
Noname manuscript No.
(will be inserted by the editor)

Security Analysis of Subterranean 2.0

Ling Song · Yi Tu · Danping Shi · Lei Hu

Received: date / Accepted: date

Abstract Subterranean 2.0 is a cipher suite that can be used for hashing, authen-
ticated encryption, MAC computation, etc. It was designed by Daemen, Massolino,
Mehrdad, and Rotella, and has been selected as a candidate in the second round
of NIST’s lightweight cryptography standardization process. Subterranean 2.0 is a
duplex-based construction and utilizes a single-round permutation in the duplex. It
is the simplicity of the round function that makes it an attractive target of crypt-
analysis.

In this paper, we examine the single-round permutation in various phases of
Subterranean 2.0 and specify three related attack scenarios that deserve further in-
vestigation: keystream biases in the keyed squeezing phase, state collisions in the
keyed absorbing phase, and one-round differential analysis in the nonce-misuse set-
ting. To facilitate cryptanalysis in the first two scenarios, we novelly propose a set
of size-reduced toy versions of Subterranean 2.0: Subterranean-m. Then we make
an observation for the first time on the resemblance between the non-linear layer in
the round function of Subterranean 2.0 and SIMON’s round function. Inspired by
the existing work on SIMON, we propose explicit formulas for computing the exact
correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-
linear operations. We then construct our models for searching trails to be used in
the keystream bias evaluation and state collision attacks. Our results show that most

Ling Song
Jinan University, Guangzhou, China
E-mail: songling.qs@gmail.com

Tu Yi
Nanyang Technological University, Singapore
E-mail: tuyi0002@e.ntu.edu.sg

Danping Shi
State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, China
E-mail: shidanping@iie.ac.cn

Lei Hu
State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, China
E-mail: hulei@iie.ac.cn

2 Ling Song et al.

instances of Subterranean-m are secure in the first two attack scenarios but there
exist instances that are not. Further, we find a flaw in the designers’ reasoning of
Subterranean 2.0’s linear bias but support the designers’ claim that there is no linear
bias measurable from at most 296 data blocks. Due to the time-consuming search,
the security of Subterranean 2.0 against the state collision attack in keyed modes
still remains an open question. Finally, we observe that one-round differentials allow
to recover state bits in the nonce-misuse setting. By proposing nested one-round
differentials, we obtain a sufficient number of state bits, leading to a practical state
recovery with only 20 repetitions of the nonce and 88 blocks of data. It is noted that
our work does not threaten the security of Subterranean 2.0.

Keywords Subterranean 2.0 · permutation-based crypto · keystream bias · state
collision · state recovery

Mathematics Subject Classification (2010) 94A60

1 Introduction

The deployment of small computing devices such as RFID tags, microcontrollers,
sensor nodes, and smart cards is becoming more and more common. Alongside this,
the need for lightweight cryptography that aims to provide security solutions tailored
for such resource-constrained devices is increasing. In 2013, the National Institute of
Standards and Technology (NIST) initiated a public process to solicit, evaluate, and
standardize lightweight authenticated encryption and hashing schemes that are suit-
able for use in constrained environments, i.e., the so-called LWC competitions [16]. In
2018, a call for submissions was launched and 57 submissions were received in 2019,
among which 56 and 32 submissions were selected in the first and second rounds
respectively. At the current stage, public evaluations of the candidates are strongly
encouraged.

Subterranean 2.0 [7, 8] is a cipher suite that can be used for hashing, authenti-
cated encryption, MAC computation, and stream encryption, etc. It was designed
by Daemen, Massolino, Mehrdad, and Rotella and has been selected by NIST as a
candidate for the second round of LWC competition. Subterranean 2.0 shares fea-
tures with its predecessor Subterranean [6] which can be seen as a precursor to the
Sponge construction [3]. The features of Subterranean 2.0 are summarized below.

Prime-sized state. Subterranean 2.0 operates on a state of 257 bits which is small
but still supports both hashing and authenticated encryption. It offers a security
strength of 128 bits in keyed modes and 112 bits in unkeyed mode. In authenticated
encryption where a nonce is used, the nonce should not repeat.

Duplex-based construction The duplex [4] plays a core role in Subterranean 2.0.
On top of it, three functions were built, namely, Subterranean-XOF, Subterranean-
deck, and Subterranean-SAE, where the latter two are keyed functions. The duplex
absorbs/squeezes 32-bit blocks in keyed modes and 8-bit blocks in unkeyed mode.

Single-round permutation. In the duplex, a lightweight single-round permuta-
tion is used. The round function operates at bit level and has algebraic degree 2.
It has a minimum of substructures and ultimate weak alignment which prevents
large classes of attacks.

Blank rounds used. Between different phases, 8 blank rounds are used to prevent
measurable characteristics between the controllable input and output.

Security Analysis of Subterranean 2.0 3

Efficient hardware implementation. Subterranean 2.0 is designed for hardware
and offers a good option for environments that require lightweight crypto in hard-
ware with high throughput requirements. Besides, it is very suitable for protection
against differential power analysis such as masking and threshold implementations.

Due to the extremely simple round function, Subterranean 2.0 is an attractive tar-
get for cryptanalysis. In the design specification [8], the designers mainly investigated
the security of state collisions in unkeyed absorbing and differential/linear proper-
ties of a multiple-round permutation. As a complement, Liu, Isobe and Meier [13]
conducted cube-based cryptanalysis of Subterranean-SAE by exploiting the low al-
gebraic degree of the round function. They showed that when the number of blank
rounds is reduced to 4, one can mount a state recovery attack. Moreover, in the
nonce-misuse setting the state recovery attack becomes practical using 213 blocks of
data.

With respect to the simple single-round permutation of Subterranean 2.0, there
are interesting attacks in different phases. Below, we list three related attacks in
keyed modes that deserve further investigation.

1. Linear bias of output blocks in keyed squeezing phase. It is claimed in
the specification [8] that there is probably no linear bias over four or less output
blocks of Subterranean 2.0 and that there is no bias measurable from 296 data
blocks or less. Any analytical results that approve or disapprove of these claims
can help understand the security of Subterranean 2.0.

2. State collisions in keyed absorbing phase. In keyed modes, state collisions
may lead to attacks like forgeries. However, security analysis of Subterranean 2.0
against such attacks is missing from the literature.

3. One-round differential analysis of Subterranean-SAE in the message
processing phase. In the phase of processing the message, when a duplex call
is invoked, an output block is squeezed and an input block absorbed before and
after the single-round permutation, respectively. In the case where nonce repeats,
one-round differentials can be observed over successive calls of duplex. It is not
clear how far an attack can go by exploiting one-round differentials.

Our contribution. In this paper, we examine the security of Subterranean 2.0 in the
above three attack scenarios regarding its single-round permutation. In order to inves-
tigate the bias of keystreams and the state collision attack, it requires to find useful
linear and differential trails under certain constraints. When carrying out differen-
tial/linear analysis of Subterranean 2.0, we face two challenges. The first is that the
permutation has only one round and thus cannot be scaled down through the most
common way of reducing the number of rounds for facilitating the differential/linear
analysis. The other is the “dependency” issue that cannot be avoided either in dif-
ferential analysis or linear analysis. The round function of Subterranean 2.0 exploits
logic AND of neighbouring bits in the non-linear layer. Namely, state bits si−1, si

are fed into one AND operation and si, si+1 into another. These AND operations
are dependent as neighbouring AND operations share an input bit. Consequently,
the AND operations cannot be treated independently in differential/linear analysis.
Such dependency makes it difficult to precisely evaluate the security of Subterranean
2.0 against linear attacks and state collision attacks.

In this paper, we use the following techniques to tackle these two challenges.

4 Ling Song et al.

– We novelly propose a set of toy versions of Subterranean 2.0 with reduced state
size. At first glance, Subterranean 2.0 can be weakened by increasing the rate.
However, it cannot be done without changing the extraction function. Therefore,
a better way seems to reduce the state size. Concretely, we choose a smaller prime
number 97, adapt other parameters accordingly, and let the factor d used in the
round function (see Section 2.2) be all possible values. Then we have a set of toy
versions: Subterranean-m(d) which have much smaller state size and key size but
share the same design with the original cipher.

– For the first time in the literature, we observe that the non-linear layer of the
round function of Subterranean 2.0 can be represented by a SIMON-like function.
SIMON [2] is a family of lightweight block ciphers and has been extensively
analysed since its publication, such as differential/linear analyses in [12]. Inspired
by the existing work on SIMON, we propose explicit formulas for computing the
exact correlation of linear trails of Subterranean 2.0 and other ciphers utilizing
AND operations. We then build our models for handling the dependency issue,
as well as searching optimal differential/linear trails of Subterranean 2.0.

Applying our models to Subterranean 2.0 and Subterranean-m, we obtain the
following results.

– For most values of d, Subterranean-m resists the linear attack and the state
collision attack. However, there exist two instances of Subterranean-m(d) which
do not resist the linear attack and the state collision attack respectively. This
means different values of d are not equally good.

