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Abstract. The fixslicing implementation strategy was originally introduced as a
new representation for the hardware-oriented GIFT block cipher to achieve very
efficient software constant-time implementations. In this article, we show that the
fundamental idea underlying the fixslicing technique is not of interest only for GIFT,
but can be applied to other ciphers as well. Especially, we study the benefits of
fixslicing in the case of AES and show that it allows to reduce by 41% the amount of
operations required by the linear layer when compared to the current fastest bitsliced
implementation on 32-bit platforms. Overall, we report that fixsliced AES-128 allows
to reach 83 and 98 cycles per byte on ARM Cortex-M and E31 RISC-V processors
respectively (assuming pre-computed round keys), improving the previous records on
those platforms by 17% and 20%. In order to highlight that our work also directly
improves masked implementations that rely on bitslicing, we report implementation
results when integrating first-order masking that outperform by 12% the fastest
results reported in the literature on ARM Cortex-M4. Finally, we demonstrate
the genericity of the fixslicing technique for AES-like designs by applying it to the
Skinny-128 tweakable block ciphers.
Keywords: AES · ARM · RISC-V · Implementation · Bitslicing · Fixslicing

1 Introduction
Since the selection of the Rijndael block cipher as the Advanced Encryption Standard
(AES) [DR02] in 2001, optimized implementations of this algorithm attracted a lot of interest
over the past two decades. If AES can be efficiently implemented using look-up tables,
the table accesses being key and data-dependent lead to cache-timing attacks [Ber05,
BM06]. With these vulnerabilities in mind, cryptographers came up with constant-
time implementations by taking advantage of vector permute instructions [Ham09] or
bitslicing [MN07, Kön08, KS09]. To meet the need for efficient and secure implementations,
Intel and AMD added the set of x86 instructions AES-NI [Gue08] to implement AES
using dedicated hardware circuits. However, because such dedicated instructions are
not necessarily available on a given platform, the study of efficient constant-time AES
implementations is still an active research topic, especially on microprocessors used in low-
end embedded devices because of their limited computational resources. Although there
are undergoing initiatives that intend to provide lightweight alternatives to AES for such
platforms (e.g. the NIST LWC project [MBTM17]), it will probably still be widely deployed
in the near future for security guarantees and compliance reasons. To date, the fastest
constant-time AES implementation on 32-bit reduced instruction set computer (RISC) is is
the one from Schwabe and Stoffelen [SS16] that runs at 101 cycles per byte (cpb) on ARM
Cortex-M3 by processing 2 blocks in parallel. It was also ported to the 32-bit RISC-V
architecture and results in 124 cpb on this platform [Sto19]. This implementation, which
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relies on bitslicing, also serves as a basis for some of the current best results reported in the
literature when integrating countermeasures against power/electromagnetic side-channel
attacks [GSDM+19]. One notable feature of this implementation is that about 40% and
55% of the cycles are spent for the linear layer on ARM Cortex-M and RISC-V, respectively.
Clever optimizations of software linear layer implementations have already been addressed
for some ciphers. In [RAL17], the authors introduce an alternative representation of the
PRESENT block cipher [BKL+07] over 2 rounds that allows to speed up the performance by
a factor 8 on ARM Cortex-M. More recently, a similar approach named fixslicing [ANP20]
has been applied to the GIFT family of block ciphers [BPP+17], enhancing the performance
by a factor 7 on ARM Cortex-M when compared to naive bitslicing. Those works highlight
that the performance of a bitsliced implementation not only depends on the way the
bits are packed within registers, but also on possible alternative representations of the
cipher. Because such optimizations have only been applied to Substitution-bitPermutation
Network (SbPN) such as GIFT and PRESENT to date, it remains unclear if it would be of
interest for other designs. However, the generic aspect of fixslicing tends to indicate that
this concept might be more widely applicable.

Our contributions. In this article, we intend to enhance the current best speed results
for constant-time implementations of AES on embedded 32-bit platforms. By analyzing
the performance of the current fastest implementation, we note that more of 30% of the
instructions are dedicated to the ShiftRows layer. As a first step to minimize the cost of
this operation, we push bitsliced implementations of AES to their limit on 32-bit platforms
by introducing a new bitsliced representation that we call barrel-shiftrows. The advantage
of this representation is the ability to compute the ShiftRows simply using 32-bit rotations
while not impacting the MixColumns efficiency. On the other hand, it requires to process 8
blocks in parallel which might not be well suited to handle efficiently a small amount of
data, as it is often the case for embedded devices. Therefore, instead of focusing on a new
way to pack the bits within registers, we investigate the benefits of fixslicing in the case of
AES. We show that the fundamental idea underlying this concept is not only of interest
for SbPN designs, but can be applied to other ciphers as well. Indeed, fixslicing allows to
reduce by 41% the amount of operations required by the linear layer when compared to
the current fastest bitsliced implementation on 32-bit platforms. All in all, we report that
fixsliced AES-128 reaches 83 and 98 cpb on ARM Cortex-M and E31 RISC-V processors
respectively (assuming pre-computed round keys), improving the previous records on
those platforms by 17% and 20%. Those results require the ability to process two blocks
simultaneously and therefore apply to all parallelizable modes of operation (e.g. CTR,
GCM). Our work directly improves the prior reported results for first-order masked AES on
ARM Cortex-M4 by 12%, with 187 cpb. Finally, we highlight that the fixsliced approach
can be applied to other AES-like designs by illustrating an application to the Skinny-128
tweakable block ciphers. All our implementations are available in the public domain at
https://github.com/aadomn/aes.

2 Preliminaries
2.1 AES overview
AES is a 128-bit block cipher that can be instantiated using three different key lengths:
128, 192 or 256 bits, resulting in three corresponding versions: AES-128, AES-192 and
AES-256. All versions rely on the same round function, which is applied 10, 12 and 14
times for AES-128, AES-192 and AES-256, respectively. The round function, which operates
on the internal state viewed as a 4 × 4 matrix of elements in the finite field defined by
the irreducible polynomial x8 + x4 + x3 + x + 1 over GF(2), consists in the following four
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operations:

- SubBytes: applies the same 8-bit S-box to each byte of the internal state
- ShiftRows: shifts the i-th row left by i bytes
- MixColumns: multiplies each column with a diffusion matrix over GF(28)
- AddRoundKey: adds a 128-bit round key to the internal state.
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MixColumns AddRoundKey

Figure 1: The AES round function.

The AES round function is illustrated in Figure 1. Note that an additional AddRoundKey
is performed at the very beginning of the first round, and that the MixColumns operation
is omitted during the last round. The encryption key is expanded into round keys using a
key schedule algorithm, whose round function is depicted in Figure 2 for each AES version.
Note that a round constant is also incorporated in each round keys, we refer to [DR02] for
more details.

<<S

(a) AES-128

<<S

(b) AES-192

<<S

S

(c) AES-256

Figure 2: Key schedule round functions for each AES version, from [Jea16].

