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Abstract. Subterranean 2.0 is a cipher suite that can be used for hashing, authenti-
cated encryption, MAC computation, etc. It was designed by Daemen, Massolino,
Mehrdad, and Rotella, and has been selected as a candidate in the second round
of NIST’s lightweight cryptography standardization process. Subterranean 2.0 is a
duplex-based construction and utilizes an extremely simple one-round permutation
in the duplex. It is the simplicity of the round function that makes it an attractive
target of cryptanalysis.
In this paper, we examine the one-round permutation in various phases of Subter-
ranean 2.0 and specify three related attack scenarios that deserve further investigation:
keystream biases in the keyed squeezing phase, state collisions in the keyed absorbing
phase, and one-round differential analysis in the nonce-misuse setting. First, to
facilitate cryptanalysis, we propose two size-reduced toy versions of Subterranean
2.0: Subterranean-m and Subterranean-s. Then we exploit the resemblance between
the non-linear layer in the round function of Subterranean 2.0 and SIMON’s round
function to construct our models for searching characteristics to be used in the
keystream bias evaluation and state collision attack. Our results show that there
exists no linear trail under the constraint of data limit imposed by the designers with
a minimal number of output blocks. This partially confirms the designers’ claim on
the bias of keystream. Regarding state collisions in keyed modes, we find useful char-
acteristics of two toy versions with which forgery attacks can be mounted successfully.
However, due to the time-consuming search, the security of Subterranean 2.0 against
the state collision attack in keyed modes still remains an open question. Finally, we
observe that one-round differentials allow to recover state bits in the nonce-misuse
setting. By proposing nested one-round differentials, we obtain a sufficient number of
state bits, leading to a practical state recovery with only 20 repetitions of the nonce
and 88 blocks of data. It is noted that our work does not threaten the security of
Subterranean 2.0.
Keywords: Subterranean 2.0 · one-round permutation · keystream bias · state
collision · state recovery

1 Introduction
The deployment of small computing devices such as RFID tags, microcontrollers, sensor
nodes, and smart cards is becoming more and more common. Alongside this, the need
for lightweight cryptography that aims to provide security solutions tailored for such
resource-constrained devices is increasing. In 2013, the National Institute of Standards
and Technology (NIST) initiated a public process to solicit, evaluate, and standardize
lightweight authenticated encryption and hashing schemes that are suitable for use in
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constrained environments [Nat19]. In 2018, a call for submissions was launched and 57
submissions were received in 2019, among which 56 and 32 submissions were selected in
the first and second rounds respectively. At the current stage, public evaluations of the
candidates are strongly encouraged.

Subterranean 2.0 [DMMR20] is a cipher suite that can be used for hashing, authenticated
encryption, MAC computation, and stream encryption, etc. It was designed by Daemen,
Massolino, Mehrdad, and Rotella and has been selected by NIST as a candidate for the sec-
ond round. Subterranean 2.0 shares features with its predecessor Subterranean [CDGP93]
which can be seen as a precursor to the Sponge construction [BDPVA11]. The features of
Subterranean 2.0 are summarized below.

Prime-sized state. Subterranean 2.0 operates on a state of 257 bits which is small but still
supports both hashing and authenticated encryption. It offers a security strength of
128 bits in keyed modes and 112 bits in unkeyed mode. In authenticated encryption
where a nonce is used, the nonce should not repeat.

Duplex-based construction The duplex [BDPV11] plays a core role in Subterranean 2.0.
On top of it, three functions were built, namely, Subterranean-XOF, Subterranean-
deck, and Subterranean-SAE, where the latter two are keyed functions. The duplex
absorbs/squeezes 32-bit blocks in keyed modes and 8-bit blocks in unkeyed mode.

One-round permutation. In the duplex, a lightweight one-round permutation is used. The
round function operates at bit level and has algebraic degree 2. It has a minimum of
substructures and ultimate weak alignment which prevents large classes of attacks.

Blank rounds used. Between different phases, 8 blank rounds are used to prevent measur-
able characteristics between the controllable input and output.

Efficient hardware implementation. Subterranean 2.0 is designed for hardware and offers
a good option for environments that require lightweight crypto in hardware with
high throughput requirements. Besides, it is very suitable for protection against
differential power analysis such as masking and threshold implementations.

Due to the extremely simple round function, Subterranean 2.0 is an attractive target
for cryptanalysis. In the design specification [DMMR20], the designers mainly investigated
the security of state collisions in unkeyed absorbing and differential/linear properties of a
multiple-round permutation. As a complement, Liu et al. [LIM19] conducted cube-based
cryptanalysis of Subterranean-SAE by exploiting the low algebraic degree of the round
function. Liu et al. showed that when the number of blank rounds is reduced to 4, one
can mount a state recovery attack while in the nonce-misuse setting the state recovery
attack becomes practical using 213 blocks of data.

With respect to the simple one-round permutation of Subterranean 2.0, there are
interesting attacks in different phases. Below, we list three related attacks in keyed modes
that deserve further investigation.

1. Linear bias of output blocks in keyed squeezing phase. By design, there
is no linear bias over three output blocks of Subterranean 2.0. It is believed by
the designers that over four or more output blocks there does not exist measurable
bias. Any analytical results that approve or disapprove of this conjecture can help
understand the security of Subterranean 2.0.

2. State collisions in keyed absorbing phase. In keyed modes, state collisions
may lead to attacks like forgeries. However, security analysis against such attacks is
missing from the specification document of Subterranean 2.0.
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3. One-round differential analysis of Subterranean-SAE in the message pro-
cessing phase. In the phase of processing the message, when a duplex call is
invoked, an output block is squeezed and an input block absorbed before and after
the one-round permutation, respectively. In the case where nonce repeats, one-round
differentials can be observed over successive calls of duplex. The threat of such
one-round differentials is not clear.

Our contribution. In this paper, we examine the security of Subterranean 2.0 in the
above three attack scenarios regarding its one-round permutation. In order to investigate
the bias of keystreams and the state collision attack, it requires to find useful linear
and differential trails. When carrying out differential/linear analysis of Subterranean
2.0, we face two challenges. The first is that the permutation has only one round, so no
round-reduced version is available for facilitating the differential/linear analysis. The other
is the “dependency” issue that cannot be avoided either in differential analysis or linear
analysis. The round function of Subterranean 2.0 uses bit-wise operations which allow weak
alignment and its non-linear layer exploits logic AND of neighbouring bits. As neighbouring
ANDs share an input bit, the ANDs are not independent and such dependency makes the
differential/linear analysis difficult.

