
Post-Quantum Linkable Ring Signature
Enabling Distributed Authorised Ring
Confidential Transactions in Blockchain

Wilson Alberto Torres (�), Ron Steinfeld,
Amin Sakzad, Veronika Kuchta

Faculty of Information Technology, Monash University
Melbourne, Australia

{Wilson.Torres,Ron.Steinfeld,
Amin.Sakzad,Veronika.Kuchta}@monash.edu

Abstract. When electronic wallets are transferred by more than one
party, the level of security can be enhanced by decentralising the dis-
tribution of authorisation amongst those parties. Threshold signature
schemes enable this functionality by allowing multiple cosigners to coop-
erate in order to create a joint signature. These cosigners interact to sign
a transaction which then confirms that a wallet has been transferred.
However, in the event of a post-quantum attack, existing threshold sig-
nature schemes that support such an authorisation technique in privacy-
preserving cryptocurrency protocols - like Ring Confidential Transaction
(RingCT) - would not provide adequate security.
In this paper, we present a new post-quantum cryptographic mechanism,
called Lattice-based Linkable Ring Signature with Co-Signing (L2RS-
CS), which offers a distributed authorisation feature to protect electronic
wallets. A novel security model for L2RS-CS is also formalised to capture
the security and privacy requirements to protect transactions in appli-
cations to blockchain cryptocurrency protocols, such as the RingCT. To
address key-generation security concerns, and to support compression of
keys and signatures, the L2RS-CS incorporates a distributed key gener-
ation along with a solid public-key aggregation. Finally, we prove the
security of our constructed L2RS-CS in the random oracle model and the
standard lattice-based Module-SIS hardness assumption.

Keywords: Lattice-Based Cryptography, Post-Quantum Cryptography,
Privacy-Preserving Protocols, Cryptocurrencies, Threshold Signatures,
RingCT

1 Introduction

The notion of (t,n)-Threshold Signature (TS) schemes was initially conceptu-
alised by Desmedt and Frankel in [18]. They defined TS as a cryptographic
protocol where a subset of size t out of n cosigners collaborates to jointly sign
a given message m. Contrary to standard digital signatures, TS splits the se-
cret key (sk) into multiple shares distributed across n participants. Later, an

2 W. Alberto Torres et al.

interactive protocol is performed with at least the threshold number of cosigners
(t out of n) to produce a signature. TS constructions contain several benefits
including reliability and security. For instance, TS is employed to augment the
confidentiality of secret keys, increase the resilience against secret key exposure,
and enable decentralisation of trust [10]. Furthermore, metering applications [17]
utilise TS to measure the interaction between servers and clients so e-business
can charge fees for advertisements. Similarly, blockchain technology, particularly
cryptocurrencies [27], incorporates TS schemes to provide an extra, more restric-
tive layer of security. More specifically, this involves the authorisation in digital
currencies where a certain number of parties collaborates to approve electronic
payments.

Securing the cryptographic keys is always crucial to attaining a respectable
level of reliability in any secure cryptocurrency application. Since the digital wal-
lets can be spent with their sk’s, this would be a single point of vulnerability.
For instance, if such sk’s are stolen or lost, the owners of the corresponding wal-
lets would be unable to access their funds. Consequently, TS protocols enable
this authorisation property to segregate the ownership of digital wallets. Be-
sides TS schemes increasing the difficulty for adversaries to mount an attack (as
multiple cosigners need to be compromised), they also offer redundancy, which
might protect sk’s from being lost [21]. In addition, there are other mechanisms
that help to secure the generation of cryptographic keys in digital currencies.
The Distributed Key Generation (DKG) protocol guarantees that nobody learns
about the sk during the execution of the protocol [26, 44]. DKG also operates in a
complete decentralised distribution of the trust among the parties, so it requires
no trusted party. The public-key aggregation is another mechanism that allows
the public verifier to only see the aggregate public-key rather than the cosigners’
public-keys, providing more favourable privacy and performance results [4, 9, 35].
The integration of these controls would prevent the well-known rogue key (or key
cancellation) attacks where a dishonest actor is capable of signing transactions
on behalf of honest cosigners [4, 28, 44].

The security concept of most cryptographic primitives and protocols is chang-
ing due to the foreseeable presence of a sufficiently powerful quantum computer.
The security assumptions of public-key cryptography that are based on the classi-
cal number theory would be efficiently broken in the event of large-scale quantum
computers becoming practical [39]. Nowadays, post-quantum cryptographers are
devising new algorithms in anticipation of quantum attacks. Among the several
approaches proposed to address this concern, lattice-based cryptography appears
to be a practical alternative to both classical cryptography and this quantum
computing threat. Many lattice-based schemes and protocols have shown opti-
mal performance, simplicity, and reliable security proofs based on the worst-case
hardness assumptions, meaning that at least one instance of the lattice problem
is hard to solve. Moreover, lattice-based cryptosystems even allow powerful new
classes of cryptographic mechanisms, such as fully homomorphic encryption and
functional encryption [2, 12, 13, 45].

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 3

The Ring Confidential Transaction (RingCT) [37] is a cryptographic protocol
that is widely employed by Monero, one of the most popular cryptocurrencies to
date. The RingCT performs e-commerce operations in a decentralised network
while maintaining complete-anonymity for the parties involved and also prevent-
ing double spending coins [16]. These security properties are achieved by em-
ploying Linkable Ring Signature (LRS) schemes [31]. In the RingCT framework,
complete-anonymity provides a remarkable advantage since other cryptocurren-
cies, such as Bitcoin, are only pseudo-anonymous [29]. Further improvements
were proposed in RingCT 2.0 [43] and RingCT 3.0 [50]. These presented formal
definitions for both the cryptocurrency protocol and the corresponding secu-
rity model. Moreover, certain variants of RingCT incorporate an authorisation
feature for distributed and co-signing digital wallets by adapting a combina-
tion of TS and Ring Signature (RS) schemes [4, 28]. However, this authorisa-
tion model has been constructed with number theory assumptions and thus it
would be insecure against quantum attacks. In the post-quantum setting, the first
Lattice-based RingCT (LRCT) was devised in [1, 3]. The LRCT uses the Bimodal
Lattice-based Signature Scheme (BLISS) [19], a demonstrated, practical and se-
cure lattice-based digital signature [19, 20], as an underlying building block. In
a recent study, an efficient, scalable and practical lattice-based RingCT protocol
was devised in [22]. Nonetheless, these post-quantum approaches did not incor-
porate an authorisation model in their design which, as discussed above, can be
achieved by using TS schemes.

Related Works. Several TS schemes have been proposed after its introduction
in [18]. Most of the existing TS schemes [8, 23–25, 40] and Threshold Ring Signa-
ture (TRS) schemes [11, 30, 32, 38, 46, 48, 49] have been designed with the classical
cryptographic assumptions, and only a few constructions are lattice-based. The
first lattice-based TRS [14] was devised based on an identification scheme and
the standard lattice-based Short Integer Solution (SIS) hardness problem. The
signature size of this scheme was around 25 MB with t = 50 and n = 100. Later,
a new study [7] proposed an enhanced version of [14]. The authors modified this
model for the anonymity property, which brought improvements to the signa-
ture size (around 13 MB with same ring and threshold sizes as [14]). In [47],
an ID-Based TRS from lattices was designed in the random oracle model. The
security properties therein relied on a non-standard lattice-based assumption
that they defined as a general Graded Computational Diffie-Hellman Problem
(gCDHP). Another scheme was constructed in [15] to be applied in a message
block sharing application; however, its analysis disregarded the evaluation of the
best known lattice attacks, and overlooked a security reduction in the standard
lattice-based Ring-SIS problem seemingly used in this work. However, since DKG
protocols are not utilised in their designs, in all likelihood these lattice-based
proposals will find themselves vulnerable to rogue key attacks. In addition, they
are incompatible with the linkability technique.

1.1 Contributions

– We construct the first post-quantum Lattice-based Linkable Ring Signature
with Co-Signing (L2RS-CS) scheme which can be adapted to a post-quantum

4 W. Alberto Torres et al.

cryptocurrency protocol such as the LRCT [1]. The L2RS-CS offers complete-
anonymity, and can support Multiple Input wallets to be transferred to
Multiple Output wallets (MIMO). The L2RS-CS is built on top of the post-
quantum LRS from [3] and integrates a DKG together with a solid public-key
aggregation (in the post-quantum settings) which bring a high level of secu-
rity and compression for the cosigners’ keys.

– Additionally, we formalise another new security model, called Linkable
Ring Signature with Co-Signing (LRS-CS), having a special combination of
two constructions, the (NCS-out-of-NCS)-TS and (1-out-of-w)-LRS schemes
(which are used in Monero [4, 28]). Although TRS can be seen as a combina-
tion of TS and RS schemes, it is a different type of primitive to our proposed
LRS-CS. Namely, in TRS any subset of t out of n signers can cooperate to
generate a signature while hiding the signers’ subset. In contrast, under our
LRS-CS model, there are w groups of NCS cosigners, so that all the NCS
signing keys within the signing group cooperate to produce the signature
while hiding the signers among the w groups. Furthermore, in LRS-CS the
NCS cosigners interactively generate and share a single public-key, whereas
in TRS each cosigner has an individual public-key generated with a non-
interactive key-generation algorithm. Therefore, LRS-CS can be viewed as a
more specialised primitive than TRS; however, one that suffices for RingCT
authorisation and can also be implemented with much shorter signatures
than existing lattice-based TRS schemes, as we demonstrate in the evalua-
tion of our scheme.

– The security of our proposed L2RS-CS scheme is proven in the classical ran-
dom oracle model where the properties of unforgeability, linkability and non-
slanderability are demonstrated to be computationally secure from the stan-
dard lattice-based Module-SIS hardness assumption. In terms of anonymity,
we show that this construction is unconditionally secure under the Leftover
Hash Lemma (LHL) [19]. Table 1 illustrates a comparison of the existing
lattice-based TRS schemes, including our L2RS-CS construction.

Table 1. Lattice-based Threshold Ring Signatures with t = 50 and n = 100.

Proposals Linkability DKG Aggregate pk
Lattice-based
Assumption

Signature
Size

Cayrel et al. [14] 7 7 7 SIS 25 MB

Bettaieb et al. [7] 7 7 7 ISIS 13 MB

Wei et al. [47] 7 7 7 gGCDHP1 NP2

This work (L2RS-CS) X X X Module-SIS 1.2 MB

1 general Graded Computational Diffie-Hellman Problem
2 Parameter values and signature sizes were not provided

The remaining paper is structured as follows. In Section 2, we introduce
notations and definitions that are used throughout the paper. Following that,

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 5

in Section 3, our proposed LRS-CS is defined, and its security model is then
explained in Section 4. Next, the construction of the L2RS-CS scheme is described
in Section 5. The security and performance analyses are shown in Section 6 and
Section 7, respectively.

2 Preliminaries

We use a polynomial ring R = Z[x]/f(x), where f(x) = xn + 1 with n being a
power of 2. The ring Rq is then defined to be the quotient ring Rq = R/(qR) =
Zq[x]/f(x), where Zq denotes the set of all positive integers modulo q (a prime
number q = 1 mod 2n) in the interval

[
b−q2 c, b

q
2c
]
. The challenge space Sn,κ, is

the set of all binary vectors of length n and Hamming weight κ. Hash functions
are modeled as Random Oracle Model (ROM), H0 :→ {0, 1}l, H1 with range
Sn,κ ⊆ R2q, and similarly H2 with range Sn,κ2

⊆ R2q. When we write x ← D,
for a distribution D, it means that if D is a set then x is chosen uniformly
at random from D. The discrete Gaussian distribution over Zm with standard
deviation σ ∈ R and center at zero, is defined by Dm

σ (x) = ρσ(x)/ρσ(Zm),
where ρσ is the m-dimensional Gaussian function ρσ(x) = exp(−‖x‖2/(2σ2)) for
x ∈ Zm. Vector transposition is denoted by vT . We say that a function neg(n)
is negligible in n if neg(n) < 1

2n , and a function f(n) is overwhelming if 1− f(n)
is negligible.

Definition 1 (MSISKq,m,k,β problem). Let K be some uniform distribution

over the ring Rk×mq . Given a random matrix A ∈ Rk×mq sampled from K, find a
non-zero vector v ∈ Rm×1

q such that Av = 0 and ‖v‖2 ≤ β, where ‖·‖2 denotes
the Euclidean norm.

Lemma 1 (Rejection Sampling). ([19], Lemma 2.1). Let V be an arbitrary
set, and h : V → R and f : Zm → R be probability distributions. If gv : Zm → R
is a family of probability distributions indexed by v ∈ V with the property that
there exists a M ∈ R such that ∀v ∈ V,∀v ∈ Zm,M · gv(z) ≥ f(z). Then the
output distributions of the following two algorithms are identical: 1) v ← h, z←
gv, output(z, v) with probability f(z)/(M · gv(z)). 2) v ← h, z ← f, output(z, v)
with probability 1/M .

Lemma 2. ([6]) Let R = Z[x]/(xn + 1) where n > 1 is a power of 2 and
0 < i, j < 2n− 1. Then all the coefficients of 2(xi−xj)−1 ∈ R are in {−1, 0, 1}.
This implies that ‖2(xi − xj)−1‖ ≤

√
n.

Lemma 3. For a, b ∈ Rq, the following relations hold ‖a‖ ≤
√
n‖a‖∞, ‖a·b‖ ≤√

n‖a‖∞ · ‖b‖∞, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

Lemma 4 (Leftover Hash Lemma (LHL)). ([19], Lemma B.1). Let H be
a universal hash family of hash functions from X to Y. If h ← H and x ← X
are chosen uniformly and independently, then the statistical distance between

(h,h(x)) and the uniform distribution on H× Y is at most
1

2

√
|Y |/|X|.