2.2 Bitslicing the AES
Bitslicing is a software implementation technique where the computation of a function
is reduced to logic gates (e.g. AND, XOR, OR, NOT), allowing to execute as many instances
in parallel as the CPU’s register width. It was originally introduced as an efficient
way to implement the DES block cipher [Bih97, Kwa00] before being considered as a
generic technique to achieve fast constant-time implementations. Many bitsliced AES
implementations followed [RSD06, MN07, Kön08] where the fastest of them was introduced
by Käsper and Schwabe [KS09] allowing to reach 6.9 cpb for AES-128 on Intel Core i7
processors by processing 8 blocks in parallel as depicted in Figure 3.
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Figure 3: Bitsliced representation from [KS09] using 8 128-bit registers R0, · · · , R7 to
process 8 blocks b0, · · · , b7 in parallel where bi

j refers to the j-th bit of the i-th block.

While bitsliced AES implementations aroused less interest on high-end processors since
the deployment of the AES-NI instruction set, it still attracts a lot of attention for platforms
that do not enjoy AES hardware acceleration, such as low-end microprocessors. Although
the most constrained microprocessors do not necessarily have any internal cache memory
(e.g. ARM Cortex-M3), it is possible for a system on chip design to integrate a system level
cache, making cache-timing attacks a threat. Moreover, because embedded platforms are
typical targets for side-channel attacks such as differential power/electromagnetic analysis,
relying on an implementation that works at the gate level facilitates the integration of
Boolean masking as a countermeasure.

On 32-bit platforms, the most efficient bitsliced AES implementation reported in the
literature is the one from Schwabe and Stoffelen [SS16] allowing to reach 101 cpb on ARM
Cortex-M3. It was also ported to the 32-bit RISC-V architecture and results in 124 cpb
on E31 processors [Sto19]. Their implementation heavily relies on [KS09] by adapting it
to 32-bit registers instead of 128-bit ones as depicted in Figure 4.
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Figure 4: Bitsliced representation from [SS16] using 8 32-bit registers R0, · · · , R7 to process
2 blocks b0, b1 in parallel where bi

j refers to the j-th bit of the i-th block.

The advantage of this representation is the ability to compute the MixColumns operation
using only 27 exclusive-ORs and 16 rotations. Indeed, because each byte in the internal
state is an element of GF(2)/x8 + x4 + x3 + x + 1, multiplication by 2 is achieved by a left
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shift and conditional masking with (00011011)2 whenever the most significant bit (MSB)
equals 1. Since R0 contains the MSB of each byte, one has simply to add it to the four
corresponding registers. Moreover, because the bitsliced representation of the internal
state is row-wise, adding an adjacent element in the column simply corresponds to an
exclusive-OR combined with a rotation. Therefore, the entire MixColumns computation
can be achieved in the following way:
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(1)

where R≫j
i refers to a rotation of Ri by j bits to the right. Note that on ARM, thanks to

the inline barrel shifter, the rotations can be computed for free resulting in only 27 1-cycle
instructions in total.

While the row-wise bitsliced representation allows an efficient MixColumns implementa-
tion, it is less suited regarding the ShiftRows operation. When considering 8 blocks using
128-bit registers, the ShiftRows corresponds to a byte-level permutation on each register,
which can be efficiently computed on Intel using the SSSE3 byte shuffle instruction pshufb.
However for the 32-bit version, according to the representation depicted in Figure 4, the
ShiftRows requires to compute byte-wise rotations. This can be achieved by means of 6
OR instructions, 7 AND instructions and 6 logical shifts are required per register as shown in
Listing 1. Note that [SS16] uses bitfield extract instructions for their ARM implementation
but it does not achieve better performance anyway.

1 t = (r » 6) & 0x00000300; // shifts the second row
2 t = t | (r & 0x00003f00) « 2; // shifts the second row
3 t = t | (r » 4) & 0x000f0000; // shifts the third row
4 t = t | (r & 0x000f0000) « 4; // shifts the third row
5 t = t | (r » 2) & 0x3f000000; // shifts the fourth row
6 t = t | (r & 0x03000000) « 6; // shifts the fourth row
7 r = t | (r & 0x000000ff); // the first row is not shifted

Listing 1: C code to apply the ShiftRows on a slice r according to the bitsliced
representation in Figure 4.

On ARM, thanks to the inline barrel shifter, it results in (6 + 7) × 8 = 104 1-cycle
instructions per ShiftRows, leading to (104 × 10)/32 = 32.5 cpb which is 32% of the
overall AES-128 performance reported on ARM Cortex-M. On RISC-V it corresponds to
19× 8 = 152 1-cycle instructions per ShiftRows, leading to 152× 10/32 = 47.5 cpb which
is 38% of the overall AES-128 performance reported on E31 RISC-V processors. However,
note that this is not optimal: after having uploaded a preliminary version of our work
online, Dettman highlighted that it can be done more efficiently1 as detailed in Listing 2.
Because the implementations have not been patched yet at the time of writing, we do not

1Improved aes128ctrbs shift row suggestion
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consider this optimization for our benchmarks since there is no practical results available,
instead we briefly discuss some estimates in Section 5.3.

1 SWAPMOVE(r, r, 0x030f0c00, 4);
2 SWAPMOVE(r, r, 0x33003300, 2);

Listing 2: Optimized ShiftRows computation on a slice r according to the bitsliced
representation in Figure 4, where SWAPMOVE is defined in Appendix A.

3 A new ShiftRows-friendly representation

A straightforward way to reduce the cost of the ShiftRows operation is to keep a row-wise
bitsliced representation and to isolate each row in distinct registers, so that byte-wise
rotations are replaced by word-wise rotations. However on 32-bit platforms, it requires
32 registers to store the internal state by processing 8 blocks in parallel as illustrated in
Figure 5. We refer to this representation as barrel-shiftrows since it allows to compute the
ShiftRows using only 24 32-bit rotation. On ARM, it means that the ShiftRows can be
actually computed for free by using the inline barrel shifter. However as there are only 14
general-purpose registers available, one would have to deal with numerous memory accesses
throughout the AES processing. At first glance, it is not clear how it would perform when
compared to [SS16]. On the other hand, the barrel-shiftrows representation could be more
valuable on platforms that embed more registers and that do not come with any rotation
instruction (e.g. RV32I). Indeed, the MixColumns no longer requires rotations but only
exclusive-ORs since the different bytes within a column are now stored in distinct registers.
Therefore, instead of computing a rotation to ensure that all bytes within the column are
properly aligned, one has just to perform an exclusive-OR with the corresponding registers
as detailed in Equation 2:

R′i = Ri+1 ⊕Ri+9 ⊕Ri+8 ⊕Ri+16 ⊕Ri+24

R′i+1 = Ri+2 ⊕Ri+10 ⊕Ri+9 ⊕Ri+17 ⊕Ri+25

R′i+2 = Ri+3 ⊕Ri+11 ⊕Ri+10 ⊕Ri+18 ⊕Ri+26

R′i+3 = Ri+4 ⊕Ri+12 ⊕Ri+11 ⊕Ri+19 ⊕Ri+27 ⊕
(
Ri ⊕Ri+8

)
R′i+4 = Ri+5 ⊕Ri+13 ⊕Ri+12 ⊕Ri+20 ⊕Ri+28 ⊕

(
Ri ⊕Ri+8

)
R′i+5 = Ri+6 ⊕Ri+14 ⊕Ri+13 ⊕Ri+21 ⊕Ri+29

R′i+6 = Ri+7 ⊕Ri+15 ⊕Ri+14 ⊕Ri+22 ⊕Ri+30 ⊕
(
Ri ⊕Ri+8

)
R′i+7 =

(
Ri ⊕Ri+8

)
⊕Ri+15 ⊕Ri+23 ⊕Ri+31

(2)

for i ∈ {0, 8, 16, 24} and where all subscripts are to be considered modulo 32.

