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Secure training of decision trees with
continuous attributes
Abstract: We apply multiparty computation (MPC)
techniques to show, given a database that is secret-
shared among multiple mutually distrustful parties, how
the parties may obliviously construct a decision tree
based on the secret data. We consider data with contin-
uous attributes (i.e., coming from a large domain), and
develop a secure version of a learning algorithm similar
to the C4.5 or CART algorithms. Previous MPC-based
work only focused on decision tree learning with discrete
attributes (De Hoogh et al. 2014). Our starting point is
to apply an existing generic MPC protocol to a standard
decision tree learning algorithm, which we then optimize
in several ways. We exploit the fact that even if we al-
low the data to have continuous values, which a priori
might require fixed or floating point representations, the
output of the tree learning algorithm only depends on
the relative ordering of the data. By obliviously sorting
the data we reduce the number of comparisons needed
per node to O(N log2N) from the naive O(N2), where
N is the number of training records in the dataset, thus
making the algorithm feasible for larger datasets. This
does however introduce a problem when duplicate values
occur in the dataset, but we manage to overcome this
problem with a relatively cheap subprotocol. We show a
procedure to convert a sorting network into a permuta-
tion network of smaller complexity, resulting in a round
complexity of O(logN) per layer in the tree. We imple-
ment our algorithm in the MP-SPDZ framework and
benchmark our implementation for both passive and ac-
tive three-party computation using arithmetic modulo
264. We apply our implementation to a large scale medi-
cal dataset of ≈ 290 000 rows using random forests, and
thus demonstrate practical feasibility of using MPC for
privacy-preserving machine learning based on decision
trees for large datasets.
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1 Introduction
Machine learning has proven to be an important tool
in our day-to-day lives, enabling new technologies rang-
ing from recommender systems and image detection, to
weather prediction and much more. In supervised learn-
ing, the task is to predict an output variable given an
input variable (e.g., classification or regression), based
on an existing known database of input-output pairs.
Many different types of predictive models have been de-
veloped throughout the years, and suitability and accu-
racy generally depend on the application domain.

In this work we study decision trees, which are con-
ceptually simple models with several attractive features.
Decision trees can be used for both classification (dis-
crete output variable) and regression (continuous output
variable). Despite their simplicity, decision trees have
seen a recent surge of interest due to their effectiveness
in ensemble methods, such as boosted trees (e.g., XG-
Boost) or random forests, rivaling accuracies of deep
neural networks in some applications. Advantages of de-
cision trees include robustness and scale invariance, be-
ing relatively simple to compute, and compatibility with
both continuous and discrete variables.

Decision trees (and other models in the super-
vised learning setting) are constructed using a training
database of input variables together with known output
labels, and can subsequently be used to perform predic-
tions on input data where the output is unknown. How-
ever, despite the potential applications of such a trained
model, direct access to training data might be heavily
restricted due to privacy concerns. Consider for exam-
ple a decision tree for credit approval that is trained
using data from many customers of a consortium of
banks. The decision of whether or not some credit is
approved can depend on many factors, such as monthly
income and the customer’s transaction history. All of
this data must be provided to the entity that constructs
the model, which raises a number of potential concerns.
For example this entity might be a third party, exter-
nal to the banks. Also, the data that is needed may
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come from many different sources which are not will-
ing to share their data (e.g., data across several banks).
Regulations such as the recent General Data Protection
Regulation (GDPR) may also play an important role in
restricting access to personal data.

Privacy-preserving technologies such as multiparty
computation (MPC) offer a technological solution to
this problem. Using MPC, there no longer needs to be a
central entity that collects all data, but instead data can
remain distributed and the model can be constructed us-
ing an interactive protocol. The privacy guarantees of
MPC are absolute — either unconditional or based on a
cryptographic assumption — and this is a strong advan-
tage over competing approaches such as anonymization,
or trusted computing (e.g., Intel SGX). However, the
associated computational overhead is typically several
orders of magnitude, which is mostly due to the com-
munication required between the parties. Fortunately,
the state of the art of generic MPC is ever improving,
putting even computationally intensive machine learn-
ing tasks within reach, as we demonstrate in this work.

1.1 Our contributions

We present a protocol for training decision trees that
preserves the privacy of the underlying training data.
We roughly follow the blueprint of the CART and C4.5
learning algorithms, and allow for the simultaneous us-
age of continuous and discrete attributes. We build on
top of general primitives (secret sharing, secure multi-
plication, secure randomness, etc.) that existing MPC
protocols implement, and thus allow for maximum flex-
ibility with respect to number of parties, the desired
security guarantees, and performance.

Our protocol is developed in the client-server model,
where the data owners secret-share their data towards
a given set of servers, of which a certain number is as-
sumed to be honest (i.e., they behave correctly and do
not leak data). These servers will run the actual compu-
tation. The client-server model provides several benefits
compared to the traditional model in which each input
provider is in charge of executing the protocol as well:

– Nothing is assumed about the initial partitioning
of the data. In particular, we support both horizon-
tally or vertically partitioned data, and any mixture
thereof.

– Clients do not execute the protocol directly, so
they can be low-end devices. Heavy computation
and communication is delegated to more powerful

servers, and clients do not need to be online during
this phase.

– The number of clients is independent of the number
of servers. In particular, arbitrarily many clients can
provide input without sacrificing the performance of
the final training.

– The client-server model is strictly more general than
the traditional model, since the latter can be em-
ulated by the input providers also acting as both
client and server.

Furthermore, the output of the protocol (the re-
sulting decision tree) is also secret-shared among the
servers,1 which allows the training algorithm to be used
in a fully oblivious pipeline—for example, the secret-
shared output might subsequently be used to provide
secure inference to other clients.

The number of secure multiplications, which is
the most indicative metric for the computational
and communication complexity of our protocol, is
O(mN(logN)(2∆ + logN) + nN), where N is the num-
ber of samples in the dataset, ∆ is the desired depth,
m is the number of continuous attributes and n is the
number of discrete attributes.

Since we build on top of generic primitives, we are
able to target both passive and active security, as well as
allow for an arbitrary number of corrupted parties, by a
suitable choice of underlying protocols that instantiate
the primitives. We implement our protocols using the
MP-SPDZ framework for MPC [12], and report thor-
ough experimental results and analyses for an instan-
tiation based on 3-party honest-majority MPC using
replicated secret sharing, for both passive and active
security.

To illustrate the performance of our techniques in
terms of both efficiency and accuracy, we consider a real-
life classification task on a large-scale medical dataset
with ≈ 290 000 records, where we incorporate our proto-
col into a random forest ensemble. Extrapolating from
our experimental results, we estimate that we can ob-
tain a random forest based secret-shared model within
28 hours that performs only slightly worse than a model
trained in the clear using state of the art gradient
boosted trees.

Finally, we stress that our approach uses generic
secret-sharing based MPC primitives, which enables the
optimization of the whole pipeline by simply optimiz-

1 In our most general setting, we train a complete decision tree
up to a given pre-defined depth.
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ing the underlying primitives. It also allows for different
threat models, and in particular it leads to the first pro-
tocol in the literature, to the best of our knowledge, for
securely training a decision tree with active security, for
which we run benchmarks in Section 5.

1.2 Overview of our techniques

Our basic (non-secure) algorithm for training decision
trees (as detailed in Figure 1) is a modified and stripped
down version of the C4.5 algorithm [22]. Where the orig-
inal algorithm does pruning of the output decision tree
to optimize computational resources, since we are com-
puting obliviously and therefore have no direct access to
the data, we instead compute a full tree up to a public
depth parameter ∆.

For each node of the decision tree, the algorithm se-
lects an attribute and a splitting value that jointly best
partition the data with respect to the output variable,
according to some splitting criterion. As a criterion we
choose to minimize the Gini index, as also used in the
CART algorithm, since it only requires a few secure mul-
tiplications to compute.2

For discrete attributes, we follow [13] and compute
the Gini index by securely counting the number of ele-
ments in the dataset that satisfy certain equations us-
ing an indicator-vector representation, as described in
Section 4. For continuous attributes, the situation is
more complicated since the equations are not based on
equality (=), but rather a less-than-or-equal (≤) pred-
icate. We leave the details to Section 4.1, but essen-
tially we need to count the number of dataset points
whose attribute under consideration lies below all pos-
sible thresholds appearing in the dataset. For example,
if the attribute is “age” and there are five data points
with ages (34, 20, 16, 25, 60), then we need to securely
determine that there are 3 ages below 34, 1 age below
20, 0 ages below 16, 2 ages below 25 and 4 ages below
60.

Naively, we could do this by securely comparing
each pair of data points. However, secure comparisons
are rather expensive in MPC3, and this approach would
require O(N2) comparisons, which becomes prohibitive

2 C4.5 uses information gain which requires logarithms, which
are hard to compute in MPC. This was also observed in the work
of [13].
3 A secure less-than-or-equal comparison typically requires a
number of secure multiplications that is at least linear in the bit
length of the ring or field over which values are represented.

for reasonably-sized datasets. Instead, we present a
novel protocol in Figure 4 to compute the Gini indices
by sorting the data, with respect to each attribute, in-
curring only a quasilinear number of comparisons.

To permute the data into sorted order we make use
of a sorting network, so that we can obliviously sort a
secret-shared array and subsequently also apply result-
ing permutation to the other columns of the dataset.
This will allow us to sort the data on each attribute
just once for the entire tree, irrespective of the depth of
the tree.