6 W. Alberto Torres et al.

Remark 1. We use this lemma for a SIS family of hash function H(S) = A ·
S ∈ Rq,with S ∈ DomS, where each function is indexed by A ∈ R1×(m−1)

q

and DomS ⊆ R1×(m−1)
q consists of vectors of Rq elements with coefficients in

Γ , (−2γ , 2γ). This is a universal hash family since for all S 6= S′, we have
Pr
[
A · S = A · S′

]
= 1
|Rq| . This is a universal hash family if there exists 1 ≤ i ≤

m−1 such that si−s′i is invertible in Rq with si, s
′
i ∈ Γ . This can be guaranteed

by appropriate choice of q, e.g. as shown in ([34], Corollary 1.2), it is sufficient
to use q such that f(x) = xn + 1 factors into k irreducible factors modulo q and
2γ < 1√

k
· q1/k where n < k ≤ 1 are powers of 2. We assume that Rq is chosen to

satisfy this condition.

3 Definition of a Linkable Ring Signature with Co-Signing

In this section, we present the definition of our proposed model, the Linkable
Ring Signature with Co-Signing (LRS-CS), which offers an authorisation feature.
Under this model, any group of NCS cosigners among w groups has the ability to
participate in a protocol that produces the signature, whilst hiding the identity
of the signing group. The model also includes a linking tag, making it capable of
detecting whether two signatures have been signed by same group of cosigners.
Despite this authorisation functionality being implicitly used by Monero [4, 28],
it was not formalised; therefore, we have proposed this new model. The LRS-CS
consists of a five-tuple scheme, with (Setup, KeyGen, SigGen, SigVer, SigLink),
which we define as follows:

– PP ← Setup(1λ): a Probabilistic Polynomial Time (PPT) algorithm that
takes the security parameter λ and produces the Public Parameters (PP).

– (pk,SK) ← KeyGen(PP): a PPT interactive protocol among a number
of cosigners (NCS) that by taking the PP, it produces a pair of keys:
the aggregate shared public-key pk and the set of cosigner’ secret-keys
SK = {sk1, . . . , skNCS}.

– σ(µ) ← SigGen(SK, µ, L,PP): a PPT interactive protocol that receives the
PP, a message µ, the list L as in (1) to be the list of public keys with w
users in the ring, and Nin inputs (i.e this represents the number of input
wallets of each user in a cryptocurrency application). The cosigners owning

the secret keys in the set SK = {sk(k)
i,1 , . . . , sk

(k)
i,NCS

} interact to produce the
signature σ(µ).

L =
{

pk
(k)
i

}
i∈[w],k∈[Nin]

(1)

– (Accept/Reject) ← SigVer(σ(µ), µ, L,PP): a deterministic algorithm that
takes PP, a signature σ(µ), the list L, and the message µ and checks σ(µ)
is a correct signature. If the signature is valid, it outputs Accept, otherwise
Reject.

– (Linked/Unlinked) ← SigLink(σ(µ)1, σ(µ)2): a deterministic algorithm that
verifies if two signatures σ(µ)1 and σ(µ)2 were produced by the same signer
while hiding the identity of such signer. Thus, this algorithm outputs Linked
if such condition is met, otherwise outputs Unlinked.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 7

The LRS-CS scheme satisfies the SigGen Correctness where valid signatures
are produced by honest signers, and it is then accepted by a public verifier
with overwhelming probability. We said that the LRS-CS scheme is correct if
for any PP ← Setup(1λ), a honest user π runs the protocols (pkπ,SKπ) ←
KeyGen(PP), and σ(µ) ← SigGen(SKπ, µ, L,PP), it holds that Pr[Accept ←
SigVer(σ(µ), µ, L,PP)] = 1− neg(λ).

The scheme also achieves SigLink Correctness. Such property guarantees
that two valid signatures σ(µ)1 and σ(µ)2 are signed and linked by an
honest signer with overwhelming probability. We show that the LRS-CS
scheme satisfies SigLink Correctness property if for any PP ← Setup(1λ)
with a honest user π runs the protocols (pkπ,SKπ) ← KeyGen(PP), and
σ(µ)1 ← SigGen(SKπ, µ, L,PP), σ(µ)2 ← SigGen(SKπ, µ, L,PP), it holds that
Pr[Linked← SigLink(σ(µ)1, σ(µ)2)] = 1− neg(λ).

The communication model assumes that the parties involve in our computa-
tional model are connected by a network of point-to-point and broadcast chan-
nels.

4 Security Model for LRS-CS

Our security model is motivated by [3, 7] where the adversary corrupts and con-
trols the behaviour of (NCS−1) cosigners, so forging LRS-CS is as hard as solving
the underlying hardness problem. This model also captures anonymity, linkabil-
ity and non-slanderability as principal properties to secure LRS-CS schemes. We
begin by defining the oracles that can be accessed by the adversary.

4.1 Oracles for adversaries

The following oracles are available to any adversary who tries to break the se-
curity of the L2RS-CS scheme ∀k ∈ [Nin]:

– pk
(k)
i ← KO(⊥). The KeyGen Oracle, on request, adds new user(s) to the

system. It runs the KeyGen interactive protocol between the challenger (who
controls one cosigner) and the adversary (who controls (NCS−1) cosigners).

This oracle returns the aggregate shared public-key pk
(k)
i .

Remark 2. The challenger C generates with the KeyGen algorithm, the ag-

gregate shared public-key pk(k)
π and its pair-keys (pk

(k)†
π,1 , sk

(k)†
π,1), where

Lsh =
{
pk

(k)†
π,1 , . . . ,pk

(k)
π,NCS

}
. Without loss of generality, we define the C’s

public-key (pk
(k)†
π,1) to occur at least once, and to be in the first position of

the Lsh. On the other hand, the adversary A arbitrarily chooses its public-

key for (NCS−1) cosigners, so it can control
{
pk

(k)
π,2, . . . ,pk

(k)
π,NCS

}
from Lsh.

Then, A can also compute its aggregate shared public-key pk(k)
π by calling

the KO oracle. This means that A can play the role of all cosigners, except

for pk
(k)†
π,1 .

– σ(µ)← SO(L, µ,pk(k)
π). The Signing Oracle, on input a group size w, a set

L as in (1), the signer’s pk(k)
π , and a message µ. This oracle returns a valid

signature σ(µ).

8 W. Alberto Torres et al.

4.2 One-Time Unforgeability

We point out that forging LRS-CS is infeasible assuming that the adversary is
able to corrupt (NCS − 1) cosigners. Consequently, the LRS-CS scheme is secure
against any existentially unforgeable PPT adversary A under chosen-message
attacks if no A has a non-negligible advantage. One-time unforgeability property
is then defined in the following interactive game between the challenger C and
an existential adversary A who has access to the oracles in Section 4.1:

– C runs PP← Setup(1λ) and gives it to A.
– A queries the KO oracle Qk times.
– A queries the SO oracle Qs times on input (µ,L,pk(k)

π) for a message µ,

L = {pk
(k)
1 , . . . ,pk(k)

π , . . . ,pk(k)
w } (with w − 1 decoyed users in the ring) as

in (1), which contains the aggregate shared public-key (pk(k)
π)sh.

– A finishes this simulation and outputs a forgery (L∗, µ∗, σ(µ∗)∗) for a new

message µ∗, where L∗ =
{

pk
∗(k)
i

}
i∈[w],k∈[Nin]

.

A wins the game if:

1. SigVer(L∗, µ∗, σ(µ∗)∗) outputs Accept.
2. SO was queried at most once.
3. (L∗, µ∗, σ(µ∗)∗) is not an output of SO.

4. For all i ∈ [w], there exists k ∈ [Nin] such that pk
∗(k)
i ∈ L∗ was generated

by the KO oracle.

5. Every pk
∗(k)
i was used to query SO as a signing key rather than a decoy at

most once.

The advantage of the adversary A in breaking the LRS-CS scheme is defined as
the probability thatA wins the above game. We say thatA breaks this game with
(τ,Qs, Qk, εuf) if A runs in time at most τ and with negligible probability εuf
after having made at most Qs signing queries, Qk queries to KO, and (NCS −
1) corrupt cosigners. Thus, we denote this property as Advantageot-unf

A (λ) =
Pr[A wins the game].

Definition 2 (One-Time Unforgeability). The LRS-CS scheme is said to be
one-time unforgeable if no adversary with (τ,Qs, Qk, εuf) is able to break the
scheme.

4.3 Unconditional Anonymity

This property requires that any powerful adversaries are incapable of saying
which member of the ring created a particular signature. We define that it should
be infeasible for an adversary A to distinguish a signer’s pk(k)

π with non-negligible
advantage, even if the adversary has unlimited computing resources and time.
This property for LRS-CS schemes is defined in the following game between a
simulator S and an unbounded adversary A.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 9

– A may query KO oracle according to any adaptive strategy.

– A gives S the L =
{

pk
(k)
i0
,pk

(k)
i1

}
k∈[Nin]

, where i0, i1 ∈ [w] which is the

output of the KO oracle, and a message µ.
– S flips a coin b = {0, 1}, then S computes the signature σ(µ)b =

SigGen(L, sk
(k)
ib
, µ,PP). This signature is given to A.

– A outputs a bit b′.
– The output of this experiment is defined to be 1 if b = b′, otherwise 0.

A wins the game if:

1. pk
(k)
i0

, pk
(k)
i1

, and sk(k) /∈ {sk(k)
i0
, sk

(k)
i1
} cannot be used by SO.

2. Outputs 1, where b = b′.

The unconditional anonymity advantage of the LRS-CS scheme is denoted by

AdvantageAnon
A (λ) =

∣∣∣Pr[b = b′]− 1
2

∣∣∣.
Definition 3 (Unconditional Anonymity). The LRS-CS scheme is uncon-
ditional anonymous if for any unbounded adversary A, AdvantageAnon

A (λ) is
negligible.

4.4 Linkability

It should be infeasible for an adversary A to generate (with same skπ) two valid
LRS-CS signatures which are Unlinked. To describe this, we use the interaction
between a simulator S and A:

– The A queries the KO oracle multiple times.
– The A outputs two signatures σ(µ) and σ(µ)′ and two lists L as in (1) and

L′ =
{

pk
′(k)
i

}
i∈[w],k∈[Nin]

.

A wins the game if:

1. By calling SigVer on input σ(µ) and σ(µ)′, it outputs Accept on both inputs.

2. The pk(k)’s in L and L′ are outputs of KO oracle.
3. Finally, it gets Unlinked, when calling SigLink on input σ(µ) and σ(µ)′.

Thus the advantage of the linkability in the LRS-CS scheme is denoted by
AdvantageLink

A (λ) = Pr[A wins the game].

Definition 4 (Linkability). The LRS-CS scheme is linkable if for all PPT
adversary A, AdvantageLink

A (λ) is negligible in λ.

4.5 Non-Slanderability

It should be infeasible for an adversary A to output linked for two valid LRS-
CS signatures which were correctly generated with different sk(k)’s. This means
that an adversary can frame an honest user for signing a valid signature so the
adversary can produce another valid signature such that the SigLink algorithm
outputs Linked. To describe this, we use the interaction between a simulator S
and an adversary A:

10 W. Alberto Torres et al.

– S generates and gives the list L to A.
– A queries the KO oracle to obtain (pk(k)

π , sk(k)
π), and gives them to S.

– S calls the SO with sk(k)
π and outputs a valid signature σ(µ), which is then

given to A.
– A uses the remaining (w − 1) keys of the ring signature to create a second

signature σ(µ)′ by calling the SO algorithm.

A wins the game if:

1. The SigVer, on input σ(µ) and σ(µ)′, outputs Accept.

2. (pk(k)
π , sk(k)

π) were not used to generated the second signature σ(µ)′.
3. When calling the SigLink on input σ(µ) and σ(µ)′, it outputs linked.

Thus the advantage of the non-slanderability in the LRS-CS scheme is denoted
by AdvantageNS

A (λ) = Pr[A wins the game].

Definition 5 (Non-Slanderability). The LRS-CS scheme is non-slanderable
if for all PPT adversary A, AdvantageNS

A (λ) is negligible in λ.

5 A Lattice-based Construction of the LRS-CS

This section describes technically the Lattice-based Linkable Ring Signature with
Co-Signing (MIMO.L2RS-CS) scheme. This construction comprises the following
algorithms, Setup, KeyGen, SigGen SigVer, and SigLink.
5.1 Setup

By receiving the security parameter λ, this Setup defines A = [A′‖I] ∈ R2×(m−1)
q

and H = [H′‖I] ∈ R2×(m−1)
q (as Lemma 5), where A′ ← R2×(m−3)

q , H′ ←
R2×(m−3)
q are chosen uniformly and randomly, and I denotes the identity. This

algorithm outputs the public parameters (PP): A and H.

Lemma 5. If q ≥ 4n, then solving the MSIS-HNF problem with a matrix A =

[A′‖I] ∈ R2×(m−1)
q , in the Hermite Normal Form (HNF), is as hard as solving

the MSISKq,m,k,β problem with A = [A′‖A′′] ∈ R2×(m−1)
q uniformly random.

Proof. Given the MSIS instance A = [A′‖A′′] ∈ R2×(m−1)
q , if A′′−1 exists, then

we can reduce it to MSIS-HNF instance, which is of the form Ā = A′′−1
1,1 ×A.

Therefore, this reduction works with probability equal to the probability that
A′′−1

1,1 exists; then, it remains to show that this probability is non-negligible.

