
1

High-Speed FPGA Implementation of the SIKE
Based on An Ultra-Low-Latency Modular Multiplier

Jing Tian, Bo Wu, and Zhongfeng Wang, Fellow, IEEE

Abstract—The supersingular isogeny key encapsulation (SIKE)
protocol, as one of the post-quantum protocol candidates, is
widely regarded as the best alternative for curve-based cryp-
tography. However, the long latency, caused by the serial large-
degree isogeny computation which is dominated by modular
multiplications, has made it hard for practical applications. In
this paper, we present a fast FPGA implementation for the SIKE
by incorporating algorithmic transformations and architectural
optimizations. Firstly, we introduce a novel data representation,
which can facilitate faster and higher-parallel field arithmetic
computing than prior arts. Secondly, an extremely low-latency
modular multiplier is devised based on the new algorithm by fully
parallelizing and highly optimizing the small-size multipliers and
reduction modules. Thirdly, a compact control logic is developed
based on the benchmark provided in the newest SIKE library,
well fitting our arithmetic logic unit (ALU). Finally, we code the
proposed architectures using the Verilog language and integrate
them into the SIKE library. The implementation results on a
Xilinx Virtex-7 FPGA show that for the SIKEp751, our design
only costs 13.2 ms with a frequency of 138.9 MHz, about 2x faster
than the state-of-the-art. Particularly, the modular multiplier
merely needs 16 clock cycles, reducing the delay by nearly one
order of magnitude with a small factor of increase in hardware
resource.

Index Terms—Modular multiplication, supersingular isogeny
key encapsulation (SIKE), elliptic curve cryptography (ECC),
post-quantum cryptography (PQC), hardware implementation,
FPGA.

I. INTRODUCTION

IN recent years, much progress has been made in quan-
tum computers [1], [2]. Many cryptography systems are

threatened by quantum computers. Notably, the commonly
used public-key cryptographic algorithms like the Rivest-
Shamir-Adleman (RSA) [3] and elliptic curve cryptography
(ECC) [4] which are protected by the difficulty to factor
extremely large integers and to perform elliptic curve discrete
logarithms, respectively, could be easily solved by using the
Shor’s algorithm [5] with a powerful quantum computer.
Although it is unclear when such computers will be invented,
these achievements have indeed promoted the development
of post-quantum cryptography (PQC) which are resistant to
classical and quantum computers’ attacks. From 2017, the
National Insititute of Standards and Technology (NIST) [6]
has hosted three rounds of PQC standardization process and
the supersingular isogeny key encapsulation (SIKE) protocol
[7] still exists in the latest announced candidates.

The first two authors contributed equally to this work. (Corresponding
authors: Zhongfeng Wang.) The authors all are with the School of Electronic
Science and Engineering, Nanjing University, Nanjing 210023, China (E-mail:
tianjing@nju.edu.cn, qaqwubo@foxmail.com, zfwang@nju.edu.cn)

The SIKE is developed from the Supersingular Isogeny
Diffie-Hellman(SIDH) key exchange protocol. In 2011, Jao
and De Feo proposed an isogeny key exchange algorithm,
the SIDH, based on a supersingular elliptic curve to resist
the quantum attack based on the difficulty to find isogenies
between supersingular elliptic curves [8]. This protocol has
the characteristics of ECC’s public key and secret key with
small sizes and the advantages of perfect forward secrecy.
However, the high computational complexity forms the bottle-
neck in practical applications. Usually, large-degree isogeny
computations are needed to meet the security requirement.
The long latency is caused by the considerable and serial
field computations. Additionally, several works have recently
reported that the SIDH is threatened by some side-channel
attacks [9]–[11]. As an improved version of the SIDH, the
SIKE protocol is proposed to provide reliable security not only
in the post-quantum era but also in the current environment.
Similarly, the SIKE also suffers from large computational
complexity.

In order to alleviate this problem, many researches have
been done to speed up the SIDH/SIKE protocol based on soft-
ware platform [12]–[21] or hardware platform [22]–[29]. On
the software side, the first version of software implementation
for SIDH was done by Jao using the GMP library in 2011
[12]. The latest version provided in [18] is recognized as the
fastest software implementation. On the hardware side, many
improvements have been made based on FPGA. Koziel et al.
have done much progress for the SIDH and SIKE protocols
using the high-radix Montgomery multiplication algorithm
[30]. In 2016, they proposed the first architecture of the SIDH
protocol in [24]. In 2020, their latest version in [29] dropped
the time of SIKE protocol from 33.4 ms to 25.5 ms over the
NIST security level 5.

It should be noted that in general cases, the Montgomery
reduction algorithm [31] has better performance than others
and its variants are widely used in SIDH/SIKE protocol. In
fact, the special form of the supersingular elliptic curve can
be utilized for accelerating the modular multiplication. The
first of such work was proposed by Karmarkar et al. in [32],
in which an efficient modular multiplication (EFFM) algorithm
using an unconventional radix is presented with the modulus
form of p = 2 · 2eAbeB − 1 where eA and eB are even
integers. Based on the EFFM, many studies [22], [33]–[37]
have been made to extend the limitation of the form and
simplify the field multiplication algorithm. In our latest work
[37], the limitation for the prime form is removed and a fast
modular multiplication algorithm is provided based on a new
data representation. Especially, for the parameters of the SIKE

2

provided in the documentation [18], the proposed modular
multiplication performs faster than the state-of-the-art. Similar
conclusions are also drawn in other field arithmetic operations.
Notably, these new algorithms are very easily to be processed
in parallel over an FPGA platform.

In this paper, we firstly review and conclude the promising
field arithmetic algorithms based on the new data representa-
tion. Then, according to these algorithms, we propose an ultra-
low-latency field arithmetic logic unit (FALU), including a
modular multiplier, a modular adder, a modular subtractor, and
an inverse domain conversion module. Especially the modular
multiplier is greatly improved compared to the previous works,
by fully parallelizing and highly optimizing the small-size
multipliers and reduction modules. It should be noted that
those three modular arithmetic modules all are feed-forward
architectures and can be extensively pipelined, which greatly
simplifies the control logic. As the data conversion happens
only a few times, the conversion module is designed in
an iteratively computing way to save the area. Additionally,
a compact control logic is developed based on the FPGA
implementation provided in the newest SIKE library [18], well
fitting the proposed arithmetic logic unit (ALU). We code the
new ALU in Verilog language, generate the consistent instruc-
tion for the control logic in MATLAB script, and integrate
them into the SIKE library. Then, a complete constant-time
SIKE design is obtained. The correctness is verified by using
the original testbench over the Xilinx Vivado 2018.2 EDA
platform. The implementation results on a Xilinx Virtex-7
FPGA show that for the SIKEp751, our SIKE design only
needs 13.2 ms with a frequency of 138.9 MHz, about 2x faster
than the state-of-the-art. Particularly, the modular multiplier
merely costs 16 clock cycles, reducing the latency by close to
one order of magnitude in that case. When being implemented
on a Kintex UltraScale+, the new SIKE only costs 8.9 ms at
a frequency of 200.0 MHz.

The rest of the paper is organized as follows. Section II
firstly gives a brief introduction of SIDH protocol and SIKE
protocol. Subsequently, the basic field arithmetic operations
are summarized based on a novel data representation, where
the modular addition, modular subtraction, modular multipli-
cation, and inverse domain conversion algorithms are detailed.
Section III shows the proposed hardware architectures for
those algorithms. The used top-level architecture and the
modified instruction scheduling are presented in Section IV. In
Section V, the FPGA implementation results are provided and
compared with previous works. Finally, Section VI concludes
this paper.

II. PRELIMINARIES

In this section, we will firstly review the SIDH and SIKE
protocols, and then detail the basic arithmetic operations over
field Fp based on a novel data representation.