– There does exist linear bias over four or three output blocks for Subterranean 2.0
and Subterranean-m. Our work helps to find a flaw in the designers’ reasoning
of Subterranean 2.0’s linear biases.

– Our experiments support the designers’ claim that there is no bias measurable
from 296 data blocks or less.

Due to the time-consuming search, the security of Subterranean 2.0 against the state
collision attack in keyed modes still remains an open question.

Finally, we exploit the one-round differentials to recover the state in the nonce-
misuse setting. If the nonce repeats, one-round differentials observed in the message
processing phase of Subterranean-SAE will leak some bits of the state due to the
algebraic degree 2 of the round function. Further, we find out that ordinary one-
round differentials can recover 41 bits at most. To enlarge the number of state bits
that can be recovered, we propose nested one-round differentials where an one-round
differential is prepended to another in a delicate way. As a result, a sufficient number
of state bits can be recovered, which leads to a full state recovery and further a key
recovery. The attack is practical and takes only 20 repetitions of the nonce and 88
blocks of data, which is much lower than the data complexity of the attack in [13]
by Liu, Isobe and Meier. Our analysis shows that Subterranean-like constructions
with a quadratic single-round permutation must be used carefully in practice since
the security crashes without nonce uniqueness.

Organization. The rest of the paper is organized as follows. Basic notations, the
design of Subterranean 2.0 and a set of toy versions are introduced in Section 2.
Section 3 highlights several properties of Subterranean 2.0 and the relation to three
attack scenarios: keystream biases, state collisions, and state recovery in the nonce-
misuse setting. Linear attacks and state collisions in the keyed modes are investigated

Security Analysis of Subterranean 2.0 5

in Section 4. Section 5 presents a state recovery attack utilizing one-round differen-
tials in the nonce-misuse setting. Finally, we conclude the paper in Section 6.

2 Notations and Specification of Subterranean 2.0

In this section, we start by giving our notations and then briefly introduce Sub-
terranean 2.0, including its round function, the duplex object and two keyed mem-
bers: Subterranean-deck and Subterranean-SAE. To facilitate cryptanalysis of Sub-
terranean 2.0, we introduce a set of toy versions: Subterranean-m(d). For more details
of Subterranean 2.0, we refer the interested reader to the official specification [8].

2.1 Notations

b The size of the state
d The factor used in π of the round function
M The string M padded to 33 bits with 10*
∆X The difference of X where X may be the state or the input/output block
∆Xt

i The difference of the i-th bit of X at time t
≫ Cyclic right shift
≪ Cyclic left shift
| · | The length in bits
|| Concatenation of bit strings

2.2 Round Function

The round function R operates on a b-bit state and consists of four bit-oriented steps:
R = π ◦θ ◦ ι◦χ. Let s denote the state and si the i-th bit of s. Then for all 0 ≤ i < b,

χ : si ← si + (si+1 + 1) · si+2,

ι : s0 ← s0 + 1,

θ : si ← si + si+3 + si+8,

π : si ← sd×i.

Here the addition and multiplication of state bits are in F2 and expressions in the
indices are taken modulo b. In Subterranean 2.0, b = 257, d = 12.

2.3 Duplex Object and Two Keyed Functions

2.3.1 Duplex Object

The Subterranean 2.0 suite is built upon a duplex object which is displayed in Fig-
ure 1. The duplex uses a single-round permutation, i.e., R, and has two functions:
the duplex call and the output extraction, the latter of which is optional. The duplex
call applies the round function R and absorbs a string M of at most 32 bits. Before

6 Ling Song et al.

adding the string to the internal state, the string is padded to 33 bits with 10*. The
33 bits are then injected into the state s124i , 0 ≤ i < 33. Namely, the injection rate
is 33 bits. Before the duplex call, one may extract 32 bits from the state, each of
which is the sum of two state bits:

Zi = s124i + s−124i ,

for all 0 ≤ i < 32. The details of indices used for injection and extraction are shown
in Table 1.

When the input is an empty string, the combination of the round function and
the injection is denoted as Rϵ for convenience in the figures.

Table 1: Indices used for injection and extraction
i 124i −124i i 124i −124i i 124i −124i i 124i −124i

0 1 256 8 64 193 16 241 16 24 4 253
1 176 81 9 213 44 17 11 246 25 190 67
2 136 121 10 223 34 18 137 120 26 30 227
3 35 222 11 184 73 19 211 46 27 140 117
4 249 8 12 2 255 20 128 129 28 225 32
5 134 123 13 95 162 21 169 88 29 22 235
6 197 60 14 15 242 22 189 68 30 17 240
7 234 23 15 70 187 23 111 146 31 165 92

32 256

2.3.2 Subterranean-deck and Subterranean-SAE

The Subterranean 2.0 suite has three functions: Subterranean-XOF, Subterranean-
deck and Subterranean-SAE. Subterranean-XOF is designed to be used for unkeyed
hashing, while Subterranean-deck and Subterranean-SAE are keyed functions. In this
paper, we focus on the latter two.

Subterranean-deck takes as input an arbitrary-length key, typically of 128 bits,
and a sequence of arbitrary-length strings and returns a bit string of arbitrary length,
as shown in Figure 2. Hence, it can be used as a stream cipher, a MAC function or for
key derivation. Subterranean-SAE, depicted in Figure 3, is designed for authenticated
encryption. Below, a detailed description of Subterranean-SAE is given. With the
description of Subterranean-SAE in mind, it requires little extra effort to follow the
working procedures of Subterranean-deck.

𝑅

32
ext

33

𝑍 ഥ𝑀

Fig. 1: Duplex object

deck

多个消息块使得产生内部碰撞
多个输出块的偏差？

𝑅 𝑅𝜖
8

33 33

𝑅

32

𝑅𝜖

ext ext
32

𝑅𝜖0 𝑅

33

𝑅

33

𝑅𝜖

ഥ𝐾1 ഥ𝐾4 𝑍1ഥ𝑀1 𝑍2ഥ𝑀𝑚

Fig. 2: Subterranean-deck

Security Analysis of Subterranean 2.0 7

32

0 𝑅 𝑅𝜖
8𝑅

ഥ𝐾1

33

𝑅

33

𝑅 𝑅 𝑅𝜖

𝑇1 𝑇4

𝑅 𝑅𝜖
8

ഥ𝐾4

32

𝑍1

ext

ഥ𝑀1

32

𝑍𝑚

ext

33

𝑅

ഥ𝑁4

33

ҧ𝐴𝑛

33 33

ഥ𝑀𝑚

33

𝑅𝜖

ഥ𝑁1

𝑅𝜖

ҧ𝐴1

ext ext
32

𝑅

33

K4之后还有一个空块
Assume adversaries respect nonces.
Linear bias?

Nonce 有多少比特？设计文档中没说

SAE

Fig. 3: Subterranean-SAE

The input of Subterranean-SAE contains a 128-bit key, a 128-bit nonce N , an
associated data (AD) A which is optional, and a message M. The output is composed
of the ciphertext and a 128-bit tag T .

Processing the key. At first, the state is initialized with 0. The 128-bit key is split
into four 32-bit blocks K1, K2, K3, K4 and one empty block ϵ, as the last block
should be strictly shorter than 32 bits. Each block is padded with 10* and the first
four padded blocks are denoted by K

1, K
2, K

3, and K
4. The whole five blocks

are then absorbed one by one through the duplex call.
Processing the nonce. The nonce is split into 32-bit blocks with the last block being

shorter than 32 bits. Pad each block with 10* and sequentially inject the padded
blocks into the state in a series of duplex calls.

Processing the AD. Invoke the duplex eight times, each with an empty message ϵ
absorbed. Then absorb the AD in the same way as processing the nonce.

Processing the message. The message is split into 32-bit blocks with the last block
being shorter than 32 bits. Pad each block with 10*. Process message blocks one
after another by the following steps: extract 32 output bits, invoke the duplex call
to absorb a padded message block and XOR the message block with the extracted
output to get the ciphertext block.

Finalization. Invoke the duplex eight times, each with an empty message ϵ absorbed.
Then invoke the duplex another four times, before each of which a 32-bit output
is squeezed. Concatenate the four 32-bit output blocks to form the 128-bit tag.

2.4 Toy Versions

To facilitate cryptanalysis, we scale down Subterranean 2.0 and define size-reduced
versions. Subterranean 2.0 uses a prime-sized state to avoid the existence of ex-
ploitable symmetries. Therefore, the state size b of a toy cipher also needs to be
prime but smaller than 257. Besides, the factor d used in the π step should have
a large order in Z∗

b and the order should be a multiple of 8 if the same extraction
function Zi = sd4i + s−d4i is used. With these in mind, we choose a prime 971 and
let d be a generator of Z∗

97. In total, there are 32 generators of Z∗
97. In addition, the

ratio of the extraction rate to the state size should remain close. As 32
257 × 97 ≈ 12,

we set the extraction rate of the toy ciphers to 12. Then we have a set of toy ciphers:
Subterranean-m(d) whose parameters are summarized in Table 2. It turns out that
the algebraic properties of θ step remain with the new size of state, as shown in
Appendix A.