To tackle the first challenge, we propose two toy versions of Subterranean 2.0 with
reduced state size. We choose two prime numbers 193 and 97, and adapt other parameters
accordingly. We then have two toy versions: Subterranean-m and Subterranean-s.

To handle the second challenge, we observe that the non-linear layer of the round
function of Subterranean 2.0 can be represented by a SIMON-like function. SIMON
[BSS+13] is a family of lightweight block ciphers and has been extensively analysed since
its publication, such as exact differential/linear analyses in [KLT15]. Starting with the
tool in [KLT15], we build our models for searching optimal differential/linear trails of
Subterranean 2.0 or tightening the bounds of differential probability or linear correlation.

Regarding biases of keystreams, our results show that there exists no linear trail under
the constraint of data limit imposed by the designers for four output blocks. When we
increase the number of output blocks by 1, there are no better linear trails in Subterranean-
s, which gives some confidence that there might be no better linear trails over more output
blocks as well for Subterranean 2.0. Thus, the designers’ claim on the bias of keystreams
is partially supported by our results.

As for state collisions, the search for differential trails of Subterranean 2.0 is still hard
due to its weak alignment and relatively large state size (compared to block ciphers like
SIMON). However, we find good differential trails for the two toy versions, with which
forgery attacks can be mounted successfully. When we increase the number of input
blocks by 1, better trails are found for both toy versions. It seems that the resistance of
Subterranean 2.0 against state collision attacks might be weaker than its resistance against
linear attacks.

Finally, we exploit the one-round differentials to recover the state in the nonce-misuse
setting. If the nonce repeats, one-round differentials observed in the message processing
phase of Subterranean-SAE will leak some bits of the state due to the algebraic degree 2 of
the round function. Further, we find out that ordinary one-round differentials can recover
41 bits at most. To enlarge the number of state bits that can be recovered, we propose
nested one-round differentials where a one-round differential is prepended to another in
a delicate way. As a result, a sufficient number of state bits can be recovered, which
leads to a full state recovery and further a key recovery. The attack is practical and takes
only 20 repetitions of the nonce and 88 blocks of data, which is much lower than the
data complexity of Liu et al.’s attack [LIM19]. Our analysis shows that Subterranean-like
constructions with quadratic one-round permutation must be used carefully in practice
since the security crashes without nonce uniqueness.
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Organization. The rest of the paper is organized as follows. Basic notations, the design
of Subterranean 2.0 and two toy versions are introduced in Section 2. Section 3 highlights
several properties of Subterranean 2.0 and the relation to three attack scenarios: keystream
biases, state collisions, and state recovery in the nonce-misuse setting. Linear attacks and
state collisions in the keyed modes are investigated in Section 4. Section 5 presents a state
recovery attack utilizing one-round differentials in the nonce-misuse setting. Finally, we
conclude the paper in Section 6.

2 Notations and Specification of Subterranean 2.0
In this section, we start by giving our notations and then briefly introduce Subterranean 2.0,
including its round function, the duplex object and two keyed members: Subterranean-deck
and Subterranean-SAE. To facilitate cryptanalysis of Subterranean 2.0, we introduce two
toy versions: Subterranean-m and Subterranean-s. For more details of Subterranean 2.0,
we refer the interested reader to the official specification [DMMR20] .

2.1 Notations
b The size of the state
d The factor used in π of the round function
M The string M padded to 33 bits with 10*
∆Z The difference of Z
Sα(x) Cyclic right shift of vector x by α bits. If α is negative, it means cyclic

left shift.
| · | The length in bits
|| Concatenation of bit strings

2.2 Round Function
The round function R operates on a b-bit state and consists of four bit-oriented steps:
R = π ◦ θ ◦ ι ◦ χ. Let s denote the state and si the i-bit of s. Then for all 0 ≤ i < b,

χ : si ← si + (si+1 + 1) · si+2,

ι : s0 ← s0 + 1,
θ : si ← si + si+3 + si+8,

π : si ← sd×i.

Here the addition and multiplication of state bits are in F2 and expressions in the index
are taken modulo b. In Subterranean 2.0, b = 257, d = 12.

2.3 Duplex Object and Two Keyed Functions
2.3.1 Duplex Object

The Subterranean 2.0 suite is built upon a duplex object which is displayed in Figure 1.
The duplex uses a single-round permutation made from R and has two functions: the
duplex call and the output extraction, the latter of which is optional. The dupelx call
applies the round function R and absorbs a string M of at most 32 bits. Before adding
the string to the internal state, the string is padded to 33 bits with 10*. The 33 bits are
then injected into the state s124i , 0 ≤ i < 33. Namely, the injection rate is 33 bits. Before
the duplex call, one may extract 32 bits from the state, each of which is the sum of two
state bits:

Zi = s124i + s−124i ,
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for 0 ≤ i < 32. The details of indices used for injection and extraction are shown in
Table 1.

When the input is an empty string, the combination of the round function and the
injection is denoted as Rε for convenience in the figures.

Table 1: Indices used for injection and extraction

i 124i −124i i 124i −124i i 124i −124i i 124i −124i i 124i

0 1 256 8 64 193 16 241 16 24 4 253 32 256
1 176 81 9 213 44 17 11 246 25 190 67
2 136 121 10 223 34 18 137 120 26 30 227
3 35 222 11 184 73 19 211 46 27 140 117
4 249 8 12 2 255 20 128 129 28 225 32
5 134 123 13 95 162 21 169 88 29 22 235
6 197 60 14 15 242 22 189 68 30 17 240
7 234 23 15 70 187 23 111 146 31 165 92

2.3.2 Subterranean-deck and Subterranean-SAE

The Subterranean 2.0 suite contains three functions: Subterranean-XOR, Subterranean-
deck and Subterranean-SAE. Subterranean-XOF is designed to be used for unkeyed hashing,
while Subterranean-deck and Subterranean-SAE are keyed functions. In this paper, we
focus on the latter two.

Subterranean-deck takes as input an arbitrary-length key and a sequence of arbitrary-
length strings and returns a bit string of arbitrary length, as shown in Figure 2. Hence, it
can be used as a stream cipher, a MAC function or for key derivation. Subterranean-SAE,
depicted in Figure 3, is designed for authenticated encryption. Below, a detailed description
of Subterranean-SAE is given. With the description of Subterranean-SAE in mind, it
requires little extra effort to follow the working procedures of Subterranean-deck.
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Figure 3: Subterranean-SAE

The input of Subterranean-SAE contains a 128-bit key, a 128-bit nonce N , an associated
data (AD) A, and a message M and the output is composed of the ciphertext and a 128-bit
tag T .