Using the barrel-shiftrows representation, the MixColumns requires 27 × 4 = 108
exclusive-ORs by processing 8 blocks in parallel, while the bitsliced representation requires
16 × 4 = 64 additional rotations. While this is not of particular interest on ARM, this
is beneficial to platforms without rotate instruction. On 32-bit platforms, the barrel-
shiftrows representation might be the most efficient way to compute the ShiftRows
operation. However it requires to process 8 blocks in parallel which can be inappropriate
for communication protocols used in embedded systems that are designed to transmit
small amount of data. In the next section, we look at optimizing the representation that
processes only 2 blocks at a time.
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Figure 5: Barrel-shiftrows representation using 32 32-bit registers R0, · · · , R31 to process
8 blocks b0, · · · , b7 in parallel where bi

j refers to the i-th bit of the j-th block.

4 Fixslicing the AES
Instead of looking for a new way to pack the bits within the registers, another interesting
and promising approach is to investigate whether it would be advantageous to not follow
the classical cipher representation for a few rounds. By following this strategy, it was
possible to greatly enhance the performances of the GIFT block cipher in software [ANP20].
To put it in a nutshell, the authors proposed an alternative representation of the cipher
over several rounds to minimize the cost of the linear layer. They call their implementation
technique fixslicing as it mainly consists in fixing the bits within a register (or slice) to
never move and to adjust the other slices accordingly so that the proper bits are involved in
the SubBytes operation. At first glance, it seems that the fixslicing technique as originally
specified is only of interest for SbPN designs which have the special property that each bit
located in a slice remains in this same slice through the permutation. However, the main
idea underlying the fixslicing technique, which is to rely on an alternative representation
of the cipher for a few rounds while ensuring that the bits are correctly aligned for the
SubBytes computation, is actually generic and might be of interest for numerous designs.
In this section, we study the relevance of fixslicing with regards to the AES on 32-bit
platforms.

4.1 Application to the round function
In the case of SbPN ciphers where the permutation layer simply consists of a bit permutation,
the only requirements when considering an alternative representation of the cipher over
several rounds are to adapt the round keys accordingly and to ensure that the bits are
correctly aligned for the non-linear layer. However, for AES-like ciphers the permutation
layer comprises two linear operations, namely ShiftRows as a byte permutation and
MixColumns as a matrix multiplication. Therefore, it is not sufficient to just ensure that
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the bits are properly aligned with regards to the SubBytes operations, it has to be done
for the exclusive-ORs in the MixColumns as well. According to the bitsliced representation
detailed in Figure 4, fixing one of the slices (or registers) to never move means to simply
omit the ShiftRows operation throughout the entire algorithm execution. Note that to
have the bits correctly aligned to perform the SubBytes in a bitsliced manner, all slices
have to remain fixed. Therefore, the main issue raised by the omission of the ShiftRows
permutation is to adapt the MixColumns accordingly.

Before entering the MixColumns during the first round, it is trivial that F = SR−1(S)
where F , S refer to the internal state in the fixsliced and classical representations respec-
tively, and SR refers to the ShiftRows permutation. Thus, to ensure the correctness of the
MixColumns operation, one has to compute the ShiftRows (i.e. the corresponding byte-
wise rotations) on some temporary registers, so that the proper bits are exclusive-ORed
together. The calculations are detailed in Figure 6.
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Figure 6: Equations to compute the MixColumns during the first fixsliced round where
Ri ≫

8
j refers to a byte-wise rotation of j bits to the right, for all bytes within Ri.
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6, the fixsliced MixColumns

detailed in Figure 6 can be computed using 27 exclusive-ORs, 16 word-wise rotations and 24
byte-wise rotations. All in all, it corresponds to 27 XOR, 48 AND and 24 OR instructions on top
of 16 circular and 48 logical shifts. When compared to the classical bitsliced representation it
saves 32 instructions, namely 24 OR and 8 AND instructions. It stems from the fact that in the
fixsliced MixColumns, the byte-wise rotations are the same for all bytes within a slice. In other
words, when compared to the code in Listing 1, we are saving the OR instruction at lines 4,6,7 as
well as the AND instruction at line 7. At first glance, it seems that fixsliced AES is more about
complicating developer’s life rather than considerably enhancing bitsliced performance on 32-bit
platforms. However the gains brought in the next rounds are more significant, making the fixsliced
approach more valuable.

Before entering the MixColumns during the second round, we now have F = SR−2(S) which
implies that the first and third rows are aligned with the classical representation, whereas the
second and fourth ones are shifted by two bytes. This is especially beneficial to the fixsliced
representation as it means that just a single byte-wise rotation per register is needed as described
in Figure 7. Indeed, during the first round, each row in the fixsliced internal state is delayed by
one byte shift to the left in comparison to its adjacent rows. In other words, one has to shift by
one position to the left the row i to be aligned with the row i + 1 mod 4. However, the row i has
to be shifted by 2 (resp. 3) positions to the left to match the row i + 2 mod 4 (resp. i + 3 mod 4)
alignment. This is why 3 byte-wise rotations with 3 different rotation values (i.e. 6, 4 and 2) are
required for each register in Figure 6. During the second round, because each row is either aligned
or shifted by 2 positions compared to all other rows, only a single byte-wise rotation by 4 bits is
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required per register. Therefore, the fixsliced MixColumns in the second round requires 27 XOR, 16
AND and 8 OR instructions on top of 16 circular and 16 logical shifts.
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Figure 7: Equations to compute the MixColumns during the second fixsliced round where
Ri ≫

8
j refers to a byte-wise rotation of j bits to the right, for all bytes within Ri.

Due to the ShiftRows transformation, the third round configuration will be similar to the
first one except that each row will be delayed by one byte shift to the right (instead of left) in
comparison to its adjacent rows. Therefore the computation of the fixsliced MixColumns in the
third round is the same as in the first round, with a slight modification: byte-wise rotation values
have to be reversed. For instance, the update of R0 would be:

R′0 =
(
R1 ⊕ (R≫8

1 ≫
8

2)
)
⊕ (R≫8

0 ≫
8

2)⊕ (R≫16
0 ≫

8
4)⊕ (R≫24

0 ≫
8

6) . (3)

Therefore, the third round requires exactly the same number of operations as the first one. In
the fourth round, the fixsliced representation will be finally synchronized with the classical one
for the MixColumns since SR4 = Id. As a result, one can simply compute the permutation layer
using 27 XOR instructions and 16 circular shifts as detailed in Figure 1.

Consequently, our fixsliced AES description relies on a quadruple round routine where each
round only differs by its implementation of the linear layer. Since only one AES version has a
number of rounds which is a multiple of 4, namely AES-192, it means that an additional transfor-
mation should be applied at the end of AES-128 and AES-256 to ensure that the internal state is
synchronized with the classical representation. Because AES-128 and AES-256 are composed of
10 and 14 rounds respectively, F = SR2(F ) should be computed to ensure the correctness of the
result. This is can be achieved by means of 1 AND and 3 OR instructions plus 2 logical shifts per
register, as detailed in Listing 3.

