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Abstract Subterranean 2.0 is a cipher suite that can be used for hashing, authen-5

ticated encryption, MAC computation, etc. It was designed by Daemen, Massolino,6

Mehrdad, and Rotella, and has been selected as a candidate in the second round7

of NIST’s lightweight cryptography standardization process. Subterranean 2.0 is a8

duplex-based construction and utilizes a single-round permutation in the duplex. It9

is the simplicity of the round function that makes it an attractive target of crypt-10

analysis.11

In this paper, we examine the single-round permutation in various phases of12

Subterranean 2.0 and specify three related attack scenarios that deserve further in-13

vestigation: keystream biases in the keyed squeezing phase, state collisions in the14

keyed absorbing phase, and one-round differential analysis in the nonce-misuse set-15

ting. To facilitate cryptanalysis in the first two scenarios, we novelly propose a set16

of size-reduced toy versions of Subterranean 2.0: Subterranean-m. Then we make17

an observation for the first time on the resemblance between the non-linear layer in18

the round function of Subterranean 2.0 and SIMON’s round function. Inspired by19

the existing work on SIMON, we propose explicit formulas for computing the exact20

correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-21

linear operations. We then construct our models for searching trails to be used in22

the keystream bias evaluation and state collision attacks. Our results show that most23
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instances of Subterranean-m are secure in the first two attack scenarios but there24

exist instances that are not. Further, we find a flaw in the designers’ reasoning of25

Subterranean 2.0’s linear bias but support the designers’ claim that there is no linear26

bias measurable from at most 296 data blocks. Due to the time-consuming search,27

the security of Subterranean 2.0 against the state collision attack in keyed modes28

still remains an open question. Finally, we observe that one-round differentials allow29

to recover state bits in the nonce-misuse setting. By proposing nested one-round30

differentials, we obtain a sufficient number of state bits, leading to a practical state31

recovery with only 20 repetitions of the nonce and 88 blocks of data. It is noted that32

our work does not threaten the security of Subterranean 2.0.33

Keywords Subterranean 2.0 · permutation-based crypto · keystream bias · state34

collision · state recovery35

Mathematics Subject Classification (2010) 94A6036

1 Introduction37

The deployment of small computing devices such as RFID tags, microcontrollers,38

sensor nodes, and smart cards is becoming more and more common. Alongside this,39

the need for lightweight cryptography that aims to provide security solutions tailored40

for such resource-constrained devices is increasing. In 2013, the National Institute of41

Standards and Technology (NIST) initiated a public process to solicit, evaluate, and42

standardize lightweight authenticated encryption and hashing schemes that are suit-43

able for use in constrained environments, i.e., the so-called LWC competitions [16]. In44

2018, a call for submissions was launched and 57 submissions were received in 2019,45

among which 56 and 32 submissions were selected in the first and second rounds46

respectively. At the current stage, public evaluations of the candidates are strongly47

encouraged.48

Subterranean 2.0 [7, 8] is a cipher suite that can be used for hashing, authenti-49

cated encryption, MAC computation, and stream encryption, etc. It was designed50

by Daemen, Massolino, Mehrdad, and Rotella and has been selected by NIST as a51

candidate for the second round of LWC competition. Subterranean 2.0 shares fea-52

tures with its predecessor Subterranean [6] which can be seen as a precursor to the53

Sponge construction [3]. The features of Subterranean 2.0 are summarized below.54

Prime-sized state. Subterranean 2.0 operates on a state of 257 bits which is small55

but still supports both hashing and authenticated encryption. It offers a security56

strength of 128 bits in keyed modes and 112 bits in unkeyed mode. In authenti-57

cated encryption where a nonce is used, the nonce should not repeat.58

Duplex-based construction The duplex [4] plays a core role in Subterranean 2.0.59

On top of it, three functions were built, namely, Subterranean-XOF, Subterranean-60

deck, and Subterranean-SAE, where the latter two are keyed functions. The du-61

plex absorbs/squeezes 32-bit blocks in keyed modes and 8-bit blocks in unkeyed62

mode.63

Single-round permutation. In the duplex, a lightweight single-round permuta-64

tion is used. The round function operates at bit level and has algebraic degree 2.65

It has a minimum of substructures and ultimate weak alignment which prevents66

large classes of attacks.67
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Blank rounds used. Between different phases, 8 blank rounds are used to prevent68

measurable characteristics between the controllable input and output.69

Efficient hardware implementation. Subterranean 2.0 is designed for hardware70

and offers a good option for environments that require lightweight crypto in71

hardware with high throughput requirements. Besides, it is very suitable for72

protection against differential power analysis such as masking and threshold im-73

plementations.74

Due to the extremely simple round function, Subterranean 2.0 is an attractive tar-75

get for cryptanalysis. In the design specification [8], the designers mainly investigated76

the security of state collisions in unkeyed absorbing and differential/linear proper-77

ties of a multiple-round permutation. As a complement, Liu, Isobe and Meier [13]78

conducted cube-based cryptanalysis of Subterranean-SAE by exploiting the low al-79

gebraic degree of the round function. They showed that when the number of blank80

rounds is reduced to 4, one can mount a state recovery attack. Moreover, in the81

nonce-misuse setting the state recovery attack becomes practical using 213 blocks of82

data.83

With respect to the simple single-round permutation of Subterranean 2.0, there84

are interesting attacks in different phases. Below, we list three related attacks in85

keyed modes that deserve further investigation.86

1. Linear bias of output blocks in keyed squeezing phase. It is claimed in87

the specification [8] that there is probably no linear bias over four or less output88

blocks of Subterranean 2.0 and that there is no bias measurable from 296 data89

blocks or less. Any analytical results that approve or disapprove of these claims90

can help understand the security of Subterranean 2.0.91

2. State collisions in keyed absorbing phase. In keyed modes, state collisions92

may lead to attacks like forgeries. However, security analysis of Subterranean 2.093

against such attacks is missing from the literature.94

3. One-round differential analysis of Subterranean-SAE in the message95

processing phase. In the phase of processing the message, when a duplex call96

is invoked, an output block is squeezed and an input block absorbed before and97

after the single-round permutation, respectively. In the case where nonce repeats,98

one-round differentials can be observed over successive calls of duplex. It is not99

clear how far an attack can go by exploiting one-round differentials.100

Our contribution. In this paper, we examine the security of Subterranean 2.0 in the101

above three attack scenarios regarding its single-round permutation. In order to inves-102

tigate the bias of keystreams and the state collision attack, it requires to find useful103

linear and differential trails under certain constraints. When carrying out differen-104

tial/linear analysis of Subterranean 2.0, we face two challenges. The first is that the105

permutation has only one round and thus cannot be scaled down through the most106

common way of reducing the number of rounds for facilitating the differential/linear107

analysis. The other is the “dependency” issue that cannot be avoided either in dif-108

ferential analysis or linear analysis. The round function of Subterranean 2.0 exploits109

logic AND of neighbouring bits in the non-linear layer. Namely, state bits si−1, si110

are fed into one AND operation and si, si+1 into another. These AND operations111

are dependent as neighbouring AND operations share an input bit. Consequently,112

the AND operations cannot be treated independently in differential/linear analysis.113
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Such dependency makes it difficult to precisely evaluate the security of Subterranean114

2.0 against linear attacks and state collision attacks.115

In this paper, we use the following techniques to tackle these two challenges.116

– We novelly propose a set of toy versions of Subterranean 2.0 with reduced state117

size. At first glance, Subterranean 2.0 can be weakened by increasing the rate.118

However, it cannot be done without changing the extraction function. Therefore,119

a better way seems to reduce the state size. Concretely, we choose a smaller prime120

number 97, adapt other parameters accordingly, and let the factor d used in the121

round function (see Section 2.2) be all possible values. Then we have a set of toy122

versions: Subterranean-m(d) which have much smaller state size and key size but123

share the same design with the original cipher.124

– For the first time in the literature, we observe that the non-linear layer of the125

round function of Subterranean 2.0 can be represented by a SIMON-like function.126

SIMON [2] is a family of lightweight block ciphers and has been extensively127

analysed since its publication, such as differential/linear analyses in [12]. Inspired128

by the existing work on SIMON, we propose explicit formulas for computing the129

exact correlation of linear trails of Subterranean 2.0 and other ciphers utilizing130