We denote the entries of A′′ =

[
A′′1,1 A′′1,2
A′′2,1 A′′2,2

]
∈ R2×2

q , so the inverse matrix

A′′−1 = 1
det(A′′) ·

[
A′′2,2 −A′′1,2
−A′′2,1 A′′1,1

]
, with det(A′′)−1 = (A′′1,1A

′′
2,2−A′′1,2A

′′
2,1)−1 ∈

Rq if the inverse exists. Then, we have that A′′ is invertible if and only if
1

det(A′′) exists in Rq. Let’s define the events S0 =
{

A′′−1does not exist
}

, and

S1 =
{

det(A′′)−1 does not exist in Rq
}

. We said that PrA′′←R2×2
q

[
S0

]
=

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 11

Pr
[
S1

]
= P1 + P2, where P1 = Pr

[
S1 | A′′−1

2,2 exists
]
× Pr

[
A′′−1

2,2 exists
]
, and

P2 = Pr
[
S1 | A′′−1

2,2 does not exist
]
×Pr

[
A′′−1

2,2 does not exist
]
. We consider that

if A′′1,1 ← Rq and A′′−1
2,2 exists in Rq, then A′′1,1 × A′′2,2 is uniform in Rq, i.e.

∀Ā ∈ Rq:

Pr
A′′1,1←Rq

[
A′′1,1 ×A′′2,2 = Ā

]
= Pr

A′′1,1←Rq

[
A′′1,1 = Ā×A′′−1

2,2

]
=

1

|Rq|
(2)

Let S2 be the event where a uniform element in Rq is not invertible in Rq.
We observe that Pr

[
S2

]
≤ n

q as in [42]. Then by using (2), we have that

P1 ≤ Pr
[
S2

]
and P2 ≤ Pr

[
A′′−1

2,2 does not exist in Rq
]
, which is equivalent

to Pr
[
S2

]
, since A′′2,2 is uniformly random element in Rq. Therefore, we ar-

gue that Pr
[
S1

]
≤ P1 + P2 ≤ 2 × Pr

[
S2

]
≤ 2n

q . Subsequently, we want to

show that 1 − Pr
[
S2

]
≥ non-negligible and this is implied by q ≥ 4n. These

conditions lead to the probability that det(A′′)−1 exist in Rq is: 1 − Pr
[
S1

]
=

Pr
[
det(A′′)−1 exist in Rq

]
≥ 2n

q ≥
1
2 . ut

Remark 3. Setup incorporates a trapdoor in A or H, in practice Setup would
generate A and H based on the cryptographic Hash function H2 evaluated at
two distinct and fixed constants.

Definition 6 (Function Lift). This function maps R2
q to R2q with respect to

a public parameter A ∈ R2×(m−1)
q . Given a ∈ R2

q, we let Lift(A,a) , (2 ·A,−2 ·
a + q) ∈ R2×m

2q with q = q · (1, 1)T .

5.2 Key Generation (KeyGen)

The KeyGen (Algorithm 1) is an interactive protocol where NCS cosigners col-
laborate to produce a pair of keys. We define the public-key to be a , pk, and
the secret-key as S , sk. Once receiving the public parameters PP, each cosigner

creates the corresponding secret-key S̄
T
p and public-key āp (steps 2-4). After the

cosigners interact to verify their public-keys, the aggregate shared public-key
ash is jointly computed by each cosigner (step 14). The cosigners also calculate
their corresponding secret-key STp using the list of cosigners (step 16). This solid
aggregate shared public-key enables this scheme to be secure against rogue key
attacks [4, 28, 44].

5.3 Signature Generation (SigGen)

The SigGen (Algorithm 2) is an interactive protocol, amongNCS cosigners, which
outputs the signature σ(µ). This protocol receives a message µ, the public pa-
rameters, the list L that contains the public-keys of w users in the ring, and a

set with the consigners’ secret keys, SK =
{

S
(k)
π,1, . . . ,S

(k)
π,p, . . . , ,S

(k)
π,NCS

}
k∈[Nin]

with Nin number of input wallets. The SigGen extends the L2RS [3] which follows
the Fiat-Shamir transformation and uses the rejection sampling technique (step
40) that hides the secret key from the signature.

12 W. Alberto Torres et al.

Algorithm 1 Key Generation

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,SK

)
, with SK =

{
ST1 , . . . ,S

T
NCS

}
being the shared public-key and cosigner’s

secret-key, respectively.
1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄Tp = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Calculates āp = (ā1, ā2)T = A · S̄p mod q ∈ R2
q .

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners

8: Receives āp′ with p′ 6= p

9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′) then Accept

12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, L
sh) · S̄Tp

17: return
(
ash,SK

)
, without loss of generality, each cosigner only outputs and holds its cor-

responding secret-key ST
p′ .

5.4 Signature Verification (SigVer)

The SigVer (Algorithm 3) verifies the generated signature by receiving
(µ,L, σ(µ),PP) and outputing Accept or Reject. Additionally, Theorem 1 shows
the bound of βv that is used in this algorithm.

Theorem 1. Let βv = ησ
√
nm, q/4 > σ

√
2(λ+ 1) ln 2 + 2 ln (nm), and σ(µ) =(

c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
be generated based on Algorithm 2.

Then the output of Algorithm 3 on input σ(µ) is accepted with probability 1−2−λ.

Proof. For a desired expected rejection and repetitionM , if we take the definition

of α where M = e
1

2α2 , then t
(k)
π will be indistinguishable from Dσ if σ ≥ α ·

‖S(k)
2q,π,p ·cπ‖ [Section 3.2 in [19]]. We also use [lemma 4.4, parts 1 and 3, in [33]].

The part 3 of this lemma shows that the bound on Euclidean norm βv = ησ
√
nm,

for a given η > 1, has a probability Pr
[
‖t(k)
i ‖2 > ησ

√
nm
]
≥ 1−2−λ. In addition,

the bound on infinity norm (‖ti‖∞ < q/4) is analysed in part 1 of this lemma
where its union bound is also considered. It turns out that η is required such
q/4 > ησ > σ

√
2(λ+ 1) ln 2 + 2 ln (nm), except with probability 2−λ. ut

5.5 Signature Linkability (SigLink)

The SigLink (Algorithm 4) checks whether two signatures were correctly pro-
duced by the same signer, but it does not reveal the identify of such signer. The
correctness proof of this algorithm is described in Appendix A.2.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 13

Algorithm 2 Signature Generation

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do
3: Each cosigner “π, p”:

4: Computes the linking tag h(k)
π,p = H · S(k)

π,p ∈ R
2
q .

5: ō(k)
π,p = H0

(
h(k)
π,p

)
6: Broadcasts ō(k)

π,p to other cosigners p′ ∈ [NCS]

7: Receives ō
(k)

π,p′ with p′ 6= p, then “π, p” securely sends h(k)
π,p to the cosigners

8: Receives h
(k)

π,p′ with p′ 6= p

9: “π, p” verifies:
10: for (1 ≤ p′ ≤ NCS) do

11: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

12: else Abort protocol

13: Computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

14: Calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

15: Calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

16: Chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

17: Computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

18: o(k)
π,p = H0

(
r(k)π,p, z

(k)
π,p

)
19: Broadcasts o(k)

π,p to other cosigners p′ ∈ [NCS]

20: Receives o
(k)

π,p′ with p′ 6= p, then “π, p” securely sends r(k)π,p and z(k)
π,p to the cosigners

21: Receives r
(k)

π,p′ and z
(k)

π,p′ with p′ 6= p

22: “π, p” verifies:
23: for (1 ≤ p′ ≤ NCS) do

24: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

25: else Abort protocol

26: “π, p” computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

27: “π, p” performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
.

28: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
29: for (1 ≤ k ≤ Nin) do
30: Each cosigner “π, p”:

31: Selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

32: Sends t
(k)
i,p to other cosigners p′ ∈ [NCS] securely

33: Receives t
(k)

i,p′ with p′ 6= p from other cosigners

34: Computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

35: “π, p” calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

36: Compute ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i ·t

(k)
i +q·ci

}
,
{
H2q,π ·t(k)i +q·ci

})
.

37: for (1 ≤ k ≤ Nin) do

38: Choose b(k) ← {0, 1}.
39: “π, p” computes t(k)π,p = u(k)

π,p + S
(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S(k)

π,p)T , 1]T .

40: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
41: “π, p” broadcasts t(k)π,p to other cosigners

42: “π, p” receives t
(k)

π,p′ with p′ 6= p and computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

43: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

14 W. Alberto Torres et al.

Algorithm 3 Signature Verification

Input: σ(µ), µ,PP, and L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

.

Output: Accept or Reject
1: procedure SigVer(σ(µ), µ, L,PP)

2: Computes H
(k)
2q = (2 ·H,−2 · h(k) + q) ∈ R2×m

2q

3: for (i = 1, . . . , w) do
4: for (1 ≤ k ≤ Nin) do

5: “π, p” calls Lift(A, a
(k)
i,) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

6: Compute ∀k ∈ [Nin], ci+1 = H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i ·t

(k)
i +q·ci

}
,
{
H

(k)
2q ·t

(k)
i +q·ci

})
7: Check ‖t(k)

i,p′‖2 ≤ βv (see Theorem 1)

8: Check ‖t(k)
i,p′‖∞ < q/4

9: if c1 = H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,w · t

(k)
w + q · cw

}
,
{
H

(k)
2q · t

(k)
w + q · cw

})
then Accept

10: else Reject

11: return Accept or Reject

Algorithm 4 Signature Linkability
Input: σ(µ)1 and σ(µ)2
Output: Linked or Unlinked
1: procedure SigLink(σ(µ)1, σ(µ)2)

2: if
(
SigVer(σ(µ)1, ∗) = Accept and SigVer(σ(µ)2, ∗)) = Accept

)
then Continue [

3: else if h(k)
µ1

= h(k)
µ2

then Linked

4: else Unlinked]

5: return Linked or Unlinked

6 Security Analysis

This section presents the results of our security evaluation. It demonstrates that
the L2RS-CS is computationally secure in terms of unforgeability, linkability and
non-slanderability from the Module-SIS lattice assumption, and it is uncondi-
tionally secure for anonymity under the Leftover Hash Lemma (LHL).

Theorem 2 (One-Time Unforgeability). If there is a PPT algorithm
against one-time unforgeability of L2RS-CS that makes Quf queries to the ran-
dom oracles H0,SO and KO, with non-negligigle probability δ; then, there exist
a PPT algorithm that can extract a solution to the MSISKq,m,k,β problem, where

β = 2βv and with non-negligible probability

(
δ − εuf − 1

|Sn,κ|

)
·

(
δ−εuf− 1

|Sn,κ|
Qs+Q1

−

1
|Sn,κ|

)
. The εuf is neg(n) if the following conditions hold:

1.
2·Nin·NCS(2·Quf+1)2

2n+1 ≤ neg(n), with Quf = max(Q0, Qs, Qk),

2. 1
|Sn,κ| ≤ neg(n),

3. 1√
k
· q1/k ≤ neg(n).

Proof. The proof is given in Appendix B. ut

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 15

Theorem 3 (Anonymity). Suppose that the quantities: Nin·NCS
2 ·√

q4n

2(γ+1)·(m−1)·n and 2·Qanon·(2·Qanon+2·Qanon·NCS+1)
2n are negligible in n with

Qanon = max(Q0, Q1, Qs). Then, the L2RS-CS scheme provides unconditionally
anonymity against any adversary who makes Qanon queries to the random
oracles H0, H1, and SO.

Proof. The proof is given in Appendix C. ut

Theorem 4 (Linkability). The L2RS-CS scheme is linkable in the random
oracle model if the MSISKq,m,k,β problem is hard with β ≤ 2βv(1 +

√
nNin2γ).

Proof. The proof is given in Appendix D. ut

Theorem 5 (Non-Slanderability). For any linkable ring signature, if it sat-
isfies unforgeability and linkability, then it satisfies non-slanderability.

Proof. The proof is given in Appendix E. ut

Corollary 1 (Non-Slanderability). The L2RS-CS scheme is non-slanderable
under the assumptions of Theorem 2 and Theorem 4.

7 Performance Analysis

After consolidating the conditions from the correctness and security analyses,
which were discussed in earlier sections, we chose the optimal parameters of
our L2RS-CS with Hermite factor δ = 1.0045 and security parameter λ = 128
bits. This evaluation follows the analysis of the attack on SIS from [36] that
we use to estimate secure values for the parameters. In our experiment, we
then set the polynomial ring degree n = 28 instead of n = 27 since it yields
a shorter signature size and a optimal value for log2(q) = 58, as illustrated
in Figures 1.a and 1.b, respectively. Consequently, we selected the number of
ring elements of the matrices of the PP to be m = 23. This also allowed us to
determine the Hamming weight of each challenge vector (κ = 23), the Gaussian
standard deviation (σ = 188416), and the log β = 38.9 (which also solves the
lattice assumption). With these results, we attained a signature size of 1.26 MB
with the cosigner’s pair of keys (sk=10 KB, pk=3.6 KB). This evaluation was
restricted to ring size w = 100, Nin = 1 and Nout = 1, which was compared with
existing lattice-based TRS schemes [7, 14], as shown in Table 1. In a different
experiment, we analysed how the signature size grows with the ring size and
NCS cosigners while comparing our L2RS-CS with [7, 14]. Despite all approaches
growing linearly with the ring size w, our L2RS-CS scheme generated shorter
signature sizes than previous constructions (Figure 2.a). In terms of the NCS
cosigners (Figure 2.b), our proposed scheme achieved constant time and provided
better signature sizes than other lattice-based TRS, in particular when NCS >
22.