Processing the key At first, the state is initialized with 0. The 128-bit key is split into
four 32-bit blocks K1, K2, K3, K4 and one empty block ε, as the last block should
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be strictly shorter than 32 bits. Each block is padded with 10* and the first four
padded blocks are denoted by K1, K2, K3, and K4. The whole five blocks are then
absorbed one by one through the duplex call.

Processing the nonce The nonce is split into 32-bit blocks with the last block being
shorter than 32 bits. Pad each block with 10* and sequentially inject the padded
blocks into the state in a series of duplex calls.

Processing the AD Invoke the duplex eight times, each with an empty message ε absorbed.
Then absorb the AD in the same way as processing the nonce.

Processing the message The message is split into 32-bit blocks with the last block being
shorter than 32 bits. Pad each block with 10*. Process message blocks one after
another by the following steps: extract 32 output bits, invoke the duplex call to
absorb a padded message block and XOR the message block with the extracted
output to get the ciphertext block.

Finalization Invoke the duplex eight times, each with an empty message ε absorbed. Then
invoke the duplex another four times, before each of which a 32-bit output is squeezed.
Concatenate the four 32-bit output blocks to form the 128-bit tag.

For Subterranean-deck, the input of Subterranean-deck consists of a 128-bit key, a
string sequence M and the output length. It is noted that the string sequence M here can
contain multiple arbitrary-length message strings.

2.4 Toy Examples
To facilitate cryptanalysis, simplified versions of a cipher are useful. As it is impossible to
define simpler versions of Subterranean 2.0 with round-reduced permutations, we introduce
two size-reduced versions of Subterranean 2.0 as follows.

Subterranean 2.0 uses a prime-sized state to avoid the existence of exploitable sym-
metries. Therefore, the state size b of a toy example also needs to be prime but smaller
than 257. In addition, the factor d used in the π step should have a large order in Z∗b
and the order should be a multiple of the extraction rate. With these in mind, we choose
two primes 193 and 97 and let d be a generator of Z∗b , resulting in two toy examples:
Subterranean-m and Subterranean-s whose parameters are summarized in Table 2.

Table 2: Toy examples of Subterranean 2.0

Version State size Key size d Extraction rate Output Zi

Subterranean 2.0 257 128 12 32 s124i + s−124i

Subterranean-m 193 96 15 32 s153i + s−153i

Subterranean-s 97 48 15 16 s153i + s−153i

3 Properties of Subterranean 2.0 and Three Attack Sce-
narios

In this section, we highlight several important properties of Subterranean 2.0 and relate
them to three attack scenarios.

Subterranean 2.0 is a duplex-based construction and uses bit-oriented operations that
allow good performance in hardware implementation. Besides, the following properties are
interesting in the attacker’s point of view.
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Property 1. Subterranean 2.0 employs an extremely simple permutation in the
duplex call. The permutation has only one round and the round function has
algebraic degree only 2. Additionally, the round function operates at bit level and
allows a minimum of sub-structures by using a prime-sized state. That is to say, the
round function is of weak alignment.

Property 2. Subterranean 2.0 squeezes output blocks in a way similar to a
stream cipher. Specifically, it outputs 32 bits as the keystream iteratively before
each duplex call. In Subterranean-SAE, when the message is fixed as a constant, it
can be seen as a keystream generator in the message processing phase.

Property 3. Subterranean-SAE processes the nonce with multiple duplex calls.
Subterranean-SAE does not load the nonce into its initial state. Because of its small
state size, Subterranean-SAE has to absorb the nonce with multiple duplex calls and
the number of the duplex calls is 5.

Attack scenario 1: keystream biases. When considering Property 1 and Property 2
together, one may ask: are the keystreams truly random? Therefore, the bias in the
keystream would be of great concern. Recently, exploitable biases using linear combinations
of output bits were found in the authenticated encryption scheme MORUS [SSS+19]. It is
important to known if this will happen to Subterranean 2.0.

β−1 = 0

s0

γ0

ext

λ0

Z0

α0 β0
R

s1

γ1

ext

λ1

Z1

α1 β1
R · · ·

· · ·

αn−2 βn−2

R

sn−1

γn−1

ext

λn−1

Zn−1

αn−1 βn−1

R

sn

γn

ext

λn

Zn

αn = 0

Figure 4: Linear trails for keystream bias evaluation

To investigate the bias of keystreams, it is to find a sequence of linear masks (λ0, · · · , λn)
for the output blocks Zi, as illustrated in Figure 4, such that

n∑
i=0

λiZ
i

is biased. If such a sequence of masks can be found, a distinguisher can be mounted on
the target. Here, the same tools for linear cryptanalysis of block ciphers can be applied
with the beginning and end being set inactive, i.e., β−1 = 0, αn = 0 as shown in Figure 4.
In the middle, the propagation of linear masks must be compatible with each operation.
Summing all approximations:

γis
i + λiZ

i, 0 ≤ i ≤ n,
αis

i + βis
i+1, 0 ≤ i ≤ n− 1,

we will have
∑n
i=0 λiZ

i, and for Subterranean 2.0, the correlation of keystreams Zi is
equivalent to the correlation of the round functions involved as the extraction function is
linear.

The designers kept the above attack in mind while designing Subterranean 2.0 and let
the output Z be extracted from special state bits to prevent any bias in three consecutive
output blocks. It is believed that using four or more output blocks eliminates measurable
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bias in Z. Any evidence that approves or disapproves of such a belief would be interesting
to the community.

Attack scenario 2: state collisions. A similar cryptanalysis in the differential case would
be state collision attacks. As illustrated in Figure 5, the difference of the internal state
is introduced by an input difference ∆X0 (through the nonce, AD or the message), and
cancelled out by ∆Xn after n rounds. Such an attack is called “LOCAL attack” which
was proposed by Khovratovich and Rechberger [KR13] and independently found by Wu et
al. [WWH+13] against ALE [BMR+13].
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∆X1

α1 β1
R · · ·

· · ·
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Figure 5: Differential trails for state collisions

The state collision may cause forgery attacks. Suppose the internal difference is
introduced by the associated data AD and there exists such a differential trail with high
probability p. Then a forgery attack can be mounted in the following way.

Let N , A0|| · · · ||An and M be the nonce, AD and message to be forged. The attacker
respects nonces and queries (N,A0 ⊕∆X0|| · · · ||An ⊕∆Xn,M) to the encryption oracle
to get the 128-bit tag T . Then, T is a valid tag for (N,A0|| · · · ||An,M) with probability
p. The forgery attack succeeds if p > 2128.

