
Searching Cubes in Division Property Based
Cube Attack: Applications to Round-Reduced

ACORN

Jingchun Yang1,2 and Dongdai Lin1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{yangjingchun,ddlin}@iie.ac.cn

Abstract. Recently, division property based cube attack has acheived
new progress and some cryptanalytic results against well-known stream
ciphers. At EUROCRYPT 2020, Hao et al. proposed a new modeling
method for three-subset division property without unknown subset. With
this method, the exact expression of the superpoly in cube attack can be
recovered.
In this paper, we propose a method to search good cubes for both
distinguishing attacks and key recovery attacks in the division property
based cube attack scenario. Our cube searching procedure is based on
the algorithm of degree evaluation of the superpoly and the algorithm of
superpoly recovery. In the process of cube searching, we mainly use the
embedded property to narrow down the searching space. As a result, we
find some new cube testers of dimension 126 on 775-round ACORN.
We also find a new key recovery attack on 775-round ACORN with
a 126-dimensional cube, whose corresponding superpoly is a 2-degree
polynomial with respect to key bits.

Keywords: division property based cube attack · cube searching
· degree evaluation · superpoly recovery · embedded property ·
ACORN.

1 Introduction

In symmetric-key cryptography, integral cryptanalysis [11] is one of general
cryptanalytic techniques. The basic idea of integral attack is to traverse some
active plaintext bits and check whether the summation of the corresponding
ciphertext bits have zero-sum property.

Division property [15], proposed at EUROCRYPT 2015, is a generalization
of the integral property. With division property, attackers can evaluate more
accurate integral characteristics. The division property for a multiset of texts
X ⊆ Fn

2 is defined by dividing a set of u’s into two subsets: the 0-subset of
vectors u ∈ Fn

2 satisfy
⊕

x∈X xu = 0, and the unknown subset satisfy the value of⊕
x∈X xu is unknown. Moreover, the bit-based division property was introduced

in [18], and three propagation rules for basic operations, and, xor, and copy
are shown. While arbitrary block ciphers can be evaluated by using the bit-
based division property, it requires much time and memory complexity [18]. In
[24], Xiang et al. used the mixed integer linear programming (MILP) to model
the propagation of the bit-based division property, and the propagation can be
evaluated efficiently with the MILP solvers (e.g., Gurobi [5]).

Although (conventional) bit-based division property can find more accurate
integral distinguishers, some practically verified integral distinguishers (e.g.,
[21]) cannot be proved with it. To find the exact integral characteristics, Todo
and Morii [18] proposed the three-subset division property, and the set of vector
u is divided into three subsets rather than two ones: the 0-subset, the unknown
subset, and the 1-subset satisfying

⊕
x∈X xu = 1. With the three-subset division

property, the 15-round integral distinguisher of Simon32 was proved [18].
Cube attack, proposed by Dinur and Shamir [2] at EUROCRYPT 2009, can

be seen as a type of higher-order differential (integral) attacks [12]. Given a cipher
f with public variables v ∈ Fm

2 and secret variables x ∈ Fn
2 , the cipher can be

viewed as a polynomial f(x,v). Denote a set of indices I = {i1, i2, . . . , i|I|} ⊂
{0, 1, . . . ,m−1} by cube indices. Such an I determines a specific structure called
cube CI , which contains 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|} take
all possible combinations of values and the remaining variables (key and non-
cube IV variables) are fixed to static values. Then the sum of f over all values
of the cube CI is⊕

CI

f(x,v) =
⊕
CI

(tI · p(x,v) + q(x,v)) = p(x,v),

where tI = vi1 · · · vi|I| , p(x,v) is independent of {vi1 , vi2 , . . . , vi|I|}, and q(x,v)
misses at least one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the
superpoly of the cube CI . The cube attack consists of two phases. In offline
phase, attackers select some cubes, and recover their corresponding superpolys.
In online phase, attackers compute the value of the superpoly by summing
the output bit f(x,v) over the cube. If the expression of superpoly p(x,v) is
simple, then we get some simple equations from these superpolys, and we can
immediately recover partial key information by solving the system of equations.

In [1] the notion of cube tester was proposed. The main idea of cube tester
is similar to cube attack, however, it aims to find some superpolys which have
the distinguishable properties (e.g., the superpoly is equal to a constant, which
is most commonly used).

For cube attack, recovering the superpoly plays an important role. Tradi-
tional approaches [2, 3] treat the cipher as a black-box polynomial, and attackers
can test the low-degree property of the superpoly by executing the linearity or
quadraticity tests. Then the ANF of the superpoly can be experimentally recov-
ered by interpolation. However, the most time-consuming part is to calculate
the cubesums, if the size of the cube is large (e.g., exceeds 40), the computation
is practically infeasible.

Breakthroughs have been made by Todo et al. at CRYPTO 2017 [16] where
they proposed the division property based cube attack to analyze the ANF of

2

the superpoly. Based on the propagation of the (conventional) bit-based division
property of stream ciphers, they gave a proposition to decide which key bits do
not exist in the superpoly. By using high-dimensional cubes, they proposed the
theoretical cube attacks on 832-round Trivium/183-round Grain128a/704-round
ACORN/872-round Kreyvium [17]. Later at CRYPTO 2018, Wang et al. [20,
19] proposed some new techniques (flag technique, degree evaluation, and term
enumeration) to improve the division property based cube attack, and new
theoretical key recovery attacks were proposed.

Since the theory of conventional division property can not guarantee that
the superpoly is non-constant, the key recovery attack may be degenerated to
a distinguisher. As reported in [26, 22], the key recovery attack on 839-round
Trivium [20] is in fact a zero-sum distinguisher. Recently, several methods have
been proposed to model for the three-subset version. In [9], a variant of the
three-subset division property was proposed. Using MILP to model propagation
rules, it improves some integral distinguishers at the cost of some accuracy loss.
In [22], Wang et al. proposed a method to accurately model the propagation
for the three-subset division property. By combining the MILP with the original
breadth-first search algorithm [18], they could recover some superpolies for 832-
and 839-round Trivium. However, as pointed in [8], this method is not always
efficient, it requires an assumption that almost all elements in 1-subset can be
pruned.

Very recently, at EUROCRYPT 2020, Hao et al. [8] proposed a new modeling
method for the three-subset division property without unknown subset. They
introduced a modified three-subset division property that is equivalent with the
three-subset division property without unknown subset. This modified version
is defined by using the multiset of the 1-subset, and it is suited to modeling
with MILP or SAT/SMT solvers. By counting all feasible solutions that are
enumerated, this new method can recover the superpoly efficiently. As a result,
the exact expression of superpolies on 842-round Trivium/190-round Grain-
128AEAD/774-round ACORN/892-round Kreyvium can be determined [7].

Our Contributions. In this paper, we propose a method to search good cubes
for distinguishing attacks and key recovery attacks in the division property based
cube attack. Our cube searching procedure is based on the algorithm of degree
evaluation of the superpoly [20] and the algorithm of superpoly recovery [8]. In
the process of cube searching, we mainly use the embedded property to narrow
down the searching space. Using this method, we give some new cryptanalytic
results on ACORN cipher [23].

Our cube searching procedure consists of two phases. In the first phase, we
search a set of good cube testers in the conventional division property based
cube attack. We first demonstrate that the embedded property [14] proposed at
ASIACRYPT 2017 can also be applied to the search of cube testers. Based on
the embedded property for cube tester, we propose several algorithms to search
good cube testers efficiently.

3

Since the conventional division property based cube attack can not guarantee
that the superpoly is non-constant, the key recovery attack may be degenerated
to a distinguisher. In the second phase, we use the modified three-subset division
property based cube attack to improve the cube testers, and to search cubes for
key recovery attack. In the process of cube searching, we try to maximize the
number of attacked arounds under the condition that the estimated degree of
the superpoly is relatively low. Meanwhile, we keep the cube dimension as small
as possible.