Finally, we also explored how the signature size grows when selecting regular
values for Nin and Nout. We also set w = 11 since it currently offers secure

16 W. Alberto Torres et al.

7 8 9 10 11 12 13
0

1

2

3

4

5

log2 n

S
ig

n
a
tu

re
S
iz

e
in

M
B

(a) n vs. σ(µ) size

L2RS-CS

7 8 9 10 11 12 13 14

50

100

log2 n

lo
g
2
q

(b) n vs. q

L2RS-CS

Fig. 1. Analysis of signature size and q versus n with fixed w = 11.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

log2 w

S
ig

n
a
tu

re
S
iz

e
in

M
B

(a) σ(µ) size vs. w (NCS = 50)

CLRS[14]

BS[7]

L2RS-CS

0 1 2 3 4 5 6 7 8
0

10

20

30

40

log2NCS

S
ig

n
a
tu

re
S
iz

e
in

M
B

(b) σ(µ) size vs. NCS (w = 100)

CLRS[14]

BS[7]

L2RS-CS

Fig. 2. Analysis of signature size versus w and NCS .

anonymity, according to Monero’s blockchain1. The outcome of this evaluation
is presented in Table 2. This reveals that the signature size grows linearly with
the Nin for any NCS > 2.

Table 2. Size estimation for L2RS-CS for any NCS ≥ 2

L2RS-CS (Nin, Nout) = (1, 2) (Nin, Nout) = (2, 2) (Nin, Nout) = (3, 2)

Signature size (w = 11) ≈ 138.8 KB ≈ 289.8 KB ≈ 452.9 KB

Private-key size ≈ 10.6 KB ≈ 11.1 KB ≈ 11.6 KB

Public-key size ≈ 3.6 KB ≈ 3.8 KB ≈ 4 KB

1 https://moneroblocks.info/

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 17

References

1. W. Alberto Torres, V. Kuchta, R. Steinfeld, A. Sakzad, J. K. Liu, and J. Cheng.
Lattice RingCT v2.0 with Multiple Input and Output Wallets. In ACISP, pages
156–175. Springer, 2019.

2. W. A. Alberto Torres, N. Bhattacharjee, and B. Srinivasan. Privacy-preserving bio-
metrics authentication systems using fully homomorphic encryption. International
Journal of Pervasive Computing and Communications, 11(2):151–168, 6 2015.

3. W. A. Alberto Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta, N. Bhattachar-
jee, M. H. Au, and J. Cheng. Post-Quantum One-Time Linkable Ring Signature
and Application to Ring Confidential Transactions in Blockchain (Lattice RingCT
v1.0). In ACISP, pages 558–576. Springer, 2018.

4. K. Alonso. Zero to Monero: Multisig Chapter.
https://github.com/SarangNoether/zero-to-monero/blob/master/multisig chapter-
1-0.pdf, 2018.

5. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In CCS, page 390. ACM, 2006.

6. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better
Zero-Knowledge Proofs for Lattice Encryption and Their Application to Group
Signatures. In ASIACRYPT, pages 551–572. Springer, 2014.

7. S. Bettaieb and J. Schrek. Improved Lattice-Based Threshold Ring Signature
Scheme. In PQCRYPTO, pages 34–51. Springer, 2013.

8. A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC, pages 31–46.
Springer, 2003.

9. D. Boneh, M. Drijvers, and G. Neven. Compact Multi-signatures for Smaller
Blockchains. In ASIACRYPT, pages 435–464. Springer, 12 2018.

10. L. T. A. N. Brandão. Towards Standardization of Threshold Schemes at NIST. In
Proceedings of ACM Workshop on Theory of Implementation Security Workshop,
pages 29–29, New York, 2019. ACM Press.

11. E. Bresson, J. Stern, and M. Szydlo. Threshold Ring Signatures and Applications
to Ad-hoc Groups. In CRYPTO, pages 465–480. Springer, 2002.

12. J. Buchmann, K. Lauter, and M. Mosca. Postquantum Cryptography State-of-the-
Art. IEEE Symposium on Security and Privacy, 15(4):12–13, 2017.

13. J. Buchmann, K. Lauter, and M. Mosca. Postquantum Cryptography, Part 2.
IEEE Symposium on Security and Privacy, 16(5):12–13, 9 2018.

14. P.-L. Cayrel, R. Lindner, M. Rückert, and R. Silva. A Lattice-Based Threshold
Ring Signature Scheme. In LATINCRYPT, pages 255–272. Springer, 2010.

15. J. Chen, Y. Hu, W. Gao, and H. Liang. Lattice-based Threshold Ring Signature
with Message Block Sharing. TIIS, 13(2):1003–1019, 2019.

16. M. Conti, S. K. E, C. Lal, and S. Ruj. A Survey on Security and Privacy Issues of
Bitcoin. IEEE Communications Surveys and Tutorials, 20(4):3416 – 3452, 2018.

17. V. Daza, J. Herranz, and G. Saez. Some protocols useful on the Internet from
threshold signature schemes. In 14th International Workshop on Database and
Expert Systems Applications, pages 359–363. IEEE, 2003.

18. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO, pages 307–
315. Springer, 1989.

19. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In CRYPTO, pages 40–56. Springer, 2013.

18 W. Alberto Torres et al.

20. L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS – Dilithium: Digital Signatures from Module Lattices. In IACR Trans-
actions on Symmetric Cryptology, pages 238–268, 2018.

21. R. El Bansarkhani and J. Sturm. An Efficient Lattice-Based Multisignature Scheme
with Applications to Bitcoins. In CANS, pages 140–155. Springer, 2016.

22. M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. MatRiCT: Efficient,
Scalable and Post-Quantum Blockchain Confidential Transactions Protocol. In
CCS, pages 567–584. ACM Press, 2019.

23. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-Optimal DSA/ECDSA
Signatures and an Application to Bitcoin Wallet Security. In ACNS, pages 156–
174. Springer, 2016.

24. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Sig-
natures. In EUROCRYPT, pages 354–371. Springer, 1996.

25. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Applications of Peder-
sen’s Distributed Key Generation Protocol. In CT-RSA, pages 373–390. Springer,
2003.

26. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Gen-
eration for Discrete-Log Based Cryptosystems. Journal of Cryptology, 20(1):51–83,
1 2007.

27. S. Goldfeder, J. Bonneau, R. Gennaro, and A. Narayanan. Escrow Protocols for
Cryptocurrencies: How to Buy Physical Goods Using Bitcoin. In Financial Cryp-
tography, pages 321–339. Springer, 2017.

28. B. Goodell and S. Noether. Thring Signatures and their Applications to Spender-
Ambiguous Digital Currencies. In Cryptology ePrint Archive: Report 2018/774,
2018.

29. P. Koshy, D. Koshy, and P. McDaniel. An Analysis of Anonymity in Bitcoin Using
P2P Network Traffic. In Financial Cryptography, pages 469–485. Springer, 2014.

30. J. K. Liu, V. K. Wei, and D. S. Wong. A Separable Threshold Ring Signature
Scheme. In ICISC, pages 12–26. Springer, 2004.

31. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups. In ACISP, pages 325–335. Springer, 2004.

32. J. K. Liu and D. S. Wong. On the Security Models of (Threshold) Ring Signature
Schemes. In ICISC, pages 204–217. Springer, 2005.

33. V. Lyubashevsky. Lattice Signatures without Trapdoors. In EUROCRYPT.
Springer, 2012.

34. V. Lyubashevsky and G. Seiler. Short, Invertible Elements in Partially Splitting
Cyclotomic Rings and Applications to Lattice-Based Zero-Knowledge Proofs. In
EUROCRYPT, pages 204–224. Springer, 2018.

35. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures
with applications to Bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164,
9 2019.

36. D. Micciancio and O. Regev. Lattice-based cryptography. In Post-quantum cryp-
tography, pages 147–191. Springer, 2009.

37. S. Noether. Ring Signature Confidential Transactions for Monero. In Cryptology
ePrint Archive: Report 2015/1098, 2015.

38. T. Okamoto, R. Tso, M. Yamaguchi, and E. Okamoto. A k-out-of-n Ring Signa-
ture with Flexible Participation for Signers. In Cryptology ePrint Archive: Report
2018/728, 2018.

39. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 19

40. V. Shoup. Practical Threshold Signatures. In EUROCRYPT, pages 207–220.
Springer, 2000.

41. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. In
Cryptology ePrint Archive: Report 2004/332, 2004.

42. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient Public Key Encryption
Based on Ideal Lattices. In ASIACRYPT, pages 617–635. Springer, 2009.

43. S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen. RingCT 2.0: A Compact
Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain Cryptocur-
rency Monero. In ESORICS, pages 456–474. Springer, 2017.

44. A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. Golan, and S. Devadas.
Towards Scalable Threshold Cryptosystems. In IEEE Symposium on Security and
Privacy, 2020.

45. W. A. A. Torres, N. Bhattacharjee, and B. Srinivasan. Effectiveness of Fully Ho-
momorphic Encryption to Preserve the Privacy of Biometric Data. In Proceedings
of the 16th International Conference on Information Integration and Web-based
Applications & Services - iiWAS ’14, pages 152–158, New York, New York, USA,
2014. ACM Press.

46. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong.
Separable Linkable Threshold Ring Signatures. In INDOCRYPT, pages 384–398.
Springer, 2004.

47. B. Wei, Y. Du, H. Zhang, F. Zhang, H. Tian, and C. Gao. Identity Based Threshold
Ring Signature from Lattices. In NSS, pages 233–245. Springer, 2014.

48. D. S. Wong, K. Fung, J. K. Liu, and V. K. Wei. On the RS-Code Construction of
Ring Signature Schemes and a Threshold Setting of RST. In ICICS, pages 34–46.
Springer, 2003.

49. T. H. Yuen, J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Threshold ring signature
without random oracles. In ASIACCS, page 261. ACM Press, 2011.

50. T. H. Yuen, S.-f. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and D. Gu.
RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger
Security. In Cryptology ePrint Archive. Report 2019/508, 2019.

A Correctness of MIMO.L2RS-CS

A.1 Correctness of SigGen

We show in the following proof that valid signatures are signed by honest signers,

such that σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
is the output of the

SigGen algorithm on input (µ,L,S(k)
π,p,PP). Then, on input (µ,L, σ(µ),PP), the

SigVer algorithm outputs Accept with overwhelming probability.
We demonstrate that when SigVer (step 9) computes ∀k,∈ [Nin],

H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,w · t

(k)
w + q · cw

}
,
{

H
(k)
2q · t

(k)
w + q · cw

})
, this result

should be equal to c1. The SigVer also verifies ∀k,w ∈ [Nin], [w] that

H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i ·t

(k)
i +q ·ci

}
,
{

H
(k)
2q ·t

(k)
i +q ·ci

})
= ci+1. This evaluation

considers two scenarios:

– When i 6= π, ∀k ∈ [Nin], SigGen evaluates ci+1 = H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i ·

t
(k)
i + q · ci

}
,
{

H
(k)
2q · t

(k)
i + q · ci

})
, while SigVer computes ci+1 =

20 W. Alberto Torres et al.

H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{

H
(k)
2q · t

(k)
i + q · ci

})
. These are equal

since A
(k)
2q,i · t

(k)
i · q · ci (in SigGen) = A

(k)
2q,i · t

(k)
i · q · ci (in SigVer); and

H
(k)
2q · t

(k)
i + q · ci (in SigGen) = H

(k)
2q · t

(k)
i + q · ci (in SigVer).

– When i = π, ∀k ∈ [Nin], SigGen checks cπ+1 = H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z

(k)
π

)
,

whereas SigVer calculates cπ+1 = H1

(
L,H

(k)
2q,π, µ,A

(k)
2q,π · t

(k)
π · q · cπ,H(k)

2q,π ·

t
(k)
π + q · cπ

)
. In this case, we need to show that cπ+1 (in SigGen) = cπ+1

(in SigVer). In doing so, we evaluate two equalities one related to the public

key r
(k)
π = A

(k)
2q,π · t

(k)
π + q · cπ, and the other associated to the linking tag

z
(k)
π,p′ = H

(k)
2q,π,p′ · t

(k)
π,p′ + q · cπ. These equalities are analysed as follows:

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 21

1. The first equality is compared with ∀(k, p′) ∈ [Nin]× [NCS]:

r(k)
π = A

(k)
2q,π · t(k)

π + q · cπ ⇐⇒
NCS∑
p′=1

r
(k)
π,p′ =

{
A

(k)
2q,π ·

NCS∑
p′=1

t
(k)
π,p′

}
+ q · cπ ⇐⇒

NCS∑
p′=1

A
(k)
2q,π · u

(k)
π,p′ =

{
A

(k)
2q,π ·

NCS∑
p′=1

(
u

(k)
π,p′ + S

(k)
2q,π,p′ · cπ · (−1)b

(k))}
+

q · cπ ⇐⇒
NCS∑
p′=1

A
(k)
2q,π · u

(k)
π,p′ =

NCS∑
p′=1

A
(k)
2q,π · u

(k)
π,p′ +

NCS∑
p′=1

{
A

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+

q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
A

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
(2 ·A,−2 · a(k)

π + q) · [S(k)
π,p′ , 1]T · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

{
2 ·A,−2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ + q

}
·

{
NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · [S̄(k)
π,p′ , 1]

}T
· cπ · (−1)b

(k)

+ q · cπ ⇐⇒

0 =

{
2 ·A ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k)
π,p′ ,−2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ + q

}
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 =

{
2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ ,−2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ + q

}
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 = q · cπ · (−1)b
(k)

+ q · cπ ⇐⇒

−q · cπ · (−1)b
(k)

= q · cπ ⇐⇒

We distinguish two cases for b:

• When b = 0, we verify that −q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.