As the nonce is processed in multiple duplex calls, it might be possible to find state
collision during the nonce processing phase. If the state collision happens during this phase
and there are more bits of nonce to be absorbed after the collision, i.e., (N1||N2, A,M)
and (N ′1||N2, A,M) lead to a state collision and thus to the same tag T , then for any A′
and M ′, the attacker can make forgeries by using a new N2.

In spite of the importance of the security requirement for resisting state collision attacks,
such a differential analysis is missing, either in the specification of Subterranean 2.0 or in
the literature.

Attack scenario 3: state recovery in the nonce-misuse setting. Subterranean-SAE
takes a nonce as input and strongly relies on nonce uniqueness for security. Even though
no security claim was made in the nonce-misuse setting, it is believed by the designers
in [DMMR20] that the state recovery attack is non-trivial, as quoted below.

In nonce-misuse scenario’s or when unwrapping invalid cryptograms returns
more information than a simple error, we make no security claims and an
attacker may even be able to reconstruct the secret state. Nevertheless we believe
that this would probably a non-trivial effort, both in attack complexity as in
ingenuity. .

Recall Property 1 that Subterranean 2.0 uses the one-round permutation with algebraic
2 in the duplex call. In the setting that a nonce can be used more than once, one may
inject a difference ∆M i at si in the message processing phase as shown in Figure 6, one
will obtain some linear relations of the state difference ∆si+1 through the output difference
∆Zi+2 as each output bit is the sum of two internal bits. More importantly, ∆si+1 is linear
in bits of si due to Fact 1 for quadratic Boolean functions. Therefore, ∆Zi+2 will be linear
in si, and thus some bits of si will be leaked by observing such one-round differentials.
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Fact 1. Let f : Fn2 → F2 be a Boolean function with algebraic degree 2. Then the difference
∆f can be expressed linearly by the input bits.

Example 1. Let f : F2
2 → F2 and f = x0 · x1. Suppose the input difference is given as

(∆x0,∆x1). Then ∆f = x0 ·x1 + (x0 + ∆x0) · (x1 + ∆x1) = ∆x1 ·x0 + ∆x0 ·x1 + ∆x0 ·∆x1.

Even though Subterranean-SAE aims for use cases where nonce uniqueness can be
guaranteed, it would be interesting to know what the complexity of state recovery would
be when nonce uniqueness is lost.

In the following two sections, the three potential attacks pointed out here will be
investigated. Section 4 looks into differential and linear cryptanalysis regarding keystream
biases and state collisions respectively, and Section 5 examines state recovery attack in the
nonce-misuse setting.

4 Differential and Linear Analysis Tailored for Keystream
Biases and State Collisions

Since the work by Mouha et al. [MWGP11], various automatic tools have been developed
for searching differential and linear trails, such as [MP13,SHS+13,KLT15]. In this section,
we first conduct a succinct analysis of the non-linear layer χ of the round function and
choose an appropriate tool for Subterranean 2.0. Then we present the results we obtained
and discuss the impact on Subterranean-deck and Subterranean-SAE.

4.1 Analysis of χ
Subterranean 2.0 uses bit-wise operations. In particular, in the χ step, for 0 ≤ i < b,

xi ← xi + xi+1 · xi+2 + xi+2.

It would not be difficult to build a model for counting the number of active ANDs. However,
unlike S-box based ciphers where the number of active S-boxes determines the upper bound
of differential/linear probability, the number of active ANDs provides not much information
for Subterranean 2.0. The reason is the dependency between ANDs.

Take the linear case for instance. Each AND operation xi · xi+1 can be approximated
by 0, xi, xi+1 or xi + xi+1 with correlation 2−1 (the bias is 2−2). Let us see Example 2
where two ANDs share an input bit.

Example 2. Let f(x0, x1, x2) = x0 · x1 + x1 · x2 + L(x0, x1, x2) = x0 · x1 + x1 · x2 + u ·
x0 + v · x1 + w · x2 be a Boolean function and u, v, w ∈ F2 are constants. If u = w, then
Cor(f) = 2−1; otherwise, Cor(f) = 0.
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There are half cases of L(x0, x1, x2) leading to zero correlation of f because x0·x1+x1·x2
cannot be approximated by the linear part when u 6= w. As x0 ·x1 +x1 ·x2 = x1 · (x0 +x2),
the correlation of f is 2−1 instead of 2−2 when the correlation is not zero. Therefore,
handling the dependency between ANDs is the key point of tools for searching linear trails
for AND-based ciphers. For differential trails, the dependency also has a similar effect.

In previous works like [SHS+17, SSS+19, SSS+20], trails for AND-based ciphers are
searched by treating the AND operations as independent ones in their tools. When the
trails are obtained, the validity is checked separately by dedicated procedures. This strategy
is useful when the trails are sparse. However, it is not the case for Subterranean 2.0 when
keystream biases or state collisions are considered. The experiments show that the trails
obtained with this strategy are almost invalid. What’s worse, such inexact models are
unable to provide reliable bounds of differential/linear probability.

Represent χ as a SIMON-like function We observe that the χ step bears a strong
resemblance to SIMON’s round function. SIMON [BSS+13] is a family of lightweight block
ciphers and follows the Feistel construction. Its round function has the following form

S−α(x)� S−β(x)⊕ S−γ(x),

where Si(x) corresponds to a cyclic right shift of x by i bits, � and ⊕ denote the bit-
wise AND and XOR operations respectively. We observe that χ can be re-written as a
SIMON-like function:

x← x⊕ S1(x)� S2(x)⊕ S2(x).
Therefore, the techniques and tools in [KLT15] for searching exact differential/linear trails
of SIMON serves as a good starting point for differential and linear cryptanalysis of
Subterranean 2.0.

4.2 Linear Analysis
In linear cryptanalysis of AND-based ciphers, there are blocks of chained active ANDs
where the correlation can be calculated for each block independently. Depending on the
number of active ANDs involved in a block, there are two cases which are covered by
Lemma 1 and 2. In the case of Subterranean 2.0, k = 1 for the two lemmas. When the
number n of active ANDs in a block is odd, i.e., n = 2t − 1, t > 0, any approximation
is valid and the correlation is 2−t. When the number n of active ANDs is even, i.e.,
n = 2t, t > 0, the approximation should satisfy a condition cond as stated in Lemma 2.
This is a one-bit condition and if it holds, the correlation is 2−t. In other words, given a
random approximation for an even block, it is valid with probability 1

2 . In search of linear
trails, it is the key point to make sure this condition holds for all even blocks. Without
this condition being imposed, the obtained linear trail will be invalid with high chance
when the trail is dense.