Relying on sorted values does introduce a problem
in the case of duplicate values. We overcome this in Sec-
tion 4.2 with a novel protocol that computes a binary
“mask vector” that indicates whether an element of a
sorted vector is the last element with that value in a
subsequence of the vector. Here, the subsequence corre-
sponds to the elements that are under consideration for
a node (represented by an indicator vector), which is a
strict subset of the dataset for all nodes except for the
root of the tree. This protocol can be seen as a bottom-
up recursive algorithm that merges two adjacent blocks
by performing a single binary equality check, and keep-
ing track of the left-most value of the block that is in
the subsequence. The running cost is O(N logN) secure
multiplications in O(logN) rounds.

While theoretically efficient sorting networks of
depth O(logN) exist based on expander graphs, prac-
tical constructions like bitonic or odd-even merge sort
[3] require depth O(log2N). This would result in
O(N log2N) comparisons for our protocol, which is al-
ready a great improvement over the naive cost O(N2).
However, using the sorting network also means we need
O(log2N) rounds of interaction to apply the permuta-
tion, and this needs to be done for every node in the
tree.

We reduce the number of rounds with a novel
optimization that converts the permutation obtained
from a sorting network into a more efficient represen-
tation using a permutation network. Using known effi-
cient constructions of permutation networks, we reduce
the round complexity of applying the permutation to
O(logN). While the reduction of a logN factor may
seem small, for large datasets this quickly becomes sig-
nificant, since each round requires an additional round-
trip across the network. This optimization naturally also
reduces communication; we experimentally demonstrate
its effects in Section 5.

We present the conversion procedure more detail
in Section 3.2. Essentially it works by “masking” the in-
tended sorting network by a random secret permutation,
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“opening” the resulting network, and defining the new
permutation to be a combination of the opened with the
secret one. At a high level, this can be seen as an ap-
plication of the traditional “mask-open-unmask” trick
to convert between two representations, used for exam-
ple to convert from degree 2t-sharings to t-sharings in
the MPC protocol from [10], applied to the group of
permutations.

1.3 Related work

Secure training of decision trees was considered in one of
the earliest works in privacy-preserving machine learn-
ing [19]. In that work, the authors develop a proto-
col for secure training using the ID3 algorithm, that
at the time of writing was more efficient than what
generic MPC solutions would provide. Several subse-
quent works improved the efficiency of this protocol
[14, 20, 24, 25, 27, 28], although they each work for a
specific distribution of the input data, which limits the
range of potential applications.

This issue was addressed in [13], where an exten-
sion of ID3 to the secure setting was given using Shamir
secret-sharing and allowing arbitrary initial partitioning
of the data. However, their protocol does not allow for
continuous attributes, which is an important feature of
decision trees with respect to other machine learning
models.

A simple, yet less accurate approach for training a
decision tree with continuous attributes is to discretize
the values to a small domain, and then use a protocol
like the one from [13] for secure decision tree training
on discrete attributes. Indeed, very recently, the concur-
rent and independent work of [1] explores exactly this
approach, as well as others, for training decision tree
ensembles with continuous attributes with semi-honest
security. Their results are complementary to ours: they
avoid most of the heavy secure comparisons in the online
phase by not relying on the C4.5 algorithm, as we do
here, but using instead other approaches for training the
tree like discretization or by using so-called extremely
randomized trees, which leads to simpler and more ef-
ficient protocols at the expense of a potential drop in
accuracy.

Other solutions have aimed at training decision
trees with continuous attributes using differential pri-
vacy [6, 17, 29]. However, such techniques are consid-
ered orthogonal to MPC, since they aim to “mask” the
data so that no particular records can be inferred from
it, whereas our goal is to hide the data completely (even

with information-theoretic security, for some MPC en-
gines) and keep the tree secret.

Secure inference of decision trees using MPC has
been explored in various works (e.g., [8, 11]), and we
briefly discuss this in Appendix A.5.3.

1.4 Outline of the paper

We discuss preliminaries and the basic non-secure train-
ing algorithm in Section 2, and then we present some
of our building blocks regarding sorting networks and
permutations in Section 3. Our main protocol appears
in Section 4, and its implementation and benchmarks
are discussed thoroughly in Section 5. In Section 6 we
show our applications to a large-scale medical dataset
and finally we conclude in Section 7. In the appendix we
provide some more background information about our
construction, and go into detail on some of the subpro-
tocols.

2 Basic training algorithm
Zn denotes the set of integers {0, . . . , n−1} and we write
[n] for the set {1, 2, . . . , n}. We denote by em

i the vector
in Zm

2 whose all entries are 0, except for the i-th one
which equals 1.

We wish to build a model that predicts an out-
put variable Y , given a number of input variables. We
assume we have m continuous input variables named
C1, . . . , Cm, and n discrete input variables D1, . . . , Dn,
where we assume dom(D1) = · · · = dom(Dn) = Z2 to
simplify our presentation. Let D be a database consist-
ing of N samples (ck,dk, yk) for k = 1, . . . , N . Here ck =
(ck1, . . . , ckm) and dk = (dk1, . . . , dkn) are realizations of
the variables C1×· · ·×Cm andD1×· · ·×Dn, respectively,
for each k = 1, . . . , N . For a sample ωk = (ck,dk, yk) we
write Ci(ωk) = cki, and Dj(ωk) = dkj .

In theory the domain of the continuous variables
C1, . . . , Cm is the real numbers R, but in practice these
are either fixed-point or floating-point numbers. The
overhead of secure computation for arithmetic on these
representations is larger than for integers, since opera-
tions like truncation and rounding are expensive when
done in MPC. Fortunately, for the case of decision trees
for classification we do not need to perform arithmetic
operations on the numbers, so we discretize them to an
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TrainDT(T ): Training on dataset T

Input: A dataset T .
Output: A decision tree T that fits this data.

1. Check if the stopping criteria has been met. If so
output the leaf node whose tag is the most common
one in T .

2. Else, select the best attribute for the parent node as
follows:
1. Calculate G(T |Ci ≤ t) for all 1 ≤ i ≤ m and

t ∈ {ci : (c,d, y) ∈ T }.
2. Calculate G(T |Dj) for all 1 ≤ j ≤ n.
3. Take the argmin of the computed values.

– If the minimum is G(T |Ci ≤ t) then re-
turn the tree whose root is Ci ≤ t , the
left subtree is TrainDT(TCi≤t) and the right
subtree is TrainDT(TCi>t).

– If the minimum is G(T |Dj) then return the
tree whose root is Dj = 0 , the left subtree
is TrainDT(TDi=0) and the right subtree is
TrainDT(TDi=1).

Fig. 1. Basic algorithm for training decision trees with discrete
and continuous attributes.

integer domain (arbitrarily, but preserving order) and
assume dom(C1) = · · · = dom(Cm) = ZM .4

A decision tree T is simply an (ordered) binary tree
with some additional information. Internal nodes can be
of two types, discrete or continuous. Continuous nodes
are denoted Ci ≤ s where i ∈ [m] and s ∈ dom(Ci).
Discrete nodes are denoted Dj = u , where j ∈ [n] and
u ∈ dom(Dj). Leaf nodes are represented by a value
ŷ ∈ dom(Y ).

We now describe our basic training algorithm of Fig-
ure 1, which is a stripped down version of the C4.5
algorithm [22]. Let D be a database consisting of N
samples (ck,dk, yk) for k = 1, . . . , N . We shall assume
dom(D1) = · · · = dom(Dn) = Z2 to simplify our presen-
tation, and we discuss in Appendix A.3 how handle the
case in which the discrete variables have larger domains.
Our algorithm first selects the best splitting attribute
for the parent node, according to some criterion, and
then recurses on each of the resulting subtrees. Rather
than using information gain as the splitting criterion
as in the C4.5 algorithm, we use the Gini index, as
used in other training algorithms like CART [5], and

4 In general every bounded discrete set can be mapped to integers
by choosing an appropriately large scale.

that has also been considered previously in the privacy-
preserving decision trees literature [13] due to its simple
integer-arithmetic-friendly definition. In terms of accu-
racy, it only matters in 2% of the cases whether Gini
index or information gain is used [23].

We begin by introducing some notation. Given 1 ≤
i ≤ m and t ∈ domCi, we define

DCi≤t = {(c,d, y) ∈ D : ci ≤ t},
DCi>t = D \ DCi≤t.

Similarly, for 1 ≤ j ≤ n and b ∈ domDj = Z2 we
define DDj=b = {(c,d, y) ∈ D : dj = b}. Finally, we
define DY =b = {(c,d, y) ∈ D : y = b}. We also apply
this notation to subsets T ⊆ D, e.g. we write TCi≤t for
T ∩ DCi≤t.

For a non-empty subset T ⊆ D, its Gini index is
defined as

G(T ) = 1−
(
|TY =0|
|T |

)2
−
(
|TY =1|
|T |

)2
.

We also define G(∅) = 1. The Gini index is a measure
of the homogeneity of the output variable Y within T .
It is equal to 2p(1− p), where p = |TY =0|/|T |, and thus
attains its minimal value 0 whenever p ∈ {0, 1}, i.e.,
when all of the samples have the same output value.

We also define, for 1 ≤ i ≤ m, 1 ≤ j ≤ n and t ∈ ZM ,
the quantities

G(T |Ci ≤ t) =
|TCi≤t|
|T |

G(TCi≤t) + |TCi>t|
|T |

G(TCi>t),

G(T |Dj) =
|TDj=0|
|T |

G(TDj=0) +
|TDj=1|
|T |

G(TDj=1).

