaderFifo dominated the size of the whole
design, we reduced the fifos’ sizes in the second run.
Since the default value is four words in the LWC
package, we configure the CAESAR fifo to its minimal
size, which is the size of the tag plus four additional
words. As mentioned in Section IV-C, the depth must
be a power of two. This results in depths of 8, 16
and 32 words for the 32-, 16- and 8-bit CAESAR
versions. Table IVb shows the synthesis results. Now
as the HeaderFifo is not the dominant factor anymore,
the resource comparison follows the observations in
Table III. As the design becomes smaller, the CAESAR
version’s overhead decreases and the additional hash
support becomes an increasing factor.

Comparing the default configurations i.e. Table IVa for
CAESAR and Table IVb for LWC, it shows that the 32-
bit LWC version saves around 1304 LUTs due to a large
saving in LUTRAM. For the 16- and 8-bit versions, the
savings decrease but are still significant. The same holds
true for the FF savings.

Using the CAESAR package with default configura-
tion for lightweight cipher comparison might therefore

2This is the default LWC configuration. As already mentioned, the
lightweight CAESAR package does not provide support for multi-
segment messages. So, the LWC implementation is not only smaller,
but also supports more features.



W CAESAR LWC
ext int LUT FF LUTRAM LUT FF LUTRAM

32 32 2009 266 1184 1387 209 672

16 16 1226 212 592 1025 188 400

8 8 793 250 296 786 194 216

32 16 – – – 1328 229 624

32 8 – – – 1194 234 600

(a) Equally sized HeaderFifo, i.e. 1024 words.

W CAESAR LWC
ext int LUT FF LUTRAM LUT FF LUTRAM

32 32 771 213 224 705 166 116

16 16 588 185 112 564 151 60

8 8 458 232 56 518 170 32

32 16 – – – 624 186 68

32 8 – – – 496 198 44

(b) Minimum sized HeaderFifo.

TABLE IV: Synthesis results of the development pack-
ages implementing the dummy cipher for different
HeaderFifo dimensions.

distort the comparison of ciphers because the package is
likely to dominate the resource requirements.

Table IV also shows the influence of the width con-
version feature: As expected it requires additional FF for
data alignment. However, the overhead/saving in terms
of logic depends on the size of the fifo, because the
fifo’s width equals the external width by default. Thus,
for small fifos, the 32/8-bit version even saves LUTs
compared to the pure 8-bit implementation.

V. EXEMPLARY ANALYSIS OF PUBLISHED

IMPLEMENTATIONS

In the following, the impact of the API packages
on the resource consumption of different cipher imple-
mentations is analyzed. For evaluating the CAESAR
package, the Ascon128 implementation from [17] and
the SpoC-64 implementation from [18] are taken. For the
LWC package, we took the Ascon128 implementation
(without hash support) from [18] and the SpoC-64 imple-
mentation from [18]. The CAESAR and LWC variants
for both, the Ascon128 and SpoC-64 implementations
where configured with the same parameter set. However,
the CAESAR Ascon128 was implemented using the
development package version 1.0.3, which is a high-
speed variant. The lightweight support for the CAESAR
package was first introduced in the current release 2.0.

According to the authors, the Ascon128 LWC version
requires more cycles per associated data block (factor of
1.5) and message blocks (factor of 1.7) compared to the
CAESAR high-speed version.

In addition to that, the Gimli implementation
from [19] was included to demonstrate the package over-
head for extremely constrained implementations. The
hash support for the Gimli implementation was manually
deactivated3 for comparability.

Table V lists the synthesis results for the 32-bit
implementations. For the CAESAR implementations,
Ascon128 requires less resources than SpoC-64, es-
pecially in terms of LUTRAM consumption. This is
due to the different parameterization of the HeaderFifo.
For SpoC-64, the fifo was configured to a word width
of 32-bits and depth of 512 words. In the Ascon128
implementation, however, the fifo width was trimmed
to 24-bits4 and the depth set to 4 words.

For the LWC implementations with equally sized
HeaderFifos, Ascon128 requires more LUTs than the
SpoC-64 implementation, but less FFs. As the Gimli
implementation is specifically opted for resource opti-
mization, it requires less LUTs and FFs than the other
implementations. The increased LUTRAM requirements
come from the fact that the 384-bit Gimli-state is im-
plemented in LUTRAM. This reduces the amount of
required FFs but decreases performance because only
parts of the state are accessible in each clock cycle.

Cipher LUT FF LUTRAM
CAESAR

Ascon1281[17] 1595 818 42

SpoC-642[18] 2136 876 416

LWC

Ascon128 [18] 1802 539 20

SpoC-64 [18] 1565 728 20

Gimli3[19] 946 235 84

1 HeaderFifo: 24× 4.
2 HeaderFifo: 32× 512.
3 Hash deactivated for comparability.

TABLE V: Resource table of available ciphers imple-
mented with the CAESAR and LWC package.