We apply our cube searching method to ACORN. As a result, we find some
new cube testers for 775-round ACORN with a complexity of 2126. We also
find a key recovery attack on 775-round ACORN with a 126-dimensional cube,
whose corresponding superpoly is a 2-degree polynomial with respect to key bits.
Our results for ACORN are summarized in Table 1, and the comparisions with
previous attacks are also included.

Table 1. Summary of the distinguishing attacks and key recovery attacks on ACORN.

Attack types #Rounds Cube size Complexity Ref.

distinguishing attacks

676 29 ≈ 240.6 [4]
690 38 238 [25]
700 40 240 [10]
706 46 246 [25]
775 127 2127 [25]
775 126 2126 Section 4.3

key recovery attacks

503 5 practical [13]
704 64 264 + 2127 [17]
750 101 2101 + 2127 [19]
763 116 2116 + 2127 [6]
772 123 2123 + 2127 † [25]
773 125 2125 + 2127 [7]
774 126 2126 + 2127 [7]
775 126 2126 + 2127 Section 4.4

† This attack has been proved to be a constant-sum distinguisher by Hao et al. [7]
using the modified three-subset division property based cube attack.

Organization. The rest of the paper is organized as follows. In Section 2 we
introduce some basic definitions and theories. In Section 3, we propose several
algorithms to search good cube testers and suitable cubes for key recovery attacks
in the division property based cube attack. Then we use these algorithms to
analyze the security of ACORN in Section 4. Section 5 concludes the paper.

4

2 Preliminaries

2.1 Boolean Function and Algebraic Degree

Let F2 denote the binary field and Fn
2 denote the n-dimensional vector space

over F2. A Boolean function f is a mapping from Fn
2 to F2. In general, Algebraic

Normal Form (ANF) is used to represent a Boolean function. An n-variable
Boolean function f can be uniquely represented as

f(x1, x2, · · · , xn) =
⊕

u=(u1,··· ,un)∈Fn
2

afu

n∏
i=1

xui
i , afu ∈ F2,

where afu is a constant depending on f and u. The algebraic degree of f is defined
as deg(f) = max{wt(u) | afu ̸= 0}, where wt(u) is the Hamming weight of u.

2.2 Cube Attack and Cube Tester

Cube attack, proposed by Dinur and Shamir [2] at EUROCRYPT 2009, can be
seen as a type of higher-order differential (integral) attacks [12]. Given a cipher
f with public variables v ∈ Fm

2 and secret variables x ∈ Fn
2 , the cipher can be

viewed as a polynomial f(x,v). Denote a set of indices I = {i1, i2, . . . , i|I|} ⊂
{0, 1, . . . ,m−1} by cube indices. Such an I determines a specific structure called
cube CI , which contains 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|} take
all possible combinations of values and the remaining variables (key and non-
cube IV variables) are fixed to static values. Then the sum of f over all values
of the cube CI is⊕

CI

f(x,v) =
⊕
CI

(tI · p(x,v) + q(x,v)) = p(x,v),

where tI = vi1 · · · vi|I| , p(x,v) is independent of {vi1 , vi2 , . . . , vi|I|}, and q(x,v)
misses at least one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the
superpoly of the cube CI . The cube attack consists of two phases. In offline
phase, attackers select some cubes, and recover their corresponding superpolys.
In online phase, attackers compute the value of the superpoly by summing
the output bit f(x,v) over the cube. If the expression of superpoly p(x,v) is
simple, then we get some simple equations from these superpolys, and we can
immediately recover partial key information by solving the system of equations.

In [1] the notion of cube tester was proposed. The main idea of cube tester
is similar to cube attack, however, it aims to find some superpolys which have
the distinguishable properties (e.g., the superpoly is equal to a constant, which
is most commonly used).

2.3 Conventional Division Property and its MILP Representation

The (conventional) division property, proposed at EUROCRYPT 2015 [15], is
a generalization of the integral property for the detection of better integral

5

characteristics for word-oriented cryptographic primitives. Moreover, the bit-
based version was proposed in [18] to describe the propagation of integral
characteristics for bit-oriented ciphers. The bit-based division property is defined
as follows.

Definition 1 ((Bit-Based) Division Property [18]). Let X be a multiset
whose elements take a value of Fn

2 . Let K be a set whose elements take an n-
dimensional bit vector. When the multiset X has the division property D1n

K , it
fulfills the following conditions:

⊕
x∈X

xu =

{
unknown if there exist k ∈ K s.t. u ≽ k,
0 otherwise,

where u ≽ k if ui ≥ ki for all i, and xu =
∏n

i=1 xi
ui .

In [15, 18], the propagation rules are provided when the bitwise operations
COPY, XOR, AND are applied to the elements in X. To evaluate the propagation
of bit-based division property, attackers determine indices I = {i1, i2, . . . , i|I|}
and prepare 2|I| chosen plaintexts (IVs for stream ciphers) where variables
indexed by I are taking all possible combinations of values. If the division
property of the corresponding ciphertexts (keystream for stream ciphers) does
not contain a unit vector ei whose only i-th element is 1, the i-th bit of the
r-round ciphertexts is balanced.

Represent the Propagation of Division Property using MILP. At
ASIACRYPT 2016, Xiang et al. [24] first introduced a new concept division trail
to describe the propagation of the division property, and showed that the basic
propagation rules of the division property can be translated as some variables
and constraints of an MILP model. With this method, all possible division trails
can be covered with an MILP modelM and the division property of some output
bit can be known according to the solutions of M.

Definition 2 (Division Trail [24]). Let us consider the propagation of the
division property {k} def

= K0 → K1 → K2 → · · · → Kr. Moreover, for
any vector k∗

i+1 ∈ Ki+1 , there must exist a vector k∗
i ∈ Ki such that k∗

i

can propagate to k∗
i+1 by division property propagation rules. Furthermore, for

(k0,k1, · · · ,kr) ∈ (K0 × K1 × · · · × Kr), if ki can propagate to ki+1 for all
i ∈ {0, 1, · · · , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the r-round iterated cipher. If there is a division trail k0
Ek→ kr =

ej(j = 1, . . . , n), the summation of j-th bit is unknown; otherwise, if there is
no division trail s.t. k0

Ek→ kr = ej , we know the j-th bit of the ciphertext is
balanced.

6

2.4 Division Property and Cube Attack

In cube attack, we want to recover the superpoly p(x,v). Let x0, x1, . . . , xn−1

be all key bits. If the initialization is not enough for thorough diffusion, the
superpoly may only be related to a part of key bits J ({0, 1, · · · , n − 1}. At
CRYPTO 2017, Todo et al. [16] proposed an algorithm for determining such a
set J by using the bit-based division property. This algorithm is based on the
following proposition.

Proposition 1 (Key bits that are not involved in the superpoly [16]).
Let f(x,v) be a polynomial, where x and v denote the secret and public variables,
respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {0, 1, . . . ,m− 1}, let CI

be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|} are taking all
possible combinations of values. Let kI be an m-dimensional bit vector such that
vkI = tI = vi1vi2 . . . vi|I| , i.e. ki = 1 if i ∈ I and ki = 0 otherwise. Assuming
there is no division trail such that (eλ,kI)

f→ 1, xλ is not involved in the superpoly
of the cube CI .

According to this proposition, one can check that whether there is a division
trail (eλ,kI)

f→ 1 for λ = 0, 1, . . . , n − 1 via the MILP modeling method. If
the division trail (eλ,kI)

f→ 1 exists, then λ ∈ J ; otherwise, λ /∈ J . With the
knowledge of J , one can recover the superpoly by computing its truth table in
offline phase.

Later at CRYPTO 2018, Wang et al. [20, 19] proposed some techniques to
improve the division property based cube attack. The main contribution of [19]
can be summarized as follows.