22 W. Alberto Torres et al.

2. Consequently, the second equality is also examined with ∀(k, p′) ∈
[Nin]× [NCS]:

z(k)
π = H

(k)
2q,π · t(k)

π + q · cπ ⇐⇒
NCS∑
p′=1

z
(k)
π,p′ =

{
H

(k)
2q,π ·

NCS∑
p′=1

t
(k)
π,p′

}
+ q · cπ ⇐⇒

NCS∑
p′=1

H
(k)
2q,π · u

(k)
π,p′ =

{
H

(k)
2q,π ·

NCS∑
p′=1

(
u

(k)
π,p′ + S

(k)
2q,π,p′ · cπ · (−1)b

(k))}
+

q · cπ ⇐⇒
NCS∑
p′=1

H
(k)
2q,π · u

(k)
π,p′ =

NCS∑
p′=1

H
(k)
2q,π · u

(k)
π,p′ +

NCS∑
p′=1

{
H

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+

q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
H

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
(2 ·H,−2 · h(k)

π + q) · [S(k)
π,p′ , 1]T · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
(2 ·H,−2 ·

NCS∑
p′

h
′(k)
π,p′ + q) · [S(k)

π,p′ , 1]T · cπ · (−1)b
(k)

}
+ q · cπ ⇐⇒

0 =

{
2 ·H,−2 ·

NCS∑
p′

H · S(k)
π,p′ + q

}
·

{
NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · [S̄(k)
π,p′ , 1]

}T
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 =

{
2 ·H,−2 ·H ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k),T
π,p′ + q

}
·

{
NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · [S̄(k)
π,p′ , 1]

}T
· cπ · (−1)b

(k)

+ q · cπ ⇐⇒

0 =

{
2 ·H ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k)
π,p′ ,−2 ·H ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k),T
π,p′ + q

}
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 = q · cπ · (−1)b
(k)

+ q · cπ ⇐⇒

−q · cπ · (−1)b
(k)

= q · cπ ⇐⇒

We distinguish between two cases:
• When b = 0, it is verified that −q · cπ = q · cπ mod 2q.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 23

• When b = 1, we have q · cπ = q · cπ mod 2q.

A.2 Correctness of SigLink

We show that an honest user π who signs two messages µ1 and µ2 in the
MIMO.L2RS-CS scheme with the list of public-keys L, obtains a Linked output
from SigLink algorithm with overwhelming probability. As shown in Algorithm
4, two signatures σ(µ)1 and σ(µ)2 were created, and then successfully verified by

SigVer. Therefore, the linkability tags h(k)
µ1

and h(k)
µ2
∀k ∈ [Nin] must be equal.

To prove this, we show that:

H
(k)
2q,µ1

=
(
2 ·H,−2 · h(k)

µ1
+ q

)
∈ R2×m

2q ,where

H = PP and h(k)
µ1

= (H · S(k)
π + q) ∈ R2

q

H
(k)
2q,µ2

=
(
2 ·H,−2 · h(k)

µ2
+ q

)
∈ R2×m

2q ,where

H = PP and h(k)
µ2

= (H · S(k)
π + q) ∈ R2

q

The first parts of the linkability tag in both MIMO.L2RS-CS signatures have
same equality with following probability:

Pr
[
2 ·H = 2 ·H

]
= 1.

Ultimately, the second part uses the honest user’s secret-key S(k)
π is used, so we

conclude that:

Pr
[
− 2 · h(k)

µ1
+ q + 2 · h(k)

µ2
− q = 0

]
= 1.

B MIMO.L2RS-CS - One-Time Unforgeability

Proof. The MIMO.L2RS-CS scheme relies on the MSISKq,m,k,β problem to be
secure against any existential forger. This means that a forgery algorithm suc-
ceeds with a negligible probability. We conclude that under this probability, the
attacker will also find a solution to the MSISKq,m,k,β problem. We consider the
sequence of games in this proof where a PPT A is the adversary against the
MIMO.L2RS-CS scheme.

Game 0 - Real Game : This is defined as the original attack game where
the challenger C and the adversary A interact to produce a forgery. We know
that a , pk and S , sk; then, the real Game starts with the challenger C who
calls PP← Setup(1λ) and gives PP to A. C runs KeyGen (Algorithm 1), where C
starts computing ā†1 and S̄

†
1. When the adversary A sends āp′ with p′ ∈ [2, NCS],

C returns ā†1 to A. After that, C performs the aggregate shared public-key as

ashπ =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
. C outputs (ashπ ,S

T
1)

24 W. Alberto Torres et al.

with its secret-key computed as ST1 = H2(ā1, L
sh) · S̄T1 . A queries the KO oracle

Qk times.

The challenger C and the adversary A interact to generate a signature σ(µ)t

on (Lt, µt) with Lt =
{

a
(k)
1 , . . . , (a

(k)
π)sh, . . . ,a

(k)
w

}
∀k ∈ [Nin] and for any t ∈

[1, Qs]. We assume that (a
(k)
π)sh was generated following the KeyGen algorithm

and from which the challenger C’s public-key (ā†1) occurs once. Whenever A
sends interactive queries Qs with (Lt, µt) to C who behaves as in Algorithm 5
and ultimately returns σ(µ)t to A.

The adversary A completes the simulation and outputs a forgery
(L∗, µ∗, σ(µ)∗). A wins the game if this forgery satisfies the following conditions:

1. SigVer(L∗, µ∗, σ(µ∗)∗) outputs Accept.

2. SO was queried at most once.

3. (L∗, µ∗, σ(µ∗)∗) is not an output of SO.

4. For all i ∈ [w], there exists k ∈ [Nin] such that pk
∗(k)
i ∈ L∗ was generated

by the KO oracle.

5. Every pk
∗(k)
i was used to query SO as a signing key rather than a decoy at

most once.

If we define the event S0 where the adversary A wins Game 0, then we
argued that A’s advantage is negligible:

Pr[S0] ≤ ε0. (3)

Game 1 : This game is similar to Game 0, but this time the challenger C
behaves different in the random oracle H0 as illustrated in Algorithm 6 (step

15). On a y-th query r
(k)
y and z

(k)
y from the adversary A, then C proceeds as

follows:

1. C returns H0

(
r

(k)
y , z

(k)
y

)
if this is already defined.

2. C chooses at random o
(k)
y ← Sn,κ, otherwise.

3. C verifies if there exists p′ ∈ [1, y − 1] such that o
(k)
y = H0

(
r

(k)
π,p′ , z

(k)
π,p′

)
for

previous queries of r
(k)
π,p′ and z

(k)
π,p′ . In the case where p′ exists, the game is

aborted, otherwise:

4. C sets o
(k)
y = H0

(
r

(k)
π,p′ , z

(k)
π,p′

)
and returns o

(k)
y to A.

The difference between the Game 0 and Game 1 is that the challenger C
aborts when he tries to set a same hash value H0 for two different inputs. This
game evaluates the probability that C aborts the game under this situation. The
total number of queries Q0 to H0 oracle is at most Q0 +Qs. Then the probability
that C aborts Game 1 is

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 25

Algorithm 5 SigGen - Game 0

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h(k)
π,p = H · S(k)

π,p ∈ R
2
q .

4: C sets ō(k)
π,p = H0

(
h(k)
π,p

)
5: When A sends ō

(k)

π,p′ with p′ ∈ [2, NCS], C returns ō(k)
π,p to A.

6: When A sends h
(k)

π,p′ with p′ ∈ [2, NCS], C sends h(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

11: C calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

14: C computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

15: C sets o(k)
π,p = H0

(
r(k)π,p, z

(k)
π,p

)
16: When A sends o

(k)

π,p′ with p′ ∈ [2, NCS], C returns o(k)
π,p to A.

17: When A sends r
(k)

π,p′ and z
(k)

π,p′ with p′ ∈ [2, NCS], C sends r(k)π,p and z(k)
π,p to A. Then, C

computes as follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

20: else Abort protocol

21: C computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

22: C performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
.

23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)

i,p′ with p′ ∈ [2, NCS], C returns t
(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

28: C calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i · t

(k)
i +q ·ci

}
,
{
H2q,π · t(k)i +q ·ci

})
.

30: for (1 ≤ k ≤ Nin) do

31: C chooses b(k) ← {0, 1}.
32: C computes t(k)π,p = u(k)

π,p + S
(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S(k)

π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
34: When A sends t

(k)

π,p′ with p′ ∈ [2, NCS], C returns t(k)π,p to A

35: C computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

26 W. Alberto Torres et al.

Q0+Qs∑
y=1

Pr
[(

r
(k)
π,p′ , z

(k)
π,p′

)
∈
{

r
(k)
y′ , z

(k)
y′

}
y′<y

]
≤

Q0+Qs∑
y=1

y−1∑
y′=1

Pr
u

(k)

π,p′←D
n
σ

[
r

(k)
π,p′ = r

(k)
y′

]
≤

Q0+Qs∑
y=1

y − 1

2n
≤ (Q0 +Qs)(Q0 +Qs + 1)

2n

Let S1 be the event where the A wins this Game with negligible probability
(Q0+Qs)(Q0+Qs+1)

2n ≤ ε1. Then we argue that:

|Pr[S0]− Pr[S1]| ≤ ε1. (4)

Game 2 : This game is identical to Game 1 except that the SigGen algorithm
is still modified by the challenger C. When A sends interactive queries Qs with
(Lt, µt) to C for signing using the SigGen algorithm, then C behaves as shown in
Algorithm 7.

The C chooses cπ+1 at random from Sn,κ ⊆ R2q, Algorithm 7 (step 22), after
that C programs the answer of the random oracle H1 ∀k ∈ [Nin] as:

H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
= H1

(
L,H

(k)
2q,π, µ,A

(k)
2q,π · t(k)

π · q · cπ,

H
(k)
2q,π · t(k)

π + q · cπ
})
,

without verifying if the values of r
(k)
π =

∑NCS
p′=1 A

(k)
2q,π · u

(k)
π,p′ and z

(k)
π =∑NCS

p′=1 H
(k)
2q,π · u

(k)
π,p′ ∀(k, p′) ∈ [Nin] × [NCS] were already set. Every time Al-

gorithm 7 is called by A, the probability of generating u
(k)
π,p′ , such that r

(k)
π

and z
(k)
π are equal to one of the previous values that were queried is at most

2−n+1. Therefore, if the SigGen in Game 2 and H1 are queried Qs and Q1 times,
respectively, then the probability of getting one collision each time is at most
Nin ·NCS · (Qs +Q1) · 2−n+1. Additionally, the probability that a collision hap-
pens after Qs queries is at most Nin · NCS · Qs · (Qs + Q1) · 2−n+1, which is
negligible (Based on [19], Lemma 3.4).

Let S2 be the event where the A wins Game 2 with negligible probability
Nin ·NCS ·Qs · (Qs +Q1) · 2−n+1 ≤ ε2. Then we claim that:

|Pr[S1]− Pr[S2]| ≤ ε2. (5)

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 27

Algorithm 6 SigGen - Game 1

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h(k)
π,p = H · S(k)

π,p ∈ R
2
q .

4: C sets ō(k)
π,p = H0

(
h(k)
π,p

)
5: When A sends ō

(k)

π,p′ with p′ ∈ [2, NCS], C returns ō(k)
π,p to A.

6: When A sends h
(k)

π,p′ with p′ ∈ [2, NCS], C sends h(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

11: C calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

14: C computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

15: C chooses at random o(k)
π,p ← Sn,κ

16: When A sends o
(k)

π,p′ with p′ ∈ [2, NCS], C returns o(k)
π,p to A.

17: When A sends r
(k)

π,p′ and z
(k)

π,p′ with p′ ∈ [2, NCS], C sends r(k)π,p and z(k)
π,p to A. Then, C

computes as follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

20: else Abort protocol

21: C computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

22: C performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
.

23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)

i,p′ with p′ ∈ [2, NCS], C returns t
(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

28: C calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i · t

(k)
i +q ·ci

}
,
{
H2q,π · t(k)i +q ·ci

})
.

30: for (1 ≤ k ≤ Nin) do

31: C chooses b(k) ← {0, 1}.
32: C computes t(k)π,p = u(k)

π,p + S
(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S(k)

π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
34: When A sends t

(k)

π,p′ with p′ ∈ [2, NCS], C returns t(k)π,p to A

35: C computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

28 W. Alberto Torres et al.

Algorithm 7 SigGen - Game 2

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h(k)
π,p = H · S(k)

π,p ∈ R
2
q .

4: C sets ō(k)
π,p = H0

(
h(k)
π,p

)
5: When A sends ō

(k)

π,p′ with p′ ∈ [2, NCS], C returns ō(k)
π,p to A.

6: When A sends h
(k)

π,p′ with p′ ∈ [2, NCS], C sends h(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

11: C calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

14: C computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

15: C chooses at random o(k)
π,p ← Sn,κ.

16: When A sends o
(k)

π,p′ with p′ ∈ [2, NCS], C returns o(k)
π,p to A.

17: When A sends r
(k)

π,p′ and z
(k)

π,p′ with p′ ∈ [2, NCS], C sends r(k)π,p and z(k)
π,p to A. Then, C

computes as follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

20: else Abort protocol

21: C computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

22: C chooses at random cπ+1 ← Sn,κ
23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)

i,p′ with p′ ∈ [2, NCS], C returns t
(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

28: C calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i · t

(k)
i +q ·ci

}
,
{
H2q,π · t(k)i +q ·ci

})
.

30: for (1 ≤ k ≤ Nin) do

31: C chooses b(k) ← {0, 1}.
32: C computes t(k)π,p = u(k)

π,p + S
(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S(k)

π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
34: When A sends t

(k)

π,p′ with p′ ∈ [2, NCS], C returns t(k)π,p to A

35: C computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 29

Game 3 : In this game the adversary A queries the random oracle H0 as in
Algorithm 8 (step 5), and stores the answers in QH0

. The game aborts as in
(step 11) if the āp’s are not in the set QH0 . The successful acceptance of āp is
equal to guess a preimage for the the given op that is committed in (step 5). As
a result, the success probability is at most 1

|Sn,κ| .