1 One may choose other primes of the form 8k + 1 where k ∈ Z+ as well.

8 Ling Song et al.

Table 2: Subterranean 2.0 and its toy versions

Version State size Key size d Extraction rate Output Zi

Subterranean 2.0 257 128 12 32 s124i + s−124i

Subterranean-m(d) 97 48 d ∈ D 12 sd4i + s−d4i

D = {5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, 40, 41, 56, 57, 58, 59, 60, 68, 71, 74, 76, 80,
82, 83, 84, 87, 90, 92}

3 Properties of Subterranean 2.0 and Three Attack Scenarios

In this section, we highlight several important properties of Subterranean 2.0 and
relate them to three attack scenarios.

Subterranean 2.0 is a duplex-based construction and uses bit-oriented operations
that allow good performance in hardware implementation. Besides, the following
properties are interesting in the attacker’s point of view.

Property 1. Subterranean 2.0 employs an extremely simple permutation
in the duplex call. The permutation has only one round and the round function
has algebraic degree only 2. Additionally, the round function operates at bit level
and allows a minimum of sub-structures by using a prime-sized state. That is to
say, the round function is of weak alignment [9].

Property 2. Subterranean 2.0 squeezes output blocks in a way similar to a
stream cipher. Specifically, it outputs 32 bits as the keystream iteratively before
each duplex call. Note that the keystreams can be known in the known-message
model.

Property 3. Subterranean-SAE processes the nonce with multiple duplex
calls. Subterranean-SAE does not load the nonce into its initial state. Because
of its small state size, Subterranean-SAE has to absorb the nonce with multiple
duplex calls and the number of the duplex calls is 5.

Attack scenario 1: keystream biases. When considering Property 1 and Prop-
erty 2 together, one may ask: are the keystreams truly random? One possible way
to distinguish keystreams of a cipher from a random sequence is to utilize linear
biases. Recently, exploitable biases using linear combinations of output bits were
found in the authenticated encryption schemes MORUS [1,18] and AEGIS [15]. It is
important to known if this will happen to Subterranean 2.0.

β−1 = 0

s0

γ0

ext

λ0

Z0

α0 β0
R

s1

γ1

ext

λ1

Z1

α1 β1
R · · ·

· · ·

αn−2 βn−2

R

sn−1

γn−1

ext

λn−1

Zn−1

αn−1 βn−1

R

sn

γn

ext

λn

Zn

αn = 0

Fig. 4: Linear trails for keystream bias evaluation

Security Analysis of Subterranean 2.0 9

To investigate the bias of keystreams, it is to find a sequence of linear masks
(λ0, · · · , λn) for the output blocks Zi, as illustrated in Figure 4, such that

f =
n∑

i=0

λiZ
i

is biased, i.e., the bias

ϵ = Pr(f = 0)− 1
2

,

or the correlation
Cor(f) = Pr(f = 0)− Pr(f = 1) = 2ϵ

is different from zero. To detect a bias with given correlation C, one needs about
C−2 data [14]. Therefore, if a sequence of masks can be found such that (Cor(f))−2

is smaller than the data limit, then the cipher can be distinguished from a random
function. In order to find a good sequence of masks, the same tools for linear crypt-
analysis of block ciphers can be applied with the beginning and the end being set
inactive, i.e., β−1 = 0, αn = 0 as shown in Figure 4. In the middle, the propagation of
linear masks must be compatible with each operation. Summing all approximations:

γis
i + λiZ

i, 0 ≤ i ≤ n,

αis
i + βis

i+1, 0 ≤ i ≤ n− 1,

we will have
∑n

i=0 λiZ
i. For Subterranean 2.0, the correlation of keystreams

∑n
i=0 λiZ

i

is the product of correlations of active ANDs in the involved round functions, as the
extraction function is linear.

The designers kept the above attack in mind while designing Subterranean 2.0
and let the output Z be extracted from special state bits in order to prevent any
bias in four consecutive output blocks. It is believed that using five or more output
blocks eliminates measurable bias in Z. Any evidence that approves or disapproves
of such a belief would be interesting to the community.

Attack scenario 2: state collisions. A similar cryptanalysis in the differential
case would be state collision attacks. As illustrated in Figure 5, the difference of
the internal state is introduced by an input difference ∆X0 (through the nonce,
AD or the message), and cancelled out by ∆Xn after n rounds. Such an attack is
called “LOCAL attack” which was proposed by Khovratovich and Rechberger [11]
and independently found by Wu et al. [22] against ALE [5].

β−1 = 0

∆X0||0

α0 β0
R

∆X1||0

α1 β1
R · · ·

· · ·

αn−2 βn−2

R

∆Xn−1||0

αn−1 βn−1

R

∆Xn||0

αn = 0

Fig. 5: Differential trails for state collisions

10 Ling Song et al.

The state collision may cause forgery attacks. Suppose the internal difference is
introduced by the associated data AD and there exists such a differential trail with
high probability p. Then a forgery attack can be mounted in the following way.

Let N , A0|| · · · ||An and M be the nonce, AD and message to be forged, respec-
tively. The attacker respects nonces and queries (N, A0⊕∆X0|| · · · ||An⊕∆Xn, M) to
the encryption oracle to get the 128-bit tag T . Then, T is a valid tag for (N, A0|| · · · ||
An, M) with probability p. The forgery attack succeeds if it beats the generic one.
In the case of Subterranean 2.0, it means p > 2−128.

As the nonce is processed in multiple duplex calls, it might be possible to find
state collision during the nonce processing phase. If the state collision happens after
absorbing nonce segments N1 and N ′

1 respectively (both are of the same length)
and there are more bits of nonce to be absorbed, say N2, then (N1||N2, A, M) and
(N ′

1||N2, A, M) lead to a state collision and further to the same tag T . As a result,
for any A′ and M ′, the attacker can make forgeries by using a new N2 and keeping
the same N1 and N ′

1.
In spite of the importance of the security requirement for resisting state collision

attacks, such a differential analysis is missing, either in the specification of Subter-
ranean 2.02 or in the literature.

Attack scenario 3: state recovery in the nonce-misuse setting. Subterranean-
SAE takes a nonce as input and strongly relies on nonce uniqueness for security. Even
though no security claim was made in the nonce-misuse setting, it is believed by the
designers in [7] that the state recovery attack is non-trivial.

In nonce-misuse scenarios or when unwrapping invalid cryptograms returns
more information than a simple error, we make no security claims and an
attacker may even be able to reconstruct the secret state. Nevertheless we
believe that this would probably a non-trivial effort, both in attack complexity
as in ingenuity. .

Recall Property 1 that Subterranean 2.0 uses the single-round permutation with
algebraic degree 2 in the duplex call. In the setting that a nonce can be used more
than once, one may inject a difference ∆M

i at si in the message processing phase as
shown in Figure 6, one will obtain some linear relations of the state difference ∆si+1

through the output difference ∆Zi+2 as each output bit is the sum of two internal
bits. More importantly, ∆si+1 is linear in bits of si due to Fact 1 for quadratic
Boolean functions. Therefore, ∆Zi+2 will be linear in si as well, and thus some bits
of si will be leaked by observing such one-round differentials.

Fact 1 Let f : Fn
2 → F2 be a Boolean function with algebraic degree 2. Given the

input difference ∆x, the derivative of f is ∆f := f(x) + f(x + ∆x) can be expressed
linearly by the input bits.

Example 1 Let f : F2
2 → F2 and f(x) = x0 ·x1. Suppose the input difference is given

as ∆x = (∆x0, ∆x1). Then ∆f = f(x)+f(x+∆x) = x0·x1+(x0+∆x0)·(x1+∆x1) =
∆x1 · x0 + ∆x0 · x1 + ∆x0 ·∆x1.

2 The designers searched differential trails for the permutation with three rounds and pro-
vided bounds for the probability of differential trails with up to eight rounds. Such differential
analysis is different from the differential analysis tailored for state collisions where there is a
difference injection before each round.

Security Analysis of Subterranean 2.0 11

ext

Zi+1

si

M
i

R

M
i+1

si+1

ext

Zi+2

R

M
i+2

si+2

ext

Zi+3

Fig. 6: Notations for state recovery in the nonce-misuse setting

Even though Subterranean-SAE aims for use cases where nonce uniqueness can be
guaranteed, it would be interesting to know what the complexity of state recovery
would be when nonce uniqueness is lost.

In the following two sections, the three potential attacks pointed out here will
be investigated. Section 4 looks into differential and linear cryptanalysis regarding
keystream biases and state collisions respectively and Section 5 examines state re-
covery attack in the nonce-misuse setting.

4 Differential and Linear Analysis Tailored for Keystream Biases and
State Collisions

In this section, we first specify the issue of dependency in the χ operation of the
round function of Subterranean 2.0. We then point out the resemblance between the
χ operation and the round function of the SIMON block cipher [2]. Inspired by the
existing work on SIMON [12], we propose explicit formulas for computing the exact
correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-
linear operations. Finally, we construct our models for searching differential/linear
trails of Subterranean 2.0 tailored for keystream biases and state collisions.