AND operations. We then build our models for handling the dependency issue,131

as well as searching optimal differential/linear trails of Subterranean 2.0.132

Applying our models to Subterranean 2.0 and Subterranean-m, we obtain the133

following results.134

– For most values of d, Subterranean-m resists the linear attack and the state135

collision attack. However, there exist two instances of Subterranean-m(d) which136

do not resist the linear attack and the state collision attack respectively. This137

means different values of d are not equally good.138

– There does exist linear bias over four or three output blocks for Subterranean 2.0139

and Subterranean-m. Our work helps to find a flaw in the designers’ reasoning140

of Subterranean 2.0’s linear biases.141

– Our experiments support the designers’ claim that there is no bias measurable142

from 296 data blocks or less.143

Due to the time-consuming search, the security of Subterranean 2.0 against the state144

collision attack in keyed modes still remains an open question.145

Finally, we exploit the one-round differentials to recover the state in the nonce-146

misuse setting. If the nonce repeats, one-round differentials observed in the message147

processing phase of Subterranean-SAE will leak some bits of the state due to the148

algebraic degree 2 of the round function. Further, we find out that ordinary one-149

round differentials can recover 41 bits at most. To enlarge the number of state bits150

that can be recovered, we propose nested one-round differentials where an one-round151

differential is prepended to another in a delicate way. As a result, a sufficient number152

of state bits can be recovered, which leads to a full state recovery and further a key153

recovery. The attack is practical and takes only 20 repetitions of the nonce and 88154

blocks of data, which is much lower than the data complexity of the attack in [13]155

by Liu, Isobe and Meier. Our analysis shows that Subterranean-like constructions156

with a quadratic single-round permutation must be used carefully in practice since157

the security crashes without nonce uniqueness.158
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Organization. The rest of the paper is organized as follows. Basic notations, the159

design of Subterranean 2.0 and a set of toy versions are introduced in Section 2.160

Section 3 highlights several properties of Subterranean 2.0 and the relation to three161

attack scenarios: keystream biases, state collisions, and state recovery in the nonce-162

misuse setting. Linear attacks and state collisions in the keyed modes are investigated163

in Section 4. Section 5 presents a state recovery attack utilizing one-round differen-164

tials in the nonce-misuse setting. Finally, we conclude the paper in Section 6.165

2 Notations and Specification of Subterranean 2.0166

In this section, we start by giving our notations and then briefly introduce Sub-167

terranean 2.0, including its round function, the duplex object and two keyed mem-168

bers: Subterranean-deck and Subterranean-SAE. To facilitate cryptanalysis of Sub-169

terranean 2.0, we introduce a set of toy versions: Subterranean-m(d). For more details170

of Subterranean 2.0, we refer the interested reader to the official specification [8].171

2.1 Notations172

173

b The size of the state
d The factor used in π of the round function
M The string M padded to 33 bits with 10*
∆X The difference of X where X may be the state or the input/output block
∆Xt

i The difference of the i-th bit of X at time t
≫ Cyclic right shift
≪ Cyclic left shift
| · | The length in bits
|| Concatenation of bit strings

174

2.2 Round Function175

The round function R operates on a b-bit state and consists of four bit-oriented steps:176

R = π ◦θ ◦ ι◦χ. Let s denote the state and si the i-th bit of s. Then for all 0 ≤ i < b,177

χ : si ← si + (si+1 + 1) · si+2,178

ι : s0 ← s0 + 1,179

θ : si ← si + si+3 + si+8,180

π : si ← sd×i.181182

Here the addition and multiplication of state bits are in F2 and expressions in the183

indices are taken modulo b. In Subterranean 2.0, b = 257, d = 12.184
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2.3 Duplex Object and Two Keyed Functions185

2.3.1 Duplex Object186

The Subterranean 2.0 suite is built upon a duplex object which is displayed in Fig-
ure 1. The duplex uses a single-round permutation, i.e., R, and has two functions:
the duplex call and the output extraction, the latter of which is optional. The duplex
call applies the round function R and absorbs a string M of at most 32 bits. Before
adding the string to the internal state, the string is padded to 33 bits with 10*. The
33 bits are then injected into the state s124i , 0 ≤ i < 33. Namely, the injection rate
is 33 bits. Before the duplex call, one may extract 32 bits from the state, each of
which is the sum of two state bits:

Zi = s124i + s−124i ,

for all 0 ≤ i < 32. The details of indices used for injection and extraction are shown187

in Table 1.188

When the input is an empty string, the combination of the round function and189

the injection is denoted as Rϵ for convenience in the figures.190

Table 1: Indices used for injection and extraction
i 124i −124i i 124i −124i i 124i −124i i 124i −124i

0 1 256 8 64 193 16 241 16 24 4 253
1 176 81 9 213 44 17 11 246 25 190 67
2 136 121 10 223 34 18 137 120 26 30 227
3 35 222 11 184 73 19 211 46 27 140 117
4 249 8 12 2 255 20 128 129 28 225 32
5 134 123 13 95 162 21 169 88 29 22 235
6 197 60 14 15 242 22 189 68 30 17 240
7 234 23 15 70 187 23 111 146 31 165 92

32 256

2.3.2 Subterranean-deck and Subterranean-SAE191

The Subterranean 2.0 suite has three functions: Subterranean-XOF, Subterranean-192

deck and Subterranean-SAE. Subterranean-XOF is designed to be used for unkeyed193

hashing, while Subterranean-deck and Subterranean-SAE are keyed functions. In this194

paper, we focus on the latter two.195

Subterranean-deck takes as input an arbitrary-length key, typically of 128 bits,196

and a sequence of arbitrary-length strings and returns a bit string of arbitrary length,197

as shown in Figure 2. Hence, it can be used as a stream cipher, a MAC function or for198

key derivation. Subterranean-SAE, depicted in Figure 3, is designed for authenticated199

encryption. Below, a detailed description of Subterranean-SAE is given. With the200

description of Subterranean-SAE in mind, it requires little extra effort to follow the201

working procedures of Subterranean-deck.202

The input of Subterranean-SAE contains a 128-bit key, a 128-bit nonce N , an203

associated data (AD) A which is optional, and a message M. The output is composed204

of the ciphertext and a 128-bit tag T .205
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Processing the key. At first, the state is initialized with 0. The 128-bit key is split206

into four 32-bit blocks K1, K2, K3, K4 and one empty block ϵ, as the last block207

should be strictly shorter than 32 bits. Each block is padded with 10* and the208

first four padded blocks are denoted by K
1, K

2, K
3, and K

4. The whole five209

blocks are then absorbed one by one through the duplex call.210

Processing the nonce. The nonce is split into 32-bit blocks with the last block being211

shorter than 32 bits. Pad each block with 10* and sequentially inject the padded212

blocks into the state in a series of duplex calls.213

Processing the AD. Invoke the duplex eight times, each with an empty message ϵ214

absorbed. Then absorb the AD in the same way as processing the nonce.215

Processing the message. The message is split into 32-bit blocks with the last block216

being shorter than 32 bits. Pad each block with 10*. Process message blocks one217

after another by the following steps: extract 32 output bits, invoke the duplex218

call to absorb a padded message block and XOR the message block with the219

extracted output to get the ciphertext block.220

Finalization. Invoke the duplex eight times, each with an empty message ϵ absorbed.221

Then invoke the duplex another four times, before each of which a 32-bit output222

is squeezed. Concatenate the four 32-bit output blocks to form the 128-bit tag.223

2.4 Toy Versions224

To facilitate cryptanalysis, we scale down Subterranean 2.0 and define size-reduced225

versions. Subterranean 2.0 uses a prime-sized state to avoid the existence of ex-226

ploitable symmetries. Therefore, the state size b of a toy cipher also needs to be227

prime but smaller than 257. Besides, the factor d used in the π step should have228

a large order in Z∗
b and the order should be a multiple of 8 if the same extraction229

function Zi = sd4i + s−d4i is used. With these in mind, we choose a prime 971 and230

1 One may choose other primes of the form 8k + 1 where k ∈ Z+ as well.
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let d be a generator of Z∗
97. In total, there are 32 generators of Z∗

97. In addition, the231

ratio of the extraction rate to the state size should remain close. As 32
257 × 97 ≈ 12,232

we set the extraction rate of the toy ciphers to 12. Then we have a set of toy ciphers:233

Subterranean-m(d) whose parameters are summarized in Table 2. It turns out that234

the algebraic properties of θ step remain with the new size of state, as shown in235

Appendix A.236

Table 2: Subterranean 2.0 and its toy versions

Version State size Key size d Extraction rate Output Zi

Subterranean 2.0 257 128 12 32 s124i + s−124i

Subterranean-m(d) 97 48 d ∈ D 12 sd4i + s−d4i

D = {5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, 40, 41, 56, 57, 58, 59, 60, 68, 71, 74, 76, 80,
82, 83, 84, 87, 90, 92}