Flag Technique. In previous MILP modeling of the bitwise operations COPY,
XOR, AND, each intermediate state bit b is assigned a binary value b.val
to represent its bit-based division property value. In [19], Wang et al. added
a ‘flag’ value for each state bit. The flag value b.F can be 0c, 1c or δ to
indicate whether the state bit is constant 0, constant 1 or variable. This
change mainly affects the MILP model for AND. If the flag value b.F of
state bit b is 0c, then we add a constraint b.val = 0, thus may improve the
accuracy of MILP model description of the division property propagation.
With flag technique, the new MILP model for COPY, XOR, AND are called
copyf, xorf, andf. We refer to [19] for more details.

Degree Evaluation and Term Enumeration. To recover the superpoly
more efficiently, Wang et al. [19] proposed another two algorithms to com-
pute the algebraic degree and enumerate all possible terms of the superpoly,
respectively. The two algorithms are based on the following proposition,
which is actually a generalization of Proposition 1.

Proposition 2 (Degree evaluation and term enumeration of the
superpoly [19]). Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂

7

{0, 1, . . . ,m − 1}, let CI be a set of 2|I| values where the variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be
an m-dimensional bit vector such that vkI = tI = vi1vi2 . . . vi|I| . Let kΛ

be an n-dimensional bit vector. Assuming there is no division trail such that
(kΛ||kI)

f→ 1, the term xkΛ is not involved in the superpoly of the cube CI .

The complexity of the superpoly recovery can be reduced from 2|I|+|J| to
2|I| × (1 +

∑d
t=1 |Jt|), where I is the cube indices, J is the involved key bits in

the superpoly, d is the algebraic degree of the superpoly, and Jt is all possible
terms of degree t. In the rest of this paper, we denote the algorithm of the degree
evaluation of the superpoly [19] by Algorithm A.

2.5 Three-Subset Division Property and its Propagation Rules

Although (conventional) bit-based division property can find more accurate
integral distinguishers, some practically verified integral distinguishers (e.g.,
[21]) cannot be proved with it. To find the exact integral characteristics, Todo
and Morii [18] proposed the three-subset division property.

Definition 3 (Three-Subset Division Property [18]). Let X be a multiset
whose elements take a value of Fn

2 . Let K,L be the set whose elements take
an n-dimensional bit vector. When the multiset X has the three-subset division
property D1n

K,L, it fulfills the following conditions:

⊕
x∈X

xu =

unknown if there are k ∈ K s.t. u ≽ k,
1 else if there is l ∈ L s.t. u = l,
0 otherwise.

where u ≽ k if ui ≥ ki for all i, and xu =
∏n

i=1 xi
ui .

Propagation Rules for Three-Subset Division Property. In [18], the
propagation rules of the three-subset division property for the bitwise operations
COPY, AND, XOR are given.

Rule 1 (copy). Let F be a copy function, where the input x ∈ Fn
2 and the

output is calculated as (x[1], x[1], x[2], x[3], . . . , x[n]). Let X and Y be the
input and output multisets, respectively. Assuming that X has D1n

K,L, Y has
D1n+1

K′,L′ , where K′ and L′ are computed as

K′ ←
{
(0, 0, k[2], . . . , k[n]), if k[1] = 0,
(1, 0, k[2], . . . , k[n]), (0, 1, k[2], . . . , k[n]), if k[1] = 1.

L′ ←
{
(0, 0, l[2], . . . , l[n]), if l[1] = 0,
(1, 0, l[2], . . . , l[n]), (0, 1, l[2], . . . , l[n]), (1, 1, l[2], . . . , l[n]) if l[1] = 1.

from all k ∈ K and all l ∈ L, respectively. Here, K′ ← k (resp. L′ ← l)
denotes that k (resp. l) is inserted into K′ (resp. L′).

8

Rule 2 (and). Let F be a function compressed by an AND, where the input
x ∈ Fn

2 and the output is calculated as (x[1] ∧ x[2], x[3], . . . , x[n]). Let X
and Y be the input and output multisets, respectively. Assuming that X has
D1n

K,L, Y has D1n−1

K′,L′ , where K′ is computed from all k ∈ K as

K′ ←
(⌈

k[1] + k[2]

2

⌉
, k[3], k[4], . . . , k[n]

)
.

Moreover, L′ is computed from all l ∈ L s.t. (l[1], l[2]) = (0, 0) or (1, 1) as

L′ ←
(⌈

l[1] + l[2]

2

⌉
, l[3], l[4], . . . , l[n]

)
.

Rule 3 (xor). Let F be a function compressed by an XOR, where the input
x ∈ Fn

2 and the output is calculated as (x[1] ⊕ x[2], x[3], . . . , x[n]). Let
X and Y be the input and output multisets, respectively. Assuming that
X has D1n

K,L, Y has D1n−1

K′,L′ , where K′ is computed from all k ∈ K s.t.
(k[1], k[2]) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k[1] + k[2], k[3], k[4], . . . , k[n]) .

Moreover, L′ is computed from all l ∈ L s.t. (l[1], l[2]) = (0, 0), (1, 0), or
(0, 1) as

L′ x← (l[1] + l[2], l[3], l[4], . . . , l[n]) .

Here, L′ x← l denotes that l is inserted if it is not included in L′. If it is already
included in L′, l is removed from L′. We call this property the cancellation
property.

Another important rule is that bitvectors in L influence K. Assuming that a
state has D1n

K,L, the secret key is XORed with the first bit in the state. Then, for
all l ∈ L satisfying l[1] = 0, a new bitvector (1, l[2], . . . , l[n]) is generated and
stored into K. We call this property the unknown-producing property.

2.6 Three-Subset Division Property and Cube Attack
In [16], the authors assume afu = 1 when the division property D1n

u can propagate
to D1

1. When these assumptions do not hold, the superpoly can be much simpler
than estimated, and in the extreme case, the superpoly becomes a constant
function. Then, the key recovery attack degenerates into the distinguishing
attack. In [22], the authors proposed proposition 4 to remove these assumptions
by using three-subset division property. A simplified version is shown below.
Lemma 1 (Simple case of [22]). Let f(x) be a polynomial from Fn

2 to F2 and
afu ∈ F2 (u ∈ Fn

2) be the ANF coefficients. Let l be an n-dimensional bitvector.
Then, assuming that the initial division property D1n

ϕ,{l} propagates to D1
ϕ,1 after

evaluating the function f , afl = 1.
When the function f is not key-dependent, the propagation for K and that for L
are perfectly independent. In other words, we no longer consider the propagation
for K because the initial division property is empty ϕ.

9

2.7 Three-Subset Division Property w/o Unknown Subset

In [22], Wang et al. proposed a method to accurately model the propagation for
the three-subset division property. However, as pointed in [8], this method is not
always efficient, it requires an assumption that almost all elements in 1-subset
can be pruned. To address this problem, Hao et al. [8] proposed a new modeling
method for the three-subset division property without unknown subset. They
introduced a modified three-subset division property that is equivalent with the
three-subset division property without unknown subset.

Definition 4 (Modified Three-Subset Division Property [8]). Let X be
a multiset whose elements take a value of Fn

2 . Let L̃ be also a multiset whose
elements take a value of Fn

2 . When the multiset X has the modified three-subset
division property T 1n

L̃ , it fulfills the following conditions:

⊕
x∈X

xu =

{
1 if there are odd-number of u’s in L̃,
0 otherwise.

where xu =
∏n

i=1 xi
ui .

Instead of considering the cancellation property, they count the number of
appearances in each bitvector in the multiset L̃ and check its parity. Since we do
not need to consider the cancellation property, the modeling for xor is simplified
as follows:

Rule 3’ (xor). Let F be a function compressed by an XOR, where the input
x ∈ Fn

2 and the output is calculated as (x[1]⊕x[2], x[3], . . . , x[n]). Let X and Y
be the input and output multisets, respectively. Assuming that X has T 1n

L̃ , Y
has T 1n−1

L̃′ , where L̃′ is computed from all l ∈ L s.t. (l[1], l[2]) = (0, 0), (1, 0),
or (0, 1) as

L̃′ ← (l[1] + l[2], l[3], l[4], . . . , l[n]) .