Lemma 1. Let f(x) = x0xk + xkx2k + · · ·+ x(2t−2)kx(2t−1)k + L(x0, xk, · · · , x(2t−1)k) be
a Boolean function where L is linear and t > 0. Then Cor(f) is 2−t.

Proof. The quadratic part of f(x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · ·+ x(2t−3)k(x(2t−4)k + x(2t−2)k) + x(2t−2)kx(2t−1)k.

Apply the following transformation:

y(2j−1)k = x(2j−1)k, 1 ≤ j ≤ t
y(2j)k = x(2j)k + x2(j+1)k, 0 ≤ j ≤ t− 2

y(2t−2)k = x(2t−2)k,
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which is equivalent to the transformation x = Ay:

x(2j−1)k = y(2j−1)k, 1 ≤ j ≤ t

x(2j)k =
t∑
i=j

y(2i)k, 0 ≤ j ≤ t− 1

Then one can obtain

g(y) = f(Ay) = y0yk + y2ky3k + · · ·+ y2(t−1)ky(2t−1)k + L′(y0, yk, . . . , y(2t−1)k).

Since the quadratic terms of g contains all yjk, 0 ≤ j ≤ 2t− 1, Cor(g) = 2−t. Therefore,
Cor(f) = 2−t, as

Cor(g) = 1
22t

∑
y∈F2t

2

(−1)g(y) = 1
22t

∑
y∈F2t

2

(−1)f(Ay) = 1
22t

∑
y∈F2t

2

(−1)f(y) = Cor(f).

Lemma 2. Let f(x) = x0xk + xkx2k + · · ·+ x(2t−2)kx(2t−1)k + x(2t−1)kx2tk + L0(x0, x2k
· · · , x2tk)+ L1(xk, x3k, · · · , x(2t−1)k) be a Boolean function where L0, L1 are linear and
t > 0. Let cond be: L0 contains a even number of terms. Then Cor(f) is 2−t if cond
holds and 0 otherwise.

Proof. The quadratic part of f(x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · ·+ x(2t−1)k(x(2t−2)k + x(2t)k)

Apply the following transformation:

y(2j−1)k = x(2j−1)k, 1 ≤ j ≤ t
y(2j)k = x(2j)k + x2(j+1)k, 0 ≤ j ≤ t− 1
y(2t)k = x(2t)k,

which is equivalent to the transformation x = Ay:

x(2j−1)k = y(2j−1)k, 1 ≤ j ≤ t− 1 (1)

x(2j)k =
t∑
i=j

y(2i)k, 0 ≤ j ≤ t (2)

Then one can obtain

g(y) = f(Ay) = y0yk + y2ky3k + · · ·+ y2(t−1)ky(2t−1)k + L(y0, yk, . . . , y(2t)k).

Obviously, Cor(g) = 0 if L(y0, yk, · · · , y(2t)k) contains the term y(2t)k, otherwise Cor(g) =
2−t. And L(y0, yk, · · · , y(2t)k) has the term y(2t)k if and only if L0(x0, x2k, . . . , x(2t)k)
contains a odd number of terms according to Eq. (2).

Technically, for an even block with 2t, t > 0 chained active ANDs, it requires t + 1
iterations to check the condition cond. Hence, the longer an even block is, the more
time-consuming for the checking. As the state size of Subterranean 2.0 is 257 which is
relatively large when compared to block ciphers like SIMON, the length of even block can
reach 256 theoretically. In order to speed up the search for linear trails of Subterranean2.0,
it would be useful to identify a tighter upper bound of block length l for each round. This
can be done as follows when the range of correlation or the target correlation is given.

11



1. For round r, set the target correlataion C, time limit D and set the block length as
state size, i.e., l = b

(a) For all possible positions for a block with l chained ANDs:
i. Set the l ANDs active. If a solution is found or the searching time exceeds
D, exit.

(b) l = l − 1 and go to (a).

We then propose two models:

1. Set l to a reasonable value for all rounds, e.g., l = 6. This model is used for searching
linear trails with good correlations.

2. For each round, set l to the upper bound found by the above procedure. This model
is used for providing tighter lower bounds of correlation of linear trails.

We apply these two models to Subterranean 2.0 and the obtained results are summarized
in Table 3. By design, there is no valid linear trail in 3, 2, 2 keystream blocks for
Subterranean 2.0, Subterranean-m, and Subterranean-s respectively. For Subterranean-s
and Subterranean-m, the optimal linear trails using 3 keystream blocks are found and the
correlations are 2−30 and 2−51, lower than 2−24 and 2−48 respectively. For Subterranean 2.0,
the linear trail using 4 keystream blocks we find so far has correlation 2−96 and there does
not exist any such trail with correlation higher or equal to 2−49. When one more keystream
block is taken into consideration, no better linear trails are found for Subterranean-s, while
it becomes infeasible to search for optimal linear trails for Subterranean-m on a desktop.

Table 3: Result of searching linear biases of keystreams

Version (|s|, |K|) |Zi| #Zi − log2(Cor)
Subterranean-SAE (257,128) 32 4 (49, 96]
Subterranean-m (193,96) 32 3 51
Subterranean-s (97,48) 16 3 30

4.3 Differential Analysis
In differential cryptanalysis of Subterranean 2.0, we slightly adapt Theorem 1 from [KLT15]
and then apply it to Subterranean 2.0.

Theorem 1 ( [KLT15]). Let f(x) = S1(x)�x be a Boolean function on Fn2 . The probability
that difference α goes to difference β through f is

Pr(α f−→ β) =


2−n+1 α = 1 and wt(β) ≡ 0 mod 2,
2−wt(vb+db) α 6= 1 and β � vb = 0 and (S1(β)⊕ β)� db = 0,
0 otherwise,

where vb = S1(α) ∨ α, db = α� S1(α)� S2(α) and wt(x) is the Hamming weight of x.

The original Theorem 1 considers bit vector x of an even number of bits. When the
state size is odd, the condition for the first case should be adapted to wt(β) ≡ 1.

Even though the search for differential trails is more efficient than the search for linear
trails as described in the previous subsection, we can only prove the best differential trail
with 4 input blocks has probability p where − log2(p) ∈ (96, 180]. However, interesting
results are found in the toy versions. With 3 input blocks, the optimal differential
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probability of Subterranean-m and Subterranean-s are 2−104 and 2−58 which are lower
than 2−96 and 2−48 respectively. With one more input blocks, i.e., 4 blocks, better
differential trails with probability 2−90 and 2−41 are found, as shown in Table 8, 7, which
are higher than 2−96 and 2−48 respectively. Our results are summarized in Table 4.