3 Properties of Subterranean 2.0 and Three Attack Scenarios237

In this section, we highlight several important properties of Subterranean 2.0 and238

relate them to three attack scenarios.239

Subterranean 2.0 is a duplex-based construction and uses bit-oriented operations240

that allow good performance in hardware implementation. Besides, the following241

properties are interesting in the attacker’s point of view.242

Property 1. Subterranean 2.0 employs an extremely simple permutation243

in the duplex call. The permutation has only one round and the round function244

has algebraic degree only 2. Additionally, the round function operates at bit level245

and allows a minimum of sub-structures by using a prime-sized state. That is to246

say, the round function is of weak alignment [9].247

Property 2. Subterranean 2.0 squeezes output blocks in a way similar to248

a stream cipher. Specifically, it outputs 32 bits as the keystream iteratively249

before each duplex call. Note that the keystreams can be known in the known-250

message model.251

Property 3. Subterranean-SAE processes the nonce with multiple duplex252

calls. Subterranean-SAE does not load the nonce into its initial state. Because253

of its small state size, Subterranean-SAE has to absorb the nonce with multiple254

duplex calls and the number of the duplex calls is 5.255

Attack scenario 1: keystream biases. When considering Property 1 and Prop-256

erty 2 together, one may ask: are the keystreams truly random? One possible way257

to distinguish keystreams of a cipher from a random sequence is to utilize linear258

biases. Recently, exploitable biases using linear combinations of output bits were259

found in the authenticated encryption schemes MORUS [1,18] and AEGIS [15]. It is260

important to known if this will happen to Subterranean 2.0.261

To investigate the bias of keystreams, it is to find a sequence of linear masks
(λ0, · · · , λn) for the output blocks Zi, as illustrated in Figure 4, such that

f =
n∑

i=0

λiZ
i
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Fig. 4: Linear trails for keystream bias evaluation

is biased, i.e., the bias
ϵ = Pr(f = 0)− 1

2
,

or the correlation
Cor(f) = Pr(f = 0)− Pr(f = 1) = 2ϵ

is different from zero. To detect a bias with given correlation C, one needs about262

C−2 data [14]. Therefore, if a sequence of masks can be found such that (Cor(f))−2263

is smaller than the data limit, then the cipher can be distinguished from a random264

function. In order to find a good sequence of masks, the same tools for linear crypt-265

analysis of block ciphers can be applied with the beginning and the end being set266

inactive, i.e., β−1 = 0, αn = 0 as shown in Figure 4. In the middle, the propagation of267

linear masks must be compatible with each operation. Summing all approximations:268

γis
i + λiZ

i, 0 ≤ i ≤ n,269

αis
i + βis

i+1, 0 ≤ i ≤ n− 1,270271

we will have
∑n

i=0 λiZ
i. For Subterranean 2.0, the correlation of keystreams

∑n
i=0 λiZ

i272

is the product of correlations of active ANDs in the involved round functions, as the273

extraction function is linear.274

The designers kept the above attack in mind while designing Subterranean 2.0275

and let the output Z be extracted from special state bits in order to prevent any276

bias in four consecutive output blocks. It is believed that using five or more output277

blocks eliminates measurable bias in Z. Any evidence that approves or disapproves278

of such a belief would be interesting to the community.279

Attack scenario 2: state collisions. A similar cryptanalysis in the differential280

case would be state collision attacks. As illustrated in Figure 5, the difference of281

the internal state is introduced by an input difference ∆X0 (through the nonce,282

AD or the message), and cancelled out by ∆Xn after n rounds. Such an attack is283

called “LOCAL attack” which was proposed by Khovratovich and Rechberger [11]284

and independently found by Wu et al. [22] against ALE [5].285

The state collision may cause forgery attacks. Suppose the internal difference is286

introduced by the associated data AD and there exists such a differential trail with287

high probability p. Then a forgery attack can be mounted in the following way.288

Let N , A0|| · · · ||An and M be the nonce, AD and message to be forged, respec-289

tively. The attacker respects nonces and queries (N, A0⊕∆X0|| · · · ||An⊕∆Xn, M) to290



10 Ling Song et al.
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Fig. 5: Differential trails for state collisions

the encryption oracle to get the 128-bit tag T . Then, T is a valid tag for (N, A0|| · · · ||291

An, M) with probability p. The forgery attack succeeds if it beats the generic one.292

In the case of Subterranean 2.0, it means p > 2−128.293

As the nonce is processed in multiple duplex calls, it might be possible to find294

state collision during the nonce processing phase. If the state collision happens after295

absorbing nonce segments N1 and N ′
1 respectively (both are of the same length)296

and there are more bits of nonce to be absorbed, say N2, then (N1||N2, A, M) and297

(N ′
1||N2, A, M) lead to a state collision and further to the same tag T . As a result,298

for any A′ and M ′, the attacker can make forgeries by using a new N2 and keeping299

the same N1 and N ′
1.300

In spite of the importance of the security requirement for resisting state collision301

attacks, such a differential analysis is missing, either in the specification of Subter-302

ranean 2.02 or in the literature.303

Attack scenario 3: state recovery in the nonce-misuse setting. Subterranean-304

SAE takes a nonce as input and strongly relies on nonce uniqueness for security. Even305

though no security claim was made in the nonce-misuse setting, it is believed by the306

designers in [7] that the state recovery attack is non-trivial.307

In nonce-misuse scenarios or when unwrapping invalid cryptograms returns308

more information than a simple error, we make no security claims and an309

attacker may even be able to reconstruct the secret state. Nevertheless we310

believe that this would probably a non-trivial effort, both in attack complexity311

as in ingenuity. .312

Recall Property 1 that Subterranean 2.0 uses the single-round permutation with313

algebraic degree 2 in the duplex call. In the setting that a nonce can be used more314

than once, one may inject a difference ∆M
i at si in the message processing phase as315

shown in Figure 6, one will obtain some linear relations of the state difference ∆si+1316

through the output difference ∆Zi+2 as each output bit is the sum of two internal317

bits. More importantly, ∆si+1 is linear in bits of si due to Fact 1 for quadratic318

Boolean functions. Therefore, ∆Zi+2 will be linear in si as well, and thus some bits319

of si will be leaked by observing such one-round differentials.320

Fact 1 Let f : Fn
2 → F2 be a Boolean function with algebraic degree 2. Given the321

input difference ∆x, the derivative of f is ∆f := f(x) + f(x + ∆x) can be expressed322

linearly by the input bits.323

2 The designers searched differential trails for the permutation with three rounds and pro-
vided bounds for the probability of differential trails with up to eight rounds. Such differential
analysis is different from the differential analysis tailored for state collisions where there is a
difference injection before each round.
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Fig. 6: Notations for state recovery in the nonce-misuse setting

Example 1 Let f : F2
2 → F2 and f(x) = x0 ·x1. Suppose the input difference is given324

as ∆x = (∆x0, ∆x1). Then ∆f = f(x)+f(x+∆x) = x0·x1+(x0+∆x0)·(x1+∆x1) =325

∆x1 · x0 + ∆x0 · x1 + ∆x0 ·∆x1.326

Even though Subterranean-SAE aims for use cases where nonce uniqueness can be327

guaranteed, it would be interesting to know what the complexity of state recovery328

would be when nonce uniqueness is lost.329

In the following two sections, the three potential attacks pointed out here will330

be investigated. Section 4 looks into differential and linear cryptanalysis regarding331

keystream biases and state collisions respectively and Section 5 examines state re-332

covery attack in the nonce-misuse setting.333

4 Differential and Linear Analysis Tailored for Keystream Biases and334

State Collisions335

In this section, we first specify the issue of dependency in the χ operation of the336

round function of Subterranean 2.0. We then point out the resemblance between the337

χ operation and the round function of the SIMON block cipher [2]. Inspired by the338

existing work on SIMON [12], we propose explicit formulas for computing the exact339

correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-340

linear operations. Finally, we construct our models for searching differential/linear341

trails of Subterranean 2.0 tailored for keystream biases and state collisions.342

4.1 Dependency of AND Operations343

In the design of Subterranean 2.0, the non-linear layer χ of the round function344

exploits AND operations. Specifically, state bits si−1 + 1, si are fed into one AND345

operation and si +1, si+1 into another. Unlike S-box based ciphers where the number346

of active S-boxes determines the upper bound of differential/linear probability, the347

number of active AND operations provides not much information for Subterranean348

2.0. The reason is the dependency between AND operations.349

Let us explain a bit more with an example of two AND operations: y0 = x0 · x1350

and y1 = x1 · x2. Suppose the differentials of the two AND operations are (1, 0)→ 1351

and (0, 1) → 0. According to the difference distribution table 3, the differential352
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probability of the two AND operations is 2
4 ×

2
4 = 2−2 if the two AND operations353

are independent. However, the two AND operations share an input bit x1 and thus354

not independent. Check that the solutions for the two differentials (1, 0) → 1 and355