We describe the basic training algorithm
TrainDT(T ) in Figure 1. The input is a dataset T ⊆ D
and the output is a decision tree that models T .

Decision tree learning algorithms usually terminate
based on some stopping criterion, e.g., when all records
associated with the node have an identical output vari-
able. Our oblivious algorithm cannot terminate based
on the data, since this would leak information. There-
fore, we compute a complete tree up to a predefined
depth, as discussed in more detail in Section 4.

3 Sorting and permutation
networks

Let J·K be a linear secret-sharing scheme over ZM . We
assume MPC protocols for secure multiplication and
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integer inequality/equality comparisons of J·K-shared
data. Our implementation explicitly considers three-
party honest-majority replicated secret sharing over the
ring Z2` , both for passive and active security, and we
refer the reader to Appendix A.2 for a brief description
of these protocols.

3.1 Sorting networks

Regard the input T for a decision tree learning algo-
rithm as a set of columns, one column per attribute.
One key observation is that the output of TrainDT (and
all common tree learning algorithms) only depends on
the ordering of the values within each column, rather
than the values themselves. The straightforward secure
computation of the basic algorithm of Figure 1 requires
N secure comparisons in step 2.1 to compute the car-
dinality |TCi≤cki

∩ TY =b| needed for the Gini index
G(T |Ci ≤ t). A priori, we cannot obliviously select
t ∈ {ci : (c,d, y) ∈ T }, so we execute this step for all
values cki, incurring a cost of N2 comparisons.

If the dataset is sorted with respect to the attribute
Ci this becomes a lot easier. For example, assume we
have ordered distinct values c1i < c2i < · · · < cki. Then
the cardinality |TCi≤cki

| equals the index k.
Oblivious sorting can be done in a quasilinear num-

ber of comparisons. While there are many ways to sort
in MPC (see for example [4] for a recent survey), we
use a sorting network, of which practical constructions
exist with O(N log2N) comparisons in O(log2N) depth
(e.g. bitonic sorting or odd-even merge sort [3]). A sort-
ing network of size N is a composition of layers, each
acting as an input-dependent permutation on vectors
(y1, . . . , yN ) 7→ (y′1, . . . , y′N ). A layer has a set of pair-
wise disjoint comparator gates that are each represented
a pair of indices {i, j} with i 6= j. The comparator gate
will either swap or not swap the i-th and j-th inputs
such that for the output it holds that y′i < y′j . If an
index i is not present in a layer its value is untouched,
i.e. y′i = yi. The output of the sorting network is a per-
mutation of the input vector that is in sorted order. See
Figure 2 for a simple example.

We implement a sorting network in MPC as fol-
lows. Let (Jx1K , . . . , JxN K) denote a secret-shared in-
put vector. For each comparator gate {i, j} in the first
layer, with i < j, we compute the secret-shared bit
JbK =

(
JxiK ≤

q
xj

y)
. If b = 0 then we swap the i-th

and j-th entries, and if b = 1 they are left untouched.

1

0

0

1

1

y1

y2

y3

y4

y3

y1

y2

y4

Fig. 2. Example of a sorting network of size 4 applied to an
input vector. For each comparator gate, we indicate whether the
gate swaps the inputs with a 1. Here we permute sequentially

(y1, y2, y3, y4) 7→ (y3, y2, y1, y4) 7→ (y3, y2, y1, y4) 7→
(y3, y2, y1, y4) 7→ (y3, y1, y2, y4).

This can be done obliviously by setting(q
x′i

y
r
x′j

z
)

= JbK ·
(

JxiKq
xj

y
)

+ (1− JbK) ·
(q
xj

y

JxiK

)
.

This process is then repeated for the subsequent lay-
ers.

The essential advantage of using a sorting network
is that, once computed for an input, it also acts as a
switching network. A switching network does not consist
of comparator gates, but rather it is made up of condi-
tional swap gates g = {i, j} with i 6= j, together with
an auxiliary input bg for each gate. A conditional swap
gate g swaps swaps the i-th and j-th entries if bg = 1,
and is the identity if bg = 0. Figure 2 may therefore also
be seen as a switching network, where the auxiliary in-
puts are indicated. As a result, we can store the bits JbK
computed above, and apply the permutation that sorts
(x1, . . . , xN ) to any other array.

A crucial operation in our work is to apply a sort-
ing network to the values belonging to a continuous
attribute, storing the permutation that sorts the data,
and then applying this permutation to the other parts
of the data. This can be easily done as we sketched
above. However, the sorting networks we consider in
this work, and therefore the switching networks ob-
tained from them, have O(N log2N) switching gates dis-
tributed across O(log2N) layers. In MPC this leads to a
communication complexity of O(N log2N) in O(log2N)
rounds.

In what follows we show a novel technique to re-
duce the cost of applying the sorting permutation so
that both the communication complexity and the round
count are reduced by a factor of logN . Computing the
sorting permutation still requires O(log2N) rounds, but
only needs to be done once (for each attribute), whereas
applying the permutation is done for every node in the
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tree. Therefore for a tree of depth ∆, this optimization
shaves off a significant factor of 2∆ logN in terms of
communication and ∆ logN in terms of circuit depth,
the latter being typically the bottleneck in distributed
applications like MPC, especially in WAN settings. Re-
call that in our application N denotes the size of the
database, so logN can be a significant factor in this
case.

3.2 Conversion to permutation networks

Our optimization is achieved via permutation networks.
A permutation network is a particular switching net-
work that can represent any permutation [N ]→ [N ] by
varying the auxiliary input bits. Explicit constructions
exist for permutation networks of O(N logN) gates and
O(logN) depth (e.g. Waksman networks [26]), which
are both a factor logN better than sorting networks.
Applying a sorting network to an input vector induces
a permutation, that can be represented via a permuta-
tion network for better efficiency. We show a method
to convert any switching network into a permutation
network.

We begin by introducing some definitions. Abusing
notation slightly, we identify a given switching network
by the function φ : [N ] → [N ] it induces. Also, if each
of the bits of the switching network φ are secret-shared,
we say that φ is secret-shared and we denote this by JφK.
At a high level, our conversion mechanism proceeds as
follows. First, the parties sample a uniformly random
secret-shared permutation JσK, and then they open the
permutation σ ◦ φ. Then, the parties define as output
the secret-shared permutation

q
σ−1y

◦ (σ ◦ φ), which
is equivalent to φ, but has the improved complexity ofq
σ−1y

.
We use the following tools and observations.

Random permutations. For the conversion, the par-
ties need to obtain shares of a random permutation.
As in [18], this is achieved by letting each party
distribute shares of a randomly chosen permutation
of O(N logN) gates and O(logN) layers, and dis-
tribute shares of it to the other parties. Then, the
parties consider the permutation network obtained
by composing these networks sequentially, which
still has O(N logN) gates and O(logN) layers. For
active security we only need to check that the com-
parator gates that are secret-shared by each party
are either 0 or 1, which can be done using standard
techniques [11].

Switching network conversion

Input: A secret-shared switching network JφK.
Output: A secret-shared switching network JψK of
O(logN) depth and O(N logN) gates.

1. The parties sample a secret-shared random permu-
tation JσK.

2. The parties compute and open the permutation
JφK ◦ JσK.

3. The parties output the network that first applies the
network

q
σ−1y

, followed by the public permutation
ρ. This results in the permutation ρ ◦ σ−1, which
is equivalent to φ.

Fig. 3. Protocol to convert a secret-shared switching network
to a permutation network.

Shares of inverse permutation. Given a secret-
shared permutation JπK, shares of the inverse

q
π−1y

can be computed locally by simply reversing the
order of the layers.

Composing secret-shared networks. Given two
secret-shared networks JφK and JψK, the parties
can locally compute Jφ ◦ ψK by simply concatenat-
ing the layers, which increases the depth and gate
count by a factor of only 2.

Opening a permutation. Given a secret-shared net-
work JφK, the parties can open φ without revealing
the individual swapping gates by applying JφK to
the vector (1, . . . , N) and opening the result.

Our conversion protocol is described in Figure 3.
The security of our conversion protocol comes from that
fact that the only potential leakage comes from the open-
ing the permutation φ ◦ σ. Because the permutations
[N ] → [N ] form a group, we have that ρ = φ ◦ σ if
and only if σ = φ−1 ◦ ρ, where ρ is an arbitrary permu-
tation. But since σ was sampled uniformly at random,
the probability that this equality holds is independent
of the value of φ, so we conclude that φ ◦ σ does not
reveal anything about φ.

4 Protocol
As the basis for our protocol, we assume generic MPC
primitives such as arithmetic and comparisons. Let
J·K be a linear secret-sharing scheme over ZM . Since
the data may be signed, we think of ZM as the set
[−M/2,M/2), andM is chosen large enough so that the
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(scaled) database can fit in this domain and so that no
overflows are produced during our protocol. Choosing
M ≥ (N/2)5 suffices, as argued in Appendix A.2.

Let D be a database consisting of N samples
(ck,dk, yk) for k = 1, . . . , N , which will be used for train-
ing. Recall that ck ∈ Zm

M , dk ∈ Zn
2 and yk ∈ {0, 1}. We

assume that each entry of D is secret-shared among the
parties. More precisely, the parties have shares

q
ck,i

y
,q

dk,j

y
and JykK for all k ∈ [N ], i ∈ [m], j ∈ [n].5

A crucial step in our secure training algorithm is to
securely compute the Gini index of each potential split-
ting point for both continuous and discrete attributes.
We now focus on continuous attributes; we describe dis-
crete attributes in Appendix A.3, which follows previous
work [13].