As previously stated, the sizes of the HeaderFifos
for the CAESAR implementations were manually ad-

3The CryptoCore’s hash_in port was removed and an internal
hash_in flag was tied to zero. This allows the synthesis tool to trim
most of the hash-logic in the CryptoCore.

4Only 24-bits of the 32-bit header word are actually used.



justed: The implementation from [17], reduced the fifo
to its minimum size such that functional correctness
is guaranteed. Due to the different parameterization,
Table V does not allow a fair comparison of the cipher
implementations itself, as the overhead added by the API
package’s modules is not comparable. Figure 2 visualizes
the LUT ratio of the API package modules and the actual
CipherCores of the implementations shown in Table V.

For Ascon128, Figure 2a shows that the LWC Crypto-
Core requires more resources than the CAESAR version.
This overhead is mitigated by the LWC API package
that saves around 80 LUTs. Nevertheless, the CAESAR
version is a high-speed implementation, which of course
adds additional overhead to the API package. Consid-
ering the whole design, the CAESAR implementation
delivers more performance at less resource consumption
than the LWC implementation.

Comparing the SpoC-64 implementations in Figure 2b
shows a significant difference in the impact of the API
modules; whereas both CryptoCore implementations are
roughly of equal size, the development packages’ almost
differ by a factor of 4.

By taking only the CryptoCore LUTs into account,
the comparison of the CAESAR implementations of
Ascon128 and SpoC-64 is not as drastically as it seemed
looking at Table V. In Figure 3, the same separation
is done for the LWC Gimli implementation. It shows,
that for small ciphers the API package has a significant
impact. In this specific case, the API package makes up
around 28% of the overall LUT requirements. Never-
theless, the number of LUT resources allocated by the
LWC package is the same for the Ascon128 and the
Gimli implementation. In that case, the API package
adds the same overhead for both ciphers and allows
for a fair comparison. For the Spoc-64 implementation,
however, the LWC package requires less resources. As
the implementations did not differ in the configuration,
we assume that the Spoc-64 implementation allowed for
more optimization in the package modules.

VI. TWEAKING THE DEVELOPMENT PACKAGE

The fact that different HeaderFifo dimensionings can
lead to different impressions when comparing cipher
implementations brings up the question whether the fifo
is required at all.

The drawbacks of removing the fifo is that there is a
combinatorial path from the input of the PreProcessor to
the output of the PostProcessor. However, for lightweight
implementations where high frequencies are not neces-
sarily a concern, removing the fifo would save additional

1250

345

1540

262

CryptoCore
API

(a) Ascon128 with CAESAR (left) and LWC (right).

1348

788

1361

204

CryptoCore
API

(b) SpoC-64 with CAESAR (left) and LWC (right).

Fig. 2: Distribution of allocated LUTs for SpoC (2b) and
Ascon128 (2a). The CAESAR package is shown on the
left, whereas the LWC package is depicted on the right.

684

262

CryptoCore
API

Fig. 3: Distribution of LUT allocation for a constrained
Gimli LWC implementation.

resources and improve comparability with respect to
resource consumption.

When removing the HeaderFifo, it turned out that
there are some implementation flaws in the PreProcessor
regarding the valid/ready handshaking. We submitted a
patch for the PreProcessor that fixes this issue such that
the HeaderFifo can be removed. The modification in the
PreProcessor did not change the resource requirements
significantly.

Table VI shows the synthesis results of the LWC
development package and its dummy cipher without
HeaderFifo and with modified PreProcessor. Comparing
these numbers with the LWC default configuration in
Table IVb shows that additional resources can be saved.
Although the savings in that case are not very large,
it further reduces the impact of the API package and
increases accuracy when comparing cipher implementa-
tions.

VII. CONCLUSION

In this work, we presented a detailed report on the
resource utilization of the accompanying development
packages of the CAESAR and LWC API.



W LUT FF LUTRAM
ext int

32 32 684 159 96

16 16 550 144 48

8 8 504 163 24

32 16 585 179 48

32 8 475 191 24

TABLE VI: LWC development package without Header-
Fifo and with the provided dummy CryptoCore.

We showed that the overhead of the additional hash
support and width conversion is justifiable, and that the
claim holds true that the new LWC development package
is more resource efficient than the one for CAESAR.
However, the overall overhead of the development pack-
ages is not negligible for lightweight implementations
and must be thoroughly reported.

Furthermore, when comparing optimized synthesis
results, it is crucial to check whether the actual cipher or
the surrounding modules were optimized. Otherwise, this
might lead to false impressions, as the parameters of the
development packages leave room for improvements. Es-
pecially, the used HeaderFifo has a huge influence: First,
the version used in the LWC package is significantly
smaller than the one in CAESAR. Next, although the
reviewed implementations had the same datapath width,
the width of the fifos differed. Finally, the fifo can be
omitted, if the PreProcessor is patched.