(0, 1) → 0 are (x0, x1) ∈ {(0, 1), (1, 1)} and (x1, x2) ∈ {(0, 0), (0, 1)}, which means356

x1 = 1 and x1 = 0 should hold simultaneously. This is a contradiction. In the case357

where the differentials for the two AND operations are (1, 0) → 1 and (0, 1) → 1,358

there is no such contradiction and the two differentials hold when x1 = 0, meaning359

the probability is 2−1 instead of 2−2.360

Table 3: Difference distribution table (left) and linear approximation table (right) of
the AND operation

XXXXXXXX∆x0, ∆x1

∆y 0 1

0, 0 4 0
0, 1 2 2
1, 0 2 2
1, 1 2 2

XXXXXXXXΓ x0, Γ x1

Γ y 0 1

0, 0 2 1
0, 1 0 1
1, 0 0 1
1, 1 0 -1

The dependency between AND operations has a similar effect in linear analysis.361

Suppose the linear masks are (0, 1)→ 1 and (1, 1)→ 1 for the two AND operations.362

This means x0 · x1 and x1 · x2 are approximated with x1 and x1 + x2 respectively.363

Treating them independently, we get correlation −2−1 × 2−1 = −2−2 for the two364

AND operations according to the linear approximation table 3. While considering365

together, x0 · x1 + x1 · x2 = x1(x0 + x2) is approximated with x1 + x2, resulting in366

a zero correlation. In the case where the linear masks are (0, 1)→ 1 and (1, 0)→ 1,367

x0 · x1 + x1 · x2 = x1(x0 + x2) is approximated with x1, leading to a correlation 2−1368

instead of 2−2. The case of two active AND operations is summarized in Example 2.369

Example 2 Let f(x0, x1, x2) = x0 ·x1 +x1 ·x2 +L(x0, x1, x2) = x0 ·x1 +x1 ·x2 +u ·370

x0 + v ·x1 + w ·x2 be a Boolean function and u, v, w ∈ F2 are constants. If u + w = 0,371

then Cor(f) = 2−1; otherwise, Cor(f) = 0.372

Besides Subterranean 2.0, chaining AND operations also make up the non-linear373

layer of the round function in authenticated encryption schemes like MORUS [20],374

TinyJAMBU [21] and block ciphers like SIMON [2], etc. Handling the dependency375

among the chaining AND operations is a challenging task. Taking all the dependency376

into account usually makes the search for differential/linear trails inefficient or even377

infeasible. In the case where there exist very sparse differential/linear trails such that378

there is no adjacent active AND operations, treating AND operations independently379

works well [18,19]. Recently, effort has been made to construct models that partially380

handles the dependency of the AND operations [17]. However, the methods which381

do not fully tackle the dependency are not applicable to Subterranean 2.0 whose382

differential/linear trails for state collisions or keystream bias of Subterranean 2.0 are383

relatively dense. This is confirmed by experiments where the trails obtained with384

these methods are almost invalid. Moreover, inexact models are unable to provide385

reliable bounds of differential/linear probability. Consequently, the dependency must386

be taken into consideration for evaluation of Subterranean 2.0 against state collision387

attacks and keystream bias.388
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4.2 Represent χ as a SIMON-like Function389

Subterranean 2.0 uses bit-wise operations. In particular, in the χ step, for 0 ≤ i < b,

si ← si + si+1 · si+2 + si+2.

We observe that the χ step bears a strong resemblance to SIMON’s round func-
tion. SIMON [2] is a family of lightweight block ciphers and follows the Feistel con-
struction. Its round function has the following form

(x ≪ α)⊙ (x ≪ β)⊕ (x ≪ γ),

where x ≪ i corresponds to a cyclic left shift of word x by i bits, ⊙ and ⊕ denote the
bit-wise AND and XOR operations respectively. We notice that χ can be re-written
as a SIMON-like function:

s← s⊕ (s ≫ 1)⊙ (s ≫ 2)⊕ (s ≫ 2).

Therefore, the techniques and tools in [12] for searching differential/linear trails of390

SIMON serves as a good starting point for differential and linear cryptanalysis of391

Subterranean 2.0.392

4.3 Linear Analysis393

In [12], the authors proved that the input mask α and output mask β for the operation394

x⊙(x ≪ 1) should satisfy that α ∈ U⊥
β , where Uβ = {y|β⊙(y ≪ 1)⊕(β⊙y) ≫ 1}.395

Inspired by this, we further propose explicit formulas for calculating the correlation396

of linear trails of Subterranean 2.0, which are also applicable to other ciphers that397

exploit chains of AND operations.398

In linear cryptanalysis of such ciphers, there are blocks of chained active AND399

operations where the correlation can be calculated for each block independently.400

Depending on the number of active AND operations involved in a block, there are401

two cases which are covered by Lemma 1 and 2. For Subterranean 2.0, k in the two402

lemmas is 1. When the number n of active AND operations in a block is odd, i.e.,403

n = 2t − 1, t > 0, any approximation is valid and the correlation is 2−t. When the404

number n of active ANDs is even, i.e., n = 2t, t > 0, the approximation should405

satisfy a condition cond as stated in Lemma 2. This is a one-bit condition and if it406

holds, the correlation is 2−t. In other words, given a random approximation for an407

even block, it is valid with probability 1
2 . In search of linear trails, it is the key point408

to make sure this condition holds for all even blocks. Without this condition being409

imposed, the obtained linear trail will be invalid with high chance when the trail is410

dense.411

Lemma 1 Let f(x) = x0xk +xkx2k + · · ·+x(2t−2)kx(2t−1)k +L(x0, xk, · · · , x(2t−1)k)412

be a Boolean function where L is linear and t > 0. Then Cor(f) is 2−t.413

Proof The quadratic part of f(x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · ·+ x(2t−3)k(x(2t−4)k + x(2t−2)k) + x(2t−2)kx(2t−1)k.
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Apply the following transformation:414

y(2j−1)k = x(2j−1)k, 1 ≤ j ≤ t415

y(2j)k = x(2j)k + x2(j+1)k, 0 ≤ j ≤ t− 2416

y(2t−2)k = x(2t−2)k,417418

which is equivalent to the transformation x = Ay:419

x(2j−1)k = y(2j−1)k, 1 ≤ j ≤ t420

x(2j)k =
t∑

i=j

y(2i)k, 0 ≤ j ≤ t− 1421

422

Then one can obtain

g(y) = f(Ay) = y0yk + y2ky3k + · · ·+ y2(t−1)ky(2t−1)k + L′(y0, yk, . . . , y(2t−1)k).

Since the quadratic terms of g contains all yjk, 0 ≤ j ≤ 2t − 1, Cor(g) = 2−t.423

Therefore, Cor(f) = 2−t, as424

Cor(g) = 1
22t

∑
y∈F2t

2

(−1)g(y) = 1
22t

∑
y∈F2t

2

(−1)f(Ay) = 1
22t

∑
y∈F2t

2

(−1)f(y) = Cor(f).425

426

⊓⊔

Lemma 2 Let f(x) = x0xk+xkx2k+· · ·+x(2t−2)kx(2t−1)k+x(2t−1)kx2tk+L0(x0, x2k427

· · · , x2tk)+ L1(xk, x3k, · · · , x(2t−1)k) be a Boolean function where L0, L1 are linear428

and t > 0. Let cond be: L0 contains a even number of terms. Then Cor(f) is 2−t if429

cond holds and 0 otherwise.430

Proof The quadratic part of f(x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · ·+ x(2t−1)k(x(2t−2)k + x(2t)k)

Apply the following transformation:431

y(2j−1)k = x(2j−1)k, 1 ≤ j ≤ t432

y(2j)k = x(2j)k + x2(j+1)k, 0 ≤ j ≤ t− 1433

y(2t)k = x(2t)k,434435

which is equivalent to the transformation x = Ay:436

x(2j−1)k = y(2j−1)k, 1 ≤ j ≤ t− 1 (1)437

x(2j)k =
t∑

i=j

y(2i)k, 0 ≤ j ≤ t (2)438

439

Then one can obtain

g(y) = f(Ay) = y0yk + y2ky3k + · · ·+ y2(t−1)ky(2t−1)k + L(y0, yk, . . . , y(2t)k).