Indicator vector representation.
We introduce the following notation. Given A ⊂ D, we
define the indicator function of A:

χA(a) =

{
1 if a ∈ A,
0 if a /∈ A.

Also, we define the indicator-vector vA ∈ ZN
2 as the

vector whose k-th entry is given by χA((ck,dk, yk)).
We note that the inner product 〈vA,1〉 = |A|, where
1 = (1, . . . , 1) is the vector of length N with all entries
equal to 1. Additionally, given A,B ⊆ D it holds that
vA ? vB = vA∩B , where the ? operator denotes the
component-wise product. Furthermore, vĀ = 1 − vA,
where Ā = D \A is the complement of A in D.

Given a secret-shared indicator vector JvAK of a set
A, where each entry is secret-shared over ZM , we can
easily compute the cardinality as J|A|K =

∑N
i=1 JvAi

K.
Additionally given JvBK for another subset B ⊆ D
we can compute J|A ∩B|K = 〈

q
vA,i

y
,
q
vB,i

y
〉. In gen-

eral this requires n secure multiplications, but for some
secret-sharing schemes, like the ones we consider in this
work, the inner product can be computed with the same
communication cost as a single multiplication.

5 Notice that even the binary values are secret-shared over ZM .
This may seem wasteful, but this will be useful for aggregating
over these values, as shown in Section 4.1.

4.1 Computing the Gini index for
continuous attributes

Let T ⊆ D, and assume the parties have shares JvT K.
In this section we show how to compute shares of
Si,k(T ) = (PCi≤ck,i

(T ), QCi≤ck,i
(T )) for each i ∈ [m]

and k ∈ [N ]. In fact, the parties obtain
q
Si,k′

y
, where

k′ = πi(k) is a permuted index of k = 1, . . . , N accord-
ing to the permutation πi which is the permutation that
puts the array (c1i, . . . , cNi) in ascending order. For now,
assume the values are distinct, so πi is well-defined. As
a result, the parties have shares of the Gini indices cor-
responding to each possible splitting point cki, but in a
different unknown order. This is not a problem, however,
since it is not intended for the parties to know which row
achieves the best splitting point; the only information
needed is the actual splitting point, which can still be
retrieved as we show in Section 4.3.

The computation of Si,k′ has a “preprocessing”
phase in which the parties do the following for each
attribute i = 1, . . . ,m:

1. The parties apply a sorting network to the vector
(Jc1iK , . . . , JcNiK), and obtain a switching network
JπiK of the sorting permutation, as in Section 3.1.

2. Using techniques from Section 3.2 they convert JπiK
into a more efficient representation based on permu-
tation networks. Since it applies the same permuta-
tion, we overload notation and also denote this new
secret-shared network by JπiK.

3. Finally, the parties apply the network JπiK to the
array JvY K, obtaining

q
v′Y

y
.

With this in hand, the parties compute the contin-
uous Gini index using the protocol described in Fig-
ure 4. The protocol securely computes the Gini index
following the formulas presented in Appendix A.1.1.
To this end, several cardinalities have to be computed:
|TCi≤cki

∩TY =b|, |TCi≤cki
|, |TCi>cki

∩TY =b| and |TCi>cki
|.

This can be done easily if we assume the array (cki)k

is sorted and contains distinct values, because then
vCi≤cki

= (1, . . . , 1, 0, . . . , 0), where only the first k en-
tries are 1. The only drawback of sorting the array (cki)k

is that other arrays, that are only determined at each
tree node during the training phase, must be shuffled as
well according to this permutation. Fortunately, our pre-
processed sorting permutation is much cheaper to apply
than to compute, using our results from Section 3.2.
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ΠC
SecGini(i, JvT K): Computing the continuous Gini index

Input: i ∈ [m] and JvT K.
Preprocessing: A secret-shared permutation network JπiK and a permuted array

q
v′Y

y
= JπivY K.

Output:
q
Si,πi(k)(T )

y
for each k ∈ [N ].

1. Let k′ := πi(k) for k ∈ [N ], and define v′Ci≤ck′i
= (1, . . . , 1, 0, . . . , 0) where the first k′ entries are 1 and the remaining

entries are 0.
2. The parties apply JπiK to JvT K to obtain

q
v′T

y
= JπivT K.

3. For k′ ∈ [N ] and b ∈ Z2, the parties compute:
1. Jxk′bK = v′Ci≤ck′i

?
q

v′T
y
?

q
v′Y=b

y
. This is the permuted indicator vector of TCi≤ck′i

∩ TY=b.
2. Juk′bK = 〈Jxk′bK ,1〉, the sum of the entries of x′

k′b.
3. Jxk′K =

q
v′T

y
? v′Ci≤ck′i

. This is the permuted indicator vector of TCi≤ck′i
.

4. Juk′K = 〈Jxk′K ,1〉.
5. Similarly as the steps above, compute Jzk′bK, the permuted indicator vector of TCi>ck′i

∩ TY=b, and its sum
Jwk′bK = 〈Jzk′bK ,1〉. Also Jzk′K, the permuted indicator of TCi>ck′i

, and its sum of entries Jwk′K = 〈Jzk′K ,1〉.

6.
r
PCi≤ck′i

(T )
z

= Jwk′K
∑

b∈{0,1}

Juk′bK
2 + Juk′K

∑
b∈{0,1}

Jwk′bK
2.

7.
r
QCi≤ck′i

(T )
z

= Juk′K · Jwk′K .

4. Output
q
Si,πi(k)(T )

y
=
(r
PCi≤ck′i

(T )
z
,
r
QCi≤ck′i

(T )
z)

Fig. 4. Computation of the Gini index for continuous attributes.

4.2 Duplicate values

If the array (cki)k does not contain distinct values, it no
longer holds that the first k values of vCi≤cki

are 1, and
the remainder is 0. However, for each distinct value t
the observation is still true for the highest index k such
that cki = t and cki is in the dataset. Since we only
need to compute Gini indices for each distinct splitting
point t, we use the methods from the previous section,
but disregard the values obtained for an index k there
is a sample in the dataset with higher index k′ > k with
cki = ck′i.

We temporarily abuse notation and write k ∈ T
if the k-th sample is in T . We need an algorithm that
computes (an indicator vector of) the following function:

ξ(k) =


1 if for all ` > k it holds that c`i 6= cki

or ` ∈ T ,
0 otherwise.

When T = D, we have ξ(k) = {cki 6= c(k+1)i}, i.e.
for the k-th row we can look at its direct neighbor k+ 1.
However, for smaller T we need to look at the next ac-
tive row. We solve this by create a new secret-shared
array of values J(hk)kK where hk = cki if k ∈ T , and
hk = c`i for ` ∈ T such that ` > k is minimal. Regarded
differently, we copy values cki belonging to active rows
to the left until we encounter another active row. Evi-
dently, this can be done with a linear pass over the cki,

starting from the rightmost element; but this leads to a
prohibitive O(N) round complexity.

We give a cleaner algorithm that requires
O(N logN) multiplications in O(logN) rounds in Fig-
ure 5. It uses the logical OR operator, which, for in-
put bits JaK and JbK, can be computed securely as
JaK∨ JbK = JaK + JbK− JaK · JbK. After obtaining the array
JhK = JhkKk, it holds that ξ(k) = hk · {cki 6= c(k+1)i}.

Observe that the protocol only uses oblivious oper-
ations, hence its security follows completely from the
underlying primitives.

4.3 Secure decision tree training algorithm

In this section we combine the previously described in-
gredients and present our main protocol ΠSecTrainDT for
secure training of decision trees in Figure 6. It closely
follows the TrainDT algorithm from Figure 1, with some
extra optimizations to make it more “MPC-friendly”.

Following [13], we scale the denominators by a
heuristic factor α followed by addition with 1 to avoid
denominators equal to zero. For relatively large α (8 or
9 in practice, as observed in [13]) this only has the side
effect of scaling the maximization problem, thus preserv-
ing its solution.

We make use of an argmax protocol, denoted
by Πargmax, that takes as input a secret-shared array
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ΠDup(JxK , JaK): Copying inactive values to the
left

Input: JxK is an array of attribute values; JaK =
(Ja1K , . . . , JaN K) is an array of “active” bits with ak = 1
iff k ∈ T .
Output: JhK has values copied from the right; JdK has
“active” bits copied from the right; JyK is the left-most
active value of h; JbK is a bit indicating whether there is
at least one active value.

If JxkKk has length 1, return (JxkK , JakK , JakK , JakK).
Otherwise:
1. Split the input into a left and right part:

JxLK ‖ JxRK = JxK, JaLK ‖ JaRK = JaK, where ‖
denotes concatenation.

2. Call ΠDup recursively:
(JhLK , JdLK , JyLK , JbLK)← ΠDup(JxLK , JaLK),
(JhRK , JdRK , JyRK , JbRK)← ΠDup(JxRK , JaRK).

3. Merge arrays JhK := JhLK ‖ JhRK,
JdK := JdLK ‖ JdRK.

4. Copy yR into the left part. For k ∈ L, do:
1. JhkK← JdkK · JhkK + (1− JdkK) · JyRK
2. JdkK← JdkK ∨ JbRK

5. Set JyK← JbLK · JyLK + (1− JbLK) · JyRK.
6. Set JbK← JbLK ∨ JbRK.
7. Output (JhK , JdK , JyK , JbK).

Fig. 5. The subprotocol that marks duplicate values.