4.1 Dependency of AND Operations

In the design of Subterranean 2.0, the non-linear layer χ of the round function
exploits AND operations. Specifically, state bits si−1 + 1, si are fed into one AND
operation and si +1, si+1 into another. Unlike S-box based ciphers where the number
of active S-boxes determines the upper bound of differential/linear probability, the
number of active AND operations provides not much information for Subterranean
2.0. The reason is the dependency between AND operations.

Let us explain a bit more with an example of two AND operations: y0 = x0 · x1
and y1 = x1 · x2. Suppose the differentials of the two AND operations are (1, 0)→ 1
and (0, 1) → 0. According to the difference distribution table 3, the differential
probability of the two AND operations is 2

4 ×
2
4 = 2−2 if the two AND operations

are independent. However, the two AND operations share an input bit x1 and thus
not independent. Check that the solutions for the two differentials (1, 0) → 1 and

12 Ling Song et al.

(0, 1) → 0 are (x0, x1) ∈ {(0, 1), (1, 1)} and (x1, x2) ∈ {(0, 0), (0, 1)}, which means
x1 = 1 and x1 = 0 should hold simultaneously. This is a contradiction. In the case
where the differentials for the two AND operations are (1, 0) → 1 and (0, 1) → 1,
there is no such contradiction and the two differentials hold when x1 = 0, meaning
the probability is 2−1 instead of 2−2.

Table 3: Difference distribution table (left) and linear approximation table (right) of
the AND operation

XXXXXXXX∆x0, ∆x1

∆y 0 1

0, 0 4 0
0, 1 2 2
1, 0 2 2
1, 1 2 2

XXXXXXXXΓ x0, Γ x1

Γ y 0 1

0, 0 2 1
0, 1 0 1
1, 0 0 1
1, 1 0 -1

The dependency between AND operations has a similar effect in linear analysis.
Suppose the linear masks are (0, 1)→ 1 and (1, 1)→ 1 for the two AND operations.
This means x0 · x1 and x1 · x2 are approximated with x1 and x1 + x2 respectively.
Treating them independently, we get correlation −2−1 × 2−1 = −2−2 for the two
AND operations according to the linear approximation table 3. While considering
together, x0 · x1 + x1 · x2 = x1(x0 + x2) is approximated with x1 + x2, resulting in
a zero correlation. In the case where the linear masks are (0, 1)→ 1 and (1, 0)→ 1,
x0 · x1 + x1 · x2 = x1(x0 + x2) is approximated with x1, leading to a correlation 2−1

instead of 2−2. The case of two active AND operations is summarized in Example 2.

Example 2 Let f(x0, x1, x2) = x0 ·x1 +x1 ·x2 +L(x0, x1, x2) = x0 ·x1 +x1 ·x2 +u ·
x0 + v ·x1 + w ·x2 be a Boolean function and u, v, w ∈ F2 are constants. If u + w = 0,
then Cor(f) = 2−1; otherwise, Cor(f) = 0.

Besides Subterranean 2.0, chaining AND operations also make up the non-linear
layer of the round function in authenticated encryption schemes like MORUS [20],
TinyJAMBU [21] and block ciphers like SIMON [2], etc. Handling the dependency
among the chaining AND operations is a challenging task. Taking all the dependency
into account usually makes the search for differential/linear trails inefficient or even
infeasible. In the case where there exist very sparse differential/linear trails such that
there is no adjacent active AND operations, treating AND operations independently
works well [18,19]. Recently, effort has been made to construct models that partially
handles the dependency of the AND operations [17]. However, the methods which
do not fully tackle the dependency are not applicable to Subterranean 2.0 whose
differential/linear trails for state collisions or keystream bias of Subterranean 2.0 are
relatively dense. This is confirmed by experiments where the trails obtained with
these methods are almost invalid. Moreover, inexact models are unable to provide
reliable bounds of differential/linear probability. Consequently, the dependency must
be taken into consideration for evaluation of Subterranean 2.0 against state collision
attacks and keystream bias.

Security Analysis of Subterranean 2.0 13

4.2 Represent χ as a SIMON-like Function

Subterranean 2.0 uses bit-wise operations. In particular, in the χ step, for 0 ≤ i < b,

si ← si + si+1 · si+2 + si+2.

We observe that the χ step bears a strong resemblance to SIMON’s round func-
tion. SIMON [2] is a family of lightweight block ciphers and follows the Feistel con-
struction. Its round function has the following form

(x ≪ α)⊙ (x ≪ β)⊕ (x ≪ γ),

where x ≪ i corresponds to a cyclic left shift of word x by i bits, ⊙ and ⊕ denote the
bit-wise AND and XOR operations respectively. We notice that χ can be re-written
as a SIMON-like function:

s← s⊕ (s ≫ 1)⊙ (s ≫ 2)⊕ (s ≫ 2).

Therefore, the techniques and tools in [12] for searching differential/linear trails of
SIMON serves as a good starting point for differential and linear cryptanalysis of
Subterranean 2.0.

4.3 Linear Analysis

In [12], the authors proved that the input mask α and output mask β for the operation
x⊙(x ≪ 1) should satisfy that α ∈ U⊥

β , where Uβ = {y|β⊙(y ≪ 1)⊕(β⊙y) ≫ 1}.
Inspired by this, we further propose explicit formulas for calculating the correlation
of linear trails of Subterranean 2.0, which are also applicable to other ciphers that
exploit chains of AND operations.

In linear cryptanalysis of such ciphers, there are blocks of chained active AND
operations where the correlation can be calculated for each block independently.
Depending on the number of active AND operations involved in a block, there are
two cases which are covered by Lemma 1 and 2. For Subterranean 2.0, k in the two
lemmas is 1. When the number n of active AND operations in a block is odd, i.e.,
n = 2t − 1, t > 0, any approximation is valid and the correlation is 2−t. When the
number n of active ANDs is even, i.e., n = 2t, t > 0, the approximation should
satisfy a condition cond as stated in Lemma 2. This is a one-bit condition and if it
holds, the correlation is 2−t. In other words, given a random approximation for an
even block, it is valid with probability 1

2 . In search of linear trails, it is the key point
to make sure this condition holds for all even blocks. Without this condition being
imposed, the obtained linear trail will be invalid with high chance when the trail is
dense.

Lemma 1 Let f(x) = x0xk +xkx2k + · · ·+x(2t−2)kx(2t−1)k +L(x0, xk, · · · , x(2t−1)k)
be a Boolean function where L is linear and t > 0. Then |Cor(f)| is 2−t.

Proof The quadratic part of f(x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · ·+ x(2t−3)k(x(2t−4)k + x(2t−2)k) + x(2t−2)kx(2t−1)k.

14 Ling Song et al.

Apply the following transformation:

y(2j−1)k = x(2j−1)k, 1 ≤ j ≤ t

y(2j)k = x(2j)k + x2(j+1)k, 0 ≤ j ≤ t− 2
y(2t−2)k = x(2t−2)k,

which is equivalent to the transformation x = Ay:

x(2j−1)k = y(2j−1)k, 1 ≤ j ≤ t

x(2j)k =
t∑

i=j

y(2i)k, 0 ≤ j ≤ t− 1

Then one can obtain

g(y) = f(Ay) = y0yk + y2ky3k + · · ·+ y2(t−1)ky(2t−1)k + L′(y0, yk, . . . , y(2t−1)k).

Since the quadratic terms of g contains all yjk, 0 ≤ j ≤ 2t − 1, |Cor(g)| = 2−t.
Therefore, |Cor(f)| = 2−t, as

Cor(g) = 1
22t

∑
y∈F2t

2

(−1)g(y) = 1
22t

∑
y∈F2t

2

(−1)f(Ay) = 1
22t

∑
y∈F2t

2

(−1)f(y) = Cor(f).

⊓⊔

Lemma 2 Let f(x) = x0xk+xkx2k+· · ·+x(2t−2)kx(2t−1)k+x(2t−1)kx2tk+L0(x0, x2k

· · · , x2tk)+ L1(xk, x3k, · · · , x(2t−1)k) be a Boolean function where L0, L1 are linear
and t > 0. Let cond be: L0 contains an even number of terms. Then |Cor(f)| is 2−t

if cond holds and 0 otherwise.

Proof The quadratic part of f(x) can be re-written as

xk(x0 + x2k) + x3k(x2k + x4k) + · · ·+ x(2t−1)k(x(2t−2)k + x(2t)k)

Apply the following transformation:

y(2j−1)k = x(2j−1)k, 1 ≤ j ≤ t

y(2j)k = x(2j)k + x2(j+1)k, 0 ≤ j ≤ t− 1
y(2t)k = x(2t)k,

which is equivalent to the transformation x = Ay:

x(2j−1)k = y(2j−1)k, 1 ≤ j ≤ t− 1 (1)

x(2j)k =
t∑

i=j

y(2i)k, 0 ≤ j ≤ t (2)

Then one can obtain

g(y) = f(Ay) = y0yk + y2ky3k + · · ·+ y2(t−1)ky(2t−1)k + L(y0, yk, . . . , y(2t)k).