1 SWAPMOVE(r, r, 0x0f000f00, 4);

Listing 3: C code to apply SR2 on a slice r according to the representation in Figure 4.

One disadvantage of fixslicing compared to the classical representation is to require four different
implementations of the linear layer. While this is not an issue when considering an unrolled
implementation, it will increase the code size in a loop-based setting. To mitigate this concern,
an interesting tradeoff is to compute SR2 every two rounds so that only two different MixColumns
implementations are required. We refer to this version as semi-fixsliced whereas fully-fixsliced
refers to a total omission of the ShiftRows. A visual representation is provided in Figure 8.
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Figure 8: Overview of the AES internal state over 4 rounds according to different represen-
tations.

Table 1: Number of operations required to compute the AES linear layer over 4 rounds
when processing 2 blocks in parallel, for different representations. LOP, LSH and ROT refer
to logical operations, logical shifts and rotations, respectively.

Representation Ref

Number of operations per linear layer

Round 0 Round 1 Round 2 Round 3 Total over 4 rounds

LOP LSH ROT LOP LSH ROT LOP LSH ROT LOP LSH ROT LOP LSH ROT
∑

Classical bitsliced [SS16] 131 48 16 131 48 16 131 48 16 131 48 16 524 192 64 780

Fully-fixsliced 99 48 16 51 16 16 99 48 16 27 0 16 276 112 64 452

Semi-fixsliced

Ours

99 48 16 59 16 16 99 48 16 59 16 16 316 128 64 508

The Table 1 summarizes the number of operations required for the AES linear layer over
4 rounds, for the fully/semi-fixsliced representations. When considering the overall AES-128
algorithm, the linear layer (by processing 2 blocks at a time) requires 1907 and 1131 operations
for the classical bitsliced and fixsliced representations, respectively. While this corresponds to
an improvement of 41%, the gain might even be more important on some platforms since both
representations respectively include 1283 and 691 logical operations, which means an improvement
of 46% for this kind of instructions (which are the ones that really matter on ARM). Practical
implementations results on ARM Cortex-M and E31 RISC-V processors are reported in the next
section.

4.2 Application to the key expansion
As previously mentioned, another requirement of the fixslicing technique is to adapt the round
keys so that the bits are properly aligned to ensure the correctness of the AddRoundKey operation.
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Therefore, the key expansion of the fixsliced AES will inevitably bear the cost of some additional
computations. To the best of our knowledge, there is no result reported in the literature for a
32-bit implementation of the AES key schedule in a truly bitsliced manner. Actually, the results
reported in [SS16, Sto19] are obtained by computing the AES key schedule using a lookup table
(LUT) for the SubBytes before packing the round keys to match the bitsliced representation,
resulting in key-dependent memory accesses. However, mounting a cache-timing attack against
the key schedule seems unpractical since it is often computed only once per key and such attacks
require the key-related index to interact with known variable data over multiple samples. On the
other hand, when considering power side-channel attacks, countermeasures should not be only
integrated to the round function but also to the key schedule as it constitutes another attack
vector. This was actually highlighted by the CHES 2018 side-channel contest, where a masked
AES implementation was defeated due to a lack of masking in the key schedule [GJS19]. As a
result, we consider two variants: (1) LUT-based to provide a fast key schedule implementation
when power side-channel attacks are not a concern and to compare with previous works, (2) truly
bitsliced implementation that packs the master key at the beginning before operating on the
bitsliced representation through the entire key expansion. The main advantage of the second
variant will be to make the integration of Boolean masking easier.

For the LUT-based key schedule, the overhead introduced by fixslicing will be low since it
allows to compute SR−i for i ∈ {1, 2, 3} on the round keys in a non-bitsliced fashion. It is indeed
way more efficient as highlighted by Listing 4. Overall, fixslicing introduces on overhead of 8 logical
operations per SR−2 computation and 28 logical operations per SR−i computations for i ∈ {1, 3},
which corresponds to 28× 2 + 8 = 64 and 28× 2 = 56 additional operations per quadruple round
for the fully-fixsliced and semi-fixsliced representations, respectively. On the other hand, for a
truly bitsliced key expansion, one has to pay an extra cost of 104 logical operations plus 48 logical
shifts per SR−i computations for i ∈ {1, 3} and 40 logical operations plus 16 logical shifts per
SR−2 computations, as previously discussed.

1 /* rk[i] refers to the i-th column of the internal state */
2 t = (rk[0] ˆ rk[2]) & 0xff00ff00;
3 rk[0] = rk[0] ˆ t;
4 rk[2] = rk[2] ˆ t;
5 t = (rk[1] ˆ rk[3]) & 0xff00ff00;
6 rk[1] = rk[1] ˆ t;
7 rk[3] = rk[3] ˆ t;

Listing 4: C code to apply SR2 on a round key rk in a non-bitsliced fashion.

5 Implementation results
While the previous section has shown that fixsliced AES should outperform the current best results
on 32-bit platforms, practical implementations are necessary to support our claim. Although
the number of operations in the linear layer are reduced by 41% in theory, it may not lead to
the same result when put into practice. For instance, the number of general-purpose registers
on a given platform might be too small to contain all the working variables without paying
extra memory accesses, or additional cycles might be required to load the bitmasks used in the
byte-wise rotations. This section reports implementation results on ARM Cortex-M and E31
RISC-V processors for all the new representations introduced above, in order to practically assess
the relevance of fixslicing the AES. All implementations come in two variants: (1) fully unrolled to
achieve the best speed results and to compare with previous works, (2) non-unrolled with limited
impact on code size. Note that the second variant does not intend to achieve the smallest possible
implementation results, but to provide an efficient tradeoff which is more realistic with practical
deployments in mind. For our benchmarks, we simply measure the clock cycles spent by one
function call. Note that our AES encryption routines process two blocks in parallel without any
mode of operation. This choice was mainly motivated to make our implementations malleable in
the sense that they can be easily adapted to match any mode of operation. On the other hand, the
results reported in [SS16, Sto19] that we use for comparative purposes were obtained by averaging
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on the processing of 4 096 bytes in CTR mode. While our benchmarks do not measure the small
overhead due to the CTR mode (which consists in loading the plaintext, performing an XOR with
the keystream and storing the result back), the average over 256 blocks cancels the function call
overhead (which includes the cycles required to store/restore the context at the beginning and
the end of the function) because their AES implementation is fully inlined in the CTR encryption
function. All in all, we believe our comparison is fair and might even be slightly in favor of previous
works. Our implementations are publicly available at: https://github.com/aadomn/aes.