A. Supersingular Isogeny Diffe-Hellman

The supersingular isogeny Diffie-Hellman (SIDH) key-
exchange [8] is designed for two parties (saying, Alice and
Bob), who want to communicate with each other secretly over

Algorithm 1: The SIDH key-exchange protocol [8].
Input: Public parameters: E/Fp2 , PA, QA, PB , and QB .

1: Key Generation: Bob generates his secret key and
public key and sends the public key to Alice.
skB = random{0, 1, ..., 2blog2 3eB c − 1}
pkB = isogenB(skB)

2: Encryption: Alice encrypts the plaintext with the shared
secret key and sends her public key and the ciphertext to
Bob.
skA = random{0, 1, ..., 2eA − 1}
pkA = isogenA(skA)
j = isoexB(pkB , skA)
ss = H(j,M)
cA = ss⊕mA, where mA ∈ {0, 1}M

3: Decryption: Bob decrypts the ciphertext with the shared
secret key.
j = isoexB(pkA, skB)
ss = H(j,M)
mA = ss⊕ cA

Output: Bob’s received message mA.

a public communication environment. Alice and Bob both
obtain their shared secret key by using their own secret key
and the other party’s public key. The shared secret key is
the j-invariant of two isomorphic supersingular elliptic curves
generated based on a public supersingular elliptic curve E.
Such curve is usually set as the Montgomery curve with the
form of E/Fp2 : Dy2 = x3 + Cx2 + x, where C,D ∈ Fp2 ,
D(C2 − 4) 6= 0, and the prime p = f · aeAbeB ± 1.

The main process of the SIDH is shown in Alg. 1. As-
sume that Bob receives messages from Alice. {PA, QA} and
{PB , QB} are two independent points on the public curve
E/Fp2 , and satisfy < PA, QA >= E[aeA] and < PB , QB >=
E[aeB]. Firstly, Bob generates his secret key and public key
with the corresponding parameters. Bob’s secret key skB is
chosen from the keyspace {0, 1, ..., 2blog2 3eB c − 1} and his
public key is gotten by using the isogenB function which
can be referred to in the documentation of [18]. And then
Bob sends his public key to Alice. Secondly, Alice generates
her secret key and public key in the same way as Bob.
With her own secret key skA and Bob’s public key pkB , she
can calculate their shared secret key j by function isoexA.
Assuming the dimension of the plaintext space is M , the j-
invariant is encrypted by the Hash function with a bit width of
M . The plaintext mA is encrypted as cA by using the output
of the Hash function. Finally, to decrypt the cA, Bob gets their
shared secret key j with the isoexB function. After encrypting
j by the Hash function, he obtains the plaintext mA by using
ss.

B. Supersingular Isogeny Key Encapsulation

We know that the SIDH can defend from the quantum
computer’s attack. However, this protocol is proved unable
to resist some side-channel attacks [9]–[11]. The SIKE is just
proposed to make up this flaw, by using the encapsulation
mechanism.

3

Algorithm 2: The SIKE protocol [18].
Input: Public parameters: E/Fp2 , PA, QA, PB , and QB .

1: Key Generation: Bob generates his secret key and
public key and sends the public key to Alice.
skB = random{0, 1, ..., 2blog2 3eB c − 1}
pkB = isogenB(skB)

2: Encapsulation:Alice encrypts her plaintext as cA and
em. And em becomes an another shared secret key.
skA = H({mA, pkB}, eA)
pkA = isogenA(skA)
j = isoexA(pkB , skA)
ss = H(j,M)
cA = ss⊕mA, where mA ∈ {0, 1}M
em = H({mA, pkA, cA},K)

3: Decapsulation: Bob decrypts the ciphertext and judges
whether the message is em or em′.
j = isoexB(pkA, skB)
ss = H(j,M)
m′A = ss⊕ cA
sk′A = H({m′A, pkB}, eA)
pk′A = isogenB(sk

′
A)

fmB ∈ {0, 1}M

emA =

{
H({m′A, pkA, cA},K) (pk′A = pkA)

H({fmB , pkA, cA},K) (pk′A 6= pkA)
Output: Bob’s calculated message emA.

Similar to the SIDH, we divide the SIKE protocol into three
steps: key generation, encapsulation, and decapsulation, shown
in Alg. 2. In the first step, Bob generates his secret key and
public key by using the function isogenB . Then he sends out
the public key pkB to Alice. In the encapsulation step, Alice
gets her secret key skA by hashing her plaintext cascaded
with Bob’s public key. Her public key and shared secret key
are computed in the same way as those in the SIDH. Then
she sends to Bob her public key and her ciphertexts cA. At
the same time, she computes a new shared secret key as em
with a bit width of K which corresponds to the number of bits
of classical security. In the decapsulation step, Bob computes
the original shared secret key and then calculates the plaintext
m′A. With the computed plaintext and his public key, Bob
can recover Alice’s secret key and public key. Meanwhile, he
generates a random fake message of fmB . Finally, he chooses
the output by judging whether pk′A is equal to pkA.

In the SIKE library, four sets of parameters have been
provided, namely, SIKEp434, SIKEp503, SIKEp610, and
SIKEp751. The corresponding NIST security levels are 1
(AES128), 2 (SHA256), 3 (AES192), and 5 (AES256), re-
spectively, which are the newest judgments corrected by
Costello et al. in [38]. All of those primes have the form of
p = 2eA3eB − 1, which is considered in our field arithmetic
computing in this paper.

C. Field Arithmetic Operations for SIKE Based on a New
Data Representation

By breaking down the computations of the SIKE protocol,
we can find that the five large-degree isogeny operations,

including the isogen and isoex functions, dominate the total
computation. According to the Vélu’s formula [39], in practi-
cal computing, a large-degree isogeny is required to be divided
into many data-dependent small-degree isogenies which are
made up of finite-field arithmetic operations. A supersingular
isogeny elliptic curve is usually considered over a quadratic
finite field Fp2 . The arithmetic operations over Fp2 can be
decomposed into operations over Fp, including the modular
addition, modular subtraction, modular negation, modular mul-
tiplication, modular division, and modular inversion.

As introduced in the fourth paragraph of Introduction Sec-
tion, our previous work [37] presents very efficient field arith-
metic algorithms for the SIKE over a new data representation.
The key idea of that work is to replace a large modulus p with a
small modulus R, which can benefit the modular multiplication
a lot. The prime p of the SIKE is rewritten as:

p = 2eA3eB − 1

= 2−α3−β2eA+α3eB+β − 1

= f ′ ·Rn − 1,

(1)

where f ′ = 2−α3−β , R = 2
eA+α

n 3
eB+β

n , and the parameters
α and β are used to make eA + α and eB + β divisible by a
larger n. With this form, a field number, saying A ∈ Fp, can
be directly represented as:

A =

n−1∑
i=0

ai ·Ri, (2)

where ai ∈ [0, R−1] for 0 ≤ i < n−1 and an−1 ∈ [0, f ′R−
1].

Generally, the basic field arithmetic operations can be
completed by three operations, namely, the modular addi-
tion, subtraction, and multiplication. Note that the first two
operations are much simpler than the last one. Therefore,
Optimizing the modular multiplication can do much favor
to the efficiency of the SIKE protocol. We will detail the
modular addition, subtraction, and multiplication operations
based on the new data representation in the following. The
inverse domain conversion algorithm named U2N in [37] will
also be presented.

1) Modular Addition: Consider two field operands A,B ∈
Fp represented in Eq. (2). The modular addition computing
is split into two steps shown in Alg. 3. In the first step, the
coefficients ai and bi for 0 ≤ i < n are added as ci = ai +
bi. In this way, one N -bit addition is converted into n w-bit
additions, where N is the bit width of p, w is the bit width of
R, and w = dN/ne. Since there are no carries in the adjacent
terms, the n additions can be computed in parallel, which
can reduce the critical path and improve the parallelism in
hardware. The second step is to make the coefficients ci in the
standard range as shown in Steps 4-13. If ci for 0 ≤ i < n−1
are larger than R−1, they will be reduced by R and ci+1 will
be added by one. If an−1 + bn−1 > f ′ · R − 1, cn−1 will be
reduced by f ′ ·R and c0 is added by one. It should be noted
that a lazy reduction is used for c0 to simplify the reduction,
where c0 ranges in [0, R].