Obviously, Cor(g) = 0 if L(y0, yk, · · · , y(2t)k) contains the term y(2t)k, otherwise
Cor(g) = 2−t. And L(y0, yk, · · · , y(2t)k) has the term y(2t)k if and only if L0(x0, x2k,
. . . , x(2t)k) contains an odd number of terms according to Eq. (2). ⊓⊔
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Technically, for an even block with 2t, t > 0 chained active AND operations, it440

requires t+1 iterations to check the condition cond. Hence, the longer an even block441

is, the more time-consuming for the checking. As the state size of Subterranean 2.0442

is 257 which is relatively large when compared to block ciphers like SIMON, the443

length of even block can reach 256 theoretically. In order to speed up the search444

for linear trails of Subterranean 2.0, it would be useful to identify a tighter upper445

bound of block length ℓ for each round. This can be done as follows when the range446

of correlation or the target correlation is given.447

1. For round r, set the target correlation C, time limit D and set the block length448

as state size, i.e., ℓ = b449

(a) For all possible positions for a block with ℓ chained ANDs:450

i. Set the ℓ ANDs active. If a solution is found or the searching time exceeds451

D, exit.452

(b) ℓ = ℓ− 1 and go to (a).453

We then propose two models:454

1. Set ℓ to a reasonable value for all rounds, e.g., ℓ = 6. This model is used for455

searching linear trails with good correlations.456

2. For each round, set ℓ to the upper bound found by the above procedure. This457

model is used for providing tighter lower bounds of correlation of linear trails.458

We apply these two models to Subterranean 2.0 and Subterranean 2.0-m(d). The459

results in Table 4 are obtained. Note that, the search space of linear trails over n460

blocks covers the search space of linear trails over less blocks.461

– For Subterranean-m(d)462

– The correlations of linear trails become stable when four blocks are involved,463

as shown in Figure 7.464

– When d = 58, there exists a linear trail over three output blocks with corre-465

lation 2−23, as shown in Table 9. This means d = 58 is not a safe parameter466

for Subterranean-m.467

– For Subterranean 2.0468

– There does not exist any linear trail over four blocks with correlation higher469

or equal to 2−49.470

When d = 58, the curve in Figure 7 goes significantly low. We conjecture that it471

may come from the interplay between operations π and extraction/injection which472

depend on d, and other operations, i.e., χ, ι, and θ. The indices used in χ, ι, and473

θ are computed through additions in Z. Conversely, the indices used in π and ex-474

traction/injection are computed through multiplications in Z∗ (except 0). When d475

varies, we have different combinations of these two parts and each combination is476

unique. It may be possible that there are good linear trails for certain combination.477

A similar conjecture could be made for the differential case that will be discussed478

subsequently.479

4.4 Differential Analysis480

In differential cryptanalysis of Subterranean 2.0, we adapt Theorem 1 from [12] and481

then apply it to Subterranean 2.0.482
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Table 4: Correlation of keystreams

Version (|s|, |K|) |Zi| #Zi min − log2(Cor)
Subterranean-SAE (257, 128) 32 ≤ 4 (49, 90]
Subterranean-m (97, 48) 12 ≤ 5 23 ∼ 34

Theorem 1 ( [12]) Let f(x) = (x ≪ 1) ⊙ x be a Boolean function on Fn
2 . The483

probability that difference α goes to difference β through f is484

Pr(α f−→ β) =


2−n+1 α = 1 and wt(β) ≡ 0 mod 2,

2−wt(vb+db) α ̸= 1 and β ⊙ vb = 0 and ((β ≪ 1)⊕ β)⊙ db = 0,

0 otherwise,

485

486

where vb = (α ≪ 1) ∨ α, db = α⊙ (α ≪ 1)⊙ (α ≪ 2) and wt(x) is the Hamming487

weight of x.488

The original Theorem 1 considers bit vector x of an even number of bits. When489

the state size is odd, the condition for the first case should be adapted to wt(β) ≡ 1.490

Based on Theorem 1, the results in Table 5 are obtained. Also, the search space of491

differential trails using n blocks covers the search space of differential trails using492

less blocks.493

– For Subterranean-m(d)494

– The probabilities of differential trails become stable when five blocks are495

involved, as shown in Figure 8.496

– When d = 41, there exists a differential trail using four input blocks with497

probability 2−47, as shown in Table 8. This means d = 41 is not a safe498

parameter for Subterranean-m.499

– For Subterranean 2.0500

– There does not exist any differential trail over four blocks with probability501

higher or equal to 2−108.502

Table 5: Result of searching differential trails for state collisions

Version (|s|, |K|) |∆M
i| #∆M

i min − log2(p)
Subterranean-SAE (257,128) 32+1 ≤ 4 (108, 180]
Subterranean-m (97,48) 12+1 ≤ 6 47 ∼ 64

4.5 Impact on Subterranean-deck and Subterranean-SAE503

As between extractions or injections, there is only one round, there is little clustering504

effect in the differential/linear analysis of Subterranean 2.03. Thus the security of505

Subterranean 2.0 against the linear attack and the state collision attack can be506

almost deduced from optimal differential/linear trails.507

3 If there are inactive output (resp. input) blocks in between, there is also clustering effect
in linear (resp. differential) analysis. For example, in the linear trail in Table 9, there are active
bits in Z0 and Z2 but Z1. In this case, two solutions form a linear hull. However, the involved
input or output blocks are continuously active in most cases.
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Bias of keystreams. For both Subterranean-deck and Subterranean-SAE, the se-508

curity is claimed against attackers that are limited to 296 data blocks. Thus a useful509

linear trail should have correlation higher than 2−48. In the specification of Subter-510

ranean 2.0 [8], there is a statement below.511

This provides evidence that there is probably no bias for masks Z of less than512

5 blocks and we believe there is no bias in Z measurable from output sequences513

of 296 blocks or less.514

Our linear analysis is twofold: we find that the first half of the statement is not a515

reasonable conjecture and we support the second half of the statement with detailed516

experiments. Our results show that there exist linear trails over three or four blocks517

for both Subterranean 2.0 and Subterranean-m. Within four keystream blocks, lin-518

ear trails with correlation higher than 2−48 do not exist for Subterranean 2.0. The519

experiments on the toy cipher Subterranean-m show that there are no better linear520

trails when we increase the number of keystream blocks to five, which gives some521

confidence that there is no better linear trails as well for Subterranean 2.0 over more522

output blocks. In short, our results support the designers’ claim on the security523

against linear cryptanalysis.524

The designers’ conclusion that there is probably no bias over less than five blocks
lies in an analysis considering a single active output bit. Recall that the expression
of the output block

Zt+1
i = st+1

124i + st+1
−124i

and the round function

st+1
j = st

i + st
i+3 + st

i+8 + (st
i+1 + 1) · st

i+2 + (st
i+4 + 1) · st

i+5 + (st
i+9 + 1) · st

i+10

where i = 12j. It can then be obtained that Zt+1
i = st

124i+1 + st
−124i+1 + q(st). Note525

that if there is an isolated term of degree 1 in the approximation, the correlation526

will be zero. As 124i+1 and −124i+1 are not elements of the subgroup
⟨
124⟩

, they527

cannot be cancelled out by Zt
j . Based on this, the designers reached the conclusion528

about the length of linear trails of Subterranean 2.0. Nevertheless, state bits outside529 ⟨
124⟩

, like st
124i+1 and st

−124i+1 , may be cancelled out when there are multiple active530

bits in the output block. Let us take the 3-block linear trail of Subterranean-m(58)531

(see Table 9) as an example. In this linear trail, both Z2
0 and Z2

1 , i.e., the first and532

the second bits of the third output block, are active. According to the expressions533

below, we can see that s1
−58 is cancelled out.534

Z2
0 = s2

584·0 + s2
−584·0535

= s1
58 + s1

60 + s1
61 + s1

63 + s1
66 + s1

68 + s1−58 + s1
41 + s1

42 + s1
44 + s1

47 + s1
49 + q1(s1),536

Z2
1 = s2

584·1 + s2
−584·1537

s1
585 + s1

62 + s1
63 + s1

65 + s1
68 + s1

70 + s1
−585 + s1−58 + s1

40 + s1
42 + s1

45 + s1
47 + q2(s1).538539

The full expression of the approximation can be found in Table 10. Consequently,540

treating the active bits globally, the invoked active bits located outside the group541 ⟨
124⟩

maybe cancelled out by each other. Thus, it does not necessarily take four542

rounds to make them fall back into
⟨
124⟩

. More importantly, concrete linear trails543

with three or four blocks are found for both Subterranean 2.04 and Subterranean-m.544

4 As the obtained linear trails of Subterranean 2.0 have a very low correlation, the details
of the linear trails are not included in the paper
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State collisions. State collisions can be used for probabilistic forgeries as long as545

the differential probability p > 2−|K| when the tag length is the same as the key546

length. That is, the forgery attack is not constrained by the data limit. Searching547

differential trails for Subterranean 2.0 is hard due to the large internal state. The548

experiments on the toy cipher Subterranean-m show that there is only one value for549

the parameter d such that the state collision attack is possible. When the injection550

rate of Subterranean-m is reduced to a smaller value, say 8, all values of d allow551

resistance against the state collision attack. It is very likely that these results of552