5.1 ARM Cortex-M
The ARM Cortex-M family refers to 32-bit ARM processors with different computational capa-
bilities. They are all composed of 16 32-bit registers from which two of them (i.e. the program
counter and the stack pointer) cannot be freely used, leaving 14 registers available for general
use. Bitwise and arithmetic operations (e.g. XOR, AND, OR) require 1 cycle while memory accesses
require n + 1 cycles, where n is the number of registers to load/store. A very appreciable fea-
ture of ARM processors is the inline barrel shifter, which allows combining a logical or circular
shift with an arithmetic or bitwise operation at zero cost. Our AES assembly implementations
have been benchmarked on Cortex-M3 and Cortex-M4 processors using the STM32L100C and
STM32F407VG development boards. Regarding the non-linear layer, the smallest known circuit of
the AES S-box consists of 113 gates [BP10, Cal16]. However, because it uses numerous temporary
variables, it is not possible to directly implement it using 113 instructions on ARM. Thanks
to an ARM-specific instruction scheduler [Sto16], Schwabe and Stoffelen were able to achieve a
bitsliced implementation of the SubBytes using 32 additional memory accesses (16 loads and 16
stores) [SS16]. As we did not manage to improve this result, our ARM implementations use the
exact same code for this part of the algorithm. When it comes to fixsliced MixColumns, one has
to manipulate bitmasks at some point in order to compute the byte-wise rotations. On ARM,
by combining the barrel shifter with the BIC instruction, which corresponds to an AND where a
NOT is applied to the second operand, it is possible to implement all four fixsliced MixColumns
with a single mask and without any memory access. Therefore, the only overhead is the setting
of the appropriate mask value in a register, which can be done in 2 cycles on ARM using the
MOVW and MOVT instructions. Results are reported in Table 2, where emboldened and italic fonts
refer to unrolled and non-unrolled variants, respectively. Note that for the non-unrolled bitsliced
implementations of the key schedule, we do not include the code size of the SubBytes and the
packing routine, as it is already included in the AES encryption benchmark.

5.2 RV32I
RISC-V is an open source standard instruction set architecture (ISA) free to use by anyone for
any application. The base ISA refers to the minimal set of capabilities any RISC-V core has
to implement. The base ISA for 32-bit and 64-bit architectures, namely RV32I and RV64I, are
now finalized while a 128-bit and a smaller 32-bit variants are still under development. Among
the 32 32-bit registers in RV32I, up to 31 of them are available for general use. This can be a
significant advantage over the ARM architecture for algorithms that require many temporary
variables. On the other hand, the base ISA is smaller with 21 arithmetic/logic instructions. Note
that while logical shifts are available, there is no rotate instruction. However it will be possible
to implement it thanks to the BitManip extension [Wol20], which is still under development at
time of writing. Indeed, the base ISA can be extended by means of standard extensions, but
it comes at a cost in terms of manufacturing and engineering. Cryptographic instruction set
extensions for RISC-V actually constitute an active research topic, especially for the AES block
cipher [Saa20, MNP+20]. Our RISC-V implementations rely on the RV32I base ISA, without the
use of any extension. For our benchmark, we used the HiFive1 Rev B development board which
includes a 32-bit E31 RISC-V core. Bear in mind that the base ISA does not specify the cycles
required for each instruction as it depends on the CPU design, therefore the results may vary
across RISC-V boards. Our benchmark results are reported in Table 3. Note that for some fully
unrolled implementations, the results are omitted because the code size was too large to fit the
2-way instruction cache of 16KiB, resulting in inconsistent measurements.

https://github.com/aadomn/aes
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Table 2: Implementation results on ARM Cortex-M3 and M4 for various bitsliced repre-
sentations of AES. For encryption routines, speed is expressed in cycles per block and the
RAM requirements for the round keys are enclosed in parentheses. Emboldened and italic
fonts refer to unrolled and non-unrolled implementations, respectively.

Representation Ref
Parallel Speed (cycles) ROM (bytes) RAM (bytes)

Instances M3 M4 Code Data In/Output Stack

AES-128 key expansion (LUT-based)

Bitsliced [SS16] 1 1 028 1 034 3 384 1 036 368 188

1 158 1 235 3 768 1 024 368 196
Semi-fixsliced 1

1 461 1 538 784 256 368 212

1 178 1 255 3 848 1 024 368 196
Fully-fixsliced 1

1 481 1 561 936 256 368 212

2 406 2 479 7 476 1 024 1 424 216
Barrel-shiftrows

Ours

1
2 877 2 956 684 256 1 424 216

AES-128 key expansion (fully bitsliced)

3 425 3 430 12 560 0 368 112
Semi-fixsliced 2

3 714 3 745 808 0 368 112

3 533 3 538 12 928 0 368 112
Fully-fixsliced

Ours

2
3 896 3 939 962 0 368 112

AES-128 encryption

Bitsliced [SS16] 2 1 617 1 618 12 120 12 32 (+352) 108

1 367 1 369 9 944 0 32 (+352) 112
Semi-fixsliced 2

1 439 1 480 1 936 0 32 (+352 ) 116

1 328 1 330 9 624 0 32 (+352) 112
Fully-fixsliced 2

1 393 1 414 2 556 0 32 (+352 ) 116

1 289 1 289 37 064 0 128 (+1 408) 236
Barrel-shiftrows

Ours

8
1 517 1 524 2 532 0 128 (+1 408 ) 244

AES-256 encryption

1 881 1 883 13 752 0 32 (+480) 112
Semi-fixsliced 2

1 981 2 038 1 976 0 32 (+480 ) 116

1 822 1 825 13 272 0 32 (+480) 112
Fully-fixsliced 2

1 912 1 937 2 588 0 32 (+480 ) 116

1 677 1 677 47 960 0 128 (+1 920) 236
Barrel-shiftrows

Ours

8
2 047 2 055 2 532 0 128 (+1 920 ) 244
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Table 3: Implementation results on E31 RISC-V processor for various bitsliced representa-
tions of AES. For encryption routines, speed is expressed in cycles per block and the RAM
requirements for the round keys are enclosed in parentheses. Emboldened and italic fonts
refer to unrolled and non-unrolled implementations, respectively.

Representation Ref
Parallel Speed ROM (bytes) RAM (bytes)

Instances (cycles) Code Data In/Output Stack

AES-128 key expansion (LUT-based)

Bitsliced [Sto19] 1 1 239 4 736 1024 368 20

1 435 5 024 1024 368 48
Semi-fixsliced 1

1 738 956 296 368 56

1 464 5 136 1024 368 48
Fully-fixsliced 1

1 750 1518 296 368 64

• • • • •
Barrel-shiftrows

Ours

1
3 880 1 996 296 1 424 64

AES-128 key expansion (fully bitsliced)