Table 4: Result of searching differential trails for state collisions

Version (|s|, |K|) |∆M i| #∆M i − log2(p) #∆M i − log2(p)
Subterranean-SAE (257,128) 32+1 4 (108, 180] - -
Subterranean-m (193,96) 32+1 3 104 4 ≤ 90
Subterranean-s (97,48) 16+1 3 58 4 41

4.4 Impact on Subterranean-deck and Subterranean-SAE
As between extractions or injections, there is only one round, there does not exist any clus-
tering effect in the differential/linear analysis. Thus the security of Subterranean 2.0 against
the linear attack and the state collision attack is known from optimal differential/linear
trails.

Bias of keystream. For both Subterranean-deck and Subterranean-SAE, the security is
claimed against attackers that are limited to 296 data blocks. Thus a useful linear trail
should have correlation higher than 2−48. Our results show that with a minimal number
of keystream blocks, such linear trails do not exist for Subterranean 2.0 as well as two toy
versions. When we increase the number of keystream blocks by 1, there are no better linear
trails in Subterranean-s, which gives some confidence that there might be no better linear
trails as well for Subterranean 2.0. In short, our results partially support the designers’
claim on the security against linear cryptanalysis.

State collisions. State collisions can be used for probabilistic forgeries as long as the
differential probability p > 2−|K| when the tag length is the same as the key length. That
is, the forgery attack is not constrained by the data limit. Searching differential trails
for Subterranean 2.0 is hard, while good differential trails can be found for the two toy
versions, with which forgery attacks can be mounted. According to the results on the toy
versions, the resistance of Subterranean 2.0 against state collision attacks might be weaker
than its resistance against linear attacks.

5 Key Recovery of Subterranean-SAE in the Nonce-misuse
Setting

In this section, it is shown that a practical state recovery attack can be mounted with only
88 32-bit blocks and 20 repetitions of nonce by one-round differential analysis.

5.1 One-round Differential Analysis
In the duplex call of Subterranean 2.0, a single-round permutation is used. As the round
function has algebraic degree only 2, the output difference of the round function will be
linear in the input. So is the difference of the following keystream block. Let us explain
the idea with an example as follows.
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Example 3. Suppose one bit difference is injected at position 1 of si (see Figure 6). After
one round, the bits at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] of si+1 have difference
[si2, si2, si2, si0 + 1, 1, si0 + 1, si0 + 1, 1, 1] and there is no difference at other positions. From
the extraction, we have ∆Zi+2

8 = ∆si+1
64 + ∆si+1

193 = si2. Thus obtain one state bit si2 by
observing ∆Zi+2.

This means, in the message processing phase, if a difference is injected at si, some state
bits of si can be recovered by observing the output difference after one round. We call
this one-round differential of Subterranean 2.0. As can be seen that the recovered bits are
among the neighbouring bits of the injected difference. For Subterranean-SAE, the number
of bit positions for injection is 32. Further analysis shows that only 41 neighbouring bits
can be recovered by one-round differentials.

5.2 Nested One-round Differential Analysis
To enlarge the number of state bits that can be recovered, we propose a nested one-round
differential analysis which exploits the output difference in two consecutive rounds. The
core idea is that injecting difference at si will lead to differences of si+1 at positions that
may fall outside the set of 32 injection positions. Therefore, besides injecting difference
through the input block, we can also utilize the difference generated by the previous round,
and thus treat the previous round as a difference injector.

It is known that the difference after two rounds is not linear in the input bits anymore.
However, by our nested one-round differential analysis, some bits of the internal state can
still be recovered as long as the input difference to the second round is sparse. Next, we
illustrate the nested one-round differential by Example 4.

Example 4. Suppose one bit difference is injected at position 1 of si (see Figure 6). Treat
the second round independently with input difference [si2, si2, si2, si0 + 1, 1, si0 + 1, si0 + 1, 1, 1]
at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] based on Example 3. By observing the
difference of the output block after the second round ∆Zi+3, retrieve relations between si+1,
si0, s

i
2 through ∆Zi+3, and select the linear ones which are:

∆Zi+3
1 = s0

2,

∆Zi+3
3 = s0

0 + 1,
∆Zi+3

8 = s0
2,

∆Zi+3
12 = s1

234 + 1,
∆Zi+3

13 = s1
149 + 1,

∆Zi+3
14 = s0

2,

∆Zi+3
16 = s0

0 + 1,
∆Zi+3

22 = s1
213 + 1,

∆Zi+3
23 = s1

215.

Therefore, 6 bits: s0
0, s

0
2, s

1
149, s

1
213, s

1
215, s

1
234 can be recovered.

5.3 Key Recovery
In our attack, we utilize 9 types of difference injections No. 1 ∼ 9 as listed in Table 5.
Using 19 injections of difference in total, 131 bits information of s1 and 128 bits information
of s2 can be known, as illustrated in Table 6. With this information, the full state s1 can
be recovered as follows.

Guess another 26 bits of s1, as listed in the last row of Table 5, then all bits of s2 can be
expressed in 257-131-26 = 100 unknowns and there remain 26 quadratic terms composed
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of these unknowns after χ. When the 26 quadratic terms are treated as independent
unknowns, there will be 100+26 unknown. As 128 bits of s2 are known, a system of
128 linear equations in 126 unknowns can be constructed and solved easily. The time
complexity of recovering the full s1 is 226.