Nevertheless, as previous paper stated, a defined in-
terface is also crucial for a fair comparison of imple-
mentations. Therefore, it might be worth considering the
internal interface as the boundary for synthesis reports.
Thus, one could benefit from the existing frameworks
for a fair benchmarking and limit the risk of blurred
synthesis results at the same time.

REFERENCES

[1] “Lightweight Cryptography,” 2016. [Online]. Available: https:
//csrc.nist.gov/projects/lightweight-cryptography

[2] D. J. Bernstein and T. Lange, “System for Unified
Performance Evaluation Related to Cryptographic Oper-
ations and Primitives,” 23.01.2020. [Online]. Available:
https://bench.cr.yp.to/supercop.html

[3] “eSTREAM: The ECRYPT Stream Cipher Project,” 2004. [On-
line]. Available: https://www.ecrypt.eu.org/stream/index.html

[4] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Hom-
sirikamol, and B. Y. Brewster, “ATHENa - Automated Tool
for Hardware EvaluatioN: Toward Fair and Comprehensive
Benchmarking of Cryptographic Hardware Using FPGAs,” in
2010 International Conference on Field Programmable Logic
and Applications. IEEE, aug 2010.

[5] M. Tempelmeier, F. D. Santis, J.-P. Kaps, and G. Sigl, “An area-
optimized serial implementation of ICEPOLE authenticated
encryption schemes,” 2016 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 49–54, May
2016.

[6] G. M. University, “The GMU Interface & Communication
Protocol Used in the Implementations of the SHA-3 Round 3
Candidates.” [Online]. Available: https://cryptography.gmu.edu/
athena/interfaces/GMU_interface_and_protocol_Round_3.pdf

[7] A. Ferozpuri, F. Farahmand, V. Dang, M. U. Sharif, J.-
P. Kaps, and K. Gaj, “Hardware API for Post-Quantum
Public Key Cryptosystems,” 2018. [Online]. Available: https:
//cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf

[8] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand,
P. Yalla, J.-P. Kaps, and K. Gaj, “CAESAR Hardware API,”
Cryptology ePrint Archive, Report 2016/626, 2016. [Online].
Available: https://eprint.iacr.org/2016/626/20160617:192254

[9] E. Homsirikamol, P. Yalla, F. Farahmand, W. Diehl,
A. Ferozpuri, J.-P. Kaps, and K. Gaj, “Implementer’s
Guide to Hardware Implementations Compliant with the
CAESAR Hardware API version 2.0,” 2017. [Online]. Avail-
able: https://cryptography.gmu.edu/athena/CAESAR_HW_API/
CAESAR_HW_Implementers_Guide_v2.0.pdf

[10] M. Tempelmeier, F. D. Santis, G. Sigl, and J.-P. Kaps, “The
CAESAR-API in the real world — Towards a fair evaluation
of hardware CAESAR candidates,” in 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, apr 2018.

[11] J.-P. Kaps, W. Diehl, M. Tempelmeier, E. Homsirikamol, and
K. Gaj, “Hardware API for Lightweight Cryptography,” 2019,
https://cryptography.gmu.edu/athena/index.php?id=LWC.

[12] Cryptographic Engineering Research Group, George Mason
University. Accessed: 13.1.2020. [Online]. Available: https:
//github.com/GMUCERG/LWC

[13] F. Farahmand, W. Diehl, A. Abdulgadir, J.-P. Kaps, and
K. Gaj, “Improved Lightweight Implementations of CAESAR
Authenticated Ciphers,” Cryptology ePrint Archive, Report
2018/573, 2018. [Online]. Available: https://eprint.iacr.org/
2018/573/20180605:174842

[14] B. Rezvani and W. Diehl, “Hardware Implementations of
NIST Lightweight Cryptographic Candidates: A First Look,”
Cryptology ePrint Archive, Report 2019/824, 2019. [Online].
Available: https://eprint.iacr.org/2019/824/20190716:135314

[15] M. Tempelmeier, G. Sigl, and J.-P. Kaps, “Experimental Power
and Performance Evaluation of CAESAR Hardware Finalists,”
in 2018 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig). IEEE, dec 2018.

[16] M. Tempelmeier, F. Farahmand, E. Homsirikamol,
W. Diehl, J.-P. Kaps, and K. Gaj, “Implementer’s
Guide to Hardware Implementations Compliant with
the Hardware API for Lightweight Cryptography,” 2019.
[Online]. Available: https://cryptography.gmu.edu/athena/LWC/
LWC_HW_Implementers_Guide.pdf

[17] Institute of Applied Information Processing and Communi-
cations (IAIK), Graz University of Technology. 15.1.2020.
[Online]. Available: https://github.com/IAIK/ascon_hardware/
tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON

[18] Signatures Analysis Laboratory, Virginia Tech. Accessed:
13.1.2020. [Online]. Available: https://github.com/vtsal?tab=
repositories

[19] Chair of Security in Information Technology, Technical Univer-
sity of Munich. 13.1.2020. [Online]. Available: https://gitlab.
lrz.de/tueisec/crypto-implementations/tree/master/LWC/GIMLI