{(JuiK , JviK)}i∈[L], along with a comparison rule ui � uj ,
and produces fresh shares (Jui∗K , Jvi∗K), where i∗ ∈ [L]
is such that ui∗ = maxi∈[L](ui). The full description of
this protocol appears in Appendix A.4. This protocol
works by splitting the input vector (JuiK)i∈[L] into adja-
cent pairs, comparing each pair of values securely, and
obliviously selecting the one with the maximum value,
thereby obtaining a vector of half the size, and iterat-
ing this procedure until one element is obtained. For
the calls to this functionality in our main protocol, we
use the relation (a, b) � (c, d) ⇔ a · d ≤ b · c, which
corresponds to the fractional comparison a

b ≤
c
d .

The algorithm is called on the secret-shared input
data, with additional inputs the tree depth ∆ and the
meta-parameter α used to scale the (altered) Gini in-
dex. Also, the algorithm takes as input a secret-shared
indicator vector JvT K, which corresponds to the “active”
records in the current subtree. For the initial iteration
all the records are active, i.e. T = D, so this vector is
(1, . . . , 1). However, for subsequent iterations the infor-
mation on which or how many records take which paths
cannot be leaked, which explains why this indicator vec-
tor must be secret-shared.

We refer the reader to Appendix A.5 for a more
detailed account on how the secure training algorithm
works, together with complexity analysis, optimizations
and extensions.

5 Implementation and
benchmarks

5.1 Implementation

We implemented our protocol using the MP-SPDZ
framework [12]. The framework provides a compiler that
transforms a secure program written in a Python-based
language to bytecode. The bytecode can then be exe-
cuted by various C++-based engines that each imple-
ment a generic MPC protocol. This construction allows
for easy benchmarking of the same program using dif-
ferent engines.

We used MPC over the ring Z264 , which is large
enough when N ≤ 213. Since the bottleneck of our pro-
tocol is computing secure comparisons, computing over
this ring is advantageous compared to computing over
finite fields [11].

We used three servers of which one may be cor-
rupted; further details on the underlying protocols can
be found in Appendix A.2. We show the overall perfor-
mance of our protocol with both passive and active se-
curity in Table 1. In the other figures we provide a more
detailed view of the different parts of our protocol, and
there we restrict ourselves to passive security.

We evaluated our experiments using three
m5d.2xlarge EC2 instances. Each server has 32 GB
RAM, which we needed to compile the programs for
some of the larger benchmarks. The servers were con-
nected via a LAN (10Gbps, 0.07ms latency) rather than
a WAN. This is the most natural scenario for secret-
sharing based MPC protocols, because they are not
constant-round and therefore suffer a big penalty on
high latency networks.

5.2 Benchmarks

Recall that N is the number of records in the database,
and m is the number of continuous attributes, and ∆ de-
notes the depth of the decision tree. We run our learning
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ΠSecTrainDT(JckiK ,
q
dkj

y
, JykK , JvT K ,∆): Secure TrainDT algorithm

Input: JckiKk∈[N ],i∈[m] in ZM ,
q
dkj

y
k∈[N ],j∈[n], JykKk∈[N ], JvT K, ∆ ∈ N.

Sorting phase: For i ∈ [m]:
– Compute secret-shared permutation network JπiK.
– Compute permuted arrays

q
v′Y

y
= JπivY K and

{q
cπi(k),i

y}
k∈[N ]

.
Output: A secret-shared decision tree of depth ∆.

1. If ∆ = 0, compute JuK = 〈JvT K , JvY K〉 and JvK = 〈JvT K ,1〉, and output the leaf JyK , where JyK = (2 JuK ≥ JvK).

2. Else, call ΠCSecGini(i, JvT K) =
{q
Si,πi(k)(T )

y}
k∈[N ]

for i ∈ [m] and ΠDSecGini(j, JvT K) = JRj(T )K for j ∈ [n].

3. For every tuple (P,Q) ∈
{q
Si,πi(k)(T )

y}
i∈[m],k∈[N ]

∪{JRj(T )K}j∈[n], apply the transformation (P,Q)← (P, α ·Q+1)
4. Find the optimal Gini index for the continuous attributes:

1. For each i = 1, . . . ,m, call (JSiK , JγiK) = Πargmax

({q
Si,πi(k)(T )

y
,
q
cπi(k),i

y}
k∈[N ]

)
.

2. Call
(
JSi∗K , Jγi∗K ,

q
emi∗

y)
= Πargmax

({
JSiK ,

(
JγiK , emi

)}
i∈[m]

)
5. Find the optimal Gini index for the discrete attributes by calling

(q
Rj∗

y
,
r

enj∗
z)

= Πargmax

({
JRjK ,

r
enj

z}
j∈[n]

)
.

6. Compute JbK =
(
JSi∗K �

q
Rj∗

y)
and store JbK ,

r
enj∗

z
, {Jemi∗K , Jγi∗K} as the root node.

7. Compute the subtrees recursively:
1. For k ∈ [N ] compute Jγi∗K =

〈q
emi∗

y
, JckK

〉
, then compute JukK =

(q
ck,i∗

y
≤ Jγi∗K

)
, which is the k-th entry ofq

vCi∗≤γi∗
y
.

2. For k ∈ [N ] compute
q
dk,j∗

y
=
〈r

enj∗
z
, JdkK

〉
, which is the k-th entry of

r
vDj∗=1

z
. Let JuK = J1− bK ·

q
vCi∗≤γi∗

y
+ JbK ·

r
vDj∗=0

z
.

3. Set ∆← ∆− 1. The left subtree is obtained by calling ΠSecTrainDT(·) with input JvT K← JvT K ? JuK. Similarly, the
right subtree is obtained by calling ΠSecTrainDT(·) with input JvT K← JvT K ?

(
1N − JuK

)
.

Fig. 6. Our protocol for obliviously training a decision tree.

algorithm on (dummy6) data for different choices of the
parameters above. In our benchmarks, we set n = 0, i.e.,
we do not consider discrete attributes, since the main
focus of our work is on continuous attributes.

5.2.1 Performance for different values of N

We first separately examine the run time to compute
one single inner node of the tree, one single leaf node,
and the sorting phase for the entire tree. We benchmark
these procedures for N = 2i, with i = 8, 9, 10, 11, 12, 13
with security against both passive and active adver-
saries. The results can be found in Table 1.

First, we observe that the passively secure version
of our algorithm has good performance even for a large
number of records like 8192, where run time is about
half a minute.

6 Note that since our algorithm is oblivious, running time is
guaranteed to be independent of data values provided as input.

Second, notice the ratio of the run times between
active and passive security becomes slightly larger as N
increases, up to about N = 2048 after which the effect
disappears. This is likely due to the fact that the ac-
tively secure version does not have O(1) dot products,
although this operation is relatively insignificant with
respect to the secure comparisons. We also see that com-
puting the leaf nodes, which essentially amounts to one
dot product, does not need more communication in the
passively secure setting as N grows, as opposed to in
the actively secure variant.

We now regard the full protocol where we train a
tree of depth ∆ on N records having m continuous at-
tributes. Due to current limitations of the MP-SPDZ
framework when compiling large programs, we extrapo-
late the performance for the general case from our micro-
benchmarks. Let T (N,m,∆) denote the total time re-
quired for this task. Also, let S(N) denote the time
complexity for the sorting phase with N records and
m = 2 attributes; and I(N) and L(N) denote the time
complexity of computing one single inner node and one
single leaf node, respectively. From Appendix A.5.2 we
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# Records Phase Passive security Active security

Run time (s) Communication (MB) Run time (s) Communication (MB)

256
Sorting 0.392 43.2 2.051 189.1

Inner node 0.127 7.1 0.433 31.0
Leaf node 0.004 0.5 0.031 1.6

512
Sorting 0.948 108.7 5.102 476.0

Inner node 0.249 13.9 0.807 60.8
Leaf node 0.004 0.5 0.032 1.6

1024
Sorting 2.287 268.8 12.53 1176.0

Inner node 0.493 27.7 1.577 120.8
Leaf node 0.004 0.5 0.032 1.7

2048
Sorting 5.409 650.9 30.48 2848.6

Inner node 0.934 55.7 3.128 243.0
Leaf node 0.004 0.5 0.033 1.8

4096
Sorting 12.88 1552.0 72.50 6790.0

Inner node 1.916 111.6 6.243 487.4
Leaf node 0.005 0.5 0.034 2.0

8192
Sorting 30.04 3648.7 169.0 15968.2

Inner node 4.011 224.1 13.08 979.0
Leaf node 0.006 0.5 0.039 2.5

Table 1. Run time and total communication for training a decision tree of depth 1 on different numbers of records with m = 2
continuous attributes and n = 0 discrete attributes.

see that a good approximation of T is

T (N,m,∆) ≈ m ·
(
S(N) + (2∆ − 1)I(N) + 2∆L(N)

)
,

and therefore, our estimations of S, I and L from above
serve as a solid basis to estimate the general behavior
of our algorithm.