Let S3 be the event where the A wins Game 3 with negligible probability
over R2

q which is at most 1
|Sn,κ| ≤ ε3. Then we claim that:

|Pr[S2]− Pr[S3]| ≤ ε3. (6)

Algorithm 8 KeyGen - Game 3 and Game 4

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respec-

tively.
1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄Tp = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Calculates āp = (ā1, ā2)T = A · S̄p mod q ∈ R2
q .

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners

8: Receives āp′ with p′ 6= p

9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′) then Accept

12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, L
sh) · S̄Tp

17: return
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and

holds its corresponding secret-key ST
p′ .

Game 4 : In this game the adversary A queries the random oracle H2 as in
Algorithm 8 (step 16), and stores the answers in QH2 . The game aborts if the
āp, L

sh’s are in the set QH2
. We upper bound the probability of this abort in

this game at most
QH2

2P
where P is the min-entropy of āp. We use the Leftover

Hash Lemma (LHL) argument to show that the distribution of āp′ is closed to
uniform just by itself. The statistical distance between the distribution D(āp′)
and the uniform distribution R2

q is at most εLHL, where the min-entropy of

R2
q = 2 · n log q. Likewise, we argue the min-entropy of D(āp) ≤ 1

2n . This proves
that if this is not aborting, the output of H2 and āp are completely independent
of any adversary view.

Let S4 be the event where the A wins Game 4 with negligible probability

over R2
q which is at most

QH2

2n ≤ ε4. Then we claim that:

30 W. Alberto Torres et al.

|Pr[S3]− Pr[S4]| ≤ ε4. (7)

Game 5 : This Game now modify the KeyGen in algorithm 9 (step 4), and
SigGen, Algorithm 10 (step 3), where the linking tag is computed. We recall

that public-key as ā
(k)
π,p = A · S̄(k)

π,p mod q ∈ R2
q. We now choose ā

(k)
π,p′ ∀(k, p′) ∈

[NCS] × [Nin] uniformly and randomly such ā
(k)
π,p′ ← R2

q. Moreover, we now

choose h
(k)
π,p′ ∀(k, p′) ∈ [NCS]× [Nin] uniformly and randomly such h

(k)
π,p′ ← R2

q,

rather than computing the linking tag as h(k)
π,p = H · S(k)

π,p ∈ R2
q. We recall that

S(k)
π,p = H2(āp, L

sh) · S̄Tp (as KeyGen Algorithm 1) where S̄
(k)
π,p is chosen small and

with coefficients in (−2γ , 2γ). We redefine h(k)
π,p = H ·H2(āp, L

sh) · S̄Tp . Then, we

now define a new random matrix Hnew = H ·H2(āp, L
sh).

We know that the public parameter A and Hnew are uniform and S̄
(k)
π,p is

chosen small and with coefficients in (−2γ , 2γ). Then, multiplying these A and

Hnew by the secret key S̄
(k)
π,p, it results in a

(k)
π that is close to uniform over R2

q.
By the Leftover Hash Lemma (LHL) argument (Lemma 4), we show that

the statistical distance between the distribution of a(k) mod q and the uniform

distribution on R2
q is at most Nin ·NCS · 1

2 ·
√

q4n

2(γ+1)·(m−1)·n , which is negligible

in n.
Let S5 be the event where the A wins Game 5 with negligible probability

R2
q is at most Nin ·NCS · 1

2 ·
√

q4n

2(γ+1)·(m−1)·n ≤ ε5. Then we claim that:

|Pr[S4]− Pr[S5]| ≤ ε5. (8)

Game 6: The challenger C behaves different in the random oracle H0 as illus-
trated in Algorithm 11 (step 11). On a y-th query āp′ , from the adversary A,
then C proceeds as follows:

1. C returns H0

(
āy
)

if this is already defined.
2. C chooses at random oy ← Sn,κ, otherwise.

3. C verifies if there exists p′ ∈ [1, y − 1] such that o
(k)
y = H0

(
āp′
)

for previous
queries of āp′ . In the case where p′ exists, the game is aborted, otherwise:

4. C sets o
(k)
y = H0

(
āp′
)

and returns o
(k)
y to A.

The difference between the Game 5 and Game 6 is that the challenger C
aborts when he tries to set a same hash value H0 for two different inputs. This
game evaluates the probability that C aborts the game under this situation. The
total number of queries Q0 to H0 oracle is at most Q0 + Qk where Qk is the
number of queries to the KO oracle. Then the probability that C aborts Game
6 is

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 31

Algorithm 9 KeyGen - Game 5

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respec-

tively.
1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄Tp = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Choose āp ← R2
q

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners

8: Receives āp′ with p′ 6= p

9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′) then Accept

12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, L
sh) · S̄Tp

17: return
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and

holds its corresponding secret-key ST
p′ .

Q0+Qk∑
y=1

Pr
[(

āp′
)
∈
{

āy′
}
y′<y

]
≤
Q0+Qk∑
y=1

y−1∑
y′=1

Pr
A←R2×(m−1)

q

[
āp′ = āy′

]
≤

Q0+Qk∑
y=1

y − 1

2n
≤ (Q0 +Qk)(Q0 +Qk + 1)

2n

Let S6 be the event where the A wins this Game with negligible probability
(Q0+Qk)(Q0+Qk+1)

2n ≤ ε6. Then we argue that:

|Pr[S5]− Pr[S6]| ≤ ε6. (9)

Game 7: This Game performs similar to Game 6 but we now modify (for
the signer π) the KeyGen Algorithm 12 (step 14). The aggregate public-key

as a
sh(k)
π =

∑NCS
p′ H2(ā

(k)
π,p′ , L

sh) · ā(k)
π,p′ . We now choose a

sh(k)
π ∀(k) ∈ [Nin]

uniformly and randomly such a
sh(k)
π ← R2

q. As in Game 1, it shows that ā
(k)
π,p′

is uniformly random. We assume that ∀ h ← Sn,κ where h is the output of the
hash function H2. We said that h needs to be invertible in R2

q, then to achieve

this condition, we choose Sn,κ such that ‖h‖∞ < 1√
k
· q1/k as shown in ([34],

Corollary 1.2), with probability 1.

32 W. Alberto Torres et al.

Algorithm 10 SigGen - Game 5

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The linking tag is chosen at random h(k)
π,p ← R

2
q

4: C sets ō(k)
π,p = H0

(
h(k)
π,p

)
5: When A sends ō

(k)

π,p′ with p′ ∈ [2, NCS], C returns ō(k)
π,p to A.

6: When A sends h
(k)

π,p′ with p′ ∈ [2, NCS], C sends h(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

11: C calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

14: C computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

15: C chooses at random o(k)
π,p ← Sn,κ.

16: When A sends o
(k)

π,p′ with p′ ∈ [2, NCS], C returns o(k)
π,p to A.

17: When A sends r
(k)

π,p′ and z
(k)

π,p′ with p′ ∈ [2, NCS], C sends r(k)π,p and z(k)
π,p to A. Then, C

computes as follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

20: else Abort protocol

21: C computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

22: C chooses at random cπ+1 ← Sn,κ.
23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)

i,p′ with p′ ∈ [2, NCS], C returns t
(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

28: C calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i · t

(k)
i +q ·ci

}
,
{
H2q,π · t(k)i +q ·ci

})
.

30: for (1 ≤ k ≤ Nin) do

31: C chooses b(k) ← {0, 1}.
32: C computes t(k)π,p = u(k)

π,p + S
(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S(k)

π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
34: When A sends t

(k)

π,p′ with p′ ∈ [2, NCS], C returns t(k)π,p to A

35: C computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 33

Algorithm 11 KeyGen - Game 6

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respec-

tively.
1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄Tp = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Choose āp ← R2
q

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners

8: Receives āp′ with p′ 6= p

9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do

11: if Choose op′ ← R
2
q

then Accept
12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, L
sh) · S̄Tp

17: return
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and

holds its corresponding secret-key ST
p′ .

Algorithm 12 KeyGen - Game 7

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respec-

tively.
1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄Tp = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Choose āp ← R2
q

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners

8: Receives āp′ with p′ 6= p

9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′) then Accept

12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: Choose ash ← R2
q

15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, L
sh) · S̄Tp

17: return
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and

holds its corresponding secret-key ST
p′ .

34 W. Alberto Torres et al.

Let S7 be the event where the A wins Game 7 with negligible probability,
that is 1 ≤ ε7. Then we claim that:

|Pr[S6]− Pr[S7]| ≤ ε7. (10)

Game 8 : This Game now changes are made on the t
(k)
1 , . . . , t

(k)
w from the SigGen

algorithm. When A sends interactive queries Qs with (Lt, µt) to C for signing
using the SigGen algorithm, then C behaves as in Algorithm 13. This time, the

C chooses t
(k)
π,p at random from Dn×m

σ as in Algorithm 13 (step 33) instead of

computing it as t
(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)

(Based on [19], Lemma 3.5).
We claim that this Game is forgeable when A finds a PPT algorithm F to solve
the MSISKq,m,k,β problem. This attack performs as follows:

1. Random coins are selected for the forger φ and signer ψ.
2. The random oracle H1 is called to generate the responses of the users in the

SigGen scheme, (c1, . . . , cw)← Sn,κ.

3. These create a SubRoutine that takes as input (A
(k)
2q,π, φ, ψ, c1, . . . , cw).

4. F is initialized and run by providing the A
(k)
2q,π and forger’s random coins φ.

5. The SubRoutine signs the message µ using the signer’s coins ψ in the Algo-
rithm 13, this produces a signature σL(µ).

6. During the signing process, F calls the oracle H1 and answers are placed in
the list (c1, . . . , cw), the queries are kept in a table in the event that same
queries are used in this oracle.

7. F is stops this simulation and outputs a forgery σ(µ)∗ =(
c∗1,
{
t
∗(k)
1 , . . . , t

∗(k)
w

}
,h∗(k)

π

)
, with negligible probability. This output

has to be successfully accepted by the SigVer algorithm.

If the random oracle was not called using some input A
(k)
2q,i ·t

∗(k)
i ·q ·c∗i ,H

(k)
2q ·

t
∗(k)
i + q · c∗i (∀i, k ∈ [w] × [Nin]), then F has 1/|Sn,κ| chances of producing a

c∗i+1 such that c∗i+1 = H1

(
L∗,H

(k)
2q , µ

∗,A
(k)
2q,i · t

∗(k)
i · q · c∗i ,H

(k)
2q · t

∗(k)
i + q · c∗i

)
.

We claim that ε7 − 1/|Sn,κ| is the probability that c∗i+1 = cj+1 for some j. In
this analysis, we now consider two types of forgeries:

Forgery 1. We consider that cj+1 is the result after using F which is cj+1 =

H1

(
L′,H

(k)
2q , µ

′,A
(k)
2q,j · t

′(k)
j ·q ·cj ,H(k)

2q · t
′(k)
j +q ·cj

)
. Then we have ∀k ∈ [Nin]:

H1

(
L∗,H

(k)
2q , µ

∗,A
(k)
2q,j · t

∗(k)
j · q · cj ,H(k)

2q · t
∗(k)
j + q · cj

)
=

H1

(
L′,H

(k)
2q , µ

′,A
(k)
2q,j · t

′(k)
j · q · cj ,H(k)

2q · t
′(k)
j + q · cj

)
,

F finds a preimage of cj+1 if µ∗ 6= µ′ or A
(k)
2q,j ·t

∗(k)
j ·q ·cj 6= A

(k)
2q,j ·t

′(k)
j ·q ·cj

or H
(k)
2q · t

∗(k)
j + q · cj 6= H

(k)
2q · t

′(k)
j + q · cj . Then, we have with overwhelm-

ing probability that µ∗ = µ′ or A
(k)
2q,j · t

∗(k)
j · q · cj = A

(k)
2q,j · t

′(k)
j · q · cj

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 35

Algorithm 13 SigGen - Game 8

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The linking tag is chosen at random h(k)
π,p ← R

2
q .

4: C sets ō(k)
π,p = H0

(
h(k)
π,p

)
5: When A sends ō

(k)

π,p′ with p′ ∈ [2, NCS], C returns ō(k)
π,p to A.

6: When A sends h
(k)

π,p′ with p′ ∈ [2, NCS], C sends h(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

11: C calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

14: C computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

15: C chooses at random o(k)
π,p ← Sn,κ.

16: When A sends o
(k)

π,p′ with p′ ∈ [2, NCS], C returns o(k)
π,p to A.

17: When A sends r
(k)

π,p′ and z
(k)

π,p′ with p′ ∈ [2, NCS], C sends r(k)π,p and z(k)
π,p to A. Then, C

computes as follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

20: else Abort protocol

21: C computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

22: C chooses at random cπ+1 ← Sn,κ.
23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)

i,p′ with p′ ∈ [2, NCS], C returns t
(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

28: C calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i · t

(k)
i +q ·ci

}
,
{
H2q,π · t(k)i +q ·ci

})
.

30: for (1 ≤ k ≤ Nin) do

31: C chooses b(k) ← {0, 1}.
32:
33: C chooses t(k)π,p ← Dn×mσ

34: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
35: When A sends t

(k)

π,p′ with p′ ∈ [2, NCS], C returns t(k)π,p to A

36: C computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

37: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

36 W. Alberto Torres et al.

or H
(k)
2q · t

∗(k)
j + q · cj = H

(k)
2q · t

′(k)
j + q · cj . These equalities will result

in: A
(k)
2q,j(t

∗(k)
j − t

′(k)
j) = 0 mod q and H

(k)
2q (t

∗(k)
j − t

′(k)
j) = 0 mod q. We

assume that both t
∗(k)
j and t

′(k)
j are different and they met the SigVer Algo-

rithm conditions, so it results in t
∗(k)
j −t

′(k)
j 6= 0 mod q, and ‖t∗(k)

j −t
′(k)
j ‖ ≤ 2βv.