4

Algorithm 3: Modular Addition.

Input: A =
n−1∑
i=0

ai ·Ri, B =
n−1∑
i=0

bi ·Ri, where

ai, bi ∈ [0, R− 1] for i = 0, ..., n− 2 and
an−1, bn−1 ∈ [0, f ′ ·R− 1].

1: The first step:

2: C = A+B =
n−1∑
i=0

(ai + bi) ·Ri =
n−1∑
i=0

ci ·Ri

3: The second step:
4: for i = 0→ n− 2 do
5: if ci ≥ R then
6: ci = ci −R
7: ci+1 = ci+1 + 1
8: end if
9: end for

10: if cn−1 ≥ f ′ ·R then
11: cn−1 = cn−1 − f ′ ·R
12: c0 = c0 + 1
13: end if
Output: C =

n−1∑
i=0

ci ·Ri ≡ A+B mod p

2) Modular Subtraction: Similar to the modular addition,
the modular subtraction is also split into two steps. The first
step directly uses n w-bit subtractions for coefficients. The
second step is to make c0, ..., cn−1 lie in the right ranges. The
detail for the modular subtraction is showed in Alg. 4, where
the output c0 is also applied with the lazy reduction.

Algorithm 4: Modular Subtraction.

Input: A =
n−1∑
i=0

ai ·Ri, B =
n−1∑
i=0

bi ·Ri,ai, bi ∈ [0, R− 1]

where i = 0, ..., n− 2 and an−1, bn−1 ∈ [0, f ′ ·R− 1].
1: The first step:

2: C = A−B =
n−1∑
i=0

(ai − bi) ·Ri =
n−1∑
i=0

ci ·Ri

3: The second step:
4: if c0 ≤ 0 then
5: c0 = c0 +R
6: c1 = c1 − 1
7: end if
8: for i = 1→ n− 2 do
9: if ci < 0 then

10: ci = ci +R
11: ci+1 = ci+1 − 1
12: end if
13: end for
14: if cn−1 < 0 then
15: cn−1 = cn−1 + f ′ ·R
16: c0 = c0 − 1
17: end if
Output: C =

n−1∑
i=0

ci ·Ri ≡ A−B mod p

3) Modular Multiplication: Assume two field operands
A,B ∈ Fp represented in Eq. (2). According to [37], the

modular multiplication can be computed as:

C ≡ A×B =

n−1∑
i=0

ai ·Ri ×
n−1∑
i=0

bi ·Ri (3)

≡ (

n−1∑
j=0

ajbn−j−1) ·Rn−1 +

n−2∑
i=0

(

i∑
j=0

ajbi−j +

n−1∑
j=i+1

ajbi−j+n · 2α3β) ·Ri

≡
n−1∑
i=0

ci ·Ri mod p,

where cj ∈ [0, R − 1] for 0 < j < n − 1, c0 ∈ [0, R], and
cn−1 ∈ [0, f ′R−1]. the modular multiplication is also divided
into two parts: the integer multiplication part and the reduction
part. In the equation, the second step is defined as the integer
multiplication part and the last step is the standard output after
the reduction part.

In the integer multiplication part, the original N × N
multiplication is replaced by n2 ai·bj where i, j ∈ 0, ..., n− 1.
Since there are no carries in the adjacent orders, the n2

small multiplications can be computed in parallel and the one-
level Karatsuba-like optimization can be easily applied to the
coefficient multiplication combinations, both of which are very
friendly in fast hardware implementation.

The reduction part is to make the raw coefficients into
standard ranges. According to [37], n + 1 improved Barrett
reduction (IBR) functions are needed with a modulus of R.
The IBR function is shown in Alg. 5, The parameter γ is
an arbitrary integer to make the range of c covered and
usually satisfies γ � w in the adopted n + 1 IBR functions.
The quotient q and remainder r can be obtained with about
1.75 w × w multiplications. Since the quotient is added to
the next order, after using the IBR function, the updated
coefficients are finally reduced by using some additions and
subtractions, which can be referred to as the second step of
the modular addition.

Algorithm 5: The improved Barrett reduction (IBR).

Input: An coefficient c ∈ [0, 22w+γ); the modulus
R = 2

eA+α

n 3
eB+β

n , where w1 = eA+α
n ,

w2 = dlog2(3
eB+β

n)e, w1 + w2 = w, R′ = 3
eB+β

n ;
the pre-computed constant λ = b22w+γ+1/Rc.

1: t = bc/2w1c, s = c mod 2w1

2: q = b
b t

2w2−2 c·λ
2w+γ+3 c

3: t1 = (q mod 2w2+1) ·R′
4: r = ((t mod 2w2+1)− (t1 mod 2w2+1)) mod 2w2+1

5: if r ≥ R′ then
6: r = r −R′, q = q + 1
7: end if
8: r = r · 2w1 + s

Output: The quotient q = bc/Rc, and the remainder
r = c mod R.

5

4) Inverse Domain Conversion Algorithm: Since in the
hardware design, the input data are transformed into the new
representation in advance and the coefficients are saved in
the storage, there is no need to design a forward converter.
Therefore, we only provide the inverse domain conversion
algorithm here, also named U2N as shown in Alg. 6. The
number A =

∑n−1
i=0 ai · Ri with the standard ranges (except

a0 which has a lazy reduction) is the output from a field
algorithm aforementioned. In the U2N algorithm, recursive
multiplication and addition operations from higher orders to
lower orders are adopted to calculate the output. The final
result is adjusted in terms of the used lazy reduction.

Algorithm 6: From unconventional radix back to normal
(U2N).

Input: An operand A =
n−1∑
j=0

aj ·Rj , the radix R, and the

modulus p = f ′Rn − 1.
1: C = an−1
2: for j ← n− 2 to 0 do
3: C ← C ·R+ aj
4: end for
5: If C = p, set C to 0.
6: If C = p+ 1, set C to 1.

Output: The result C ∈ Fp = A mod p.

III. PROPOSED FIELD ARITHMETIC LOGIC UNIT

The proposed field arithmetic logic unit (FALU) is shown in
Fig. 1, including four submodules: Inverse Domain Conversion
Module (IDCM), Modular Subtractor (MS), Modular Adder
(MA), and Modular Multiplier (MM). A multiplexer in the
right is to select the output from one of the four submodules
in different conditions controlled by the signal sel strl. More
details about these submodules are shown below.

mul_add top_IBR
post_pro

cess

Modular Multiplier
a_in

b_in

Inverse Domain Conversion Module
a_in

inv_rst

Modular Adder

Modular Subtractor

a_in

b_in

a_in

b_in

res_sub

res_add

res_inv

res_mult

sel_ctrl

010

001

100

011

0
000

res_out

Fig. 1. The proposed FALU architecture.

A. Inverse Domain Conversion Module
The IDCM is to convert the data from the new format back

to the original format (i.e., the field elements), which is usually

used for a Hash input after an isogeny computation. We have
carefully analyzed the algorithms of the modular addition,
subtraction, and multiplication and found that the case where
the input number A of Alg. 6 equals p+1 would never happen
though a0 might equal R. Therefore, we only need to consider
the situation of A = p in the IDCM.

Algorithm 7: The inverse domain conversion algorithm
(IDCA) for hardware efficiency.