Subterranean-m reflect the security of Subterranean 2.0 against the state collision553

attack due to similar designs.554

5 Key Recovery of Subterranean-SAE in the Nonce-misuse Setting555

In this section, it is shown that a practical state recovery attack can be mounted with556

only 88 32-bit blocks and 20 repetitions of nonce by one-round differential analysis.557

5.1 One-round Differential Analysis558

In the duplex call of Subterranean 2.0, a single-round permutation is used. As the559

round function has algebraic degree only 2, the output difference of the round func-560

tion will be linear in the input. So is the difference of the following keystream block.561

Let us explain the idea with an example as follows.562

Example 3 Suppose one bit difference is injected at position 1 of si (see Figure 6).563

After one round, the bits at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] of si+1564

have difference [si
2, si

2, si
2, si

0 + 1, 1, si
0 + 1, si

0 + 1, 1, 1] and there is no difference at565

other positions. From the extraction, we have ∆Zi+2
8 = ∆si+1

64 + ∆si+1
193 = si

2. Thus566

obtain one state bit si
2 by observing ∆Zi+2.567

This means, in the message processing phase, if a difference is injected at si,568

some state bits of si can be recovered by observing the output difference after one569

round. We call this one-round differential of Subterranean 2.0. As can be seen that570

the recovered bits are among the neighbouring bits of the injected difference. For571

Subterranean-SAE, the number of bit positions for injection is 32. Further analysis572

shows that only 41 neighbouring bits can be recovered by one-round differentials.573

5.2 Nested One-round Differential Analysis574

To enlarge the number of state bits that can be recovered, we propose a nested one-575

round differential analysis which exploits the output difference in two consecutive576

rounds. The core idea is that injecting difference at si will lead to differences of577

si+1 at positions that may fall outside the set of 32 injection positions. Therefore,578

besides injecting difference through the input block, we can also utilize the differ-579

ence generated by the previous round by treating the previous round as a difference580

injector.581

It is known that the difference after two rounds is not linear in the input bits582

anymore. However, by our nested one-round differential analysis, some bits of the583
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internal state can still be recovered as long as the input difference to the second584

round is sparse. Next, we illustrate the nested one-round differential by Example 4.585

Example 4 Suppose one bit difference is injected at position 1 of si (see Figure 6).586

Treat the second round independently with input difference [si
2, si

2, si
2, si

0 + 1, 1, si
0 +587

1, si
0 + 1, 1, 1] at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] based on Example 3.588

By observing the difference of the output block after the second round ∆Zi+3, retrieve589

relations between si+1, si
0, si

2 through ∆Zi+3, and select the linear ones which are:590

∆Zi+3
1 = s0

2,591

∆Zi+3
3 = s0

0 + 1,592

∆Zi+3
8 = s0

2,593

∆Zi+3
12 = s1

234 + 1,594595
596

∆Zi+3
13 = s1

149 + 1,597

∆Zi+3
14 = s0

2,598

∆Zi+3
16 = s0

0 + 1,599

∆Zi+3
22 = s1

213 + 1,600

∆Zi+3
23 = s1

215.601602

Therefore, 6 bits: s0
0, s0

2, s1
149, s1

213, s1
215, s1

234 can be recovered.603

5.3 Key Recovery604

In our attack, we utilize 9 types of difference injections No. 1 ∼ 9 as listed in Table 6,605

each of which recovers a set of bits in si. Using 19 injections of difference in total,606

131 bits information of s1 and 128 bits information of s2 can be known, as illustrated607

in Table 7. With this information, the full state s1 can be recovered as follows.608

Guess another 26 bits of s1, as listed in the last row of Table 7. Then all bits of609

s2 can be expressed in 257-131-26 = 100 unknowns and there remain 26 quadratic610

terms composed of these unknowns. When the 26 quadratic terms are treated as611

independent unknowns, there will be 100+26 unknown. As 128 bits of s2 are known,612

a system of 128 linear equations in 126 unknowns can be constructed and solved613

easily. There may be multiple solutions for s1, most of which are not the actual one614

and can be discarded by exploiting unused output bits (without increasing the data615

complexity). The time complexity of recovering the full s1 is dominated by solving616

226 systems, each of which has 128 linear equations and 126 unknowns.617

Recover the key Once the unique state s1 is identified, the 128-bit key can be recov-618

ered by a guess-and-determine procedure as in [13]. First, with s1, the state after619

injecting K4 can be computed. As K4 is unknown, only 225 bits of the state before620

the injection are known. Then, guess 32 bits of K1 and 3 bits of K2 at positions621

[2, 136, 189] so that the state after injecting K3 are linear in the remaining 29 bits622

of K2 and the full 32 bits of K3. Hence, the 225 known bits before injecting K4 are623

quadratic in these 61 key bits. A detailed analysis shows that the expressions of the624

225 known bits contain at most 128 quadratic terms. Again if we treat these 128625
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Table 6: Difference injection and state recovery

No. Pos. of si with dif-
ference

Recovered bits #Recovered bits

1 15, 213, 223, 211,
134, 128, 35, 234,
70, 190, 184, 111,
165, 169, 11, 4, 22

si
5, si

12, si
16, si

21, si
34, si

69, si
71, si

110, si
112, si

133, si
129,

si
135, si

164, si
166, si

168, si
185, si

189, si
191, si

210, si
212,

si
214, si

224, si
233, si

235, si
3 + si

10, and 5 extra bits
si

241, si
223, si

128, si
68, si

22

30 bits of si

2 137, 140, 30, 225,
197, 189, 95, 2,
256, 249

si
1, si

3, si
29, si

94, si
96, si

136, si
139, si

190, si
198, si

196, si
226,

si
250, si

255, si+1
169 + si+1

172 and 4 extra bits si
256, si

121,

si
67, si

2

17 bits of si, 1
bit of si+1

3 136, 176, 1 si
177, si

2, si
137, si

0, si
175, si+1

234 , si+1
181 , si+1

215 , si+1
213 , si+1

160 ,

si+1
162 , si+1

13 + si+1
249 and 3 extra bits si+1

23 , si+1
44 ,

si+1
95

5 bits of si, 10
bits of si+1

4 137, 64 si
63, si

138, si+1
246 , si+1

92 , si+1
76 , si+1

248 , si+1
154 , si+1

74 , si+1
55 ,

si+1
156 and 2 extra bits si+1

11 , si+1
165

2 bits of si, 10
bits of si+1

5 4,22 si
23, si+1

172 , si+1
170 , si+1

24 , si+1
149 , si+1

87 , si+1
217 , si+1

85 , and 1
extra bit si

234

2 bits of si, 7
bits of si+1

6 11, 140, 241 si
242, si

240, si+1
171 , si+1

192 , si+1
107 , si+1

194 , si+1
254 , si+1

182 and 2
extra bits si

15, si
17

4 bits of si, 6
bits of si+1

7 17,70,35,165 si
36, si+1

66 , si+1
109 , si+1

238 , si+1
79 , si+1

141 , si+1
143 , si+1

47 +si+1
221 ,

si+1
49 + si+1

219

1 bit of si, 8 bits
of si+1

8 211, 95, 169 si
170, si+1

201 , si+1
116 , si+1

40 , si+1
229 , si+1

163 , si+1
114 , si+1

104 , si+1
123

and 1 extra bit si+1
134

1 bit of si, 9 bits
of si+1

9 256,189, 223 si
222, si+1

103 , si+1
193 , si+1

108 , si+1
106 , si+1

105 , si+1
81 , si

0 · si+1
43 +

si+1
39 and 3 extra bits si

35, si+1
64 , si+1

176

2 bits of si, 9
bits of si+1

quadratic terms as independent unknowns, then there will be a system of 61+128626

unknowns and 225 linear equations. The solution of the system provides information627

of (K1, K2, K3). When (K1, K2, K3) is obtained, recovering K4 is trivial. As a re-628

sult, recovering the key from s1 requires to solve 235 systems, each of which has 225629

linear equations in 189 unknowns. In summary, the key can be recovered practically630

if the same nonce repeats 20 times.631

Relation to the extraction function. In the squeezing phase, Subterranean 2.0 outputs632

a block of 32 bits, each of which is the sum of two state bits: Zi = s124i + s−124i ,633

for 0 ≤ i < 32. Instead of outputting state bits directly, this extraction function634

is meant to frustrate state recovery attacks [10] in the nonce respected setting. In635

our one-round differential analysis, this extraction function allows more state bits636

involved in the output block and thus more state bits can be recovered. For example,637

if we set Zi = s124i , for 0 ≤ i < 32, type 1 injection of difference will lead to a638

recovery of 17 bits versus 30 bits under the original extraction and 20 state bits639

can be recovered with ordinary one-round differential analysis versus 41 state bits640

under the original extraction. Note that our one-round differential analysis requires641

a nonce-misuse setting.642

Comparison to the work by Liu, Isobe and Meier In [13], Liu, Isobe and Meier pre-643

sented a practical state-recovery attack in the nonce-misuse setting with 213 32-bit644
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Table 7: State recovery with 19 injections of difference under the nonce-misuse setting