Forgery 2. We assume that cj+1 was a response to a random oracle H1 query
made by A and it records the cj+1 and the signature σ(µ) on message µ. Then,
fresh random elements are generated as (c′j , . . . , c

′
w)← Sn,κ. We use the forking

lemma [5] to show the probability of cj+1 6= c′j+1 and the forger uses an oracle
response c′j+1 is at least:

(
Pr[S7]− 1

|Sn,κ|

)
·

(
Pr[S7]− 1

|Sn,κ|

Qs +Q1
− 1

|Sn,κ|

)
,

which is negligible. Therefore, with this probability, A creates a signature

σ(µ)′ =
(
c′1,
{
t
′(k)
1 , . . . , t

′(k)
w

}
,h′(k)

π

)
where A

(k)
2q,j ·t

∗(k)
j ·q ·cj = A

(k)
2q,j ·t

′(k)
j ·q ·c′j

and H
(k)
2q ·t

∗(k)
j +q ·cj = H

(k)
2q ·t

′(k)
j +q ·c′j . We now obtain A

(k)
2q,j ·(t

∗(k)
j −t

′(k)
j) =

q(cj − c′j) mod 2q and H
(k)
2q (t

∗(k)
j − t

′(k)
j) = q(cj − c′j) mod 2q. Since

cj − c′j 6= 0 mod 2, so in both equations, we have t
∗(k)
j − t

′(k)
j 6= 0 mod 2q

where ‖t∗(k)
j − t

′(k)
j ‖∞ < q/2. By applying modq reduction, we find a small

non-zero vector v(k) = t
∗(k)
j − t

′(k)
j 6= 0 mod q. This v(k) will compute

A
(k)
2q,j ·v(k) = 0 mod q and H

(k)
2q ·v(k) = 0 mod q with ‖v(k)‖ ≤ 2βv. Since v(k) is

same for both A
(k)
2q,j and H

(k)
2q , we only use the former to continue this analysis.

We say that A
(k)
2q,j mod q = 2(A,−a(k)) mod q, then 2(A,−a(k))v(k) = 0 mod q,

this implies that (A,−a(k))v(k) = 0 mod q, since q is odd. Therefore, this
vector v will be a solution to the MSISKq,m,k,β problem, where β = 2βv, with

non-negligible probability and with respect to (A,−a(k)) over R2
q.

Let S8 be the event where the A wins Game 8 with negligible probability(
Pr[S7]− 1

|Sn,κ|

)
·

(
Pr[S7]− 1

|Sn,κ|
Qs+Q1

− 1
|Sn,κ|

)
to solve the MSISKq,m,k,β problem.

Combining the results of the above Games (3), (4), (5), (6), (7), (8), (9), and
(10) we obtain:

∣∣∣∣∣
(

Pr[S7]− 1

|Sn,κ|

)
·

(
Pr[S7]− 1

|Sn,κ|

Qs +Q1
− 1

|Sn,κ|

)∣∣∣∣∣ ≤ Pr[Solve MSIS],

Since Pr[S7] ≥ Pr[S0]− εuf with εuf =
∑7
i=1 εi, and we let δ = Pr[S0] then

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 37

∣∣∣∣∣
(
δ − εuf −

1

|Sn,κ|

)
·

(
δ − εuf − 1

|Sn,κ|

Qs +Q1
− 1

|Sn,κ|

)∣∣∣∣∣ ≤ Pr[Solve MSIS]

ut

C MIMO.L2RS-CS - Anonymity

Proof. We prove the anonymity property of the MIMO.L2RS-CS scheme by using
the sequence-of-games approach [41]:

Game 0 - Real Game: This Game follows the definition of unconditional
anonymity in Section 4. We assume that an adversary A, by using the KO,

creates a list of pk(k)’s L =
(
pk

(k)
i0
,pk

(k)
i1

)
∀k ∈ [Nin] and ∀i0, i1 ∈ [w]. A

gives the L and a message µ to the challenger. The challenger then flips a coin

b ← {0, 1}, then creates a signature σ(µ)b = SigGen(S
(k)
ib
, µ, L,PP) and gives

σ(µ)b to A. The adversary A outputs a guess b′. A wins this game if the following
conditions are achieved:

1. pk
(k)
i0

and pk
(k)
i1

must not be used by CO and SO.
2. Outputs 1 such that b = b′, with Pr = 1/2.

If we define the event S0 where the adversary A wins Game 0, then we claim
that A2’s advantage is 1

2 + ε0.

|Pr[S0]− 1
2 | ≤ ε0. (11)

Game 1: In this game, we analyse the KeyGen Algorithm 1 in order to show

that ā
(k)
π,p is independent to ā

(k)
π,p′ . In the step 11 of this protocol, the challenger

verifies that oπ,p′ = H0(āπ,p′). Then, there are two cases to be considered:

– Case 1: āπ,p′ was queried by A to the random oracle H0 before āπ,p was sent.
We define the event E1 where the adversary A queries the H0 up to revealing
āπ,p. E2 to be the event when A guesses āπ,p, with no information of āπ,p′ .
Then, we state that with the following probability āπ,p′ is independent of
āπ,p:

Pr[E1] = Pr[E2] ≤ 1

2n

, where 2n is the min-entropy of āπ,p.
– Case 2: āπ,p′ was not queried, which means that the chance to satisfy the

following condition is negligible:

Pr[oπ,p′ = H0(āπ,p′)] ≤
1

2|H0|

Let S1 be the event where the A wins Game 1 with negligible probability
R2
q is at most 1

2n ≤ ε1. Then we claim that:

|Pr[S0]− Pr[S1]| ≤ ε1. (12)

38 W. Alberto Torres et al.

Game 2: This Game now modifies the KeyGen Algorithm 1 (step 4), and
SigGen Algorithm 2 (step 3), where the linking tag is computed. We know

that the public-key is computed as ā
(k)
π,p = A · S̄(k)

π,p mod q ∈ R2
q. Then, we

choose ā
(k)
π,p′ ∀(k, p′) ∈ [NCS]× [Nin] uniformly and randomly such ā

(k)
π,p′ ← R2

q.

Moreover, we select h
(k)
π,p′ ∀(k, p′) ∈ [NCS]× [Nin] uniformly and randomly such

h
(k)
π,p′ ← R2

q, rather than computing the linking tag as h(k)
π,p = H ·S(k)

π,p ∈ R2
q. We

recall that S(k)
π,p = H2(āp, L

sh) · S̄Tp (as KeyGen Algorithm 1) where S̄
(k)
π,p is chosen

small and with coefficients in (−2γ , 2γ). We redefine h(k)
π,p = H·H2(ā

(k)
π,p, Lsh)·S̄Tp ,

where a new random matrix Hnew = H ·H2(ā
(k)
π,p, Lsh).

Since the public parameter A and Hnew are uniform and S̄
(k)
π,p is chosen

small and with coefficients in (−2γ , 2γ), then multiplying these A and Hnew by

the secret key S̄
(k)
π,p, it results in ā

(k)
π,p and h(k)

π,p that are close to uniform over
R2
q. By the Leftover Hash Lemma (LHL) argument (Lemma 4), we show that

the statistical distance between the distribution of a(k) mod q and the uniform

distribution on R2
q is at most Nin ·NCS · 1

2 ·
√

q4n

2(γ+1)·(m−1)·n , which is negligible

in n.

Let S2 be the event where the A wins Game 2 with negligible probability

R2
q is at most Nin ·NCS · 1

2 ·
√

q4n

2(γ+1)·(m−1)·n ≤ ε2. Then we claim that:

|Pr[S1]− Pr[S2]| ≤ ε2. (13)

Game 3: Rather that computing ō
(k)
π,p = H0

(
h(k)
π,p

)
, ō

(k)
π,p is now chosen at random

as seen in Algorithm 14, in step 5. On a y-th query h(k)
y from the adversary A,

then C proceeds as follows:

1. C returns H0

(
h(k)
y

)
if this is already defined.

2. C chooses at random ō
(k)
y ← Sn,κ, otherwise.

3. C verifies if there exists p′ ∈ [1, y−1] such that ō
(k)
y = H0

(
h

(k)
π,p′

)
for previous

queries of h
(k)
π,p′ . In the case where p′ exists, the game is aborted, otherwise:

4. C sets ō
(k)
y = H0

(
h

(k)
π,p′

)
and returns ō

(k)
y to A.

The difference between the Game 2 and Game 3 is that the challenger C
aborts when he tries to set a same hash value H0 for two different inputs. This
game evaluates the probability that C aborts the game under this situation. The
total number of queries Q0 to H0 oracle is at most Q0 +Qs. Then the probability
that C aborts Game 3 is

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 39

Q0+Qs∑
y=1

Pr
[(

h
(k)
π,p′

)
∈
{

h
(k)
y′

}
y′<y

]
≤
Q0+Qs∑
y=1

y−1∑
y′=1

Pr
ō
(k)
y ←Sn,κ

[
h

(k)
π,p′ = h

(k)
y′

]
≤

Q0+Qs∑
y=1

y − 1

2n
≤ (Q0 +Qs)(Q0 +Qs + 1)

2n

Let S3 be the event where the A wins this Game with negligible probability
(Q0+Qs)(Q0+Qs+1)

2n ≤ ε3. Then we argue that:

|Pr[S2]− Pr[S3]| ≤ ε3. (14)

Game 4: This Game performs similar to Game 3 but we now modify (for
the signer π) the KeyGen, Algorithm 1 (step 14). The aggregate public-key as

a
(k)
π =

∑NCS
p′ H2(ā

(k)
π,p′ , L

sh) · ā(k)
π,p′ . We now choose ā

(k)
π ∀(k) ∈ [Nin] uniformly

and randomly such a
(k)
π ← R2

q. As in Game 1, it shows that ā
(k)
π,p′ is uniformly

random. We assume that ∀ h← Sn,κ where h is the output of the hash function
H2. we said that h needs to be invertible in R2

q, then to achieve this condition,

we choose Sn,κ such that ‖h‖∞ < 1√
k
·q1/k as shown in ([34], Corollary 1.2), with

probability 1.
Let S4 be the event where the A wins Game 4 with negligible probability,

that is 1 ≤ ε4. Then we claim that:

|Pr[S3]− Pr[S4]| ≤ ε4. (15)

Game 5: Changes on this game are made in the remaining public-keys a
(k)
i (1 ≤

i ≤ w, i 6= π), ∀k ∈ [Nin] which are in the list of the ring L. We know that

a
(k)
i =

∑NCS
p′ H(ā

(k)
i,p′ , L

sh) · ā(k)
i,p′ and secret-key S

(k)
i =

∑NCS
p′ H(ā

(k)
i,p′ , L

sh) · S̄(k)
i,p′ ,

where ā
(k)
i,p′ = A · S̄(k)

i,p′ ∀(k, p′) ∈ [NCS]× [Nin]. We now choose uniformly random

ā
(k)
i,p′ , and all S̄

(k)
i,p′ ’s are chosen small with coefficients in (−2γ , 2γ). When the

S̄
(k)
i,p′ ’s are multiplied by the public parameter A, it gives (ā

(k)
i,p′)’s that are close

to uniform over R2
q.

By the Leftover Hash Lemma (LHL) argument (Lemma 4), we show that the

statistical distance between the distribution of the (A · S(k)
i mod q)’s and the

uniform distribution on R2
q×R2

q is at most Nin ·NCS · 12 ·
√

q4n

2(γ+1)·(m−1)·n ·(w−1).

We define the event S5 where A wins Game 5 with negligible probability

Nin ·NCS · 1
2 ·
√

q4n

2(γ+1)·(m−1)·n · (w − 1) ≤ ε5.

|Pr[S4]− Pr[S5]| ≤ ε5. (16)

40 W. Alberto Torres et al.

Algorithm 14 SigGen - Game 3

Input: SK =
{
S

(k)

π,p′

}
p′∈[NCS],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h(k)
π,p = H · S(k)

π,p ∈ R
2
q .

4: C sets ō(k)
π,p = H0

(
h(k)
π,p

)
5: C chooses at random ō(k)

π,p ← Sn,κ

6: When A sends ō
(k)

π,p′ with p′ ∈ [2, NCS], C returns ō(k)
π,p to A.

7: When A sends h
(k)

π,p′ with p′ ∈ [2, NCS], C sends h(k)
π,p to A. Then, C computes as follows:

8: for (2 ≤ p′ ≤ NCS) do

9: if ō
(k)

π,p′ = H0

(
h

(k)

π,p′

)
then Accept

10: else Abort protocol

11: C computes the shared linking tag h(k)
π =

∑NCS
p′ h

(k)

π,p′

12: C calls Lift(H,h(k)
π) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

13: C calls Lift(A, a(k)
π) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

14: C chooses u(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ← Dnσ , for 1 ≤ i ≤ m.

15: C computes r(k)π,p = A
(k)
2q,π · u

(k)
π,p and z(k)

π,p = H
(k)
2q,π · u

(k)
π,p

16: C sets o(k)
π,p = H0

(
r(k)π,p, z

(k)
π,p

)
17: When A sends o

(k)

π,p′ with p′ ∈ [2, NCS], C returns o(k)
π,p to A.

18: When A sends r
(k)

π,p′ and z
(k)

π,p′ with p′ ∈ [2, NCS], C sends r(k)π,p and z(k)
π,p to A. Then, C

computes as follows:
19: for (2 ≤ p′ ≤ NCS) do

20: if o
(k)

π,p′ = H0

(
r
(k)

π,p′ , z
(k)

π,p′

)
then Accept

21: else Abort protocol

22: C computes r(k)π =
∑NCS
p′=1

r
(k)

π,p′ and z(k)
π =

∑NCS
p′=1

z
(k)

π,p′

23: C performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
.