Input: An operand A =
n−1∑
i=0

ai ·Ri, where 0 ≤ a0 ≤ R,

0 ≤ a1, ..., an−2 < R, 0 ≤ an−1 < f ′ ·R, where
R = 2

eA+α

n 3
eB+β

n ; w = log2R

1: S1 = an−1, f1 =

{
1, (an−1 = f ′R− 1)

0, (an−1 6= f ′R− 1)
2: for i = 1→ n− 1 do
3: for j = 1→ i do
4: if j == 1 then
5: t = an−1−i
6: else
7: t = D
8: end if
9: P = Sj ×R+ t, Sj = P mod 2w, D = P % 2w

10: if j == i then
11: Sj+1 = D
12: end if
13: end for

14: f2 =

{
1, (an−1−i = R− 1)

0, (an−1−i 6= R− 1)
, f1 = f1&f2

15: end for

16: C =

{
{Sn, Sn−1, ..., S1}, (f1 = 0)

0, (f1 = 1)
Output: Field element C ∈ Fp.

× ＋ 4 ＝ 1 :

: × ＋ ＝ 2 2

× ＋ ＝ 4 3 3: 2 1

...

1 × ＋ 2 ＝ 2 1 :

1 × ＋ 3 ＝ 1 :

: × ＋ ＝ 3 2 2 1

1

i=1
j=1

i=2
j=1

i=2
j=2

i=3
j=1

i=3
j=2

i=3
j=3

Fig. 2. A step-by-step illustration for the IDCA.

In fact, the original U2N algorithm is unfriendly to hardware
design because the data width is increasing when iteratively
computing. Therefore, we propose a new conversion algorithm
called IDCA for hardware efficiency, as shown in Alg. 7. The
key idea of this algorithm is to save the lower bits in memory
Sj dynamically and only use the higher bits to compute in each
iteration. Two loops are adopted to make the multiplication and
addition smaller. The outer loop is to skip to the lower-order

6

coefficients and the inner loop is to refine the multiplication
and addition in each order. To make it clearer, a step-by-step
illustration for the IDCA is shown in Fig. 2. We can see that
this algorithm costs n(n−1)

2 w×w multiplications and 2w+w
additions, which can greatly reduce the hardware resource. It
should be noted that since the upper bound of an−1 is the
smallest among the coefficients and the output C is smaller
than 2nw, the data width of these variables is ensured no bigger
than w. Meanwhile, the flag signals f1 and f2 are used to
record whether the result equals the modulus p or not. If yes,
the output would be set to zero.

an-2...a0

R
an-1

Sn

...

S1

D

S1 Sn... Sn-1S2

an-1

j

j
R

an-2...a0

D

P PHPL
j+1

Sj+1

Fig. 3. The proposed IDCM architecture.

The corresponding hardware architecture of the main body
is shown in Fig. 3, where the judgment for equal to p is omitted
for brevity. The input coefficients a0, ..., an−2, intermediate
variables S0, ..., Sn and D, are saved in 2n w-bit registers.
One w × w multiplier and one 2w + w adder are used. In
each outer iteration, the register group of the input coefficients
shifts w bits to the right. The registers for the intermediate
variables are updated in each cycle. At the beginning, the
input coefficient an−1 is selected and put into the multiplier.
After added by an−2, the 2w-bit sum P is divided into two
parts: w-bit PL and w-bit PH . PL is saved back to Sj with a
demux. PH is saved back to Sj+1 with an another demux
only when j = i. Meanwhile, PH is also sent to register
D. In the following iterations, the input of the multiplier is
selected from the registers S0, ..., Sn and that of the adder is
selected from the register D and the rightmost register of the
coefficients. After n(n−1)

2 iterations, the output is obtained as
{Sn, Sn−1, ..., S1}. When k levels of the pipeline are inserted
in the iteration, this module needs n(n−1)k

2 clock cycles. In
our following implementation, k is set to 1.

B. Modular Adder

The architecture for the modular addition of Alg. 3 is shown
in Fig. 4. The adders for the coefficients are directly computed
in parallel. According to the reduction step of Alg. 3, serial
computations are needed, which would cause long latency.
In order to deal with this problem, we have investigated
this algorithm carefully and found that the candidate data
can be computed in advance and selected by some control
logic. As shown in Fig. 4, the sums are subtracted by R
or f ′R in parallel and the leftmost column of multiplexers
are used to select the remainders r0, ..., rn−2 ∈ [0, R − 1],
rn−1 ∈ [0, f ′R − 1], and the quotients q0, ..., qn−1 ∈ {0, 1},

controlled by the sign bit of the subtractors’ outputs. It should
be noted that the multiplexers of the remainders and quotients
here are combined together for brevity. The following step is
to deal with the quotients. Since the quotients are whether 0
or 1, the final outputs of ci for 0 < i < n are equal to ri,
ri+1, or 0. And that for c0 only equals r0 or r0 +1 because
of the lazy reduction. We prepare those candidates in parallel
and only update the 1-bit quotients based on their dependency,
which can largely reduce the latency. For example, considering
the SIKEp751 and n = 12, only one pipeline is used to reach
a frequency of about 200 MHz.

a0

b0
R -

1

0

=1

R-1

1

1

r0
r0+1 c0

q0'

f'∙R -

1

0

=1

1

1

qn-1'

an-1

bn-1

rn-1
rn-1+1

cn-1
0 11

0x

10

1

0

qn-1

qn-1'

qn-1

...

......

...

q0

qn-2

f'∙R-1

Fig. 4. The proposed modular adder architecture.

C. Modular Subtractor

a0

b0

R

-

R

0 =1

-1

an-1

bn-1 -

-1
0

=1

1

0

1x

01

00

r0

r0-1

0

1

1

q0

q0'

qn-1

qn-1'

qn-1'

11

10
0x

c0

cn-1

.........

...

f'∙R

qn-2
f'∙R-1

Fig. 5. The proposed modular subtractor architecture.

Similar to the modular adder, the modular subtractor is also
devised with a high degree of parallelism, as shown in Fig.
5. After the subtractors for the coefficients, the differences
are added by R or f ′R in parallel. The leftmost column of
multiplexers are used to select the remainders r0 ∈ [0, R],
r1, ..., rn−2 ∈ [0, R − 1], and rn−1 ∈ [0, f ′R − 1], controlled
by the sign bit of the subtractors’ outputs. The quotients

7

q0, ..., qn−1 ∈ {0, 1} are directly set as these sign bits. The
candidates of ci for 0 < i < n−1 are ri, ri−1, and R−1, those
of cn−1 are rn−1, rn−1−1, and f ′R−1, and those of c0 only
are r0 or r0−1 because of the lazy reduction. The candidates
are computed in parallel and the final 1-bit quotients are
calculated in terms of the dependency between the adjacent
orders. The output are selected from the candidates controlled
by the updated quotients. Similarly, the experiment result for
the SIKEp751 shows that this architecture can achieve nearly
200 MHz with only one stage of the pipeline.