Obviously, Cor(g) = 0 if L(y0, yk, · · · , y(2t)k) contains the term y(2t)k, otherwise
|Cor(g)| = 2−t. And L(y0, yk, · · · , y(2t)k) has the term y(2t)k if and only if L0(x0, x2k,
. . . , x(2t)k) contains an odd number of terms according to Eq. (2). ⊓⊔

Security Analysis of Subterranean 2.0 15

Technically, for an even block with 2t, t > 0 chained active AND operations, it
requires t+1 iterations to check the condition cond. Hence, the longer an even block
is, the more time-consuming for the checking. As the state size of Subterranean 2.0
is 257 which is relatively large when compared to block ciphers like SIMON, the
length of even block can reach 256 theoretically. In order to speed up the search
for linear trails of Subterranean 2.0, it would be useful to identify a tighter upper
bound of block length ℓ for each round. This can be done as follows when the range
of correlation or the target correlation is given.

1. For round r, set the target correlation C, time limit D and set the block length
as state size, i.e., ℓ = b
(a) For all possible positions for a block with ℓ chained ANDs:

i. Set the ℓ ANDs active. If a solution is found or the searching time exceeds
D, exit.

(b) ℓ = ℓ− 1 and go to (a).

We then propose two models:

1. Set ℓ to a reasonable value for all rounds, e.g., ℓ = 6. This model is used for
searching linear trails with good correlations.

2. For each round, set ℓ to the upper bound found by the above procedure. This
model is used for providing tighter lower bounds of correlation of linear trails.

We apply these two models to Subterranean 2.0 and Subterranean 2.0-m(d). The
results in Table 4 are obtained. Note that, the search space of linear trails over n
blocks covers the search space of linear trails over less blocks.

– For Subterranean-m(d)
– The correlations of linear trails become stable when four blocks are involved,

as shown in Figure 7.
– When d = 58, there exists a linear trail over three output blocks with corre-

lation 2−23, as shown in Table 9. This means d = 58 is not a safe parameter
for Subterranean-m.

– For Subterranean 2.0
– There does not exist any linear trail over four blocks with correlation higher

or equal to 2−49.

When d = 58, the curve in Figure 7 goes significantly low. We conjecture that it
may come from the interplay between operations π and extraction/injection which
depend on d, and other operations, i.e., χ, ι, and θ. The indices used in χ, ι, and
θ are computed through additions in Z. Conversely, the indices used in π and ex-
traction/injection are computed through multiplications in Z∗ (except 0). When d
varies, we have different combinations of these two parts and each combination is
unique. It may be possible that there are good linear trails for certain combination.
A similar conjecture could be made for the differential case that will be discussed
subsequently.

4.4 Differential Analysis

In differential cryptanalysis of Subterranean 2.0, we adapt Theorem 1 from [12] and
then apply it to Subterranean 2.0.

16 Ling Song et al.

Table 4: Correlation of keystreams

Version (|s|, |K|) |Zi| #Zi min − log2(Cor)
Subterranean-SAE (257, 128) 32 ≤ 4 (49, 90]
Subterranean-m (97, 48) 12 ≤ 5 23 ∼ 34

Theorem 1 ([12]) Let f(x) = (x ≪ 1) ⊙ x be a Boolean function on Fn
2 . The

probability that difference α goes to difference β through f is

Pr(α f−→ β) =

2−n+1 α = 1 and wt(β) ≡ 0 mod 2,

2−wt(vb+db) α ̸= 1 and β ⊙ vb = 0 and ((β ≪ 1)⊕ β)⊙ db = 0,

0 otherwise,

where vb = (α ≪ 1) ∨ α, db = α⊙ (α ≪ 1)⊙ (α ≪ 2) and wt(x) is the Hamming
weight of x.

The original Theorem 1 considers bit vector x of an even number of bits. When
the state size is odd, the condition for the first case should be adapted to wt(β) ≡ 1.
Based on Theorem 1, the results in Table 5 are obtained. Also, the search space of
differential trails using n blocks covers the search space of differential trails using
less blocks.
– For Subterranean-m(d)

– The probabilities of differential trails become stable when five blocks are
involved, as shown in Figure 8.

– When d = 41, there exists a differential trail using four input blocks with
probability 2−47, as shown in Table 8. This means d = 41 is not a safe
parameter for Subterranean-m.

– For Subterranean 2.0
– There does not exist any differential trail over four blocks with probability

higher or equal to 2−108.

Table 5: Result of searching differential trails for state collisions

Version (|s|, |K|) |∆M
i| #∆M

i min − log2(p)
Subterranean-SAE (257,128) 32+1 ≤ 4 (108, 180]
Subterranean-m (97,48) 12+1 ≤ 6 47 ∼ 64

4.5 Impact on Subterranean-deck and Subterranean-SAE

As between extractions or injections, there is only one round, there is little clustering
effect in the differential/linear analysis of Subterranean 2.03. Thus the security of
Subterranean 2.0 against the linear attack and the state collision attack can be
almost deduced from optimal differential/linear trails.

3 If there are inactive output (resp. input) blocks in between, there is also clustering effect
in linear (resp. differential) analysis. For example, in the linear trail in Table 9, there are active
bits in Z0 and Z2 but Z1. In this case, two solutions form a linear hull. However, the involved
input or output blocks are continuously active in most cases.

Security Analysis of Subterranean 2.0 17

Bias of keystreams. For both Subterranean-deck and Subterranean-SAE, the se-
curity is claimed against attackers that are limited to 296 data blocks. Thus a useful
linear trail should have correlation higher than 2−48. In the specification of Subter-
ranean 2.0 [8], there is a statement below.

This provides evidence that there is probably no bias for masks Z of less than
5 blocks and we believe there is no bias in Z measurable from output sequences
of 296 blocks or less.

Our linear analysis is twofold: we find that the first half of the statement is not a
reasonable conjecture and we support the second half of the statement with detailed
experiments. Our results show that there exist linear trails over three or four blocks
for both Subterranean 2.0 and Subterranean-m. Within four keystream blocks, lin-
ear trails with correlation higher than 2−48 do not exist for Subterranean 2.0. The
experiments on the toy cipher Subterranean-m show that there are no better linear
trails when we increase the number of keystream blocks to five, which gives some
confidence that there is no better linear trails as well for Subterranean 2.0 over more
output blocks. In short, our results support the designers’ claim on the security
against linear cryptanalysis.

The designers’ conclusion that there is probably no bias over less than five blocks
lies in an analysis considering a single active output bit. Recall that the expression
of the output block

Zt+1
i = st+1

124i + st+1
−124i

and the round function

st+1
j = st

i + st
i+3 + st

i+8 + (st
i+1 + 1) · st

i+2 + (st
i+4 + 1) · st

i+5 + (st
i+9 + 1) · st

i+10

where i = 12j. It can then be obtained that Zt+1
i = st

124i+1 + st
−124i+1 + q(st). Note

that if there is an isolated term of degree 1 in the approximation, the correlation
will be zero. As 124i+1 and −124i+1 are not elements of the subgroup

⟨
124⟩

, they
cannot be cancelled out by Zt

j . Based on this, the designers reached the conclusion
about the length of linear trails of Subterranean 2.0. Nevertheless, state bits outside⟨
124⟩

, like st
124i+1 and st

−124i+1 , may be cancelled out when there are multiple active
bits in the output block. Let us take the 3-block linear trail of Subterranean-m(58)
(see Table 9) as an example. In this linear trail, both Z2

0 and Z2
1 , i.e., the first and

the second bits of the third output block, are active. According to the expressions
below, we can see that s1

−58 is cancelled out.

Z2
0 = s2

584·0 + s2
−584·0

= s1
58 + s1

60 + s1
61 + s1

63 + s1
66 + s1

68 + s1−58 + s1
41 + s1

42 + s1
44 + s1

47 + s1
49 + q1(s1),

Z2
1 = s2

584·1 + s2
−584·1

s1
585 + s1

62 + s1
63 + s1

65 + s1
68 + s1

70 + s1
−585 + s1−58 + s1

40 + s1
42 + s1

45 + s1
47 + q2(s1).

The full expression of the approximation can be found in Table 10. Consequently,
treating the active bits globally, the invoked active bits located outside the group⟨
124⟩

maybe cancelled out by each other. Thus, it does not necessarily take four
rounds to make them fall back into

⟨
124⟩

. More importantly, concrete linear trails
with three or four blocks are found for both Subterranean 2.04 and Subterranean-m.