Here, L̃ and L̃′ are multisets, and L̃′ ← l allows the same l is stored into L̃′

several times.

The modified three-subset division property implies that we do not need to
consider the cancellation property in every round. We just enumerate the number
of three-subset division trails l

f→ ei. When the number of trails is odd, the
algebraic normal form of f contains xl. Otherwise, it does not contain xl.

Based on this modified three-subset division property and the new
propagation rules, Hao et al. [8] proposed its MILP models and Algorithm 2
to recover the superpoly. We denote the new MILP models for COPY, XOR,
AND by copyt, xort, andt. We refer to [8] for more details. In the rest of this
paper, we denote the algorithm of superpoly recovery [8] by Algorithm B.

10

3 Searching Cubes in Division Property Based Cube
Attack

In this section, we propose a method to search good cubes for an iterated
cipher in the division property based cube attack. Our cube searching procedure
consists of two phases. In the first phase, we use conventional division property
based cube attack to search a set of good cube testers. In the second phase, we
use the modified three-subset division property based cube attack to improve
the cube testers, and to search cubes for key recovery attack.

3.1 Phase 1: Searching Cube Testers using Conventional Division
Property

For conventional bit-based division property, there is an embedded property [14]
reflecting the features of its propagation. The embedded property says that, for
different initial division properties k0 and k1 s.t. k0 ≽ k1, there is no need to test
k1, if the output multi-set under k0 does not have integral property, likewise, it
is not necessary to test k0, if the output multi-set under k1 has integral property.

In the following, we will show that, the embedded property can apply to the
search of cube testers as well. We first introduce the following lemma which was
proposed in [19].

Lemma 2 ([19]). If k ≽ k′ and there is division trail k f→ l, then there is also
division trail k′ f→ l′ s.t. l ≽ l′.

Based on this lemma, we propose the following proposition.

Proposition 3. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{0, 1, . . . ,m − 1}, let kI be an m-dimensional bit vector such that vkI = tI =
vi1vi2 . . . vi|I| . Let kΛ be an n-dimensional bit vector. For a given set of indices
IS (I, if there is no division trail such that (kΛ||kIS)

f→ 1 for any kΛ ∈ Fn
2 ,

then there is also no division trail such that (kΛ||kI)
f→ 1 for any kΛ ∈ Fn

2 .

Proof. From Lemma 2, if k ≽ k′ and there is division trail k f→ 1, then there is
also division trail k′ f→ 1. Suppose there is a division trail such that (k∗

Λ||kI)
f→ 1

for a fixed k∗
Λ ∈ Fn

2 , then there is also a division trail such that (k∗
Λ||kIS)

f→ 1
(since (k∗

Λ||kI) ≽ (k∗
Λ||kIS)), which leads to a contradiction. ⊓⊔

Denote the superpoly of cube I by pS(I). From the above Proposition and
Proposition 2 in Section 2, we know that,

Proposition 4 (Embedded Property for Cube Tester). For an r-round
iterated cipher, if IS is a subset of cube I, and there is no monomials in
pS(IS) (i.e., deg(pS(IS)) = 0), then there is also no monomials in pS(I) (i.e.,
deg(pS(I)) = 0). Likewise, if deg(pS(I)) ̸= 0, then deg(pS(IS)) ̸= 0.

11

Proposition 4 is useful to search cube testers efficiently in the conventional
division property based cube attack.

In the following, we propose Algorithm 1, 2, and 3 to efficiently reduce the
complexity of searching. Algorithm 1 is used to determine the maximum number
of distinguishable rounds rm for a given cube indices I. Algorithm 1 can be seen
as a subfunction of Algorithm 2. In Algorithm 2, we determine the maximum
number of distinguishable rounds for a specific cipher, and restrict the search
scope. In Algorithm 3, we use the output of Algorithm 2 as input, and returns
a set of constant-sum cube testers.

Algorithm 1 Determining the Maximum Number of Distinguishable Rounds
for a Given Cube
1: procedure DetermineMaximumRoundsForCube(Given iterated cipher f with

R initialzation rounds, cube indices I, return the maximum number of distinguish-
able rounds rm for cube I.)

2: rh = R, rl = 0, rm = 0, r = 0, f lag = 0;
3: while rh − rl > 1 do
4: r = ⌊(rh + rl)/2⌋
5: use Algorithm A to evaluate the degree d of the superpoly of cube I for f

reduced to r rounds;
6: if d = 0 then
7: rl = r, flag = 0;
8: else
9: rh = r, flag = 1;

10: end if
11: end while
12: if flag = 0 then
13: rm = r;
14: else
15: rm = r − 1;
16: end if
17: return rm;
18: end procedure

The basic idea of Algorithm 1 is binary search, which can reduce the
complexity of searching. In Algorithm 1, we set two variables rh and rl to indicate
the upper bound and lower bound of the maximum number of distinguishable
rounds rm for a specific cipher. For a cipher f with R initialzation rounds, we
first use Algorithm A to evaluate the degree d of the superpoly of cube I for f
reduced to ⌊(rh + rl)/2⌋ = ⌊R/2⌋ rounds. If d = 0, then rm is at least ⌊R/2⌋,
so we set rl = r. Otherwise, we set rh = r. We iteratively repeat this process,
so the distance between rh and rl can be reduced quickly. In the end, we can
determine the value of rm with at most ⌈log2 R⌉ iterations.

In Algorithm 2, we first check all cubes of dimension m − 1, where m is
the number of public variables. For each (m − 1)-dimensional cube I, we use

12

Algorithm 2 Determining the Maximum Number of Distinguishable Rounds &
Restricting the Search Scope
1: procedure DetermineMaxRoundsAndRestrictScope(Given iterated cipher

f with m public variables (v0, . . . , vm−1), return the maximum number of
distinguishable rounds rmax of cube testers, and the index set S.)

2: rmax = 0, S = ∅;
3: for i = 0; i < m do
4: let cube indices Ii = {0, 1, . . . ,m− 1} \ {i};
5: use Algorithm 1 to compute the maximum number of distinguishable rounds

ri for cube Ii, and store (Ii, ri);
6: if rmax < ri then
7: rmax = ri;
8: end if
9: end for

10: for i = 0; i < m do
11: if ri = rmax then
12: S = S ∪ {i};
13: end if
14: end for
15: return rmax, S;
16: end procedure

Algorithm 1 to compute its maximum number of distinguishable rounds as cube
testers. Among all m cubes, we select those cubes which can lead to the longest
(rmax-round) cube tester, and store their missing index i of public variables in S.
We claim that the elements in the complementary set S̄ = {0, 1, . . . ,m−1}\S of S
are ‘necessary’ bit indices to obtain an rmax-round cube tester. By Proposition 4,
if any index which belongs to S̄ is not in cube indices I, then this cube will not
lead to an rmax-round cube tester. In the following, we call S̄ the necessary set,
whose elements must be in the cube indices, while S is called the sufficient set,
and the elements in S are called sufficient indices.

In Algorithm 3, we first test whether the cube I = {0, 1, . . . ,m− 1} \ S will
lead to the rmax-round cube tester. If not, we gradually increase the dimension
of cubes by reducing the value of t where we pick t indices from S, and check
whether the cube tester exists or not. After t is fixed (Line 15 in Algorithm 3),
there exists at least one cube which will lead to the rmax-round cube tester, so
Algorithm 3 returns a set of constant-sum cube testers.