D. Modular Multiplier

The modular multiplier is used to compute the product
C ≡ A × B, where A,B,C ∈ Fp. Since the modular
multiplication takes up a large proportion of the computations
in SIKE protocol, accelerating this operation can efficiently
speed up the entire protocol. As shown in Fig. 1, the proposed
modular multiplier has three submodules: 1) mul add; 2)
top IBR; and 3) post-process. They will be detailed in the
following.

mul add: This module is used to calculate the integer mul-
tiplication as raw coefficients for the following reduction oper-
ations, as shown in Eq. (3). To reduce the latency, we devise
binary-tree adders to compute those multiply-accumulation-
like operations. This module can be divided into two parts: the
coefficient multipliers and the accumulators. In the first part,
by using the one-level Karatsuba-like optimization method, the
coefficient multipliers are designed with n aibi (0 ≤ i < n)
and n(n−1)

2 (ai + bj)(aj + bi) (i 6= j) multipliers. We also
use one or two levels of Karatsuba optimization [40] for the
coefficient multipliers to reduce the resources. In the second
part, those products are accumulated for the corresponding
orders. In each order, two adder trees are used for the two
accumulations in Step 2 of Eq. (3) since the second term has
an extra small multiplication factor. The two terms are added
as the final output after the second sum is shifted and added.
We also use the carry-save adder [41] before sending it into the
adder trees, to further reduce the critical path and resource. The
critical path includes one coefficient multiplier, one shifter, one
1-bit full adder, and normal adders (the number equal to the
maximum depth of the tree plus one). To achieve a high clock
speed, several stages of the pipeline are needed, the number of
which depends on the data width of the input and the depth of
the tree. For the SIKEp751, three pipelines are good enough.

top IBR: This module is used to compute the main course
of the reduction. Our goal is still to reduce the latency. Thanks
to the complexity of IBR function strongly being correlated
with the maximum input data width, we can design different
sizes of IBR architectures to speed up the reduction process
and meanwhile maintain a low complexity. Therefore, we
propose a two-level reduction architecture with two sizes
of IBR modules as shown in Fig. 6. The IBR architecture
is referred to in our previous work [34]. The first level
composed of n IBR modules is to reduce the raw coefficients
c′0, ..., c

′
n−1. The outputs of IBRi are q′i and r′i. The size of

those IBR modules is determined by the maximum of the raw
coefficients. As presented in [37], the maximum data width

c0'
q0'

r0'

c1'
q1'

r1'
SIBR1

...
cn-2'

cn-1'

...

SIBR ń-1

qn-2'

rn-2'

rn-1'

qn-1'

SIBR0

...

r1''

...

q0''

q1''

qn-1''

r0''

r0

r1

rn-1

......

IBR0

IBR1

IBRn-2

IBR ń-1

rn-1''

Fig. 6. The proposed top IBR architecture.

equals about log2d((n − 1)2α3β + 1)e + 2 · log2d(R − 1)e.
Since r′i is small than R or f ′R, the data with of q′i can reach
about log2d((n− 1)2α3β +1)e+ · log2d(R− 1)e. Though the
first term is usually very small relative to the second term, it
is not convenient to directly reduce those quotients with some
subtractors yet. For instance, for the SIKEp751, if n = 12,
α = 0, and β = 1, the first and second terms will equal 6 and
63, respectively. Thus, we use n adders to compute q′i−1 + r′i
for 0 < i < n and q′n−1+r

′
0, and then send their sums into the

n small IBR (SIBR) modules as the second reduction level. The
input data width is almost equal to the maximum size of the
quotients. The outputs of SIBRi are q′′i and r′′i . Similarly, these
quotients and remainders are added up respectively and output
as r0, ..., rn−1, whose upper bounds are larger than R but far
smaller than 2R. They are reduced with some subtractors in
the post-process module introduced in the following.

post-process: This module is to meet the constraints c0 ∈

r0

r1

R

1

R

1 ...
rn-1

...

1

1

1

-

-

-
c0

c1

cn-1

...

1

0
1

0

0x0

1x0

x11

x01

0x0

1x0

x11

x01

f'∙R

Fig. 7. The proposed process architecture.

[0, R], c1, ..., cn−2 ∈ [0, R − 1] and cn−1 ∈ [0, f · R − 1]. As
the outputs of top IBR r0, ..., rn−1 are in the standard ranges
or a little bigger than the upper bound, only one R or f ′ · R

8

should be subtracted to make them in the right range. If R ≤
ri(i ∈ {0, ..., n − 2}), ri will be need to be subtracted by R
and ri+1 will be required to be added by 1. If f ′ ·R ≤ rn−1,
rn−1 will be subtracted by f ′ ·R and r0 will be added by 1.
Based on this analysis, the coefficients need to be processed
one after another, which causes a long latency. Similar to the
modular adder or subtractor introduced above, we propose a
parallel architecture for this module as shown in Fig. 7. All
the candidates are parallelly computed in advance and selected
by the control logic made up of the sign bits. In this way, the
critical path covers two adders and four multiplexers.

IV. TOP-LEVEL ARCHITECTURE AND INSTRUCTION
SCHEDULING

A. Top-Level Architecture

According to the open VHDL source code provided in
the SIKE library [18], the design coded by Koziel et al. is
divided into five parts: the control unit, ROM, arithmetic logic
unit (ALU), RAM, and interface logic. The state transition
instruction is generated by other scripts and saved in the ROM
for the control logic which is used to schedule the whole
design. The ALU includes the Keccak Hash unit and the
FALU. The former is referred to as the work of the Keccak
team [42] and the latter is elaborately designed by Koziel et
al. The dual-port RAM is used to store the intermediate data
or to cache the output. The interface logic is to make the
data standard for exchanging with the outside hardware. The
interactive relationship of those five parts for the SIDH with
512-bit prime is illustrated in Fig. 4 of [23] by Koziel et al.

Interface Logic

64 64

True Dual-Port RAM

a_in

data_indata_out

Control Unit
Program

ROM
ALU

3
sel

8 8a_addr b_addr

PC

16

instr

22

a_out
b_out

756 756

res_out 756

inv_rst

1

sel_ctrl

3

Fig. 8. The top-level architecture of the SIKE.

In this work, our focus is also on the FALU. As presented
above, we have proposed a new FALU based on our field
arithmetic algorithms to achieve lower latency. Figure 8 is the
adopted top-level architecture of the SIKE for the SIKEp751,
referred to as Fig. 4 in [23]. It is used to clearly show the data
width of the new SIKE architecture. Apart from the transmitted
data width between the RAM and the ALU or the interface,
the main difference lies in the data widths between the control
logic and the ALU and the ROM. Since the fully parallelizing
scheme is adopted in the FALU, the control logic to regulate
the ALU can be much simpler than previous works [23], [25],

[28]. We can see that the bit width of the instruction is reduced
from 26 bits to 22 bits and that of the control signals for the
field arithmetic computing reduced from 12 bits to 4 bits.

The 22 bits of an instruction are allocated as follows. The
first bit is used for starting the inversion unit. The second bit is
the reset signal of IDCM. Bits 3-5 are used to select the results
of FALU. As shown in Fig. 1, five combinations of the three
bits correspond to the five outputs from the four arithmetic
modules. Bit 6 indicates whether data should be written to
address A of the dual-port RAM. Bits 7-14 are the address of
the first port (A) of the RAM and bits 15-22 are the second
port’s address (B).

B. Instruction Scheduling

Good scheduling can increase the throughput of a design.
We have analyzed some of the instructions saved in the ROM
provided by the SIKE library and we found that the scheduling
flow is fully optimized in serial. Maybe, we could design a
new flow with a higher degree of parallelism, but that is not
an easy thing. In this work, we still adopt the original flow to
schedule the whole design.

As we can only access the instruction data saved in the
ROM, we have devised a MATLAB script to transfer those
data to adapt to our design. The correctness is verified with
the provided testbench in VHDL using the Vivado 2018.2
platform. Take the operating flow of A × B in Fp2 as an
example, where the SIKEp751 parameter is considered.

An element A in Fp2 is represented as A = A0+A1i, where
A0, A1 ∈ Fp. The optimized formula to compute A×B over
Fp2 is:

A×B = (A0B0 −A1B1) + (4)
((A0 +A1)(B1 +B0)−A0B0 −A1B1)i.

A step-by-step illustration for the operating flow of A×B over
Fp2 is shown in Fig. 9, where the required clock cycles (CCs)
in [18] and ours are also listed for a clear comparison. We can
see that including the read-write CCs, our design only needs
4 CCs for the modular addition/subtraction and 18 CCs for
the modular multiplication, while the design in [18] requires
9 CCs and 151 CCs, respectively. Eight steps are required to
compute this operation, i.e., sixteen instructions are needed to
deploy the 8 groups of inputs and outputs. A detailed instruc-
tion scheduling comparison is shown in Table I. The notations,
like ”in1 add” and ”out1 add”, denote the instructions to
permit an input or output of the adder/subtractor/multiplier in
the corresponding cycles and ”nop” means no input or output
in that cycle. The omitted cycles all are ”nops”. Clearly, the
latency in CCs of our design is reduced by more than 80% in
this example compared with the previous work in [18].