To support this approach, we have included
benchmarks in Figure 7 for training a tree of depth
∆ = 1, 2, 3, 4 with a fixed N = 256 and m = 2, and
for training a tree of depth ∆ = 1 with fixed small
N = 256 and varying m = 2, 4, 8. We include in the
graphs the run times obtained by running our complete
protocol and the run times obtained by extrapolating
from Table 1 using the equation above. We see that
our formula above matches these numbers quite closely,
and at least it provides an upper bound. The gap be-
tween the extrapolated numbers and the experimental
run times can be partially explained due to the fact
that we extrapolate from the smallest benchmarks; it is
expected that a small part of the run time is constant
(e.g., due to establishing network connections), on top
of the part that scales linearly with the parameters.

5.2.2 Breakdown of the computation

We now zoom in on both the sorting procedure and
the procedure to compute a single inner node. Table 2
presents the run times for the different steps7 of our
training algorithm:

– Sorting. We sort the dataset on each attribute us-
ing a sorting network, and convert the permutation
that sorts the data into a permutation network, as
described in Section 4.1. This procedure is only ex-
ecuted once for the entire tree.

– Gini index. This corresponds to protocol ΠC
SecGini.

– Detect repeated. This corresponds to protocol ΠDup.
– Argmax. This accounts for the three calls to Πargmax

in our main protocol ΠSecTrainDT from Figure 6.
– Threshold values. This corresponds to step 7.1 in

the main training protocol, which compares all val-
ues for the optimal continuous attribute against its
threshold optimal value.

In Figure 8 we show a graphical interpretation of
these timings, as well as relative percentages, for a fixed

7 Some small steps are not included since their complexity is
negligible with respect to the main steps we consider here.
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Fig. 7. Different timings obtained both by running our training algorithm and by extrapolating from Table 1. The estimates are
close, and provide an upper bound.

value of N . The most expensive step (54.1%) is ΠSecGini,
which involves O(N logN) multiplications when apply-
ing the permutation that puts values for a given at-
tribute in sorted order. Even though argmax (17.1%)
involves expensive comparisons, it only executes O(N)
of them in logarithmic depth. The protocol for detect-
ing duplicate values (15.6%) also needs a logarithmic
depth. Determining the optimal threshold value, which
is step 7.1 in the protocol from Figure 6, is the cheapest
step, because it is just composed of dot products. We
remark that, as we mentioned at the beginning of Sec-
tion 5, these benchmarks are set in the semi-honest set-
ting where protocols with cheap dot products are used.

Primitive 256 512 1024 2048 4096 8192

Sorting 0.178 0.450 1.088 2.608 6.263 14.756
Gini indices 0.044 0.090 0.173 0.362 0.714 1.419
Detect repeated 0.014 0.027 0.051 0.103 0.200 0.409
Argmax 0.018 0.032 0.058 0.115 0.221 0.449
LT Threshold 0.013 0.025 0.045 0.090 0.173 0.348

Table 2. Run time (in seconds) of the different steps in our
training algorithm. m = 1 was used for our experiments.

5.2.3 Comparison against naive approaches

The easiest way to compute the best splitting
point is simply to compute the “comparison matrix”
whose entries are all pairwise comparisons JbuvK =

(q
cu,i

y
≤

q
cv,i

y)
for all u, v ∈ [N ]. These comparisons

yield shares of the vectors
q
vCi≤ck,i

y
for k ∈ [N ], which

can be plugged into the other steps of Protocol ΠC
SecGini

(without applying any permutations) in order to com-
pute the Gini indexes. By using this approach we do not
need to permute values, and furthermore, we only need
to compute the matrix once for the entire tree. However,
this requires N2 comparisons, which scales very badly
when compared with our O(N log2N) solution.

Figure 9a illustrates the complexity of computing
the comparison matrix for secret-shared arrays of cer-
tain sizes. We see that this naive approach becomes
prohibitive very quickly, even if this step is executed
only once at the beginning of the training algorithm.
We conclude that our approach of running a sorting algo-
rithm coupled with detecting for duplicates, is needed to
make securely training decision trees feasible for larger
datasets.

In Figure 9b we demonstrate the benefits of convert-
ing a sorting network of depth O(log2N) into a permuta-
tion network of depth O(logN). We see that converting
the sorting network to a permutation network already
leads to a factor ≈ 3.6 speed-up for 2048 records, and
this factor grows as N increases.

6 Application
We demonstrate the practicality of our methods in a
real-world scenario by considering a large scale medi-
cal dataset. We estimate the running costs of our algo-
rithm, and show how the accuracy of the resulting model
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Fig. 8. Breakdown of the subprotocols that are executed for each node of the tree, for a dataset with N = 8192 records. The
timings are for m = 1 continuous attribute.
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Fig. 9. Our optimizations in light of more naive approaches.

compares to one that was obtained by state of the art
learning algorithms with full access to the data. Since
our protocol provides a faithful secure instantiation of
existing decision tree training algorithms (modulo op-
timizations for speed such as pruning), we do not con-
sider multiple datasets nor do we analyze the accuracy
of models obtained from our protocol in much detail.
Instead, we refer to the existing literature on ensemble
methods for more details on various hyperparameters
and its effects [15].

In [21], a predictive model was developed to pre-
dict the risk of emergency hospital transport of elderly
patients within the next 30 days. Based on a dataset
of ≈ 290 000 patients and 128 features (of which ap-
proximately half were binary) and a binary output vari-
able (transport/no transport), a predictive model was
constructed using extreme gradient boosted trees. This
model was then verified using an independent test set of
similar size, and accuracy numbers were obtained. Be-
cause the dataset is highly skewed towards no transport
required (≈ 98% of cases), we present the accuracy of
the method using precision and recall for three thresh-

olds (90th, 95th and 99th percentile). We refer to [21]
for the details.

Using our secure decision tree algorithm, we imple-
ment a random forest-like ensemble for regression trees.
Since the dataset has binary output variables, we can
replace the binary leaf node values based on majority
vote with the fraction of positive samples, and then our
node selection based on the Gini index coincides with
the standard regression tree node selection based on the
mean square error. While techniques such as bootstrap
aggregation and limited size of the tree were mostly in-
troduced to prevent overfitting, we also use them for
performance reasons. Since N is very large in our case,
we use subsampling rather than full-length bootstrap
aggregated trees. This has been shown to lead to accu-
racy gains as well [15], although our subsampling rate
is relatively low.

We briefly demonstrate the effects of various hyper-
parameters, that we obtained using scikit-learn with
local in-the-clear computation. We used a 0.8 fraction
of our training set to train models using different hy-
perparameters, and used the remaining 0.2 fraction to
evaluate precision values associated to the three recall
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values mentioned in the reference paper. For number of
attributes (m = 11) we used the common heuristic of
taking the square root of the total number of features,
rounded down. We varied the number of samples and
the depth per tree, and investigated various metrics for
the resulting models. Our aim is to maximize the three
precision values corresponding to the recall values of
43.8%, 30.5% and 11.5% that are mentioned in the ref-
erence paper – in most cases, the precision associated to
43.8% recall was the poorest compared to the reference
numbers, hence we show this value in our figures. For
the number of samples per tree, we see in Section 6 that
higher numbers lead to better results, hence we settle
on the largest number 8192 our implementation allows.
For the depth, we note that increasing the depth may
lead to better results, but it might also lead to overfit-
ting. This can be partially mitigated by increasing the
number of trees, but this leads to an increased compu-
tational cost. This is why we also investigated the best
depth and number of trees if the “computational budget”
is fixed (under the simplified assumption that computa-
tion scales linearly with the combined number of nodes
of all trees), see Section 6. We settle on depth 4 and 200
trees.

We note that for securely tuning the depth, the num-
ber of trees, and the number of attributes we can set
an upper bound on these parameters. The models cor-
responding to all parameters less than this bound are
already obtained as partial results during the execution
of our protocol, so they can be securely evaluated on a
validation set to obtain accuracy numbers (see also Ap-
pendix A.5.3). This does not apply to the subsampling
rate, i.e., the number of samples per tree, but from Sec-
tion 6 we see that accuracy mostly improves for larger
numbers (perhaps until 0.4N , see [15]).

For our implementation, we trained our trees in the
clear to obtain the performance of our methods in terms
of accuracy, and then extrapolated the timings from
our previous tables. As we argued in Section 5, we do
this due to the limitations of MP-SPDZ when compiling
large-scale programs, and furthermore, the extrapolated
data should represent reality faithfully.

We obtain the following precision values associated
to different levels of recall. These correspond to the
90th, 95th and 99th percentile of the predicted proba-
bilities, respectively. Precision (or: PPV, positive predic-
tive value) represents the fraction of positive cases that
are correctly identified by the algorithm. Of the cases
that the algorithm labels as positive, recall (or: sensitiv-
ity) indicates the fraction that are true positives (rather
than false negatives). As the following table shows, we

obtain results that are only slightly worse than the ref-
erence model.

Recall 43.8% 30.5% 11.5%
Precision (our method) 8.8% 12.1% 23.2%
Precision (reference model) 9.6% 13.5% 25.5%

Using our benchmarks from Section 5, we calculate
that training each one of the 200 trees with passive se-
curity would take

11
2 × (30.04 + 15× 4.011 + 16× 0.006) = 496.6 s,

which amounts to slightly over 8 minutes. Training the
full ensemble would require less than 28 hours. Also note
that the computation is highly parallelizable, so more
sets of servers can be added to speed up the computa-
tion time. Since training is generally done only once on
datasets of such volume, the result shows that secure
training of decision trees is practically feasible.

7 Conclusion
In this work we have introduced a protocol for oblivi-
ously training a decision tree that supports both discrete
and continuous attributes. Our protocol scales quasi-
linearly with the size of the dataset, which is a big im-
provement with respect to more naive approaches to this
problem that would yield a square complexity. To this
end, we introduced several novel optimizations for effi-
ciently computing the Gini index, such as the conversion
of sorting networks to permutation networks, which can
be of independent interest.