3.2 Phase 2: Searching Cubes using Modified Three-Subset Division
Property

In phase 2, we propose Algorithm 4 to search more cubes for improved
distinguishers and key recovery attack. Given r-round cipher f with public
variables (v0, . . . , vm−1) and secret variables (x0, . . . , xn−1), Algorithm 4 returns
a set D containing the cubes for improved distinguishers, and a set K
containing the cubes for key recovery attack. Moreover, the maximum number of

13

Algorithm 3 Searching Constant-Sum Cube Testers
1: procedure SearchConstantSumCubeTesters(Given iterated cipher f with m

public variables (v0, . . . , vm−1), the maximum number of distinguishable rounds
rmax of cube testers, and the sufficient set S, return a set Res containing the
constant-sum cube testers.)

2: Res = ∅, f lag = 0;
3: t = |S|;
4: while flag = 0 do
5: for every t-tuple (i0, i1, . . . , it−1) of S do
6: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
7: use Algorithm A to evaluate the degree d of the superpoly of cube I for

f reduced to rmax rounds;
8: if d = 0 then
9: flag = 1;

10: break;
11: end if
12: end for
13: t = t− 1;
14: end while
15: t = t+ 1;
16: for every t-tuple (i0, i1, . . . , it−1) of S do
17: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
18: use Algorithm A to evaluate the degree d of the superpoly of cube I for f

reduced to rmax rounds;
19: if d = 0 then
20: Res = Res ∪ {I};
21: end if
22: end for
23: return Res;
24: end procedure

distinguishable rounds rmax and the sufficient set S returned by Algorithm 2, and
the set Res containing the constant-sum cube testers returned by Algorithm 3
are also taken as the input of Algorithm 4, since we can use them to restrict our
search space.

Since the theory of conventional division property can not guarantee that the
superpoly is non-constant, the return value of Algorithm A is actually an upper
bound of the real degree of the superpoly. On the other hand, if the return value
of Algorithm A is zero, then a constant superpoly is guaranteed. As the modified
three-subset division property based cube attack can recover the exact expression
of superpolys, we use Algorithm B to verify more cubes whose superpoly has a
low estimated degree returned by Algorithm A.

For a cube I, we first use Algorithm A to estimate the degree d of the
superpoly of cube I. In general, the running time for Algorithm B is much
longer than Algorithm A. Therefore, we introduce a parameter δ, and we only
run Algorithm B when the estimated degree d returned by Algorithm A satisfies

14

0 < d < δ, so the running time for Algorithm B will not be too long. If Algorithm
B returns a constant superpoly, then we obtain a new distinguisher, and we add
I to set D; otherwise, we obtain a new key recovery attack if |I| ≤ m − 2, and
we add I to set K.

At the beginning of Algorithm 4, we make use of the set Res containing the
constant-sum cube testers, which is returned by Algorithm 3. For cube c ∈ Res,
|c| represents the minimal dimension of cube where the cube will lead to rmax-
round cube tester. Therefore, for r-round cipher f , if r ≤ rmax, we first test
cubes of dimension |c|. As we are going to find cubes for improved distinguishers
and key recovery, we will test cubes of smaller dimension after that. However, if
r > rmax, we do not know which dimension would be enough for r-round cube
tester, therefore we start with dimension m− 1.

In Algorithm 4, we still use the embedded property to restrict our search
scope. The sufficient set S returned by Algorithm 2 is a set of good missing
indices of cube indices. Let S′ ⊆ S, for different cubes with the same dimension,
the cube indices I = {0, 1, . . . ,m − 1} \ S′ is more likely to reach more rounds
for distinguishing attacks. Therefore testing these cubes would be our priority.

For cubes with dimension m− t, we first test cube indices I = {0, 1, . . . ,m−
1} \ {i0, i1, . . . , it−1} which satisfy {i0, i1, . . . , it−1} ⊆ S. For a cube I, if the
estimated degree d of superpoly is less than δ, then by running Algorithm B we
obtain a cube for new distinguisher or key recovery attack. However, if all cubes
are turned to be distinguishers, then we need to test cubes randomly, since other
cubes might still have non-constant superpolys. We introduce parameter trial
and we will test cubes randomly trial times for cubes with dimension m−t. After
that, we will test cubes of dimension m − t − 1. On the other hand, for cube
indices I = {0, 1, . . . ,m−1}\{i0, i1, . . . , it−1} which satisfy {i0, i1, . . . , it−1} ⊆ S,
if the estimated degree d of superpolies of all these cubes satisfy that d ≥ δ, then
we will not test cubes of dimension less than m − t, since superpolies of small
cubes are more likely to have higher degrees, and we can not run Algorithm B
efficiently.

It should be pointed out that, Algorithm 4 is only a general solution for
searching good cubes. Sometimes, we will not run Algorithm 4 strictly. In the
application to ACORN, we only test a part of all tested cubes to save time, and
we will not test more cubes after we find a key recovery attack.

15

Algorithm 4 Searching Cubes for Improved Distinguishers and Key Recovery
Attack
1: procedure SearchCubesForDistinguisherAndKeyRecovery(Given r-round

cipher f with public variables (v0, . . . , vm−1) and secret variables (x0, . . . , xn−1),
the number of distinguishable rounds rmax, the sufficient set S, and the set Res
containing the constant-sum cube testers, return a set D containing the cubes for
improved distinguishers, and a set K containing the cubes for key recovery attack.)

2: D = K = ∅, f lag = 1, δ = 4, trial = 10; ◃ the parameter δ, trial can be set to
other suitable values.

3: let |c| be the dimension of cube c ∈ Res;
4: let t = m− |c| if r ≤ rmax, and t = 1 otherwise;
5: while flag = 1 and t ≤ |S| do
6: flag = 0;
7: for every t-tuple (i0, i1, . . . , it−1) of S do
8: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
9: use Algorithm A to evaluate the degree d of the superpoly of cube I;

10: if d < δ then
11: flag = 1;
12: use Algorithm B to recover the superpoly p(x) of cube I if d > 0;
13: if d = 0 or p(x) = 0 or p(x) = 1 then
14: D = D ∪ {I};
15: else if t ≥ 2 then
16: K = K ∪ {I};
17: end if
18: end if
19: end for
20: if flag = 1 and K = ∅ and t ≥ 2 then
21: for i = 0; i < trial do
22: randomly pick t-tuple (i0, i1, . . . , it−1) of {0, 1, . . . ,m− 1};
23: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
24: use Algorithm A to evaluate the degree d of the superpoly of cube I;
25: if d < δ then
26: use Algorithm B to recover the superpoly p(x) of cube I if d > 0;
27: if d = 0 or p(x) = 0 or p(x) = 1 then
28: D = D ∪ {I};
29: else
30: K = K ∪ {I};
31: break;
32: end if
33: end if
34: end for
35: end if
36: t = t+ 1;
37: end while
38: return D,K;
39: end procedure

16

4 Applications to ACORN

In this section, we apply our cube searching methods to ACORN. As a result,
we find some new cube testers of dimension 126 on 775-round ACORN. We also
find a new key recovery attack on 775-round ACORN with a 126-dimensional
cube, whose corresponding superpoly is a 2-degree polynomial with respect to
key bits.

4.1 A Brief Description of ACORN

ACORN [23] is an authenticated encryption stream cipher, and it has been
selected as one of the 6 algorithms in the final portfolio of the CAESAR
competition. ACORN has a 128-bit key and a 128-bit initialization vector. As
an authenticated encryption scheme, ACORN has 4 procedures: initialization,
processing the associated data, encryption, and finalization. In this paper, we
only focus on the process of initialization, because the number of rounds we
can attack is smaller than the 1792 initialization rounds. For more details about
ACORN, we refer to [23].

Denote the internal state (at step t) of ACORN by St = (st, st+1, . . . , st+292),
where t ∈ {0, . . . , 1791}. The initial state S0 = (s0, s1, . . . , s292) is set to
(0, . . . , 0). Denote the key and initialization vector by K and IV respectively.
Let

mt =

Kt for t = 0 to 127,
IVt−128 for t = 128 to 255,
K0 ⊕ 1 for t = 256,
Kt mod 128 for t = 257 to 1791.