• • • • •
Semi-fixsliced 2

3 598 2 416 0 368 64

• • • • •
Fully-fixsliced

Ours

2
3 697 2 932 0 368 64

AES-128 encryption

Bitsliced [Sto19] 2 1 990 13 208 0 32 (+352) 64

1 620 12 344 0 32 (+352) 72
Semi-fixsliced 2

1 669 2 646 0 32 (+352) 72

1 563 11 924 0 32 (+352) 72
Fully-fixsliced 2

1 605 3 096 0 32 (+352 ) 72

• • • • •
Barrel-shiftrows

Ours

8
1 263 2 800 0 128 (+1 408 ) 192

AES-256 encryption

• • • • •
Semi-fixsliced 2

2 305 2 758 0 32 (+480) 72

• • • • •
Fully-fixsliced 2

2 205 3 172 0 32 (+480 ) 72

• • • • •
Barrel-shiftrows

Ours

8
1 691 2 800 0 128 (+1 920 ) 192
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5.3 Interpretation and discussions
Regarding the encryption process, the best performance results are achieved by using the barrel-
shiftrows representation. However, this requires to process 8 blocks in parallel and a significant
amount of RAM because each round key is spread over 32 32-bit words. Moreover, note that when
considering a non-unrolled implementation on ARM, it does not perform as fast as the fixsliced
implementations. On the other hand, the barrel-shiftrows representation fits very well the RV32I
architecture as expected, improving the previous results reported on this platform by 36% with 79
cpb. Note that among the 79 cpb, about 8 are spent to pack/unpack the data into the bitsliced
representation. Indeed, the packing routine introduces a significant overhead since there are
8× 128 = 1 024 bits to rearrange in order to match the barrel-shiftrows representation. Therefore,
results can be further improved by considering a version of AES that considers that the input data
is directly coming is the appropriate format. Since this is basically a matter of perspective, it does
not affect the security and this approach was actually adopted to enhance the software performance
of the GIFT-COFB authenticated encryption scheme [BCI+20]. Although the barrel-shiftrows
representation has considerable RAM requirements, it might be of interest on RV32I platforms
for use-cases that have to deal with a large amount of data (e.g. a firmware update). However,
it is not well suited for ARM and fixslicing is more relevant on this architecture with 83 cpb in
the unrolled setting, which is 17% faster than the classical bitsliced approach. The results are
also convincing on E31 with an improvement of 20%. Still, as already mentionned in Section 2.2,
the results previously reported that we are comparing to are not optimal since their ShiftRows
implementations can be further optimized. In order to fairly evaluate the advantages of fixslicing
over naive bitslicing in the case of AES, we give hereafter estimates on how naive bitsliced AES
implementations would benefit from the optimization described in Listing 2. Since the SWAPMOVE
technique can be implemented using 1 AND, 2 XOR and 2 shifts instructions, it means that the entire
ShiftRows can be computed using 64 1-cycle instructions on ARM on top of 4 cycles to load the
two corresponding masks, which is an improvement of 104− 68 = 36 cycles per round. All in all,
we expect naive bitsliced AES-128 it to run around 92 cpb which means that the fully-fixsliced
variant would be still faster by 10% on ARM Cortex-M. Regarding the RV32I architecture, the
ShiftRows optimization is more valuable since it allows to save (19 − 12) × 8 = 56 cycles per
round. Therefore, we expect naive bitsliced AES-128 to run at 106 cpb on E31 processors, which
decreases the gain of the fully-fixsliced variant from 20% to only 7% on this platform. However,
the barrel-shiftrows variant is still significantly faster. This highlights that in the case of AES,
fixslicing seems to be more valuable on platforms with rotate instructions.

Regarding the key schedule, as expected, our LUT-based implementations are all slower than
the one previously reported on both platforms. However, we think that it does not call into
question the relevance of our results. First, it may be possible to compute the key schedule only
once per key before storing all the round keys in (non-volatile) memory if there is enough space
available. Second, for each of our implementations, the encryption efficiency takes precedence
over the key expansion overhead even when considering only the minimum number of blocks to
process. Although there is no previous work of fully bitsliced key schedules on those platforms,
we do not think the classical bitsliced representation would be significantly advantaged since the
AES key expansion is intrinsically not well suited for bitslicing. Indeed, as reported in Tables 2
and 3, one can observe an overhead factor of about 3 in terms of performance when compared
to the LUT-based implementations. On the other hand, note that it allows us to expand two
different keys at the same time which means that the number of cycles is divided by a factor of
2 in this case. The ineffectiveness of the bitsliced key schedule is mainly due to the fact that,
as illustrated in Figure 2, the S-box is only applied to a single column which means that in a
bitsliced setting, the other three columns are updated for nothing. This is the reason why we do
not report results for a fully bitsliced key schedule to match the barrel-shiftrows representation, as
the overhead would have been too important. Therefore, it implies that when power side-channel
attacks constitute a threat, the barrel-shiftrows representation should not fit the needs since the
key schedule will be very costly, without even mentioning the RAM requirements.

5.4 Taking first-order masking into consideration
Since the introduction of Boolean masking as a generic countermeasure against power side-channel
attacks [CJRR99], many works have been undertaken to assess its impact when applied to the AES.
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The basic principle is to split each intermediate variable x into d+1 random shares, where d is called
the masking order, such that their sum equals the protected value (i.e. x = x0 ⊕ x1 ⊕ · · · ⊕ xd).
The higher the masking order, the more difficult it is to practically defeat a cryptographic
implementation. In this section, we only focus on first-order masking schemes.

Regarding software implementations on ARM, the best results reported in the literature shows
that one should expect a penalty factor of around 5 in terms of performance [BGRV15, SS16].
Note that this includes the generation of randomness, which is highly platform dependant and
can constitute a real burden for the most resource-constrained devices. To tackle this issue,
a first-order masking scheme that requires only two random bits per block has recently been
published [GSDM+19]. Their masking scheme requires that all bytes within the internal state are
masked by the following random value

m1 || m0 ⊕m1 || m0 ⊕m1 || m0 || m0 || m1 || m0 || m1 (4)

where m0, m1 refer to the two random bits and || refers to bit concatenation. On top of
reducing the amount of randomness to generate, this scheme allows to achieve very competitive
performance. Usually, first-order masked implementations slow down the runtime of the linear
layer by a factor 2 since it has to be computed on both shares. In this scheme however, because
the mask remains the same through the entire AES encryption, one has just to remask some
variables to ensure that no values with the same mask get combined. Moreover the SubBytes can
be efficiently implemented using a dedicated AND gate. All in all, their implementation runs at 212
cpb, which is the fastest first-order AES implementation reported on ARM Cortex-M4 at the time
of writing. Because this result was achieved using the classical bitsliced representation detailed
in Figure 4, we can easily adapt their implementation to match the fixsliced representation. We
run our benchmark on the ARM Cortex-M4 only as this is the only one that embeds a random
number generator among our three development boards. Note that this is the same board as the
one used in [GSDM+19]. Our benchmark results are reported in Table 4.

Table 4: First-order masked implementation results on ARM-Cortex M4 for various
bitsliced representations of AES-128. For encryption routines, speed is expressed in cycles
per block and the RAM requirements for the round keys are enclosed in parentheses.