Table 5: Difference injection and state recovery

No. Pos. of si with difference Recovered bits #Recovered bits

1 15, 213, 223, 211, 134, 128,
35, 234, 70, 190, 184, 111,
165, 169, 11, 4, 22

si
5, s

i
12, s

i
16, s

i
21, s

i
34, s

i
69, s

i
71, s

i
110, s

i
112, s

i
133, s

i
129,

si
135, s

i
164, s

i
166, s

i
168, s

i
185, s

i
189, s

i
191, s

i
210, s

i
212,

si
214, s

i
224, s

i
233, s

i
235, s

i
3 + si

10, and 5 extra bits
si

241, s
i
223, s

i
128, s

i
68, s

i
22

30 bits of si

2 137, 140, 30, 225, 197, 189,
95, 2, 256, 249

si
1, s

i
3, s

i
29, s

i
94, s

i
96, s

i
136, s

i
139, s

i
190, s

i
198, s

i
196, s

i
226,

si
250, s

i
255, s

i+1
169 + si+1

172 and 4 extra bits si
256, s

i
121,

si
67, s

i
2

17 bits of si, 1 bit
of si+1

3 136, 176, 1 si
177, s

i
2, s

i
137, s

i
0, s

i
175, s

i+1
234 , s

i+1
181 , s

i+1
215 , s

i+1
213 , s

i+1
160 ,

si+1
162 , s

i+1
13 + si+1

249 and 3 extra bits si+1
23 , si+1

44 ,

si+1
95

5 bits of si, 10
bits of si+1

4 137, 64 si
63, s

i
138, s

i+1
246 , s

i+1
92 , si+1

76 , si+1
248 , s

i+1
154 , s

i+1
74 , si+1

55 ,

si+1
156 and 2 extra bits si+1

11 , si+1
165

2 bits of si, 10
bits of si+1

5 4,22 si
23, s

i+1
172 , s

i+1
170 , s

i+1
24 , si+1

149 , s
i+1
87 , si+1

217 , s
i+1
85 , and 1

extra bit si
234

2 bits of si, 7 bits
of si+1

6 11, 140, 241 si
242, s

i
240, s

i+1
171 , s

i+1
192 , s

i+1
107 , s

i+1
194 , s

i+1
254 , s

i+1
182 and 2

extra bits si
15, s

i
17

4 bits of si, 6 bits
of si+1

7 17,70,35,165 si
36, s

i+1
66 , si+1

109 , s
i+1
238 , s

i+1
79 , si+1

141 , s
i+1
143 , s

i+1
47 +si+1

221 ,

si+1
49 + si+1

219

1 bit of si, 8 bits
of si+1

8 211, 95, 169 si
170, s

i+1
201 , s

i+1
116 , s

i+1
40 , si+1

229 , s
i+1
163 , s

i+1
114 , s

i+1
104 , s

i+1
123

and 1 extra bit si+1
134

1 bit of si, 9 bits
of si+1

9 256,189, 223 si
222, s

i+1
103 , s

i+1
193 , s

i+1
108 , s

i+1
106 , s

i+1
105 , s

i+1
81 , si

0 · s
i+1
43 +

si+1
39 and 3 extra bits si

35, s
i+1
64 , si+1

176

2 bits of si, 9 bits
of si+1

Recover the key Once the whole state s1 is obtained, the 128-bit key can be recovered
by a guess-and-determine procedure as in [LIM19]. First, with s1, the state after injecting
K4 can be computed. As K4 is unknown, only 225 bits of the state are known before
the injection. Then, guess 32 bits of K1 and 3 bits of K2 at positions [2, 136, 189] so
that the state after injecting K3 are linear in the remaining 29 bits of K2 and the full
32 bits of K3. Hence, the 225 known bits before injecting K4 are quadratic in these 61
key bits. A detailed analysis shows that the expressions of the 225 known bits contain at
most 128 quadratic terms. Again if we treat these 128 quadratic terms as independent
unknowns, then there will be a system of 61+128 unknowns and 225 linear equations.
The solution of the system provides information of (K1,K2,K3). When (K1,K2,K3) is
obtained, recovering K4 is trivial. As a result, recovering the key from s1 takes a time
complexity of 235. In summary, the key can be recovered practically if the same nonce
repeats 20 times.

Relation to the extraction function. In the squeezing phase, Subterranean 2.0 outputs
a block of 32 bits, each of which is the sum of two state bits: Zi = s124i + s−124i , for
0 ≤ i < 32. Instead of outputting state bits directly, this extraction function is meant to
frustrate state recovery attacks [FNR18] in the nonce respected setting. In our one-round
differential analysis, this extraction function allows more state bits involved in the output
block and thus more state bits can be recovered. For example, if we set Zi = s124i , for
0 ≤ i < 32, type 1 injection of difference will lead to a recovery of 17 bits versus 30 bits
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Table 6: State recovery with 19 injections of difference under the nonce-misuse setting

Recovered bits of s1 Recovered bits of s2

No. 3 ∼ 9
at s0

59 bits: s1
234, s

1
181, s

1
215, s

1
213, s

1
160, s

1
162,

s1
13 + s1

249, s1
23, s

1
44, s

1
95, s

1
246, s

1
92, s

1
76, s

1
248,

s1
154, s

1
74, s

1
55, s

1
156, s

1
11, s

1
165, s

1
172, s

1
170, s

1
24,

s1
149, s

1
87, s

1
217, s

1
85, s

1
171, s

1
192, s

1
107, s

1
194, s

1
254,

s1
182, s

1
66, s

1
109, s

1
238, s

1
79, s

1
141, s

1
143, s

1
47 + s1

221,

s1
49 +s1

219, s
1
201, s

1
116, s

1
40, s

1
229, s

1
163, s

1
114, s

1
104,

s1
123, s

1
134, s

1
103, s

1
193, s

1
108, s

1
106, s

1
105, s

1
81, s

1
64,

s1
176, s

i
0 · s

1
43 + s1

39 (as s0
0 can be known)