4 As the obtained linear trails of Subterranean 2.0 have a very low correlation, the details
of the linear trails are not included in the paper

18 Ling Song et al.

State collisions. State collisions can be used for probabilistic forgeries as long as
the differential probability p > 2−|K| when the tag length is the same as the key
length. That is, the forgery attack is not constrained by the data limit. Searching
differential trails for Subterranean 2.0 is hard due to the large internal state. The
experiments on the toy cipher Subterranean-m show that there is only one value for
the parameter d such that the state collision attack is possible. When the injection
rate of Subterranean-m is reduced to a smaller value, say 8, all values of d allow
resistance against the state collision attack. It is very likely that these results of
Subterranean-m reflect the security of Subterranean 2.0 against the state collision
attack due to similar designs.

5 Key Recovery of Subterranean-SAE in the Nonce-misuse Setting

In this section, it is shown that a practical state recovery attack can be mounted with
only 88 32-bit blocks and 20 repetitions of nonce by one-round differential analysis.

5.1 One-round Differential Analysis

In the duplex call of Subterranean 2.0, a single-round permutation is used. As the
round function has algebraic degree only 2, the output difference of the round func-
tion will be linear in the input. So is the difference of the following keystream block.
Let us explain the idea with an example as follows.

Example 3 Suppose one bit difference is injected at position 1 of si (see Figure 6).
After one round, the bits at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] of si+1

have difference [si
2, si

2, si
2, si

0 + 1, 1, si
0 + 1, si

0 + 1, 1, 1] and there is no difference at
other positions. From the extraction, we have ∆Zi+2

8 = ∆si+1
64 + ∆si+1

193 = si
2. Thus

obtain one state bit si
2 by observing ∆Zi+2.

This means, in the message processing phase, if a difference is injected at si,
some state bits of si can be recovered by observing the output difference after one
round. We call this one-round differential of Subterranean 2.0. As can be seen that
the recovered bits are among the neighbouring bits of the injected difference. For
Subterranean-SAE, the number of bit positions for injection is 32. Further analysis
shows that only 41 neighbouring bits can be recovered by one-round differentials.

5.2 Nested One-round Differential Analysis

To enlarge the number of state bits that can be recovered, we propose a nested one-
round differential analysis which exploits the output difference in two consecutive
rounds. The core idea is that injecting difference at si will lead to differences of
si+1 at positions that may fall outside the set of 32 injection positions. Therefore,
besides injecting difference through the input block, we can also utilize the differ-
ence generated by the previous round by treating the previous round as a difference
injector.

It is known that the difference after two rounds is not linear in the input bits
anymore. However, by our nested one-round differential analysis, some bits of the

Security Analysis of Subterranean 2.0 19

internal state can still be recovered as long as the input difference to the second
round is sparse. Next, we illustrate the nested one-round differential by Example 4.

Example 4 Suppose one bit difference is injected at position 1 of si (see Figure 6).
Treat the second round independently with input difference [si

2, si
2, si

2, si
0 + 1, 1, si

0 +
1, si

0 + 1, 1, 1] at positions [0, 64, 85, 107, 150, 171, 192, 214, 235] based on Example 3.
By observing the difference of the output block after the second round ∆Zi+3, retrieve
relations between si+1, si

0, si
2 through ∆Zi+3, and select the linear ones which are:

∆Zi+3
1 = s0

2,

∆Zi+3
3 = s0

0 + 1,

∆Zi+3
8 = s0

2,

∆Zi+3
12 = s1

234 + 1,

∆Zi+3
13 = s1

149 + 1,

∆Zi+3
14 = s0

2,

∆Zi+3
16 = s0

0 + 1,

∆Zi+3
22 = s1

213 + 1,

∆Zi+3
23 = s1

215.

Therefore, 6 bits: s0
0, s0

2, s1
149, s1

213, s1
215, s1

234 can be recovered.

5.3 Key Recovery

In our attack, we utilize 9 types of difference injections No. 1 ∼ 9 as listed in Table 6,
each of which recovers a set of bits in si. Using 19 injections of difference in total,
131 bits information of s1 and 128 bits information of s2 can be known, as illustrated
in Table 7. With this information, the full state s1 can be recovered as follows.

Guess another 26 bits of s1, as listed in the last row of Table 7. Then all bits of
s2 can be expressed in 257-131-26 = 100 unknowns and there remain 26 quadratic
terms composed of these unknowns. When the 26 quadratic terms are treated as
independent unknowns, there will be 100+26 unknown. As 128 bits of s2 are known,
a system of 128 linear equations in 126 unknowns can be constructed and solved
easily. There may be multiple solutions for s1, most of which are not the actual one
and can be discarded by exploiting unused output bits (without increasing the data
complexity). The time complexity of recovering the full s1 is dominated by solving
226 systems, each of which has 128 linear equations and 126 unknowns.

Recover the key Once the unique state s1 is identified, the 128-bit key can be recov-
ered by a guess-and-determine procedure as in [13]. First, with s1, the state after
injecting K4 can be computed. As K4 is unknown, only 225 bits of the state before
the injection are known. Then, guess 32 bits of K1 and 3 bits of K2 at positions
[2, 136, 189] so that the state after injecting K3 are linear in the remaining 29 bits
of K2 and the full 32 bits of K3. Hence, the 225 known bits before injecting K4 are
quadratic in these 61 key bits. A detailed analysis shows that the expressions of the
225 known bits contain at most 128 quadratic terms. Again if we treat these 128

20 Ling Song et al.

Table 6: Difference injection and state recovery

No. Pos. of si with dif-
ference

Recovered bits #Recovered bits

1 15, 213, 223, 211,
134, 128, 35, 234,
70, 190, 184, 111,
165, 169, 11, 4, 22

si
5, si

12, si
16, si

21, si
34, si

69, si
71, si

110, si
112, si

133, si
129,

si
135, si

164, si
166, si

168, si
185, si

189, si
191, si

210, si
212,

si
214, si

224, si
233, si

235, si
3 + si

10, and 5 extra bits
si

241, si
223, si

128, si
68, si

22

30 bits of si

2 137, 140, 30, 225,
197, 189, 95, 2,
256, 249

si
1, si

3, si
29, si

94, si
96, si

136, si
139, si

190, si
198, si

196, si
226,

si
250, si

255, si+1
169 + si+1

172 and 4 extra bits si
256, si

121,

si
67, si

2

17 bits of si, 1
bit of si+1

3 136, 176, 1 si
177, si

2, si
137, si

0, si
175, si+1

234 , si+1
181 , si+1

215 , si+1
213 , si+1

160 ,

si+1
162 , si+1

13 + si+1
249 and 3 extra bits si+1

23 , si+1
44 ,

si+1
95

5 bits of si, 10
bits of si+1

4 137, 64 si
63, si

138, si+1
246 , si+1

92 , si+1
76 , si+1

248 , si+1
154 , si+1

74 , si+1
55 ,

si+1
156 and 2 extra bits si+1

11 , si+1
165

2 bits of si, 10
bits of si+1

5 4,22 si
23, si+1

172 , si+1
170 , si+1

24 , si+1
149 , si+1

87 , si+1
217 , si+1

85 , and 1
extra bit si

234

2 bits of si, 7
bits of si+1

6 11, 140, 241 si
242, si

240, si+1
171 , si+1

192 , si+1
107 , si+1

194 , si+1
254 , si+1

182 and 2
extra bits si

15, si
17

4 bits of si, 6
bits of si+1

7 17,70,35,165 si
36, si+1

66 , si+1
109 , si+1

238 , si+1
79 , si+1

141 , si+1
143 , si+1

47 +si+1
221 ,

si+1
49 + si+1

219

1 bit of si, 8 bits
of si+1

8 211, 95, 169 si
170, si+1

201 , si+1
116 , si+1

40 , si+1
229 , si+1

163 , si+1
114 , si+1

104 , si+1
123

and 1 extra bit si+1
134

1 bit of si, 9 bits
of si+1

9 256,189, 223 si
222, si+1

103 , si+1
193 , si+1

108 , si+1
106 , si+1

105 , si+1
81 , si

0 · si+1
43 +

si+1
39 and 3 extra bits si

35, si+1
64 , si+1

176

2 bits of si, 9
bits of si+1

quadratic terms as independent unknowns, then there will be a system of 61+128
unknowns and 225 linear equations. The solution of the system provides information
of (K1, K2, K3). When (K1, K2, K3) is obtained, recovering K4 is trivial. As a re-
sult, recovering the key from s1 requires to solve 235 systems, each of which has 225
linear equations in 189 unknowns. In summary, the key can be recovered practically
if the same nonce repeats 20 times.

Relation to the extraction function. In the squeezing phase, Subterranean 2.0 outputs
a block of 32 bits, each of which is the sum of two state bits: Zi = s124i + s−124i ,
for 0 ≤ i < 32. Instead of outputting state bits directly, this extraction function
is meant to frustrate state recovery attacks [10] in the nonce respected setting. In
our one-round differential analysis, this extraction function allows more state bits
involved in the output block and thus more state bits can be recovered. For example,
if we set Zi = s124i , for 0 ≤ i < 32, type 1 injection of difference will lead to a
recovery of 17 bits versus 30 bits under the original extraction and 20 state bits
can be recovered with ordinary one-round differential analysis versus 41 state bits
under the original extraction. Note that our one-round differential analysis requires
a nonce-misuse setting.