Representation Ref
Parallel Random Speed ROM (bytes) RAM (bytes)

Instances (bits) (cycles) Code I/O Stack

AES-128 key expansion (fully bitsliced)

7 178 26 576 401 200
Semi-fixsliced 2 44

7 355 2 144 401 200
7 317 27 448 401 200

Fully-fixsliced 2 44
7 511 4 032 401 200

AES-128 encryption

Bitsliced [GSDM+19] 2 2 3 388 25 200 32 (+352) 188
3 055 23 754 32 (+401) 188

Semi-fixsliced 2 2
3 189 3 444 32 (+401) 192
2 989 22 086 32 (+401) 188

Fully-fixsliced
Ours

2 2
3 132 4 176 32 (+401) 192

Because 2 blocks are processed in parallel, 4 random bits are generated per encryption routine.
More precisely, the 3 32-bit masks M0, M1, M2 are defined in the following way:

M0 = m0 || m′0 || · · · || m0 || m′0
M1 = m1 || m′1 || · · · || m1 || m′1
M2 = m0 ⊕m1 || m′0 ⊕m′1 || · · · || m0 ⊕m1 || m′0 ⊕m′1

(5)

such that 2 different random bits are used for every block. For our masked key expansion, because
our implementations allow to pass two different keys as parameters, 4 random bits would be



Alexandre Adomnicai and Thomas Peyrin 17

sufficient as well. However, because our benchmarking platform generates 32-bit random words,
we decided to mask each round key with a different mask since it only requires to generate an
additional 32-bit random word. Therefore, our masked AES-128 key schedule requires 44 random
bits in total. Once again, the performance results for the key expansion are given by considering
that the same key is used to encrypt both blocks, and the results can be halved if two different
keys are used. Regarding encryption routines, we observe a performance gain of up to 12% thanks
to the fixslicing technique. Note however that since the round keys use different masks, we are
able to save some XOR instructions to do some remasking in the AddRoundKey. The fact that the
improvement is less significant for the first-order masked implementations is mainly due to the
masking scheme. Indeed, since each byte is masked using the same bits, the ShiftRows is only
computed once since there is no need to adjust the masks accordingly. Moreover the MixColumns
only bears the cost of some additional XOR instructions for remasking purposes. Therefore, we
expect our fixsliced representations to be even more of interest for other masking schemes that do
not rely on the same masks for all bytes and requires to compute the linear layer on both shares.

However, because the practical security of an implementation depends on numerous factors,
other first-order masked AES-128 implementation results reported in the literature may offer a
better security guarantee at the cost of a lower throughput. Therefore, benchmarks of masked
implementations should be considered with caution since security parameters have to be taken
into account. In the case of [GSDM+19], as pointed out by the authors, it is very likely that the
reuse of randomness in their masking scheme may introduce some weaknesses (e.g. an increase
of the signal-to-noise ratio) that could facilitate an attack in practice. We emphasize that our
goal was mainly to highlight that fixslicing allows us to improve the fastest masked AES-128
implementation reported at the time writing, even though the corresponding masking scheme has
a low impact on the linear layer.

6 Application to another AES-like design: Skinny
The lightweight family of tweakable block ciphers Skinny [BJK+16] has two block versions: 64-bit
and 128-bit. Hereafter, we only consider the case of Skinny-128 for consistency with our work on
AES described above. Like AES, the internal state of Skinny-128 consists of a 4× 4 square array
of bytes. One encryption round is composed of five operations in the following order: SubBytes,
AddConstants, AddRoundTweakey, ShiftRows and MixColumns as illustrated in Figure 9. While
Skinny shows outstanding results when implemented in hardware, the picture is more mixed
when it comes to software. Although its original publication reports bitsliced implementations of
Skinny-128-128 that reach 3.78 and 3.43 cpb on Haswell and Skylake architectures respectively,
they rely on the Intel AVX2 instruction set and require to process 64 blocks in parallel. To
date, it is not very clear how Skinny performs on 32-bit microcontrollers since the only dedicated
implementations publicly available are the ones from Weatherley [Wea17]. His implementations
are byte-sliced in the sense that each row of the internal state is represented by a 32-bit word.
Therefore, the ShiftRows and the MixColumns simply consist of 3 32-bit rotations and 3 exclusive-
ORs, respectively. On the downside, this representation requires to apply many masks and
shifts to compute the SubBytes in a constant-time manner. More precisely, it requires 28 logical
operations and 20 logical shifts per word. In the following, we consider a bitsliced approach and
detail the benefits of fixslicing in the case of Skinny-128.

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 9: The Skinny round function (from [Jea16])

Although the matrix used in the MixColumns is more lightweight than the one used in AES,
it does not particularly perform better when considering a bitsliced representation on 32-bit
platforms. For a representation similar to the one presented in Figure 4, each row will be spread
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over 8 slices which means that the MixColumns will require 8× 3 = 24 XOR instructions. Moreover,
each XOR requires a mask to be applied in order to ensure that the other rows are not involved in
the computation, and an additional circular shift is also needed to ensure proper alignment of
the operands. Overall, each MixColumns requires 48 logical operations and 24 circular shifts, no
matter if the bitsliced representation is row-wise or column-wise. Apart from the fact that the
rows are shifted to the right in Skinny, the ShiftRows is similar to the one defined in the AES and
remains the most expensive part of the linear layer as detailed in Section 2. In order to apply
the fixslicing technique, we fix all the slices through the entire algorithm by completely omitting
the ShiftRows as well as the row permutation at the end of the MixColumns. By relying on the
column-wise representation detailed in Figure 10, we are able to adjust the different MixColumns
implementations by simply adding some rotations and adjusting the masks. The Listing 6 shows
how to compute the MixColumns when the state is synchronized with the classical representation
(i.e. F = S), whereas the Listing 5 considers that F = SR−1(S). For the two other functions, the
same principle applies and the only differences lie in the masks and the rotation values.
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R7 b31 b′31 b63 b′63 b95 b′95 b127 b′127 · · · · · · b7 b′7 b39 b′39 b71 b′71 b103 b′103

Figure 10: Bitsliced representation for Skinny-128 using 8 32-bit registers R0, · · · , R7 to
process 2 blocks b0, b1 in parallel where bi

j refers to the i-th bit of the j-th block.

1 t = r & 0x03030303;
2 r = r ˆ ROR(t, 30);
3 t = r & 0x30303030;
4 r = r ˆ ROR(t, 4);
5 t = r & 0x03030303;
6 r = r ˆ ROR(t, 26);

Listing 5: C code to compute the
Skinny-128 MixColumns on a slice r
according to the representation in
Figure 10 when F = S.

1 t = ROR(r, 24) & 0x0c0c0c0c;
2 r = r ˆ ROR(t, 30);
3 t = ROR(r, 16) & 0xc0c0c0c0;
4 r = r ˆ ROR(t, 4);
5 t = ROR(r, 8) & 0x0c0c0c0c;
6 r = r ˆ ROR(t, 2);

Listing 6: C code to compute the
Skinny-128 MixColumns on a slice r
according to the representation in
Figure 10 when F = SR−1(S).

Therefore, the overhead on the MixColumns introduced by fixslicing is less important in the
case of Skinny with only 17 circular shifts over 4 rounds. On ARM, no extra cycles are spent for
the rotations and therefore the gain directly corresponds to the cost of the ShiftRows, namely
104 cycles per round. Note that unlike for the AES, a full resynchronization of state occurs every
8 rounds instead of 4, since we also omit the row permutation in the MixColumns. While this is
not an issue for the linear layer, it requires 8 different SubBytes implementations to avoid slice
renaming. Instead of relying on octuple rounds which would consume a considerable amount of
code size, we suggest to rename the slices every four rounds. After 4 rounds, one has simply to
swap slices 0 with 1, 2 with 3, 4 with 7, and finally 5 with 6. This can be done using 12 cycles,
resulting in an overhead of 3 cycles per round. Our implementations are based on quadruple
rounds thanks to this tradeoff. Results for fully-fixsliced implementations of the Skinny-128 family
of tweakable block ciphers on ARM-Cortex-M3/4 are reported in Table 5.