No. 1 ∼ 9
at s1

60 bits: s1
5, s

1
12, s

1
16, s

1
21, s

1
34, s

1
69, s

1
71, s

1
110, s

1
112,

s1
133, s

1
129, s

1
135, s

1
166, s

1
168, s

1
185, s

1
189, s

1
191, s

1
210,

s1
212, s

1
214, s

1
224, s

1
233, s

1
235, s

1
3 + s1

10, s
1
241, s

1
223,

s1
128, s

1
68, s

1
22, (s

1
164), s1

1, s
1
3, s

1
29, s

1
94, s

1
96, s

1
136,

s1
139, s

1
190, s

1
198, s

1
196, s

1
226, s

1
250, s

1
255, s

1
256, s

1
121,

s1
67, s

1
2s

1
177, s

1
2, s

1
137, s

1
0, s

1
175, s

1
63, s

1
138(s1

234),
(s1

23), s1
242, s

1
240, s

1
15, s

1
17s

1
36, (s

1
170), s1

222, s
1
35

60 bits: s2
169 +s2

172, s
2
234, s

2
181, s

2
215, s

2
213, s

2
160,

s2
162, s

2
13 + s2

249, s
2
23, s

2
44, s

2
95, s

2
246, s

2
92, s

2
76,

s2
248, s

2
154, s

2
74, s

2
55, s

2
156, s

2
11, s

2
165, s

2
172, s

2
170, s

2
24,

s2
149, s

2
87, s

2
217, s

2
85, s

2
171, s

2
192, s

2
107, s

2
194, s

2
254,

s2
182, s

2
66, s

2
109, s

2
238, s

2
79, s

2
141, s

2
143, s

2
47 + s2

221,

s2
49 +s2

219, s
2
201, s

2
116, s

2
40, s

2
229, s

2
163, s

2
114, s

2
104,

s2
123, s

2
134, s

2
103, s

2
193, s

2
108, s

2
106, s

2
105, s

2
81, s

2
64,

s2
176, s

1
0 · s

2
43 + s2

39

No. 1 ∼ 3
at s2

52 bits: s2
5, s

2
12, s

2
16, s

2
21, s

2
34, s

2
69, s

2
71, s

2
110, s

2
112,

s2
133, s

2
129, s

2
135, s

2
164, s

2
166, s

2
168, s

2
185, s

2
189, s

2
191,

s2
210, s

2
212, s

2
214, s

2
224, s

2
233, s

2
235, s

2
3 + s2

10, s
2
241,

s2
223, s

2
128, s

2
68, s

2
22, s

2
1, s

2
3, s

2
29, s

2
94, s

2
96, s

2
136,

s2
139, s

2
190, s

2
198, s

2
196, s

2
226, s

2
250, s

2
255, s

2
256, s

2
121,

s2
67, s

2
2, s

2
177, s

2
2, s

2
137, s

2
0, s

2
175

In total 1 additional bit from No. 9 injection: s1
31 =

s2
76 +s2

201 +s2
196 +s1

94 +s1
226 ∗s

2
189 +s1

226 +1+
∆Z2

5 +∆Z2
15. Thus, 120 bits plus 11 remaining

extraction equations

112 bits plus 16 remaining extraction equa-
tions

Guess 26 bits: s1
49, s

1
47, s

1
8, s

1
184, s

1
60, s

1
43, s

1
111, s

1
19, s

1
26, s

1
51, s

1
53, s

1
57, s

1
62, s

1
83, s

1
89, s

1
98, s

1
100, s

1
118, s

1
125, s

1
131, s

1
152,

s1
158, s

1
179, s

1
203, s

1
205, s

1
207, and there remains only 26 quadratic terms in the expressions of s2.

under the original extraction and 20 state bits can be recovered with ordinary one-round
differential analysis versus 41 state bits under the original extraction. Note that our
one-round differential analysis requires a nonce-misuse setting.

Comparison to Liu et al.’s work. In [LIM19], Liu et al. presented a practical state-
recovery attack in the nonce-misuse setting with 213 32-bit blocks based on conditional
cube analysis. It was exploited that when the condition holds, the sum of over a set of
outputs will be zero. Liu et al. mainly utilized a 2-dimensional set to recover one bit,
which means 4 repetitions of nonce are required for retrieving 1 state bit. On the contrary,
as many as 30 state bits can be recovered with 2 repetitions of nonce by a one-round
differential. Therefore, the data complexity is much lower in our one-round differential
analysis.

6 Concluding Remarks
In this paper, we investigated the “one-round permutation” in various phases of Sub-
terranean 2.0 and identified three related attack scenarios that deserve further analysis:
keystream biases in the keyed squeezing phase, state collisions in the keyed absorbing
phase, and one-round differentials in the message processing phase when a nonce is reused.

To carry out a study on the security in the first two attack scenarios, it is necessary
to search for differential/linear trails under special constraints. First, we proposed two
toy versions of Subterranean 2.0: Subterranean-m and Subterranean-s, to understand
Subterranean 2.0 with easier effort. Besides, we observed a resemblance between the non-
linear layer of the round function of Subterranean 2.0 and SIMON’s round function. Such
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resemblance offers a good starting point for differential/linear analysis of Subterranean
2.0. On top of the existing tool for searching differential/linear trails of SIMON, we built
our own models for Subterranean 2.0. Our results showed that there do not exist linear
trails under the constraint of data limit imposed in the design specification with a minimal
number of output blocks. This partially supports the designers’ claim on the security of
Subterranean 2.0 against the linear attack. Regarding state collisions in keyed modes,
we found useful differential trails of the toy versions with which forgery attacks can be
mounted successfully. However, due to the time-consuming search for differential trails
of Subterranean 2.0, its security against the state collision attack in keyed modes still
remains an open question.

Finally, we observed that one-round differentials allow to recover state bits in the
nonce-misuse setting. In order to recover a sufficient number of state bits, we further
proposed nested one-round differentials where a one-round differential is prepended to
another, acting as a difference injector. As a result, a practical state recovery attack can
be achieved with only 20 repetitions of the nonce and 88 blocks of data. Our analysis
shows that Subterranean-like constructions with quadratic one-round permutation must
be used carefully in practice as the security crashes when nonce uniqueness is lost.
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A Differential Trails

Table 7: Differential trail of Subterranean-s with probability 2−41 for state collisions

Round i Difference − log2(pi)

0

∆Z 0x0000000200008040600000000

9α 0x0000000200008040600000000
β 0x0000000200008040480000000

π ◦ θ(β) 0x0000606002000840001420100

1

∆Z 0x0000000200000840048001100

21α 0x0000606202000000049421000
β 0x000048420200000004d639400

π ◦ θ(β) 0x100000800001080020d040586

2

∆Z 0x1000008000010800208000102

11α 0x0000000000000000005040484
β 0x0000000000000000004040484

π ◦ θ(β) 0x0000000000010800000080102

3 ∆Z 0x0000000000010800000080102
α 0x0000000000000000000000000

Table 8: Differential trail of Subterranean-m with probability 2−90 for state collisions

Round i Difference − log2(pi)

0

∆Z 0x0000800000000000000000000400000000000000000000000

4α 0x0000800000000000000000000400000000000000000000000
β 0x0000800000000000000000000600000000000000000000000

π ◦ θ(β) 0x0000820000000000004002040000000400004000100000040

1

∆Z 0x0000820000000000002200600000000300004000028800902

30α 0x0000000000000000006202640000000700000000128800942
β 0x1000000000000000005b03650000000580000000132a009f3

π ◦ θ(β) 0x0086043021020e02000200000400000200d2840c1402ae112

2

∆Z 0x14000000100c0002000200000400000200000008808800b02

56α 0x14860430310e0e00000000000000000000d28404948aaea10
β 0x11a505282d8d08000000000000000000009be707f1c8c9f1c

π ◦ θ(β) 0x0400000000080000200000300400004100004008001800202

3 ∆Z 0x0400000000080000200000300400004100004008001800202
α 0x0000000000000000000000000000000000000000000000000
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