Our experimental results show that our techniques
are indeed practical: with passive security, computing
a single node requires just 35 seconds of running time,
even with more than 8000 samples. The overhead of
active security is modest, increasing runtime to just over
3 minutes per node.

We have demonstrated the practicality of our ap-
proach, by applying our training protocol to a realis-
tic application of privacy-preserving machine learning in
the medical domain. By plugging our decision tree train-
ing algorithm into the random forest ensemble method,
we may train a classifier on a large dataset and obtain
accuracies similar to non-secure gradient boosted trees
methods. Even so, the running time of the training can
be contained to only 28 hours, reaching practical feasi-
bility.
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Fig. 10. Both graphs show precision for 43.8% recall (reference: 9.6%). We fix the number of attributes at 11. Models are trained
on the training set (80%), and evaluated on the validation set (20%). Both are independent of the test set used for obtaining the

final numbers.
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A Appendix

A.1 Decision trees for classification

We wish to build a model that predicts an out-
put variable Y , given a number of input variables.
We assume we have m continuous input variables
named C1, . . . , Cm, and n discrete input variables
D1, . . . , Dn. Our training algorithm will take N sam-
ples (c1,d1, y1), . . . , (cN ,dN , yN ) and produce as out-
put a tree-based classifier. Here ck = (ck1, . . . , ckm)
and dk = (dk1, . . . , dkn) are realizations of the variables
C1 × · · · ×Cm and D1 × · · · ×Dn, respectively, for each
k = 1, . . . , N . For a sample ωk = (ck,dk, yk) we write
Ci(ωk) = cki, and Dj(ωk) = dkj .

In theory the domain of the continuous variables
C1, . . . , Cm is the real numbers R, but in practice these
are either fixed-point or floating-point numbers. Oper-
ating with these representations in secure computation
is more costly that simple integer arithmetic since it in-
volves performing expensive operations like truncation
and rounding. Fortunately, for the case of decision trees
for classification we do not need to perform arithmetic
operations on the numbers, so we discretize them to an
integer domain (arbitrarily, but preserving order) and
assume dom(C1) = · · · = dom(Cm) = ZM .8 This works
because in contrast to many other ML models, what
matters in decision trees is not really the specific values
of the continuous variables but rather the relative posi-
tion among them. We leverage this simple but crucial
observation to develop a protocol for secure training of
decision trees with continuous attributes that does not
involve expensive operations such as secure truncation,
needed for the manipulation of fixed-point numbers.

A decision tree T is simply an (ordered) binary tree
with some additional information. Internal nodes can be
of two types, discrete or continuous. Continuous nodes
are denoted Ci ≤ s where i ∈ [m] and s ∈ dom(Ci).

8 In general every bounded discrete set can be mapped to inte-
gers by choosing an appropriately large scale.

https://eprint.iacr.org/2019/164
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Evaluating decision trees for classification

Input: A decision tree T and an untagged input (c,d).
Output: The predicted tag for the input.

1. If there is only one node in the tree then return as
the output the value associated to this (leaf) node.

2. If there is more than one node, the root has a left and
a right subtree. If the root is continuous of the form
Ci ≤ s , evaluate ci ≤ s. If it is true, recursively
evaluate the left subtree. If false, recursively evaluate
the right subtree.

3. If the root is discrete of the form Dj = u , evaluate
dj = u. If true, recursively evaluate the left subtree.
If false, recursively evaluate the right subtree.

Fig. 11. Evaluating a decision tree.

Discrete nodes are denoted Dj = u , where j ∈ [n] and
u ∈ dom(Dj). Leaf nodes are represented by a value
ŷ ∈ dom(Y ).

To evaluate a decision tree T on some untagged in-
put data (c1, . . . , cm, d1, . . . , dn), the recursive algorithm
in Figure 11 is executed. This is done by traversing the
tree recursively starting from the root, and deciding on
which path to take depending on the condition that the
node contains and how it matches the given input.

A.1.1 Alternative computation of the Gini index

Let T ⊆ D. We compute the For computing the Gini
index we use the idea from [13] of rewriting the Gini
index as an integer fraction, so we can easily compute
both numerator and denominator separately.

Using the definition of G(T ), it can be seen that
for i ∈ [m] and t ∈ ZM it holds that G(T |Ci ≤ t) =
1− 1

|T |
PCi≤t(T )
QCi≤t(T ) where:

PCi≤t(T ) = |TCi>t|
∑

b∈{0,1} |TCi≤t ∩ TY =b|2

+ |TCi≤t|
∑

b∈{0,1} |TCi>t ∩ TY =b|2,
QCi≤t(T ) = |TCi≤t| · |TCi>t|.

Similarly, if j ∈ [n] then G(T , Dj) = 1 −
PDj

(T )
QDj

(T ) ,
where

PDj
(T ) = |TDj=1|

∑
b∈{0,1} |TDj=0 ∩ TY =b|2

+ |TDj=0|
∑

b∈{0,1} |TDj=1 ∩ TY =b|2,
QDj

(T ) = |TDj=0| · |TDj=1|.

Since there is an affine transformation between the
fractions P/Q and the Gini index (flipping the sign),

minimizing the Gini index is equivalent to maximizing
the fraction P/Q. This way, we avoid doing decimal-
number arithmetic in Figure 1, since for non-negative
a, b, c, d, it holds that a

b ≤
c
d if and only if a · d ≤ b · c,

so the comparisons can be performed on integer types
directly. This will be important when we execute this
optimization step securely in MPC, since this means
that we do not need to deal with decimal computation.

For notational convenience, for i ∈ [m],
j ∈ [n], k ∈ [N ] and b ∈ Z2, we denote
Si,k(T ) = (PCi≤ck,i

(T ), QCi≤ck,i
(T )) and also Rj(T ) =

(PDj
(T ), QDj

(T )).

A.2 MPC protocols

Our main training algorithm from Section 4 works
with virtually any underlying secret-sharing scheme
J·K, together with a multiplication protocol and some
standard procedures for opening shares. However, in
this work we focus on replicated secret sharing, which
is set in the three party setting and withstands one
single corruption. This setup is natural in the client-
server since the number of computing parties does not
need to be large, and three-parties with one corruption
is the minimum setting where honest-majority can be
achieved, which is considerably more efficient that the
dishonest-majority scenario. Furthermore, for a small
number of parties replicated secret sharing is the best
option in the honest-majority case, compared to other
approaches based for instance on Shamir secret-sharing.

Passive security. The protocol we consider for pas-
sive security is the protocol from [2], which, at a high
level, operates as follows. A secret x ∈ Z2` is shared
among the three parties P1, P2, P3 by sampling random
x1, x2, x3 ∈ Z2` such that x ≡ x1 + x2 + x3 mod 2`, and
letting party Pi have the share (xi, xi+1), where the in-
dices wrap around modulo 3. For multiplying two secret-
shared values JxK and JyK, we assume that each Pi has a
random αi ∈ Z2` such that 0 ≡ α1+α2+α3 mod 2`,9 and
then each Pi computes zi = xiyi + xi+1yi + xiyi+1 + αi

and sends zi to Pi−1. Then, Pj , upon receiving zj+1,
defines its share of Jx · yK as (zj , zj+1).

We notice that, as shown in [7], a dot product of
replicated secret-shared vectors can be computed at the
communication cost of one single multiplication. This

9 These can be preprocessed essentially without interaction via
PRFs.



Secure training of decision trees with continuous attributes 19

allows us to save communication in our main training
algorithm.

Active security. We consider the extensions to the
protocol above presented in [16] for active security.
These consists of producing multiplication triples using
the passively secure protocol, which are then used in the
online phase to compute products on the actual input
data. The triples are then checked in a preprocessing
phase, or in a postprocessing phase, using ideas from
[9] to guarantee low cheating probability. We refer the
reader to [16] for details on how this is done.

Unfortunately, the resulting protocol does not have
the property that dot products can be computed with
the same communication complexity than a single mul-
tiplication.

On the restrictions of the modulus. The inter-
val [−M/2,M/2) must be large enough so that the
scaled database can be accommodated. However, there
are other aspects of our protocol that impose a lower
bound on M .

First, M must be large enough to accommodate
the numerators P∗ and denominators Q∗ from Section
A.1.1. It can be shown that each numerator P∗ is upper
bounded by N3/8, and each denominator Q∗ is upper
bounded by N2/4. As we will see in Sections A.3 and 4.1,
the modulusM has to be able to accommodate products
of the form P∗ ·Q∗, so it must hold that M ≥ N3

23 · N2

22 ,
so M must be at least 5 · (log(N)− 1) bits long.

For example, if N = 213, then 5 · (log(N)− 1) = 60,
so a 64-bit integer, like 264, would suffice.

A.3 Computing the Gini index for discrete
attributes

Let T ⊆ D, and assume the parties have shares of the in-
dicator vector JvT K. In this section we show how the par-
ties can compute sharings of Rj(T ) = (PDj

(T ), QDj
(T ))

for j ∈ [n], which are the numerator and denominator,
respectively, of 1−G(T |Dj)/|T |.