Comparison to the work by Liu, Isobe and Meier In [13], Liu, Isobe and Meier pre-
sented a practical state-recovery attack in the nonce-misuse setting with 213 32-bit

Security Analysis of Subterranean 2.0 21

Table 7: State recovery with 19 injections of difference under the nonce-misuse setting

Recovered bits of s1 Recovered bits of s2

No.
3 ∼ 9
at s0

59 bits: s1
234, s1

181, s1
215, s1

213, s1
160, s1

162,

s1
13+s1

249, s1
23, s1

44, s1
95, s1

246, s1
92, s1

76, s1
248,

s1
154, s1

74, s1
55, s1

156, s1
11, s1

165, s1
172, s1

170,

s1
24, s1

149, s1
87, s1

217, s1
85, s1

171, s1
192, s1

107,

s1
194, s1

254, s1
182, s1

66, s1
109, s1

238, s1
79, s1

141,

s1
143, s1

47 +s1
221, s1

49 +s1
219, s1

201, s1
116, s1

40,

s1
229, s1

163, s1
114, s1

104, s1
123, s1

134, s1
103, s1

193,

s1
108, s1

106, s1
105, s1

81, s1
64, s1

176, si
0·s1

43+s1
39

(as s0
0 can be known)

No.
1 ∼ 9
at s1

60 bits: s1
5, s1

12, s1
16, s1

21, s1
34, s1

69, s1
71, s1

110,

s1
112, s1

133, s1
129, s1

135, s1
166, s1

168, s1
185, s1

189,

s1
191, s1

210, s1
212, s1

214, s1
224, s1

233, s1
235, s1

3 +
s1

10, s1
241, s1

223, s1
128, s1

68, s1
22, (s1

164), s1
1, s1

3,

s1
29, s1

94, s1
96, s1

136, s1
139, s1

190, s1
198, s1

196,

s1
226, s1

250, s1
255, s1

256, s1
121, s1

67, s1
2s1

177, s1
2,

s1
137, s1

0, s1
175, s1

63, s1
138(s1

234), (s1
23), s1

242,

s1
240, s1

15, s1
17, s1

36, (s1
170), s1

222, s1
35

60 bits: s2
169 + s2

172, s2
234, s2

181, s2
215, s2

213,

s2
160, s2

162, s2
13 + s2

249, s2
23, s2

44, s2
95, s2

246,

s2
92, s2

76, s2
248, s2

154, s2
74,s2

55, s2
156, s2

11, s2
165,

s2
172, s2

170, s2
24, s2

149, s2
87, s2

217, s2
85, s2

171,

s2
192, s2

107, s2
194, s2

254, s2
182, s2

66, s2
109, s2

238,

s2
79, s2

141, s2
143, s2

47 + s2
221, s2

116, s2
201, s2

40,

s2
49 +s2

219, s2
229,s2

163, s2
114, s2

104, s2
123, s2

134,
s2

103, s2
193, s2

108, s2
106, s2

105, s2
81, s2

64, s2
176,

s1
0 · s2

43 + s2
39

No.
1 ∼ 3
at s2

52 bits: s2
5, s2

12, s2
16, s2

21, s2
34, s2

69, s2
71, s2

110,

s2
112, s2

133, s2
129, s2

135, s2
164, s2

166, s2
168, s2

185,

s2
189, s2

191, s2
210, s2

212, s2
214, s2

224, s2
233, s2

235,

s2
3+s2

10, s2
241, s2

223, s2
128, s2

68, s2
22, s2

1, s2
3, s2

29,

s2
94, s2

96, s2
136, s2

139, s2
190, s2

198, s2
196, s2

226,

s2
250, s2

255, s2
256, s2

121, s2
67, s2

2, s2
177, s2

2, s2
137,

s2
0, s2

175

In to-
tal

1 additional bit from No. 9 injection:
s1

31 = s2
76 +s2

201 +s2
196 +s1

94 +s1
226 ∗s2

189 +
s1

226 + 1 + ∆Z2
5 + ∆Z2

15. Thus, 120 bits
plus 11 remaining extraction equations

112 bits plus 16 remaining extraction
equations

Guess 26 bits: s1
49, s1

47, s1
8, s1

184, s1
60, s1

43, s1
111, s1

19, s1
26, s1

51, s1
53, s1

57, s1
62, s1

83, s1
89, s1

98, s1
100, s1

118,

s1
125, s1

131, s1
152, s1

158, s1
179, s1

203, s1
205, s1

207, and there remains only 26 quadratic terms in
the expressions of s2.

blocks based on conditional cube analysis. It was exploited that when the condi-
tion holds, the sum of over a set of outputs will be zero. They mainly utilized a
2-dimensional set to recover one bit, which means 4 repetitions of nonce are required
for retrieving 1 state bit. On the contrary, as many as 30 state bits can be recov-
ered with 2 repetitions of nonce by a one-round differential. Therefore, the data
complexity is much lower in our one-round differential analysis.

6 Concluding Remarks

In this paper, we investigated the “single-round permutation” in various phases of
Subterranean 2.0 and identified three related attack scenarios that deserve further
analysis: keystream biases in the keyed squeezing phase, state collisions in the keyed
absorbing phase, and one-round differentials in the message processing phase when
a nonce is reused.

To carry out a study on the security in the first two attack scenarios, it is nec-
essary to search for differential/linear trails under special constraints. First, we pro-
posed a set of toy versions of Subterranean 2.0: Subterranean-m(d) to understand

22 Ling Song et al.

Subterranean 2.0 with easier effort. Besides, we observed a resemblance between
the non-linear layer of the round function of Subterranean 2.0 and SIMON’s round
function. Such resemblance offers a good starting point for differential/linear anal-
ysis of Subterranean 2.0. Inspired by the existing work on SIMON, we proposed
explicit formulas for computing the correlation of linear trails of ciphers that exploit
chaining AND operations like Subterranean 2.0, and built our own models for Sub-
terranean 2.0. The experiments on Subterranean-m(d) show that for most choices
of d, Subterranean-m is secure against linear attacks and state collision attacks, but
Subterranean-m(58) (resp. Subterranean-m(41)) is vulnerable to linear attacks (resp.
state collision attacks). It is very likely that these results of Subterranean-m reflect
the security of Subterranean 2.0 due to similar designs. We also found a flaw in the
designers’ reasoning of Subterranean 2.0’s linear bias but supported the designers’
claim that there is no bias measurable from 296 data blocks or less. Due to the time-
consuming search for differential trails of Subterranean 2.0, its security against the
state collision attack in keyed modes still remains an open question.

Finally, we observed that one-round differentials allow to recover state bits in the
nonce-misuse setting. In order to recover a sufficient number of state bits, we further
proposed nested one-round differentials where a one-round differential is prepended
to another, acting as a difference injector. As a result, a practical state recovery
attack can be achieved with only 20 repetitions of the nonce and 88 blocks of data.
Our analysis shows that Subterranean-like constructions with quadratic single-round
permutation must be used carefully in practice as the security crashes when nonce
uniqueness is lost.

Acknowledgements The authors would like to thank anonymous reviewers for their helpful
comments and suggestions. The work of this paper was supported by the National Natural
Science Foundation of China (Grants 62022036, 61802399, 61802400, 61732021 and 61772519),
the National Key Research and Development Program of China (Grant 2018YFA0704704),
the Youth Innovation Promotion Association CAS, Nanyang Technological University in Sin-
gapore (Grant 04INS000397C230), and Singapore’s Ministry of Education (Grants RG91/20
and MOE2019-T2-1-060).

References

1. Ashur, T., Eichlseder, M., Lauridsen, M.M., Leurent, G., Minaud, B., Rotella, Y., Sasaki,
Y., Viguier, B.: Cryptanalysis of MORUS. In: T. Peyrin, S.D. Galbraith (eds.) Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia, December
2-6, 2018, Proceedings, Part II, Lecture Notes in Computer Science, vol. 11273, pp. 35–64.
Springer (2018). DOI 10.1007/978-3-030-03329-3_2. URL https://doi.org/10.1007/
978-3-030-03329-3_2

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON
and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report
2013/404 (2013)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge Functions.
Ecrypt Hash Workshop 2007 (May 2007) (2007). URL http://www.csrc.nist.gov/pki/
HashWorkshop/Public_Comments/2007_May.html

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single-Pass
Authenticated Encryption and Other Applications. In: A. Miri, S. Vaudenay (eds.) SAC
2011, LNCS, vol. 7118, pp. 320–337. Springer (2011). DOI 10.1007/978-3-642-28496-0_19.
URL https://doi.org/10.1007/978-3-642-28496-0_19

5. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-Based
Lightweight Authenticated Encryption. In: S. Moriai (ed.) Fast Software Encryption -

https://doi.org/10.1007/978-3-030-03329-3_2
https://doi.org/10.1007/978-3-030-03329-3_2
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
https://doi.org/10.1007/978-3-642-28496-0_19