Recovered bits of s1 Recovered bits of s2

No.
3 ∼ 9
at s0

59 bits: s1
234, s1

181, s1
215, s1

213, s1
160, s1

162,

s1
13+s1

249, s1
23, s1

44, s1
95, s1

246, s1
92, s1

76, s1
248,

s1
154, s1

74, s1
55, s1

156, s1
11, s1

165, s1
172, s1

170,

s1
24, s1

149, s1
87, s1

217, s1
85, s1

171, s1
192, s1

107,

s1
194, s1

254, s1
182, s1

66, s1
109, s1

238, s1
79, s1

141,

s1
143, s1

47 +s1
221, s1

49 +s1
219, s1

201, s1
116, s1

40,

s1
229, s1

163, s1
114, s1

104, s1
123, s1

134, s1
103, s1

193,

s1
108, s1

106, s1
105, s1

81, s1
64, s1

176, si
0·s1

43+s1
39

(as s0
0 can be known)

No.
1 ∼ 9
at s1

60 bits: s1
5, s1

12, s1
16, s1

21, s1
34, s1

69, s1
71, s1

110,

s1
112, s1

133, s1
129, s1

135, s1
166, s1

168, s1
185, s1

189,

s1
191, s1

210, s1
212, s1

214, s1
224, s1

233, s1
235, s1

3 +
s1

10, s1
241, s1

223, s1
128, s1

68, s1
22, (s1

164), s1
1, s1

3,

s1
29, s1

94, s1
96, s1

136, s1
139, s1

190, s1
198, s1

196,

s1
226, s1

250, s1
255, s1

256, s1
121, s1

67, s1
2s1

177, s1
2,

s1
137, s1

0, s1
175, s1

63, s1
138(s1

234), (s1
23), s1

242,

s1
240, s1

15, s1
17, s1

36, (s1
170), s1

222, s1
35

60 bits: s2
169 + s2

172, s2
234, s2

181, s2
215, s2

213,

s2
160, s2

162, s2
13 + s2

249, s2
23, s2

44, s2
95, s2

246,

s2
92, s2

76, s2
248, s2

154, s2
74,s2

55, s2
156, s2

11, s2
165,

s2
172, s2

170, s2
24, s2

149, s2
87, s2

217, s2
85, s2

171,

s2
192, s2

107, s2
194, s2

254, s2
182, s2

66, s2
109, s2

238,

s2
79, s2

141, s2
143, s2

47 + s2
221, s2

116, s2
201, s2

40,

s2
49 +s2

219, s2
229,s2

163, s2
114, s2

104, s2
123, s2

134,
s2

103, s2
193, s2

108, s2
106, s2

105, s2
81, s2

64, s2
176,

s1
0 · s2

43 + s2
39

No.
1 ∼ 3
at s2

52 bits: s2
5, s2

12, s2
16, s2

21, s2
34, s2

69, s2
71, s2

110,

s2
112, s2

133, s2
129, s2

135, s2
164, s2

166, s2
168, s2

185,

s2
189, s2

191, s2
210, s2

212, s2
214, s2

224, s2
233, s2

235,

s2
3+s2

10, s2
241, s2

223, s2
128, s2

68, s2
22, s2

1, s2
3, s2

29,

s2
94, s2

96, s2
136, s2

139, s2
190, s2

198, s2
196, s2

226,

s2
250, s2

255, s2
256, s2

121, s2
67, s2

2, s2
177, s2

2, s2
137,

s2
0, s2

175

In to-
tal

1 additional bit from No. 9 injection:
s1

31 = s2
76 +s2

201 +s2
196 +s1

94 +s1
226 ∗s2

189 +
s1

226 + 1 + ∆Z2
5 + ∆Z2

15. Thus, 120 bits
plus 11 remaining extraction equations

112 bits plus 16 remaining extraction
equations

Guess 26 bits: s1
49, s1

47, s1
8, s1

184, s1
60, s1

43, s1
111, s1

19, s1
26, s1

51, s1
53, s1

57, s1
62, s1

83, s1
89, s1

98, s1
100, s1

118,

s1
125, s1

131, s1
152, s1

158, s1
179, s1

203, s1
205, s1

207, and there remains only 26 quadratic terms in
the expressions of s2.

blocks based on conditional cube analysis. It was exploited that when the condi-645

tion holds, the sum of over a set of outputs will be zero. They mainly utilized a646

2-dimensional set to recover one bit, which means 4 repetitions of nonce are required647

for retrieving 1 state bit. On the contrary, as many as 30 state bits can be recov-648

ered with 2 repetitions of nonce by a one-round differential. Therefore, the data649

complexity is much lower in our one-round differential analysis.650

6 Concluding Remarks651

In this paper, we investigated the “single-round permutation” in various phases of652

Subterranean 2.0 and identified three related attack scenarios that deserve further653

analysis: keystream biases in the keyed squeezing phase, state collisions in the keyed654

absorbing phase, and one-round differentials in the message processing phase when655

a nonce is reused.656

To carry out a study on the security in the first two attack scenarios, it is nec-657

essary to search for differential/linear trails under special constraints. First, we pro-658

posed a set of toy versions of Subterranean 2.0: Subterranean-m(d) to understand659
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Subterranean 2.0 with easier effort. Besides, we observed a resemblance between660

the non-linear layer of the round function of Subterranean 2.0 and SIMON’s round661

function. Such resemblance offers a good starting point for differential/linear anal-662

ysis of Subterranean 2.0. Inspired by the existing work on SIMON, we proposed663

explicit formulas for computing the correlation of linear trails of ciphers that exploit664

chaining AND operations like Subterranean 2.0, and built our own models for Sub-665

terranean 2.0. The experiments on Subterranean-m(d) show that for most choices666

of d, Subterranean-m is secure against linear attacks and state collision attacks, but667

Subterranean-m(58) (resp. Subterranean-m(41)) is vulnerable to linear attacks (resp.668

state collision attacks). It is very likely that these results of Subterranean-m reflect669

the security of Subterranean 2.0 due to similar designs. We also found a flaw in the670

designers’ reasoning of Subterranean 2.0’s linear bias but supported the designers’671

claim that there is no bias measurable from 296 data blocks or less. Due to the time-672

consuming search for differential trails of Subterranean 2.0, its security against the673

state collision attack in keyed modes still remains an open question.674

Finally, we observed that one-round differentials allow to recover state bits in the675

nonce-misuse setting. In order to recover a sufficient number of state bits, we further676

proposed nested one-round differentials where a one-round differential is prepended677

to another, acting as a difference injector. As a result, a practical state recovery678

attack can be achieved with only 20 repetitions of the nonce and 88 blocks of data.679

Our analysis shows that Subterranean-like constructions with quadratic single-round680

permutation must be used carefully in practice as the security crashes when nonce681

uniqueness is lost.682
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A Algebraic Properties of θ793

For studying the algebraic properties of θ, we treat the state s as a binary polynomial
∑

i
siX

i,
following the way in [8]. Then the θ operation becomes a modular multiplication

θ(s(X)) = s(X)(1 + X3 + X8) mod (1 + Xb).

In particular, we consider b = 97. The modulus 1 + X97 is the product of X + 1 and two794
irreducible polynomials of degree 48.795

X
48 + X

43 + X
41 + X

40 + X
38 + X

36 + X
32 + X

29 + X
24 + X

19 + X
16 + X

12 + X
10 + X

8 + X
7 + X

5 + 1,796

X
48 + X

47 + X
46 + X

45 + X
44 + X

41 + X
36 + X

35 + X
33 + X

32 + X
30 + X

29 + X
25 + X

24 + X
23 + X

19+797

X
18 + X

16 + X
15 + X

13 + X
12 + X

7 + X
4 + X

3 + X
2 + X + 1.798799

Let P (X) = 1 + X3 + X8. As P (X) is coprime with 1 + X97, the inverse of P (X) is800

X
92 + X

91 + X
87 + X

86 + X
84 + X

83 + X
82 + X

81 + X
77 + X

75 + X
74 + X

73 + X
72 + X

70 + X
68 + X

66+801

X
64 + X

63 + X
62 + X

61 + X
60 + X

59 + X
57 + X

53 + X
51 + X

49 + X
48 + X

46 + X
45 + X

44 + X
39 + X

38+802

X
37 + X

36 + X
34 + X

33 + X
32 + X

30 + X
27 + X

26 + X
24 + X

21 + X
18 + X

10 + X
5 + X

2 + 1,803804

where there are 47 terms (versus 127 for b = 257). Hence, the high diffusion in the backward805

direction still remains for b = 97.806

Also, the order of P (X) is sufficiently large. The order of 2 in (Z/97Z∗, ×) is 48. Therefore,

P 248
(X) mod (1 + X97) = P (X248 mod 97) = P (X).