V. IMPLEMENTATION RESULTS AND COMPARISON

To compare with conventional SIKE implementations, the
proposed FALU architecture is coded with Verilog language
and the required instructions are generated with our MATLAB
script. We integrated them into the latest SIKE library [18]
and implemented the new SIKE core with the Vivado 2018.2
platform for the SIKEp751 targeting at NIST security level 5.

9

Ours

A0

A1

B0

B1

Step 1

A0+A1

Step 2

B0+B1

Step 3

A0×B0

Step 4

A1×B1

Step 5

(A0+A1)
×(B0+B1)

Step 6

C0=A0B0
-A1B1

Step 7

A0B0+
A1B1

Step 8
C1=(A0+A1)
×(B0+B1)-
A0B0-A1B1

C0

C1

Fig. 9. A step-by-step illustration example for the operating flow of A× B over Fp2 , where the required CCs for the SIKEp751 in [18] and ours are also
listed for a clear comparison.

TABLE I
COMPARISON OF INSTRUCTION SCHEDULING BETWEEN KOZIEL’S AND OURS TO CALCULATE A×B OVER Fp2

Koziel’s Instruction Scheduling
cycle 1 2 3 4 ... 9 10 11 ... 153
instr in1 add in2 add in3 mul in4 mul nop out1 add out2 add in5 mul nop out3 mul
154 155 156 ... 161 162 163 164 165 ... 173

out4 mul in6 sub in7 add nop out5 mul nop out6 sub out7 add in8 sub nop out8 sub
Our Instruction Scheduling

cycle 1 2 3 4 5 6 7 ... 20 ...
instr in1 add in2 add in3 mul out1 add out2 add in4 mul in5 mul nop out3 mul nop
23 24 25 26 27 28 29 30 31 32 33

out4 mul out5 mul in6 sub in7 add nop out6 sub out7 add in8 sub nop nop out8 sub

According to [37], the prime of this parameter is divided as
p = 23723239 − 1 = 1/3 · (231320)12 − 1. The results after
place-and-route are shown in the following.

Two advanced FPGA devices are considered in our
implementation. The first one is a Xilinx Virtex-7
xc7vx690tffg1157-3 device, which is widely used in
previous works [18], [23], [25], [28], [29], [43]. We adopt
it in our design to make a fair comparison. The other one
is a Xilinx Kintex UltraScale+ xcku13p-ffve900-3-e device,
which is manufactured with more advanced technology (from
28nm to 16nm) and therefore owns better performance than
the first one. This device is also adopted in [28]. During
our design process, we have found that the net delay is the
bottleneck for high clock speed. This device can help relieve
this problem well.

TABLE II
LATENCY IN CCS OF THE PROPOSED ARITHMETIC MODULES

OVER TWO XILINX FPGA DEVICES FOR SIKEP751

Device MM MA MS IDCM
Virtex-7 (No.1) 16 2 2 135

Kintex UltraScale+ (No.2) 12 2 2 135

Table II shows the required latency in CCs of the proposed
arithmetic modules over the two Xilinx FPGA devices. We can
see that except the MM, the other modules are designed with
the same latency in the two devices. Note that the MM takes
up the most portion of the whole design. Due to the high

degree of parallelism, the wire congestion would be easily
aroused in this module. The net delay gradually becomes the
domination in the critical path. To deal with this problem,
more registers or register trees are required to enhance the load
capacity. When we consider the Virtex-7 device, 15 stages of
the pipeline are inserted and the whole SIKE obtains a clock
frequency of 138.9MHz. When we implement this design on
the Kintex UltraScale+ device, it achieves a frequency of
200.0MHz. When we cut down four pipelines in the MM, the
clock frequency is unchanged. Hence, the MM is designed
with 11 stages of the pipeline for the second device to reduce
the registers.

TABLE III
TIMING COMPARISONS OF THE MODULAR MULTIPLIERS OVER THE

VIRTEX 7 FPGA FOR SIKEP751

Work prime #
Mults

fclk
(MHz)

Latency /
Interleaved

(cc)

Normalized
Latency/

Interleaved
[25] p751 8 193 148 / 101 9.25 / 101
[28] p751 8 167.4 100 / 69 6.25 / 69
[29] p751 8 294 138 / 90 8.63 / 90
[34] p771 1 60 18 / 1 1.13 / 1

this work p751 1 138.9 16 / 1 1.00 / 1
1 The maximum throughput = N×fclk×#mults

interleaved latency
.

Table III shows the timing comparisons between our MM
and previous works over the first FPGA device. It can be
seen that the proposed MM achieves the shortest latency and

10

interleaved latency among the state-of-the-arts thanks to the
fully interleaving scheme and the adopted optimized algorith-
m. Our design has two overwhelming advantages in the SIKE
implementation. The first advantage is that for the dependent-
data computations, our MM can greatly help accelerate such
computations because of the ultra-low latency. The second ad-
vantage is that for the independent-data computations, we can
only use one multiplier to satisfy any degrees of parallelism
because the proposed MM can be utmostly interleaved with
only one cycle, nearly two orders of magnitude compared to
the designs used in SIKE implementations [25], [28], [29].
However, obtaining a high degree of parallelism in these
previous works must parallelize the multipliers. For example,
eight multipliers are used in those implementations as listed in
the table. The design in [34] also has those two advantages but
it cannot support the SIKEp751 parameter. Since the resources
of this module are not available in the first three literatures,
the area comparisons are not provided here. They can be
implicitly shown in the following comparisons of the whole
SIKE implementation results.

TABLE IV
ROUND COMPUTATIONS OF SIKEP751

Alice R1 Bob R1 Alice R2 Bob R2 Total
Virtex-71

Latency
(cc) 466,465 512,061 399,926 451,503 1,829,955

Time
(ms) 3.36 3.69 2.88 3.25 13.18

Kintex UltraScale+2

Latency
(cc) 457,724 500,734 387,418 436,891 1,782,767

Time
(ms) 2.29 2.50 1.94 2.18 8.91

1 Sixteen CCs are needed in the MM and fclk = 138.9 MHz.
2 Twelve CCs are needed in the MM and fclk = 200.0 MHz.

The round computations for the SIKEp751 over the two
FPGA devices are shown in Table IV. The latency is computed
through simulation, using the ending time minus the starting
time and then dividing the interval time. Since the CCs used
in the MM of the second device are less than those of the first
one, the latencies in all rounds also have the same trend. The
time is calculated by using the latency dividing the frequency.
The superiority in frequency of the second device further
reduces the required time in each round. Generally, more than
30% time is saved by using the second device.