We begin by noticing that the k-th entry of vDj=1
is equal to dk,j , which is by assumption secret-shared
already over ZM . In particular, vDj=1 is already secret-
shared over ZM . A similar argument shows that the par-
ties already have shares over ZM of vY =1. Finally, we
observe that

q
vDj=0

y
= 1 −

q
vDj=1

y
and JvY =0K =

1 − JvY =1K can be obtained with local operations only.
These observations allow for the computation of the
Gini index in a simple manner, as described in Figure 12.

ΠD
SecGini(j, JvT K): The discrete Gini index

Input: j ∈ [n], JvT K.
Output: JRj(T )K = (

r
PDj

(T )
z
,
r
QDj

(T )
z

).

1. For b, b′ ∈ Z2, the parties compute:
1.

q
xb,b′

y
= JvT K ?

r
vDj =b

z
? JvY=b′K.

2.
q
ub,b′

y
=
〈q

xb,b′
y
,1
〉
.

3. JxbK = JvT K ?
r

vDj =b
z

4. JubK = 〈JxbK ,1〉.

2.

r
PDj

(T )
z

= Ju0K (Ju0,0K2 + Ju0,1K2)

+ Ju1K (Ju1,0K2 + Ju1,1K2)
3.

r
QDj

(T )
z

= Ju0K · Ju1K .

4. Output (
r
PDj

(T )
z
,
r
QDj

(T )
z

).

Fig. 12. Computation of the Gini index for discrete attributes.

We note that the analysis for obtaining
q
vDj=b

y
and

JvY =bK in the general case in which the data may have
more than two values per discrete attribute is similar
as the one sketched in the next section for continuous
attributes, but instead of a secure inequality comparison,
a secure equality check is used. However, in our setting,
since we are assuming that the discrete attributes only
take the values 0 and 1, it is easy to see that the parties
already have shares of each entry of vDj=1 and vY =1
and therefore of vDj=0 and vY =0 as well.

A.4 Argmax

In our main protocol in Section 4 we encounter sev-
eral situations in which the parties, having a secret-
shared array of values, need to compute shares of the
maximum, along with shares of an index at which the
maximum occurs. To this end, we make use of a very
generic and flexible argmax protocol, which is described
in Figure 13. The protocol takes as input a secret-shared
array {(JuiK , JviK)}i∈[L], along with a comparison rule
ui � uj

10 (or a protocol to compute such relation to be
more precise) and produces fresh shares (Jui∗K , Jvi∗K),
where i∗ ∈ [L] is such that ui∗ = maxi∈[L](ui).

10 The only requirement is that the relation must be transitive
and that every pair of elements must be comparable.
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Πargmax
(
{(JuiK , JviK)}i∈[L],�

)
Input: A secret-shared array {(JuiK , JviK)}i∈[L] and a
comparison protocol JuiK � JujK.
Output: Fresh shares (JuiK , JviK), where i∗ ∈ [L] is in
the index such that ui∗ = maxi∈[L](ui).

We assume for simplicity that L = 2`. The parties
proceed as follows.
1. If L = 1 then output (Ju1K , Jv1K).
2. Else, do the following for i ∈ [L/2]:

1. Compute JbK = (Ju2i−1K � Ju2iK).
2. Let

q
u′i

y
= JbK · Ju2iK + (1 − JbK) · Ju2i−1K andq

v′i
y

= JbK · Jv2iK + (1− JbK) · Jv2i−1K.
3. Call Πargmax

(
{(

q
u′i

y
, JviK′)}i∈[L/2],�

)
Fig. 13. Computing the argmax of a secret-shared array.

To see Πargmax is correct, we note that in step 2.2
we have

(
q
u′i

y
,
q
v′i

y
) =

{
(Ju2i−1K , Jv2i−1K) if u2i � u2i−1,

(Ju2iK , Jv2iK) if u2i−1 � u2i.

Hence at each iteration of step 3 the input array
{(

q
u′i

y
, JviK

′)}i∈[L/2] contains the argmax maxi∈[L](ui).
Since the protocol only makes use of arithmetic opera-
tions and comparisons over the secret-shares, no infor-
mation is leaked. We conclude the protocol is secure.

A.5 Some considerations

A.5.1 Overview of our training algorithm

Sorting phase. Our main observation is that decision
trees on continuous data rely mostly on the relation
among the continuous values, and that the “computa-
tion” of this relation can be pushed mostly to a “pre-
processing” stage whose complexity is independent of
the desired depth. More precisely, in this phase, which
we call the sorting phase, the parties compute the secret-
shared sorting permutations JπiK for each i ∈ [m], as de-
scribed in Section 4.1. These permutations capture the
relations among the data, and, more importantly, they
only need to be computed once, at this very first stage.

Once the secret-shared sorting permutations JπiK
are computed, the continuous values {JckiK}k∈[N ] must
be permuted according to πi, which is done by feeding
this data through the permutation network JπiK (which,
recall from Section 3.2, has depth logN , instead of
log2N).

Training phase. Once the ordering of the data has
been captured in the preprocessed material above, the
parties proceed to the computation of the tree, follow-
ing a node-by-node, recursive approach as in Figure 1.
Many aspects follow from the restriction that the com-
putation must preserve the privacy of both the original
dataset and the resulting tree. For instance, the shape
of the tree cannot reveal anything about the underlying
data it was trained on, so a complete tree must be
trained. In particular, the stopping criterion is purely
based on a fixed depth ∆, rather than data-dependent
criteria which leak other information. This is done in
step 1 of the algorithm, where the parties determine
that the current node is a leaf, and proceed to compute
its corresponding tag by determining the most common
value among the current active records. This is done by
computing JuK, the number of active records with tag
equal to 1, and comparing it with v/2, where v is the
total amount of active records at the given node.

The next step is to compute the optimal node. To
this end, first all the (altered) Gini indices are com-
puted in step 2, using our subprotocols from Sections
A.3 and 4.1. As we mentioned before, the denominators
of these quantities must be scaled to avoid division by
zero, which is handled in step 3. Then, for every continu-
ous attribute i ∈ [m], our general argmax protocol from
Section A.4 is used in step 4.1 to compute the optimal
splitting point γi ∈ ZM corresponding to this attribute.
These are combined again in step 4.2 to compute the
best continuous attribute i∗. Similarly, the best discrete
attribute j∗ is computed in step 5.

In step 6 we store the best continuous point and the
best discrete splitting point, together with a bit JbK of
which one should be used. In step 7 we recursively apply
the algorithm.

A.5.2 Complexity analysis

The sorting phase requires sorting m arrays of length N
each, incurring in O(mN log2N) bits of communication.
The conversion of this sorting network to a permutation
network only adds a complexity of O(mN logN) bits.
Finally, permuting the arrays {cki}k for i ∈ [m] also
adds a complexity of O(mN logN) bits.

The training phase can be divided into two parts:
the computation of a leaf node, in step 1, and the com-
putation of an inner node, which corresponds to the
other steps. The computation of a leaf node requires
N multiplications and one comparison, so it has a com-
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plexity of O(N) bits (for the passively secure case this
may be taken down to O(1) given the cheap dot-product
property that our protocol enjoys). Since a tree of depth
∆ has 2∆ leaf nodes, the total complexity of this step is
2∆ ·O(N).

For the computation of an inner node, we observe
that the computation of one single continuous Gini in-
dex involves a communication of (N logN) for step 2
in ΠC

SecGini, and then a series of multiplications which
amount to O(N) bits. The complexity of ΠD

SecGini is dom-
inated by O(N). Hence, step 2 in Figure 6 has a com-
munication complexity of O(mN logN +nN). The calls
to Πargmax in steps 4.1, 4.2 and 5 have a complexity of
O(mN), O(m) and O(n), respectively.

Finally, step 7.1 has a communication complexity of
O(mN) (which can be taken down to O(m) via cheap
dot products), step 7.2 has a complexity of O(nN), and
the final step has a complexity of O(N).

Recall that a tree of depth ∆ has 2∆−1 inner nodes.
Hence, all in all, we conclude that training a tree of
depth ∆ using Protocol ΠSecTrainDT requires a total com-
munication, in bits, of:

O(mN log2N)︸ ︷︷ ︸
sorting

+(2∆ − 1)O(mN logN + nN)︸ ︷︷ ︸
one inner node

+2∆ O(N).︸ ︷︷ ︸
one leaf node

(1)

A.5.3 Secure inference

One of the advantages of the client-server model we con-
sider here is that the outputted secret-shared model can
be used obliviously for inference. Decision tree evalua-
tion was considered in [11] and [8] for active and pas-
sive security, respectively, and we closely follow their
approaches. Further details can be found in these works.

Given the secret-shared model, and a secret-shared
tuple J(c,d)K, we essentially run the steps in the algo-
rithm from Figure 11 using secure operations. Since we
evaluate obliviously, the path taken along the tree can-
not be leaked. As a result, all the nodes of the tree must
be visited, giving as a result a secret-shared bit indi-
cating whether the path to be taken is the left or right
path. Finally, for each one of the leaves, one can com-
pute whether or not this is the output leaf using the bits
computed on the path from the leaf to the root.

Recall that a node is given by a tuple

JbK ,
r

en
j∗

z
, {Jem

i∗K , Jγi∗K} . In order to evaluate this

node on a secret-shared input, first
r

en
j∗

z
is used to ex-

tract the j∗-th discrete attribute of the input and
q
em

i∗
y

is used to extract the i∗-th continuous attribute of the
input, which is then compared against Jγi∗K. Then, the
bit JbK, which indicates whether it is the continuous
or the discrete attribute the one that must be taken
into account, is used to obtain the secret-shared bit
indicating which path should be taken.
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