24: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
25: for (1 ≤ k ≤ Nin) do

26: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ← Dnσ , for 1 ≤ j ≤ m.

27: When A sends t
(k)

i,p′ with p′ ∈ [2, NCS], C returns t
(k)
i,p to A.

28: C computes t
(k)
i =

∑NCS
p′=1

t
(k)

i,p′

29: C calls Lift(A, a
(k)
i) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

30: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π, µ,

{
A

(k)
2q,i · t

(k)
i +q ·ci

}
,
{
H2q,π · t(k)i +q ·ci

})
.

31: for (1 ≤ k ≤ Nin) do

32: C chooses b(k) ← {0, 1}.
33: C computes t(k)π,p = u(k)

π,p + S
(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S(k)

π,p)T , 1]T .

34: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖
2

2σ2

)
cosh

(〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

oth-

erwise Restart.
35: When A sends t

(k)

π,p′ with p′ ∈ [2, NCS], C returns t(k)π,p to A

36: C computes t(k)π =
∑NCS
p′=1

t
(k)

π,p′

37: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
.

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 41

Game 6: It changes the behaviour of the random oracle H1 in the SigGen,
Algorithm 2 (step 21). The challenger chooses cπ+1 at random from Sn,κ ⊆ R2q,
after that, the answer of the random oracle is programmed H1 ∀k ∈ [Nin] as:

H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
= H1

(
L,H

(k)
2q,π, µ,A

(k)
2q,π · t(k)

π + q · cπ,

H
(k)
2q,π · t(k)

π + q · cπ
})

without verifying if the values of r
(k)
π =

∑NCS
p′=1 A

(k)
2q,π · u

(k)
π,p′ and z

(k)
π =∑NCS

p′=1 H
(k)
2q,π · u

(k)
π,p′ were already set ∀p′ ∈ [NCS]. We argue that the proba-

bility of A generating u
(k)
π,p′ , such that r

(k)
π and z

(k)
π are equal to one of previous

queries is at most 2−n+1. Therefore, if the SigGen (in this Game 3) and H1 are
queried Qs and Q1 times, respectively, then the probability of getting one col-
lision each time is at most NCS · (Qs +Q1)2−n+1. Additionally, the probability
that a collision happens after Qs queries is at most NCS ·Qs · (Qs +Q1)2−n+1,
which is negligible (Based on [19], Lemma 3.4).

Let S6 be the event where the A wins Game 6 with negligible probability
NCS ·Qs · (Qs +Q1)2−n+1 ≤ ε6. Then we claim that:

|Pr[S5]− Pr[S6]| ≤ ε6. (17)

Game 7: Changes in this game are made on the t
(k)
1 , . . . , t

(k)
w from the

SigGen, Algorithm 2 (step 39). This time, the challenger chooses ∀p′, t
(k)
π,p′

now directly from the Gaussian distribution Dn×m
σ , instead of computing it

as t
(k)
π =

∑NCS
p′=1 t

(k)
π,p′ with t

(k)
π,p′ = u

(k)
π,p′ + S

(k)
2q,π,p′ · cπ · (−1)b

(k)

(Based on [19],

Lemma 3.5). Since t
(k)
π,p′ is computed using rejection sampling (as Lemma 1),

thus it is always sample from the Gaussian distribution Dn
σ(µ). This means that

any adversary will have no advantage in breaking the anonymity property in this
Game due to both cases have same distribution.

Let S7 be the event where the A wins Game 7 with zero probability 0 = ε7.
Then we claim that:

In this game, the view of the adversary A is independent of b; therefore,

Pr[S7] = Pr[b′ = b] = 1
2 . (18)

The results of the Games are combined from (11), (12), (13), (14), (15), (16),
(17), and (18) we obtain

Pr[S0] = Pr[S7] +

6∑
i=1

εi,

by replacing (18) in the Pr[S0], we have

42 W. Alberto Torres et al.

Pr[S0] =
1

2
+

6∑
i=1

εi,

and this is negligible. ut

D MIMO.L2RS-CS - Linkability

Proof. We construct a challenger C and an adversary A to solve the MSISKq,m,k,β
problem. They run the linkability attack game (Def. 4) ∀k ∈ [Nin], namely:

1. C generates using the KeyGen (Algorithm 1) all secret-keys S
(k)
i ’s with the

corresponding public-keys a
(k)
i ’s, then C gives S(k)

π =
∑NCS
p′ S

(k)
π,p′ to the

adversary A.
2. A outputs two signatures σ(µ1) and σ′(µ′1) along with their corresponding

lists L and L′, respectively. These signatures are successfully verified by
SigVer (Algorithm 3) with their linkability tags different such that h(k)

µ1
6=

h
(k)
µ′1

.

3. C computes the linking tags as h(k)
π = H · S(k)

π,p mod q, where “π” is the

legitimate signer. This h(k)
π can then be compared with the linkability tags

h(k)
µ1

and h
(k)
µ′ that were outputted by A (in step 2) and one of them would

be different.
4. Without loss of generality, suppose h(k)

µ1
6= h(k)

π mod q. Using the forking
lemma [5], C rewinds the attacker A to the random oracle “H1” query that
corresponds to the SigVer of the signature σL(µ1). C reruns A with a differ-
ent response of H1 and obtains two signatures: σ(µ2) and σ′(µ′2). Then, we
use this signature σ(µ1) and σ(µ2) to extract a solution to the MSISKq,m,k,β
problem if the adversary A finds an efficient algorithm to unlink these sig-
natures (as further shown in step 7).

5. The adversary A matches the challenge message of both signatures where

H
(k)
2q,µ1

,A
(k)
2q,w,µ1

and q are fixed. Subsequently, we obtain the following rela-
tions:

A
(k)
2q,w,µ1

· t(k)
w,µ1 + q · cw,µ1 = A

(k)
2q,w,µ1

· t(k)
w,µ2 + q · cw,µ2

H
(k)
2q,µ1

· t(k)
w,µ1 + q · cw,µ1

= H
(k)
2q,µ1

· t(k)
w,µ2 + q · cw,µ2

(19)

These expressions can be represented as:

A
(k)
2q,w,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = q · (cw,µ2

− cw,µ1
)

H
(k)
2q,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = q · (cw,µ2

− cw,µ1
)

(20)

Reducing (20) modq with (cw,µ2
− cw,µ1

) 6= 0 mod 2, it results in:

A
(k)
2q,w,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q

H
(k)
2q,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q

(21)

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 43

We recall the definition of H
(k)
2q,µ1

and A
(k)
2q,w,µ1

in SigGen, Algorithm 2 (steps
8 and 9), respectively, then we have:(

2 ·A,−2 · a(k)
µ1 + q

)
· (t(k)

w,µ1 − t
(k)
w,µ2) = 0 mod q(

2 ·H,−2 · h(k)
µ1

+ q
)
· (t(k)

w,µ1 − t
(k)
w,µ2) = 0 mod q

(22)

Afterwards, if we define (t
(k)
w,µ1 − t

(k)
w,µ2) as:

t
(k)
w,µ1 − t

(k)
w,µ2 =

(
t
′(k)
w,µ1 − t

′(k)
w,µ2

t
′′(k)
w,µ1 − t

′′(k)
w,µ2

)
∈ Rmq (23)

Then, by replacing (22) in (23), it results in:

(
2 ·A,−2 · a(k)

µ1 + q
)
·

(
t
′(k)
w,µ1 − t

′(k)
w,µ2

t
′′(k)
w,µ1 − t

′′(k)
w,µ2

)
= 0 mod q

(
2 ·H,−2 · h(k)

µ1
+ q

)
·

(
t
′(k)
w,µ1 − t

′(k)
w,µ2

t
′′(k)
w,µ1 − t

′′(k)
w,µ2

)
= 0 mod q

(24)

Since we reduce (24) to mod q, q is odd, and H·(t′(k)
w,µ1−t

′(k)
w,µ2) = h(k)

µ1
·(t′′(k)

w,µ1−
t
′′(k)
w,µ2) mod q. We claim that (t

′′(k)
w,µ1 − t

′′(k)
w,µ2) 6= 0 is invertible in Rq. To show

this, we have (cw,µ2 − cw,µ1) 6= 0 mod 2. Therefore, using (20), we conclude

(t
(k)
w,µ1 − t

(k)
w,µ2) 6= 0 mod 2, and (t

(k)
w,µ1 − t

(k)
w,µ2) 6= 0 mod 2q. Additionally, we

know that ‖t(k)
w,µ1 − t

(k)
w,µ2‖∞ < q/2 and ‖t(k)

w,µ1 − t
(k)
w,µ2‖2 < 2βv as SigVer,

Algorithm 3, which implies that (t
′′(k)
w,µ1 − t

′′(k)
w,µ2) 6= 0 mod q. Furthermore,

since 2βv < 1√
k
· q1/k as in ([34], Corollary 1.2), then (t

′′(k)
w,µ1 − t

′′(k)
w,µ2) is

invertible in Rq. After that, we establish h(k)
µ1

as:

h(k)
µ1

= H · (t′(k)w,µ1
−t′(k)w,µ2

)

(t
′′(k)
w,µ1

−t′′(k)w,µ2
)

mod q (25)

6. Then, S̄
(k)
µ1

is well-defined since (t
′′(k)
w,µ1 − t

′′(k)
w,µ2) is invertible in Rq, then we

said that:

S̄
(k)
µ1

,
(t′(k)w,µ1

−t′(k)w,µ2
)

(t
′′(k)
w,µ1

−t′′(k)w,µ2
)

mod q (26)

7. By using S(k)
π from (step 3), we consider two cases, when S̄

(k)
µ1

= S(k)
π mod q

and S̄
(k)
µ1
6= S(k)

π mod q. These cases are analysed as follows:

(a) Case 1: If S̄
(k)
µ1

= S(k)
π mod q, we show that h(k)

µ1
= −2 · H · S̄(k)

µ1
=

−2 ·H · S(k)
π = h(k)

π mod q, which is a contradiction with respect to the

above assumption (step 4), where h(k)
µ1
6= h(k)

π mod q.

44 W. Alberto Torres et al.

(b) Case 2: When S̄
(k)
µ1
6= S(k)

π mod q, we have a
(k)
µ1 = A · S̄(k)

µ1
= A · S(k)

π =

a
(k)
π mod q, then using (26) we have:

A · (t
′(k)
w,µ1 − t

′(k)
w,µ2)

(t
′′(k)
w,µ1 − t

′′(k)
w,µ2)

= A · S(k)
π mod q ⇐⇒

A · (t′(k)
w,µ1
− t′(k)

w,µ2
) = A · S(k)

π · (t′′(k)
w,µ1
− t′′(k)

w,µ2
) mod q ⇐⇒

A ·
(

(t′(k)
w,µ1
− t′(k)

w,µ2
)− S(k)

π · (t′′(k)
w,µ1
− t′′(k)

w,µ2
)
)

= 0 mod q

then we let this small non-zero vector v ,
(

(t
′(k)
w,µ1−t

′(k)
w,µ2)−S(k)

π ·(t
′′(k)
w,µ1−

t
′′(k)
w,µ2)

)
be the output of the adversary A, and this vector is a solution

to the MSISKq,m,k,β problem with respect to the public parameter A ∈
R2×(m−1)
q , where β = ‖v‖ and ‖v‖ ≤ 2βv(1 +

√
nNin2γ).

ut

E MIMO.L2RS-CS - Non-Slanderability

Proof. Let’s suppose there is a non-slanderability adversary ASland who is given
pki, ski, i 6= π, and i ∈ {1, . . . w}, and he produces a valid signature σ′(µ) with
linkability tag hσ′(µ) which is equal to hσ(µ), σ(µ) being the legitimate signature
generated with respect to skπ. This means that ASland can create a signature
with the linkability tag hσ(µ) without knowing skπ. The adversary can also com-
pute a valid σ′′(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which hσ′′(µ) 6= hσ′(µ).

We give (σ′′(µ), σ′(µ)) to the forger, which can turn it to an MSISKq,m,k,β solu-
tion. In particular, it will be computationally secure when two valid signatures
created by different users are unlinked using the L2RS-CS algorithms. An adver-
sary A will break these properties with negligible probability as demonstrated in
Theorems (2 and 4), and with these probabilities the A will find a MSISKq,m,k,β
solution. Therefore, non-slanderability is implied by the definitions of the un-
forgeability (Def. 2) and linkability (Def. 4), and security analysis, in Appendix
B) and Appendix D, respectively. ut

Post-Quantum Lattice-based Linkable Ring Signature with Co-Signing 45

F Conditions for the performance analysis

Table 3. List conditions for MIMO.L2RS-CS’s performance analysis

Order Condition Description

1 Sn,κ =
(
n
κ

)
· 2κ > 2λ The challenge space

2 γ ≥ log(nk) n/a

3 ‖Sc‖ ≤
√
mnk2γ Rejection sampling

4 σ ≥ α‖Sc‖ Rejection sampling from BLISS, α =
{0.5, 0.55, 0.7, 1}

5 βv = ησ
√
nm SigVer and Correctness, with (η = 1.1)

6 NinNCS
1
2

√
q4n

2(γ+1)(m−1)n ≤ 2−λ Left Over Hash Lemma, with security pa-
rameter (λ = 128)

7 β ≤ 2βv + 2βv
√
n2γ β from the linkability analysis

8 min
(
q, 22
√

2n log(q) log(δ)
)
> β Shortest vector length ([36]-P156), with

Hermite factor (δ = 1.0045)