At each step t, where t ∈ {0, . . . , 1791}, the state is updated as follows.

1. update using six LFSRs.
st+289 = st+289 ⊕ st+235 ⊕ st+230;
st+230 = st+230 ⊕ st+196 ⊕ st+193;
st+193 = st+193 ⊕ st+160 ⊕ st+154;
st+154 = st+154 ⊕ st+111 ⊕ st+107;
st+107 = st+107 ⊕ st+66 ⊕ st+61;
st+61 = st+61 ⊕ st+23 ⊕ st;

2. generate the keystream bit.
kst = st+12⊕st+154⊕st+235st+61⊕st+235st+193⊕st+61st+193⊕st+230st+111⊕
st+230st+66 ⊕ st+66;

3. generate the nonlinear feedback bit.
ft = st⊕ st+107⊕ 1⊕ st+244st+23⊕ st+244st+160⊕ st+23st+160⊕ st+196⊕kst;

4. update with the feedback bit ft.
st+293 = ft ⊕mt;

17

4.2 ACORN’s MILP Models for Conventional Division Property
and Modified Three-Subset Division Property

It should be noticed that, there are some typing errors and inaccurate
descriptions of ACORN cipher in the two MILP models given in [19] and [7]. To
remove the ambiguity, we give the refined version of the two MILP models in
Appendix B and Appendix C.

Our experiments are based on the two MILP models of ACORN, Algorithm
A [19], and Algorithm B [7]. We use Gurobi Optimizer [5] with Python/C++
interface to solve the MILP problems.

4.3 Cube Testers of 775-round ACORN

In phase 1, we search cubes using conventional division property based cube
attack. We first use Algorithm 2 to find the maximum distinguishable rounds
rmax and the sufficient set S. Our experiments show that rmax = 775 and
S = {1, 2, 11, 18, 26, 27}. Then we use Algorithm 3 to find constant-sum cube
testers with the smallest dimension (in the conventional division property based
cube attack scenario). As a result, only 6 cubes of dimension 127 can lead to
the constant-sum cube tester for 775-round ACORN. The cube indices are as
follows.

I = {0, 1, . . . , 127} \ {i}, i ∈ {1, 2, 11, 18, 26, 27}

In phase 2, we use Algorithm 4 to search more cubes for improved distinguishers.
We set all the non-cube IV bits to constant 0 when we use Algorithm B to recover
the superpoly. As a result, we find 5 cubes with dimension 126, all of which can
lead to the constant-sum cube tester for 775-round ACORN. The cube indices
are as follows.

I = {0, 1, . . . , 127} \ {i, j}, {i, j} ∈ {{1, 2}, {1, 11}, {1, 18}, {2, 18}, {11, 18}}

Table 2. 5 constant superpolies against 775-round ACORN.

missing indices {i, j} for superpoly p(x)cube I = {0, 1, . . . , 127} \ {i, j}
{1, 2} 0
{1, 11} 0
{1, 18} 0
{2, 18} 1
{11, 18} 1

18

4.4 A Key Recovery Attack of 775-round ACORN

Using Algorithm 4, we find a cube of dimension 126 which can lead to a key
recovery attack for 775-round ACORN. The cube indices is as follows,

I = {0, 1, . . . , 127} \ {1, 26}.

We set all the non-cube IV bits to 0. By running Algorithm A, we know the
estimated degree of the superpoly of this cube is 3. Using Algorithm B, we know
the superpoly is a summation of 40 monomials as follows.

p(x) = x96 + x95 + x92 + x90 + x75 + x71 + x70 + x63 + x62 + x61 + x59 + x56+

x55 + x53 + x51 + x42 + x41 + x38 + x37 + x33 + x32 + x31 + x29x71+

x28 + x27 + x26 + x25 + x17x29 + x16 + x14 + x12x29 + x11 + x9 + x8+

x7 + x5 + x4 + x3 + x1 + x0.

Since there is a monomial x0 that is independent of other monomials, this
superpoly is a balanced Boolean function. Therefore, we can recover 1 bit secret
information by summing over the cube with a complexity of 2126. After that, the
remaining bits can be recovered by exhaustive search with 2127 time complexity.

5 Conclusions

In this paper, we propose a method to search good cubes for both distinguishing
attacks and key recovery attacks in the division property based cube attack
scenario. Our cube searching procedure combines the conventional division
property and the modified three-subset division property. In the process of cube
searching, we mainly use the embedded property to narrow down the searching
space. As a result, we find some new cube testers of dimension 126 on 775-round
ACORN. We also find a new key recovery attack on 775-round ACORN.

Acknowledgements. We would like to thank Yonglin Hao for his suggestions
and helping us to run our codes on Linux servers with high performance.

A Detailed Result for Cube Attacks against ACORN

19

Table 3. Detailed result for superpoly for 775-round ACORN.

parity #trails monomial
0 475072
0 16 x127

0 162 x126

0 56 x125

0 1490 x123

0 248 x121

0 300 x120

0 248 x117

0 176 x116

0 248 x115

0 88 x114

0 176 x112

0 88 x111

0 88 x110

0 88 x108

0 252 x105

0 8 x102

0 248 x100

1 3189 x96

1 1949 x95

0 16 x94

0 178 x93

1 1919 x92

0 56 x91

1 3207 x90

0 1652 x89

0 320 x88

0 462 x87

0 1862 x86

0 1746 x84

0 724 x83

0 688 x82

0 396 x81

0 344 x80

0 352 x79

0 544 x78

0 492 x77

0 336 x76

1 2193 x75

0 196 x74

0 508 x73

0 254 x72

1 2025 x71

1 1965 x70

0 1954 x69

0 278 x68

0 642 x67

0 360 x66

0 1850 x65

0 1578 x64

1 2293 x63

1 2429 x62

1 2353 x61

0 270 x60

1 2191 x59

0 4224 x58

0 5732 x57

1 3809 x56

1 3979 x55

parity #trails monomial
0 1760 x54

0 248 x54x96

1 4061 x53

0 3690 x52

1 5349 x51

0 2504 x50

0 3450 x49

0 1058 x48

0 2474 x47

0 1744 x46

0 2666 x45

0 1440 x44

0 1620 x43

1 4589 x42

0 248 x42x54

1 3269 x41

0 1300 x40

0 1250 x39

1 3003 x38

1 4237 x37

0 248 x37x54

0 6676 x36

0 2380 x35

0 1646 x34

1 2949 x33

1 4827 x32

1 4071 x31

0 6308 x30

0 8626 x29

1 1701 x29x71

1 3979 x28

1 4741 x27

0 16 x27x69

1 5319 x26

0 162 x26x68

1 6287 x25

0 56 x25x67

0 14318 x24

0 11820 x23

0 1490 x23x65

0 7188 x22

0 13522 x21

0 248 x21x105

0 248 x21x96

0 248 x21x63

0 248 x21x51

0 248 x21x47

0 248 x21x46

0 248 x21x42

0 248 x21x37

0 8868 x20

0 248 x20x96

0 300 x20x62

0 248 x20x42

0 248 x20x37

0 8570 x19

0 18516 x18

0 10278 x17

0 248 x17x96

parity #trails monomial
0 248 x17x59

0 248 x17x42

0 248 x17x37

1 1701 x17x29

1 11923 x16

0 176 x16x58

0 11436 x15

0 248 x15x96

0 248 x15x57

0 248 x15x42

0 248 x15x37

0 16 x15x27

1 7449 x14

0 88 x14x56

0 162 x14x26

0 5802 x13

0 56 x13x25

0 13738 x12

0 176 x12x54

1 1701 x12x29

1 8419 x11

0 88 x11x53

0 1490 x11x23

0 8834 x10

0 88 x10x52

0 16 x10x27

1 6405 x9

0 162 x9x26

0 248 x9x21

1 7385 x8

0 88 x8x50

0 56 x8x25

0 248 x8x21

0 300 x8x20

1 6021 x7

0 6886 x6

0 1490 x6x23

1 7245 x5

0 252 x5x47

0 248 x5x21

0 248 x5x21x47

0 248 x5x17

1 10017 x4

0 248 x4x21

0 176 x4x16

1 11945 x3

0 300 x3x20

0 248 x3x15

0 8978 x2

0 8 x2x44

0 88 x2x14

1 7421 x1

1 6727 x0

0 248 x0x96

0 496 x0x42

0 248 x0x37

0 248 x0x17

0 176 x0x12

20

B ACORN’s MILP Model for Conventional Division
Property

Algorithm 5 MILP model for maj in ACORN [19]
1: procedure maj(M,X, i, j, k)
2: if Xi.F ⊕Xj .F = 0c then
3: (M, Yi, a)← copyf (M, Xi)
4: (M, Yj , b)← copyf (M, Xj)
5: (M, o)← andf (M, a, b)
6: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j}
7: else if Xi.F ⊕Xk.F = 0c then
8: (M, Yi, a)← copyf (M, Xi)
9: (M, Yk, c)← copyf (M, Xk)