Note that we report two implementation versions for each algorithm: one that operates on a
single block at a time and another one that processes 2 blocks in parallel. The first variant is
possible thanks to some symmetry in the Skinny-128 S-box which allows an efficient computation
in a bitsliced manner using only 4 slices instead of 8. More details are given in Appendix A.
For comparison purposes, we benchmark the byte-sliced implementations of Skinny-128 that are
publicly available. Note however that they are written in C while ours are written in assembly.
One can see that our fully-bitsliced implementations are up to 4 and 2.5 times faster when
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processing 2 and 1 block at a time, respectively. Still, the bitsliced approach increases considerably
the amount of RAM to store all the round tweakeys. This could be addressed by computing the
tweakey schedule on the fly, at the expense of performance degradation.

Table 5: Implementation results on ARM Cortex-M3 and M4 for fully-fixsliced implemen-
tations of the Skinny-128 family of tweakable block ciphers. Speed is expressed in cycles
per block and the RAM requirements for the round keys are enclosed in parentheses.

Representation Ref
Parallel Speed (cycles) Code size RAM (bytes)

Blocks M3 M4 (bytes) I/O Stack

Skinny-128-128 encryption

Byte-sliced [Wea17] 1 8 187 8 237 820 16 (+320) 36

Fully-fixsliced 1 3 055 3 066 1 504 16 (+640 ) 60

Fully-fixsliced
Ours

2 1 862 1 872 1 620 32 (+1 280 ) 60

Skinny-128-256 encryption

Byte-sliced [Wea17] 1 9 809 9 867 820 16 (+384) 36

Fully-fixsliced 1 3 639 3 654 1 520 16 (+768 ) 60

Fully-fixsliced
Ours

2 2 214 2 224 1 628 32 (+1 536 ) 60

Skinny-128-384 encryption

Byte-sliced [Wea17] 1 11 433 11 499 820 16 (+448) 36

Fully-fixsliced 1 4 223 4 238 1 536 16 (+896 ) 60

Fully-fixsliced
Ours

2 2 566 2 579 1 636 32 (+1 792 ) 60

7 Conclusion
In this article, we pushed bitsliced AES to its limits on 32-bit platforms by minimizing the cost of
the ShiftRows operation. To do so, we first proposed a new bitsliced representation called barrel-
shiftrows that allows to compute the ShiftRows using only 32-bit rotations without impacting the
efficiency of the MixColumns. Thanks to this representation, we report that it is possible to reach
81 and 79 cpb for AES-128 (by assuming pre-computed round keys) on ARM Cortex-M and E31
RISC-V processors respectively, smashing the previous results on those platforms by 20% and 36%.
On the downside, this representation requires to process 8 blocks in parallel and 1408 bytes to
store all the AES-128 pre-computed round keys. In order to come up with an implementation that
is more appropriate to resource-constrained devices, we applied the concept of fixslicing to the
AES and shown that a total omission of the ShiftRows allows to reduce the number of operations
spent by the linear layer over 4 rounds by 41%. Because completely omitting the ShiftRows
requires 4 different implementations of the MixColumns, we proposed the semi-fixsliced variant
that computes the ShiftRows every 2 rounds, allowing many implementation tradeoffs. Our 32-bit
fixsliced AES implementations operate on 2 blocks at a time and require 352 bytes to store all
the pre-computed round keys. Overall, we reported that fixsliced AES allows to reach 83 and 98
cpb on ARM Cortex-M and E31 respectively, improving the previous results on those platforms
by 17% and 20%. Although the naive bitsliced results previously reported are not optimal due
to their ShiftRows implementation, we introduced estimates to show that our implementations
should remain the fastest on those platforms. We also applied fixslicing to the fastest first-order
masked AES implementation reported in the literature on ARM Cortex-M4 and improved its
performance by 12%. As future work, it would be interesting to investigate the benefits of fixsliced
AES for other masking schemes, especially at higher orders.
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Finally, we demonstrated the genericity of fixslicing in the case of AES-like ciphers by illustrating
its use on the Skinny-128 family of tweakable block ciphers, enhancing the performance up to a factor
of 4 when compared to the previous implementations reported on 32-bit microcontrollers. More
generally, it is very likely that the fixslicing technique might be of interest for other constructions.
While this work only focused on 32-bit platforms, fixslicing might lead to improvements on other
architectures as well. For instance, even for CPUs featuring particular vector shuffle instructions
(e.g. Intel’s SSSE3 pshufb or ARM’s NEON vtbl), adopting a fixsliced approach by using those
instructions on temporary variables only (so that the slices remain fixed) could allow saving some
instructions as soon as a resynchronization occurs.
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A Fixslicing a single block for Skinny-128
Since the 8-bit S-box used in Skinny-128 is built from the composition of two 4-bit Sboxes, one can
remark some symmetry in its definition. For instance, as illustrated in Figure 11, the first four
gates can be split in two groups that can be computed in parallel (i.e. ¬(b0 ∧ b1) and b2 ⊕ b3 on
one hand, and ¬(b4 ∧ b5) and b6 ⊕ b7 on the other hand). From an implementation point of view,
it means that we can compute two gates instead of four by dividing each byte in two nibbles and
to rearrange them in a column-wise manner within the slices. However, some bit permutations are
required between the different layers. The Figure 12 illustrates a way to compute the permutations
according to the new representation, so that the bits are always correctly arranged within the
nibbles to compute the gates in parallel. Note that one does not need to implement the last
permutation as it simply consists in swapping the slices, which is free from a bitslicing point of
view.

b0 b1 b2 b3 b4 b5 b6 b7

b2 b3 b7 b4 b6 b1 b0 b5

Figure 11: The 8-bit Sbox used in Skinny-128 (from [Jea16])

According to our representation, the bit permutations can be simply implemented by means of
bit swaps between the nibbles, which can be efficiently computed thanks to the SWAPMOVE routine
defined in Listing 7. As a result, implementing the Sbox in a nibble-wise bitsliced manner allow
to divide the number of gates by a factor 2, excluding the cost of 6 calls to the SWAPMOVE routine,
which is about 6× 4 = 24 cycles on ARM. While it does not seem really worth it at a first glance,
when consdering an entire 128-bit input block, our new representation now fits into 4 32-bit words
instead of 8 compared to the above mentioned bitsliced implementation. This allows to compute
twice faster the addition of the round tweakeys and the MixColumns, saving 4 exclusive-OR (plus
4 load from memory) and 6× 4 = 24 operations per round, respectively. All in all, the extra cost
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Figure 12: The bit permutations during the nibble-wise S-box computation.

from the SWAPMOVE is cancelled by the save on the MixColumns, resulting in a twice less expensive
S-box and AddRoundTweakey operations. Moreover, note that our trick is of great interest when
considering countermeasures against power side-channel attacks as it reduces by half the number
of non-linear gates, which are costly to secure.

1 /* swaps the bits masked by m in b with the bits masked by m « n in a */
2 t = (b ˆ (a » n)) & m;
3 b = b ˆ t;
4 a = a ˆ (t « n);

Listing 7: C code for the SWAPMOVE routine.
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