The resource utilizations of the new SIKE implementation
over the two FPGA devices are shown in Table V. We can
see that the numbers of LUTs, DSPs, and BRAMs of the
two devices are close or equal to each other. The FFs of the
second device are reduced by nearly half compared to those
of the first device, due to the reduction of the MM. For the
Virtex-7, the number of logic cells is counted by slices in the
implementation report and one slice is equal to 8 FFs or 4
LUTs. For the Kintex UltraScale+, that number is counted
by configurable logic blocks (CLBs) and one CLB equals
16 FFs or 8 LUTs. That means one CLB is equivalent to
two slices. Clearly, the used equivalent slices of the second
device are slightly less than the slices used in the first one.
On the other hand, we can find that the available resources

TABLE V
RESOURCE UTILIZATIONS OF MAJOR COMPONENTS FOR SIKEP751

Component # FFs # LUTs # DSPs # BRAMs # Slices
/CLBs

Virtex-7
FALU 75,440 83,362 966 0 29,158

MM 72,318 77,009 960 0 27,070
MA 768 2,508 0 0 1,038
MS 769 2,805 0 0 984
IDCM 1,585 1,043 6 0 746

Control Unit 246 2,352 0 25 1,251
Keccak-1088 2,703 5,309 0 0 1,581
Register File 0 0 0 21 0
ROM 0 0 0 2 0

Total
81,518/
866,400
9.41%

92,557/
433,200
21.37%

966/
3,600

26.83%

48/
1,470
3.27%

31,407/
108,300
29.00%

Kintex UltraScale+
FALU 42,535 83,957 966 0 13,576

MM 39,413 77,610 960 0 12,522
MA 768 2,505 0 0 642
MS 769 2,805 0 0 628
IDCM 1,585 1,037 6 0 455

Control Unit 200 2,287 0 23 862
Keccak-1088 2,703 5,309 0 0 983
Register File 0 0 0 21 0
ROM 0 0 0 2 0

Total
48,566/
682,560
7.12%

93,366/
341,280
27.36%

966/
3,528

27.38%

46/
744

6.18%

14,763/
42,660
34.61%

of the second device are less than the first device. It means
that the improvement in efficiency is mainly brought by the
technology.

We compare our SIKE results with other results in the
literature [18], [24]–[29] in Table VI, including the area
and timing comparisons. The term, ST product computed by
slice×time, is a combination of the area and timing to make
a fair comparison. The normalized latency is also included. It
can be seen that our design achieves the shortest latency and
the fastest speed over either FPGA device at a cost of resource
increase.

Especially, the latency, which is usually the bottleneck be-
cause of the inevitable data dependency, is drastically reduced
compared to the prior arts. But its reduction ratio is not as
much as the proposed MM’s. We find that though the MM
takes up the major portion of the whole computation, the time
for memory access is not negligible and cannot be removed in
such scheduling. This phenomenon can be directly explained
by the above example shown in Fig. 9. Additionally, the
parallelism is not fully used.

Clearly, the major bottleneck in our design is the clock
frequency. When considering the ST product, the results on
the Kintex UltraScale+ are generally better than those on the
Virtex-7 device but slightly superior to the state-of-the-art. For
the Virtex 7, our design is better than most of the previous
works except the design in [29]. It should be pointed out that
all the previous designs are based on the Montgomery multipli-
cation algorithm. Many existing architectures can be referred
to for them. Especially, the design in [29] is highly sped
up based on their several rounds of optimizations. Note that
our design is based on our recently proposed field arithmetic

11

TABLE VI
OVERALL COMPARISONS OF SIKEP751/SIDHP751 FOR TWO FPGA DEVICES

Work # Mults # FFs # LUTs # DSPs # BRAMs # Slices Frequency
(MHz)

Latency
(cc× 106)

/ Normalized

Total Time
(ms)

ST Product
(#Slice×s)

Virtex-7
Koziel et al. [24] 8 46,857 32,726 376 45.5 15,224 182.1 7.74 / 4.2 42.5 647
Koziel et al. [25] 8 48,688 34,742 384 58.5 14,447 203.7 6.86 / 3.7 33.7 487
Jao et al. [18] 8 51,914 44,822 376 56.5 16,756 198 6.60 / 3.6 33.4 560
Massolino et al. [26] 11 13,657 21,210 162 38.0 7,408 142.2 8.60 / 4.7 60.8 450
Roy et al. [27] 32 62,124 49,099 294 22.5 18,711 225.7 7.12 / 3.9 31.6 591
Koziel et al. [28] 8 50,079 39,953 512 43.5 15,834 163.1 4.55 / 2.5 27.8 440
Elkhatib et al. [29] 8 39,339 20,207 452 41.5 11,136 232.7 5.93 / 3.2 25.5 284
This Work 1 81,518 92,557 966 48 31,407 138.9 1.83 / 1.0 13.2 415

Kintex UltraScale+3

Koziel et al. [28] 8 50,143 40,700 512 43.5 15,452 296.9 4.55 / 2.6 15.3 236
This Work 1 48,566 93,336 966 46 29,526 200.0 1.78 / 1.0 8.9 263
1 A scalable multiplier called Carmela256.
2 One multiplier includes three or four parallel modular multiplications.
3 The number of slices are computed by doubling the CLBs.

algorithms, totally different from the previous algorithms. The
architectures for them are devised in this paper for the first
time. We can believe that it has great potential to be a good
alternative with our substantial efforts.

VI. CONCLUSION

In this paper, we presented a high-speed FPGA imple-
mentation for the SIKE protocol based on the proposed
ultra-low-latency field multiplier, adder, and subtracter. The
corresponding field arithmetic algorithms are based on a new
data representation, which facilitates these algorithms to obtain
lower complexity and higher parallelism than the state-of-
the-art. The experiment results show that the proposed field
arithmetic modules achieve very low latency with acceptable
resource consumption. Since those modules are totally feed-
forward, a more compact control logic is devised. A new SIKE
is obtained by integrating the proposed ALU and the updated
instructions into the original SIKE design. The implementation
results demonstrate that the latency and the total time of a
SIKE both are drastically reduced compared to the prior arts.
We expect that these achievements would greatly contribute
to the SIKE’s competitiveness over other PQC candidates.
Our future work is to further reduce the latency and resource
consumption and increase the clock frequency.

REFERENCES

[1] R. F. Mandelbaum, “This could be the best quan-
tum computer yet,” 2018. https://gizmodo.com/
this-could-be-the-best-quantum-computer-yet-1831085617.

[2] F. Lardinois, “Ibm unveils its first commercial quantum
computer,” 2019. https://techcrunch.com/2019/01/08/
ibm-unveils-its-first-commercial-quantum-computer/.

[3] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
The ACM, vol. 21, no. 2, pp. 120–126, 1978.

[4] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-
22, 1985, Proceedings, 1985.

[5] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science, pp. 124–134, Nov 1994.

[6] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, Report on post-quantum cryptography, vol. 12.
US Department of Commerce, National Institute of Standards and
Technology, 2016.

[7] R. Azarderakhsh, M. Campagna, L. Costello, B. Feo, A. Hess, D. Jao,
B. Koziel, and P. Longa, “Supersingular isogeny key encapsulation,”
Submission to the NIST Post-Quantum Standardization project: http-
s://sike.org/, 2019.

[8] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in International Workshop on
Post-Quantum Cryptography, pp. 19–34, Springer, 2011.

[9] B. T. Yan, “On the security of supersingular isogeny cryptosystems,” in
International Conference on the Theory and Application of Cryptology
and Information Security, 2016.

[10] A. Gélin and B. Wesolowski, “Loop-abort faults on supersingular
isogeny cryptosystems,” in International Workshop on Post-Quantum
Cryptography, pp. 93–106, Springer, 2017.

[11] Y. B. Ti, “Fault attack on supersingular isogeny cryptosystems,” in Post-
Quantum Cryptography (T. Lange and T. Takagi, eds.), (Cham), pp. 107–
122, Springer International Publishing, 2017.

[12] D. Jao, “Software for ”towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”,” 2011. https://github.com/defeo/
ss-isogeny-software.

[13] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, “Key
compression for isogeny-based cryptosystems,” in Proceedings of the
3rd ACM International Workshop on ASIA Public-Key Cryptography,
pp. 1–10, 2016.

[14] R. Azarderakhsh, D. Fishbein, and D. Jao, “Efficient implementations
of a quantum-resistant key-exchange protocol on embedded systems,”
Citeseer, 2014.

[15] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny diffie-hellman,” in Advances in Cryptology – CRYPTO
2016 (M. Robshaw and J. Katz, eds.), (Berlin, Heidelberg), pp. 572–601,
Springer Berlin Heidelberg, 2016.