10: (M, o)← andf (M, a, c)
11: Ys = Xs for all s ∈ {0, . . . , 292} − {i, k}
12: else if Xj .F ⊕Xk.F = 0c then
13: (M, Yj , b)← copyf (M, Xj)
14: (M, Yk, c)← copyf (M, Xk)
15: (M, o)← andf (M, b, c)
16: Ys = Xs for all s ∈ {0, . . . , 292} − {j, k}
17: else
18: (M, Yi, a1, a2)← copyf (M, Xi)
19: (M, Yj , b1, b2)← copyf (M, Xj)
20: (M, Yk, c1, c2)← copyf (M, Xk)
21: (M, a)← andf (M, a1, b1)
22: (M, b)← andf (M, a2, c1)
23: (M, c)← andf (M, b2, c2)
24: (M, o)← xorf (M, a, b, c)
25: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
26: end if
27: return (M,Y , o)
28: end procedure

21

Algorithm 6 MILP model for ch in ACORN [19]
1: procedure ch(M,X, i, j, k)
2: if Xi.F = 0c or Xj .F ⊕Xk.F = 0c then
3: (M, Yk, o)← copyf (M, Xk)
4: Ys = Xs for all s ∈ {0, . . . , 292} − {k}
5: else if Xi.F = 1c then
6: (M, Yj , o)← copyf (M, Xj)
7: Ys = Xs for all s ∈ {0, . . . , 292} − {j}
8: else
9: (M, Yi, a1, a2)← copyf (M, Xi)

10: (M, Yj , b1)← copyf (M, Xj)
11: (M, Yk, c, c1)← copyf (M, Xk)
12: (M, a)← andf (M, a1, b1)
13: (M, b)← andf (M, a2, c1)
14: (M, o)← xorf (M, a, b, c)
15: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
16: end if
17: return (M,Y , o)
18: end procedure

Algorithm 7 MILP model for LFSR in ACORN [19]
1: procedure xorFB(M,X, k, i, j)
2: (M, Yi, a)← copyf (M, Xi)
3: (M, Yj , b)← copyf (M, Xj)
4: (M, Yk)← xorf (M, a, b,Xk)
5: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
6: return (M,Y)
7: end procedure

Algorithm 8 MILP model for ksg128 in ACORN [19]
1: procedure ksg128(M,X)
2: (M, A12, x1)← copyf (M, X12)
3: (M, A154, x2)← copyf (M, X154)
4: At = Xt for all t ∈ {0, . . . , 292} − {12, 154}
5: (M,B, x3)← maj (M,A, 235, 61, 193)
6: (M,Y , x4)← ch (M,B, 230, 111, 66)
7: (M, z)← xorf (M, x1, x2, x3, x4)
8: return (M,Y , z)
9: end procedure

22

Algorithm 9 MILP model for fbk128 in ACORN [19]
1: procedure fbk128(M,X, ks)
2: (M, A0, x1)← copyf (M, X0)
3: (M, A107, x2)← copyf (M, X107)
4: (M, A196, x3)← copyf (M, X196)
5: At = Xt for all t ∈ {0, . . . , 292} − {0, 107, 196}
6: (M,B, x4)← maj (M,A, 244, 23, 160)
7: (M, z)← xorf (M, x1, x2, x3, x4, ks)
8: z.F = z.F ⊕ 1c
9: return (M,B, z)

10: end procedure

23

Algorithm 10 MILP model for the initialization of ACORN [19]
1: procedure ACORNEval(round R)
2: Prepare empty MILP model M
3: M.var ← xi for i ∈ {0, 1, . . . , 127} as binary ◃ Declare the secret key bits
4: M.var ← vi for i ∈ {0, 1, . . . , 127} as binary ◃ Declare the public IV bits
5: M.var ← S0

i for i ∈ {0, 1, . . . , 292} as binary and assign their flags as S0
i .F = 0c

◃ The register bits are initialized as constant 0’s
6: for r = 1 to R do
7: (M,T) = xorFB (M,Sr−1, 289, 235, 230)
8: (M,U) = xorFB (M,T , 230, 196, 193)
9: (M,V) = xorFB (M,U , 193, 160, 154)

10: (M,W) = xorFB (M,V , 154, 111, 107)
11: (M,X) = xorFB (M,W , 107, 66, 61)
12: (M,Y) = xorFB (M,X, 61, 23, 0)
13: (M,Z, ks) = ksg128 (M,Y)
14: (M,A, f) = fbk128 (M,Z, ks)
15: M.con← A0 = 0
16: for i = 0 to 291 do
17: Sr

i = Ai+1

18: end for
19: M.var ← Sr

292 as binary
20: if 128 < r ≤ 256 then
21: M.con← Sr

292 = f+vr−129 and assign the flags Sr
292.F = f.F⊕vr−129.F

22: else
23: M.var ← TKr−1 as binary and assign its flag as

TKr−1.F =

{
x(r−1) mod 128.F ⊕ 1c if r = 257,
x(r−1) mod 128.F otherwise.

24: M.con← Sr
292 = f + TKr−1 and assign Sr

292.F = f.F ⊕ TKr−1.F
25: end if
26: end for
27: for i = 0 to 127 do
28: M.con← xi =

∑
j TKi+128×j

29: end for
30: (M,T) = xorFB (M,SR, 289, 235, 230)
31: (M,U) = xorFB (M,T , 230, 196, 193)
32: (M,V) = xorFB (M,U , 193, 160, 154)
33: (M,W) = xorFB (M,V , 154, 111, 107)
34: (M,X) = xorFB (M,W , 107, 66, 61)
35: (M,Y) = xorFB (M,X, 61, 23, 0)
36: (M,Z, ks) = ksg128 (M,Y)
37: for i = 0 to 292 do
38: M.con← Zi = 0
39: end for
40: M.con← ks = 1
41: return M
42: end procedure

24

C ACORN’s MILP Model for Modified Three-Subset
Division Property

Algorithm 11 MILP model for majt in ACORN
1: procedure majt(M,X, i, j, k)
2: (M, Yi, a1, a2)← copyt (M, Xi)
3: (M, Yj , b1, b2)← copyt (M, Xj)
4: (M, Yk, c1, c2)← copyt (M, Xk)
5: (M, a)← andt (M, a1, b1)
6: (M, b)← andt (M, a2, c1)
7: (M, c)← andt (M, b2, c2)
8: (M, o)← xort (M, a, b, c)
9: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}

10: return (M,Y , o)
11: end procedure

Algorithm 12 MILP model for cht in ACORN
1: procedure cht(M,X, i, j, k)
2: (M, Yi, a1, a2)← copyt (M, Xi)
3: (M, Yj , b1)← copyt (M, Xj)
4: (M, Yk, c, c1)← copyt (M, Xk)
5: (M, a)← andt (M, a1, b1)
6: (M, b)← andt (M, a2, c1)
7: (M, o)← xort (M, a, b, c)
8: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
9: return (M,Y , o)