This means the order of P (X) divides 248 − 1 = 32 · 5 · 7 · 13 · 17 · 97 · 241 · 257 · 673. Through a807

computation on Sage, it shows that the order of P (X) is 248 − 1 (versus 216 − 1 for b = 257).808

When b is set to another primes of the form 8k+1 < 257, for k = 2, 5, 9, 11, 12, 14, 17, 24, 29,809

30, a similar analysis can be done for studying algebraic properties of θ. It shows that in all810

cases θ is invertible and its inverse is dense.811
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B Differential/Linear Trails812

This section presents two exact differential/linear trails of Subterranean-m in Table 8 and 9,813

based on which state collisions or linear bias can be detected. The approximation derived from814

the linear trail in Table 9 can be found in Table 10 and its correlation can be verified using815

Lemma 1 and 2. When d varies, the correlations (resp. probabilities) of linear (resp. differential)816

trails of Subterranean-m regarding keystream bias (resp. state collisions) are displayed in817

Figure 7 (resp. Figure 8).818

Table 8: Differential trail of Subterranean-m(41) using 4 blocks with probability 2−47

for state collisions

Round i Difference − log2(pi)

0

∆Z 0x0000000000000000200000010

4α 0x0000000000000000200000010
β 0x0000000000000000200000010

π ◦ θ(β) 0x0240000800000000020008080

1

∆Z 0x0010000000000000000400052

19α 0x02500008000000000204080D2
β 0x125C00080000000002040C0DB

π ◦ θ(β) 0x0D1215A000040801200404EAC

2

∆Z 0x0010000000040801200400042

24α 0x0D0215A000000000000004EEE
β 0x1BC2908000000000000004965

π ◦ θ(β) 0x0000000000000800001000010

3 ∆Z 0x0000000000000800001000010
α 0x0000000000000000000000000

Table 9: Linear trail of Subterranean-m(58) using 3 blocks with correlation 2−23

Round i Difference − log2(|Cor|)

0

Z 0x1090000000000000000000242

11α 0x1090000000000000000000242
β 0x109000000000000000015FF40

π ◦ θ(β) 0x0000000080200A02000000000

1

Z 0x0000000000000000000000000

12α 0x0000000080200A02000000000
β 0x00000001EEE01EEE000000000

π ◦ θ(β) 0x1290000000000000000000252

2 Z 0x1290000000000000000000252
α 0x0000000000000000000000000
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Table 10: Detailed approximation and the final approximation derived from Table 9

Z0
0 = s0

1 + s0
96,

Z0
10 = s0

91 + s0
6,

w0
8 = s0

8 + s0
9 ∗ s0

10 + s0
10,

w0
10 = s0

10 + s0
11 ∗ s0

12 + s0
12,

w0
12 = s0

12 + s0
13 ∗ s0

14 + s0
14,

w0
14 = s0

14 + s0
15 ∗ s0

16 + s0
16,

w0
16 = s0

16 + s0
17 ∗ s0

18 + s0
18,

w0
20 = s0

20 + s0
21 ∗ s0

22 + s0
22,

w0
91 = s0

91 + s0
92 ∗ s0

93 + s0
93,

s1
67 = w0

6 + w0
9 + w0

14,

s1
47 = w0

10 + w0
13 + w0

18,

s1
45 = w0

88 + w0
91 + w0

96,

w1
38 = s1

38 + s1
39 ∗ s1

40 + s1
40,

w1
41 = s1

41 + s1
42 ∗ s1

43 + s1
43,

w1
43 = s1

43 + s1
44 ∗ s1

45 + s1
45,

w1
46 = s1

46 + s1
47 ∗ s1

48 + s1
48,

w1
48 = s1

48 + s1
49 ∗ s1

50 + s1
50,

w1
58 = s1

58 + s1
59 ∗ s1

60 + s1
60,

w1
61 = s1

61 + s1
62 ∗ s1

63 + s1
63,

w1
63 = s1

63 + s1
64 ∗ s1

65 + s1
65,

w1
66 = s1

66 + s1
67 ∗ s1

68 + s1
68,

w1
68 = s1

68 + s1
69 ∗ s1

70 + s1
70,

s2
4 = w1

38 + w1
41 + w1

46,

s2
91 = w1

40 + w1
43 + w1

48,

s2
1 = w1

58 + w1
61 + w1

66,

s2
88 = w1

60 + w1
63 + w1

68,

Z2
1 = s2

88 + s2
9,

Z2
10 = s2

91 + s2
6.

Z0
1 = s0

88 + s0
9,

w0
6 = s0

6 + s0
7 ∗ s0

8 + s0
8,

w0
9 = s0

9 + s0
10 ∗ s0

11 + s0
11,

w0
11 = s0

11 + s0
12 ∗ s0

13 + s0
13,

w0
13 = s0

13 + s0
14 ∗ s0

15 + s0
15,

w0
15 = s0

15 + s0
16 ∗ s0

17 + s0
17,

w0
18 = s0

18 + s0
19 ∗ s0

20 + s0
20,

w0
88 = s0

88 + s0
89 ∗ s0

90 + s0
90,

w0
96 = s0

96 + s0
0 ∗ s0

1 + s0
1,

s1
57 = w0

8 + w0
11 + w0

16,

s1
37 = w0

12 + w0
15 + w0

20,

w1
37 = s1

37 + s1
38 ∗ s1

39 + s1
39,

w1
39 = s1

39 + s1
40 ∗ s1

41 + s1
41,

w1
42 = s1

42 + s1
43 ∗ s1

44 + s1
44,

w1
45 = s1

45 + s1
46 ∗ s1

47 + s1
47,

w1
47 = s1

47 + s1
48 ∗ s1

49 + s1
49,

w1
57 = s1

57 + s1
58 ∗ s1

59 + s1
59,

w1
59 = s1

59 + s1
60 ∗ s1

61 + s1
61,

w1
62 = s1

62 + s1
63 ∗ s1

64 + s1
64,

w1
65 = s1

65 + s1
66 ∗ s1

67 + s1
67,

w1
67 = s1

67 + s1
68 ∗ s1

69 + s1
69,

s2
9 = w1

37 + w1
40 + w1

45,

s2
96 = w1

39 + w1
42 + w1

47,

s2
6 = w1

57 + w1
60 + w1

65,

s2
93 = w1

59 + w1
62 + w1

67,

Z2
0 = s2

1 + s2
96,

Z2
7 = s2

4 + s2
93,

Z0
0 + Z0

1 + Z0
10 + Z2

0 + Z2
1 + Z2

7 + Z2
10 =

s0
0 ∗ s0

1 + s0
7 ∗ s0

8 + s0
9 ∗ s0

10 + s0
10 ∗ s0

11 + s0
11 ∗ s0

12 + s0
12 ∗ s0

13 + s0
13 ∗ s0

14+

s0
14 ∗ s0

15 + s0
15 ∗ s0

16 + s0
16 ∗ s0

17 + s0
17 ∗ s0

18 + s0
19 ∗ s0

20 + s0
21 ∗ s0

22 + s0
89 ∗ s0

90+

s0
92 ∗ s0

93 + s1
38 ∗ s1

39 + s1
39 ∗ s1

40 + s1
40 ∗ s1

41 + s1
42 ∗ s1

43 + s1
43 ∗ s1

44 + s1
44 ∗ s1

45+

s1
46 ∗ s1

47 + s1
47 ∗ s1

48 + s1
48 ∗ s1

49 + s1
49 ∗ s1

50 + s1
58 ∗ s1

59 + s1
59 ∗ s1

60 + s1
60 ∗ s1

61+

s1
62 ∗ s1

63 + s1
63 ∗ s1

64 + s1
64 ∗ s1

65 + s1
66 ∗ s1

67 + s1
67 ∗ s1

68 + s1
68 ∗ s1

69 + s1
69 ∗ s1

70+

s0
17 + s0

22 + s0
90 + s0

93 + s1
38 + s1

40 + s1
42 + s1

44 + s1
45 + s1

46 + s1
47 + s1

49 + s1
50+

s1
58 + s1

60 + s1
62 + s1

64 + s1
66 + s1

67 + s1
69 + s1

70



Security
A

nalysis
ofSubterranean

2.0
27

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
d

23
24
25
26
27
28
29
30
31
32
33
34
35

-lo
g 

|C
or

|

3 blocks
4 blocks
5 blocks

Fig. 7: Correlations of keystreams with 3 ∼ 5 blocks for Subterranean-m
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Fig. 8: Differential probabilities with 3 ∼ 6 blocks for Subterranean-m
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