[16] A. Faz-Hernndez, J. Lpez, E. Ochoa-Jimnez, and F. Rodrguez-Henrquez,
“A faster software implementation of the supersingular isogeny Diffie-
Hellman key exchange protocol,” IEEE Transactions on Computers,
vol. 67, no. 11, pp. 1622–1636, 2018.

[17] G. H. M. Zanon, M. A. Simplicio, G. C. C. F. Pereira, J. Doliskani,
and P. S. L. M. Barreto, “Faster key compression for isogeny-based
cryptosystems,” IEEE Transactions on Computers, vol. 68, no. 5, p-
p. 688–701, 2019.

[18] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo,
B. Hess, A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig,
G. Pereira, J. Renes, V. Soukharev, and D. Urbanik, “PQCrypto-SIDH.”
Submission to the NIST Post-Quantum Standardization Project, 2020,
[Online] https://github.com/Microsoft/PQCrypto-SIDH.

[19] H. Seo, Z. Liu, P. Longa, and Z. Hu, “SIDH on ARM: faster modular
multiplications for faster post-quantum supersingular isogeny key ex-
change,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 1–20, 2018.

12

[20] A. Jalali, R. Azarderakhsh, and M. M. Kermani, “NEON SIKE: super-
singular isogeny key encapsulation on ARMv7,” in International Con-
ference on Security, Privacy, and Applied Cryptography Engineering,
pp. 37–51, Springer, 2018.

[21] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Towards opti-
mized and constant-time CSIDH on embedded devices,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design,
pp. 215–231, Springer, 2019.

[22] W. Liu, J. Ni, Z. Liu, C. Liu, and M. ONeill, “Optimized modular multi-
plication for supersingular isogeny Diffie-Hellman,” IEEE Transactions
on Computers, vol. 68, no. 8, pp. 1249–1255, 2019.

[23] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-quantum
cryptography on FPGA based on isogenies on elliptic curves,” IEEE
Transactions on Circuits and Systems I-regular Papers, vol. 64, no. 1,
pp. 86–99, 2017.

[24] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast hardware
architectures for supersingular isogeny diffie-hellman key exchange on
fpga,” in International Conference on Cryptology in India, pp. 191–206,
Springer, 2016.

[25] B. Koziel, R. Azarderakhsh, and M. M. Kermani, “A high-performance
and scalable hardware architecture for isogeny-based cryptography,”
IEEE Transactions on Computers, vol. 67, no. 11, pp. 1594–1609, 2018.

[26] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, “A compact and
scalable hardware/software co-design of SIKE,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 245–271, 2020.

[27] D. B. Roy and D. Mukhopadhyay, “Post quantum ECC on FPGA
platform,” IACR Cryptol. ePrint Arch., vol. 2019, p. 568, 2019.

[28] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani,
“Sike’d up: Fast hardware architectures for supersingular isogeny key
encapsulation,” IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1–13, 2020.

[29] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani, “Highly
optimized montgomery multiplier for sike primes on fpga,” in 2020
IEEE 27th Symposium on Computer Arithmetic (ARITH), pp. 64–71,
2020.

[30] T. Blum and C. Paar, “High-radix montgomery modular exponentiation
on reconfigurable hardware,” IEEE Transactions on Computers, vol. 50,
no. 7, pp. 759–764, 2001.

[31] Montgomery and L. Peter, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, no. 170, pp. 519–519, 1985.

[32] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Efficient
finite field multiplication for isogeny based post quantum cryptography,”
International Workshop on the Arithmetic of Finite Fields, pp. 193–207,
2016.

[33] J. Bos and S. Friedberger, “Arithmetic considerations for isogeny based
cryptography,” IEEE Transactions on Computers, pp. 1–1, 2018.

[34] J. Tian, J. Lin, and Z. Wang, “Ultra-fast modular multiplication imple-
mentation for isogeny-based post-quantum cryptography,” in 2019 IEEE
International Workshop on Signal Processing Systems (SiPS), pp. 97–
102, IEEE, 2019.

[35] B. Wu, J. Tian, X. Hu, and Z. Wang, “A novel modular multiplier
for isogeny-based post-quantum cryptography,” in 2020 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pp. 334–339, 2020.

[36] J. Tian, Z. Liu, J. Lin, Z. Wang, and B. Li, “High-speed modular multi-
pliers for isogeny-based post-quantum cryptography.” Cryptology ePrint
Archive, Report 2019/1206, 2019. https://eprint.iacr.org/2019/1206.

[37] J. Tian, P. Wang, Z. Liu, J. Lin, Z. Wang, and J. Groschdl, “Faster
software implementation of the SIKE protocol based on a new data
representation.” Cryptology ePrint Archive, Report 2020/660, 2020.
https://eprint.iacr.org/2020/660.

[38] C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia, “Improved
classical cryptanalysis of the computational supersingular isogeny prob-
lem,” IACR Cryptology ePrint Archive, vol. 2019, p. 298, 2019.

[39] J. Vélu, “Isogénies entre courbes elliptiques,” CR Acad. Sci. Paris, Séries
A, vol. 273, pp. 305–347, 1971.

[40] A. Karatsuba, “Multiplication of multidigit numbers on automata,”
Soviet physics. Doklady, vol. 7, pp. 595–596, 1963.

[41] Z. Wang, “High-speed recursion architectures for map-based turbo
decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 4, pp. 470–474, 2007.

[42] M. P. G. V. A. G. Bertoni, J. Daemen and R. V. Keer, “Keccak implemen-
tation overview.” https://keccak.team/files/Keccak-implementation-3.2.
pdf, May 2012.

[43] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast hardware
architectures for supersingular isogeny Diffie-Hellman key exchange on
FPGA,” in International Conference in Cryptology in India, pp. 191–
206, Springer, 2016.

Jing Tian received her B.S. degree in microelectron-
ics and Ph.D. degree in information and communica-
tion engineering from Nanjing University, Nanjing,
China, in 2015 and 2020, respectively. She is now
an associate researcher in Nanjing University. Her
research interests include VLSI design for digital
signal processing and cryptographic engineering.

Bo Wu received his B.S. degree in microelectronics
from Nanjing University, Nanjing, China, in 2020.
He is currently working toward the M.S. integrated
circuit engineering from Nanjing University. His
research interest includes VLSI design for post-
quantum cryptography.

Zhongfeng Wang received both the B.E. and M.S.
degrees in the Dept. of Automation at Tsinghua
University, Beijing, China, in 1988 and 1990, re-
spectively. He obtained the Ph.D. degree from the
University of Minnesota, Minneapolis, in 2000. He
has been working for Nanjing University, China, as
a Distinguished Professor since 2016. Previously he
worked for Broadcom Corporation, California, from
2007 to 2016 as a leading VLSI architect. Before
that, he worked for Oregon State University and
National Semiconductor Corporation.

Dr. Wang is a world-recognized expert on Low-Power High-Speed VLSI
Design for Signal Processing Systems. He has published over 200 technical
papers with multiple best paper awards received from the IEEE technical
societies, among which is the VLSI Transactions Best Paper Award of 2007.
He has edited one book VLSI and held more than 20 U.S. and China patents.
In the current record, he has had many papers ranking among top 25 most
(annually) downloaded manuscripts in IEEE Trans. on VLSI Systems. In the
past, he has served as Associate Editor for IEEE Trans. on TCAS-I, T-CAS-II,
and T-VLSI for many terms. He has also served as TPC member and various
chairs for tens of international conferences. Moreover, he has contributed
significantly to the industrial standards. So far, his technical proposals have
been adopted by more than fifteen international networking standards. In 2015,
he was elevated to the Fellow of IEEE for contributions to VLSI design and
implementation of FEC coding. His current research interests are in the area
of Optimized VLSI Design for Digital Communications and Deep Learning.