10: end procedure

Algorithm 13 MILP model for xorFBt in ACORN
1: procedure xorFBt(M,X, k, i, j)
2: (M, Yi, a)← copyt (M, Xi)
3: (M, Yj , b)← copyt (M, Xj)
4: (M, Yk)← xort (M, a, b,Xk)
5: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
6: return (M,Y)
7: end procedure

25

Algorithm 14 MILP model for ksg128t in ACORN
1: procedure ksg128t(M,X)
2: (M, A12, x1)← copyt (M, X12)
3: (M, A154, x2)← copyt (M, X154)
4: At = Xt for all t ∈ {0, . . . , 292} − {12, 154}
5: (M,B, x3)← majt (M,A, 235, 61, 193)
6: (M,Y , x4)← cht (M,B, 230, 111, 66)
7: (M, z)← xort (M, x1, x2, x3, x4)
8: return (M,Y , z)
9: end procedure

Algorithm 15 MILP model for fbk128t in ACORN
1: procedure fbk128t(M,X, ks, r)
2: (M, A0, x1)← copyt (M, X0)
3: (M, A107, x2)← copyt (M, X107)
4: (M, A196, x3)← copyt (M, X196)
5: At = Xt for all t ∈ {0, . . . , 292} − {0, 107, 196}
6: (M,B, x4)← majt (M,A, 244, 23, 160)
7: if r = 257 then
8: (M, z)← xort (M, x1, x2, x3, x4, ks)
9: else

10: M.var ← o as binary
11: (M, z)← xort (M, x1, x2, x3, x4, ks, o) ◃ o corresponds to constant 1
12: end if
13: return (M,B, z)
14: end procedure

26

Algorithm 16 ACORN’s MILP model for modified three-subset division
property
1: procedure ACORNEvalThree(round R)
2: Prepare empty MILP model M
3: M.var ← xi for i ∈ {0, 1, . . . , 127} as binary
4: M.var ← vi for i ∈ {0, 1, . . . , 127} as binary
5: M.var ← S0

i for i ∈ {0, 1, . . . , 292} as binary
6: M.con← S0

i = 0 for i ∈ {0, 1, . . . , 292}
7: for r = 1 to R do
8: (M,T) = xorFBt (M,Sr−1, 289, 235, 230)
9: (M,U) = xorFBt (M,T , 230, 196, 193)

10: (M,V) = xorFBt (M,U , 193, 160, 154)
11: (M,W) = xorFBt (M,V , 154, 111, 107)
12: (M,X) = xorFBt (M,W , 107, 66, 61)
13: (M,Y) = xorFBt (M,X, 61, 23, 0)
14: (M,Z, ks) = ksg128t (M,Y)
15: (M,A, f) = fbk128t (M,Z, ks, r)
16: M.con← A0 = 0
17: for i = 0 to 291 do
18: Sr

i = Ai+1

19: end for
20: M.var ← Sr

292 as binary
21: if 128 < r ≤ 256 then
22: M.con← Sr

292 = f + vr−129

23: else
24: M.var ← TKr−1

25: M.con← Sr
292 = f + TKr−1

26: end if
27: end for
28: for i = 0 to 127 do
29: for all possible j do
30: M.con← TKi+128×j ≤ xi

31: end for
32: M.con←

∑
j TKi+128×j ≥ xi

33: end for
34: (M,T) = xorFBt (M,SR, 289, 235, 230)
35: (M,U) = xorFBt (M,T , 230, 196, 193)
36: (M,V) = xorFBt (M,U , 193, 160, 154)
37: (M,W) = xorFBt (M,V , 154, 111, 107)
38: (M,X) = xorFBt (M,W , 107, 66, 61)
39: (M,Y) = xorFBt (M,X, 61, 23, 0)
40: (M,Z, ks) = ksg128t (M,Y)
41: for i = 0 to 292 do
42: M.con← Zi = 0
43: end for
44: M.con← ks = 1
45: return M
46: end procedure

27

References
1. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery

attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) Fast
Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 5665, pp. 1–22. Springer (2009)

2. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5479, pp. 278–299. Springer (2009)

3. Fouque, P., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8424, pp. 502–517. Springer (2013)

4. Ghafari, V.A., Hu, H.: A new chosen IV statistical distinguishing framework
to attack symmetric ciphers, and its application to acorn-v3 and grain-128a. J.
Ambient Intell. Humaniz. Comput. 10(6), 2393–2400 (2019)

5. Gurobi: Gurobi Optimizer. http://www.gurobi.com/
6. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Links between

division property and other cube attack variants. IACR Trans. Symmetric Cryptol.
2020(1), 363–395 (2020)

7. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. IACR Cryptol. ePrint Arch. 2020, 441
(2020), https://eprint.iacr.org/2020/441

8. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset - improved cube attacks against trivium
and grain-128aead. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp. 466–495.
Springer (2020)

9. Hu, K., Wang, M.: Automatic search for a variant of division property using
three subsets. In: Matsui, M. (ed.) Topics in Cryptology - CT-RSA 2019 - The
Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,
March 4-8, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11405, pp.
412–432. Springer (2019)

10. Kesarwani, A., Roy, D., Sarkar, S., Meier, W.: New cube distinguishers on nfsr-
based stream ciphers. Des. Codes Cryptogr. 88(1), 173–199 (2020)

11. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) Fast Software Encryption, 9th International Workshop, FSE 2002, Leuven,
Belgium, February 4-6, 2002, Revised Papers. Lecture Notes in Computer Science,
vol. 2365, pp. 112–127. Springer (2002)

12. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography, pp. 227–233. Springer (1994)

13. Salam, M.I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.:
Investigating cube attacks on the authenticated encryption stream cipher ACORN.
In: Applications and Techniques in Information Security - 6th International
Conference, ATIS 2016, Cairns, QLD, Australia, October 26-28, 2016, Proceedings.
pp. 15–26 (2016)

28

14. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T.
(eds.) Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10624, pp. 128–157. Springer (2017)

15. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 9056, pp. 287–314. Springer (2015)

16. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 10403, pp. 250–279. Springer (2017)

17. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. IACR Cryptol. ePrint Arch. 2017, 306 (2017),
http://eprint.iacr.org/2017/306

18. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 9783, pp. 357–377. Springer (2016)

19. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division
property based cube attacks exploiting algebraic properties of superpoly. IACR
Cryptol. ePrint Arch. 2017, 1063 (2017), http://eprint.iacr.org/2017/1063

20. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division
property based cube attacks exploiting algebraic properties of superpoly. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10991,
pp. 275–305. Springer (2018)

21. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
Progress in Cryptology - INDOCRYPT 2014 - 15th International Conference on
Cryptology in India, New Delhi, India, December 14-17, 2014, Proceedings. Lecture
Notes in Computer Science, vol. 8885, pp. 143–160. Springer (2014)

22. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: Milp-aided method of searching
division property using three subsets and applications. In: Galbraith, S.D., Moriai,
S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 11923, pp. 398–427. Springer (2019)

23. Wu, H.: ACORN: a lightweight authenticated cipher (v3). Candidate for
the CAESAR Competition (2016), https://competitions.cr.yp.to/round3/
acornv3.pdf

24. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and

29

Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10031, pp. 648–678 (2016)

25. Yang, J., Liu, M., Lin, D.: Cube cryptanalysis of round-reduced ACORN. In:
Lin, Z., Papamanthou, C., Polychronakis, M. (eds.) Information Security - 22nd
International Conference, ISC 2019, New York City, NY, USA, September 16-
18, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11723, pp. 44–64.
Springer (2019)

26. Ye, C., Tian, T.: Revisit division property based cube attacks: Key-recovery or
distinguishing attacks? IACR Trans. Symmetric Cryptol. 2019(3), 81–102 (2019)

30

