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Abstract

Diene, Thabet and Yusuf recently proposed a new multivariate signature scheme whose
public key is a set of multivariate cubic polynomials over a finite field. This paper studies
its security.
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1 Diene-Thabet-Yusuf’s signature scheme

This paper studies the security of Diene-Thabet-Yusuf’s signature scheme [3] proposed recently.
We first describe its construction.

Let q be a power of prime, Fq a finite field of order q and r,m, n ≥ 1 integers with m := r2,
n := 2r2 = 2m. Denote by k1(x), . . . , kn(x) linear polynomials of x = t(x1, . . . , xn) and put

P = P (x) :=


k1(x) · km+1(x) kr+1(x) · km+r+1(x) · · · km−r+1(x) · kn−r+1(x)
k2(x) · km+2(x) kr+2(x) · km+r+2(x) · · · km−r+2(x) · kn−r+2(x)

...
...

. . .
...

kr(x) · km+r(x) k2r(x) · km+2r(x) · · · km(x) · kn(x)

 .

Generate an r × r matrix M = M(x) whose entries are (constants or) linear polynomials of x
such that the entries of M−1 are also (constants or) linear polynomials of x. Define the cubic
map G : Fn

q → Fm
q , G(x) = t(g1(x), . . . , gm(x)) byg1(x) · · · gm−r+1(x)

...
. . .

...
gr(x) · · · gm(x)

 = M(x) · P (x).

Diene-Thabet-Yusuf’s signature scheme is as follows [3]．

Secret key: Two invertible affine maps S : Fn
q → Fn

q , T : Fm
q → Fm

q and polynomial matrices
P,M .

Public key: The cubic map F := T ◦G ◦ S : Fn
q → Fm

q .

∗Department of Mathematical Science, University of the Ryukyus, hashimoto@math.u-ryukyu.ac.jp

1



On the security of Diene-Thabet-Yusuf’s cubic multivariate signature scheme 2

Signature generation: For a message m ∈ Fm
q , compute y = (y1, . . . , ym) := T−1(m). Next

choose u1, . . . , um ∈ Fq randomly and find x ∈ Fn
q satisfying

M(x)−1 ·

y1 · · · ym−r+1
...

. . .
...

yr · · · ym

 =

u1 · k1(x) · · · um−r+1 · km−r+1(x)
...

. . .
...

ur · kr(x) · · · um · km(x)

 ,

(km+1(x), . . . , k2m(x)) = (u1, . . . , um).

The signature for the message m is s = S−1(x).

Signature verification: Verify whether F (s) = m holds.

Since M is generated such that the entries of M(x)−1 are (constants or) linear polynomials,
the signature generation requires only solving a system of n linear equations of n variables. The
complexity of the signature generation is thus O(n3).

2 On the security of DTY signature scheme

We now study the security of Diene-Thabet-Yusuf’s signature scheme.
Let K : Fn

q → Fn
q be the linear map with K(x) = (k1(x), . . . , kn(x)), P̃ : Fn

q → Fm
q

the quadratic map with P̃ (x) = t(p1(x), . . . , pm(x)) := t(x1 · xm+1, . . . , xm · xn) and M̃(x) :=M(x)

. . .

M(x)

. It is easy to see that

G(x) = M̃(x)P̃ (K(x)),

and then
F (x) = (TM̃(x))P̃ ((K(S(x))).

Since T,K, S are affine maps and the entries of M̃−1 are (constants or) linear polynomials of x,
there exist an m×m matrix L = L(x) whose entries are (constants or) linear polynomials and
quadratic polynomials h1(x), . . . , hm(x) such that

L(x)F (x) = t(h1(x), . . . , hm(x)).

We can easily check that one can find such an L in polynomial time and the quadratic polyno-
mials h1(x), . . . , hm(x) are linear sums of
p1((K(S(x))), . . . , pm((K(S(x))). Then the coefficient matrices of h1(x), . . . , hm(x) are in the
forms

t(KS)

(
0m ∗
∗ 0m

)
(KS).

This means that Kipnis-Shamir’s attack on the (balanced) oil-vinegar signature scheme [2, 1] is
available for (h1(x), . . . , hm(x)) and it recovers a linear map S1 : F

n
q → Fn

q satisfying

(KS)S1 =

(
∗m ∗
0 ∗m

)
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in polynomial time. It is easy to see that the quadratic polynomials in L(x)F (S1(x)) are in the
forms

tx

(
0m ∗
∗ ∗m

)
x+ (linear polynomial of x).

We thus conclude that the attacker can generate dummy signatures for arbitrary messages
feasibly and this signature scheme is not secure enough.
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