Security Analysis of Subterranean 2.0 23

20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected
Papers, Lecture Notes in Computer Science, vol. 8424, pp. 447–466. Springer (2013). DOI
10.1007/978-3-662-43933-3_23. URL https://doi.org/10.1007/978-3-662-43933-3_
23

6. Claesen, L.J.M., Daemen, J., Genoe, M., Peeters, G.: Subterranean: A 600 Mbit/Sec Cryp-
tographic VLSI Chip. In: Proceedings 1993 International Conference on Computer Design:
VLSI in Computers & Processors, ICCD ’93, Cambridge, MA, USA, October 3-6, 1993,
pp. 610–613. IEEE Computer Society (1993). DOI 10.1109/ICCD.1993.393304. URL
https://doi.org/10.1109/ICCD.1993.393304

7. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The Subterranean
2.0 Cipher Suite. the NIST Lightweight Cryptography (LWC) Standardization
project (A Round-2 Candidate) (2019). URL https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
subterranean-spec-round2.pdf

8. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The Subterranean 2.0 Cipher
Suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–294 (2020). DOI 10.13154/tosc.
v2020.iS1.262-294. URL https://doi.org/10.13154/tosc.v2020.iS1.262-294

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002). DOI 10.1007/
978-3-662-04722-4. URL https://doi.org/10.1007/978-3-662-04722-4

10. Fuhr, T., Naya-Plasencia, M., Rotella, Y.: State-Recovery Attacks on Modified Ketje Jr.
IACR Trans. Symmetric Cryptol. 2018(1), 29–56 (2018). DOI 10.13154/tosc.v2018.i1.
29-56. URL https://doi.org/10.13154/tosc.v2018.i1.29-56

11. Khovratovich, D., Rechberger, C.: The LOCAL Attack: Cryptanalysis of the Authenticated
Encryption Scheme ALE. In: T. Lange, K.E. Lauter, P. Lisonek (eds.) Selected Areas in
Cryptography - SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August
14-16, 2013, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8282, pp.
174–184. Springer (2013). DOI 10.1007/978-3-662-43414-7_9. URL https://doi.org/
10.1007/978-3-662-43414-7_9

12. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON Block Cipher Family. In:
R. Gennaro, M. Robshaw (eds.) Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
I, Lecture Notes in Computer Science, vol. 9215, pp. 161–185. Springer (2015). DOI
10.1007/978-3-662-47989-6_8. URL https://doi.org/10.1007/978-3-662-47989-6_8

13. Liu, F., Isobe, T., Meier, W.: Cube-Based Cryptanalysis of Subterranean-SAE. IACR
Trans. Symmetric Cryptol. 2019(4), 192–222 (2019). DOI 10.13154/tosc.v2019.i4.192-222.
URL https://doi.org/10.13154/tosc.v2019.i4.192-222

14. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: T. Helleseth (ed.)
Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Applica-
tion of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings,
Lecture Notes in Computer Science, vol. 765, pp. 386–397. Springer (1993). DOI
10.1007/3-540-48285-7_33. URL https://doi.org/10.1007/3-540-48285-7_33

15. Minaud, B.: Linear Biases in AEGIS Keystream. In: A. Joux, A.M. Youssef (eds.) Selected
Areas in Cryptography - SAC 2014 - 21st International Conference, Montreal, QC, Canada,
August 14-15, 2014, Revised Selected Papers, Lecture Notes in Computer Science, vol.
8781, pp. 290–305. Springer (2014). DOI 10.1007/978-3-319-13051-4_18. URL https:
//doi.org/10.1007/978-3-319-13051-4_18

16. National Institute of Standards and Technology: Lightweight Cryptography
(LWC) Standardization Project (2019). https://csrc.nist.gov/projects/
lightweight-cryptography

17. Saha, D., Sasaki, Y., Shi, D., Sibleyras, F., Sun, S., Zhang, Y.: On the Security Margin of
TinyJAMBU with Refined Differential and Linear Cryptanalysis. IACR Trans. Symmetric
Cryptol. 2020(3), 152–174 (2020). DOI 10.13154/tosc.v2020.i3.152-174. URL https:
//doi.org/10.13154/tosc.v2020.i3.152-174

18. Shi, D., Sun, S., Sasaki, Y., Li, C., Hu, L.: Correlation of Quadratic Boolean Func-
tions: Cryptanalysis of All Versions of Full MORUS. In: A. Boldyreva, D. Micciancio
(eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II,
Lecture Notes in Computer Science, vol. 11693, pp. 180–209. Springer (2019). DOI
10.1007/978-3-030-26951-7_7. URL https://doi.org/10.1007/978-3-030-26951-7_7

https://doi.org/10.1007/978-3-662-43933-3_23
https://doi.org/10.1007/978-3-662-43933-3_23
https://doi.org/10.1109/ICCD.1993.393304
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/subterranean-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/subterranean-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/subterranean-spec-round2.pdf
https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.13154/tosc.v2018.i1.29-56
https://doi.org/10.1007/978-3-662-43414-7_9
https://doi.org/10.1007/978-3-662-43414-7_9
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.13154/tosc.v2019.i4.192-222
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-319-13051-4_18
https://doi.org/10.1007/978-3-319-13051-4_18
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://doi.org/10.13154/tosc.v2020.i3.152-174
https://doi.org/10.13154/tosc.v2020.i3.152-174
https://doi.org/10.1007/978-3-030-26951-7_7

24 Ling Song et al.

19. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic Security Evaluation
and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT,
LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In: P. Sarkar, T. Iwata (eds.)
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, Lecture Notes in Computer Science,
vol. 8873, pp. 158–178. Springer (2014). DOI 10.1007/978-3-662-45611-8_9. URL
https://doi.org/10.1007/978-3-662-45611-8_9

20. Wu, H., Huang, T.: The authenticated cipher MORUS (v2). Submission to CAESAR: Com-
petition for Authenticated Encryption. Security, Applicability, and Robustness (Round 3
and Finalist) (2016). URL https://competitions.cr.yp.to/round3/morusv2.pdf

21. Wu, H., Huang, T.: TinyJAMBU: A Family of Lightweight Authenticated En-
cryption Algorithms. the NIST Lightweight Cryptography (LWC) Standardiza-
tion project (A Round-2 Candidate) (2019). URL https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
TinyJAMBU-spec-round2.pdf

22. Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-State-Forgery Attack against
the Authenticated Encryption Algorithm ALE. In: K. Sako, P. Sarkar (eds.) Advances
in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India, December 1-5,
2013, Proceedings, Part I, Lecture Notes in Computer Science, vol. 8269, pp. 377–404.
Springer (2013). DOI 10.1007/978-3-642-42033-7_20. URL https://doi.org/10.1007/
978-3-642-42033-7_20

A Algebraic Properties of θ

For studying the algebraic properties of θ, we treat the state s as a binary polynomial
∑

i
siX

i,
following the way in [8]. Then the θ operation becomes a modular multiplication

θ(s(X)) = s(X)(1 + X3 + X8) mod (1 + Xb).

In particular, we consider b = 97. The modulus 1 + X97 is the product of X + 1 and two
irreducible polynomials of degree 48.

X
48 + X

43 + X
41 + X

40 + X
38 + X

36 + X
32 + X

29 + X
24 + X

19 + X
16 + X

12 + X
10 + X

8 + X
7 + X

5 + 1,

X
48 + X

47 + X
46 + X

45 + X
44 + X

41 + X
36 + X

35 + X
33 + X

32 + X
30 + X

29 + X
25 + X

24 + X
23 + X

19+

X
18 + X

16 + X
15 + X

13 + X
12 + X

7 + X
4 + X

3 + X
2 + X + 1.

Let P (X) = 1 + X3 + X8. As P (X) is coprime with 1 + X97, the inverse of P (X) is

X
92 + X

91 + X
87 + X

86 + X
84 + X

83 + X
82 + X

81 + X
77 + X

75 + X
74 + X

73 + X
72 + X

70 + X
68 + X

66+

X
64 + X

63 + X
62 + X

61 + X
60 + X

59 + X
57 + X

53 + X
51 + X

49 + X
48 + X

46 + X
45 + X

44 + X
39 + X

38+

X
37 + X

36 + X
34 + X

33 + X
32 + X

30 + X
27 + X

26 + X
24 + X

21 + X
18 + X

10 + X
5 + X

2 + 1,

where there are 47 terms (versus 127 for b = 257). Hence, the high diffusion in the backward
direction still remains for b = 97.

Also, the order of P (X) is sufficiently large. The order of 2 in (Z/97Z∗, ×) is 48. Therefore,

P 248
(X) mod (1 + X97) = P (X248 mod 97) = P (X).

This means the order of P (X) divides 248 − 1 = 32 · 5 · 7 · 13 · 17 · 97 · 241 · 257 · 673. Through a
computation on Sage, it shows that the order of P (X) is 248 − 1 (versus 216 − 1 for b = 257).

When b is set to another primes of the form 8k+1 < 257, for k = 2, 5, 9, 11, 12, 14, 17, 24, 29,
30, a similar analysis can be done for studying algebraic properties of θ. It shows that in all
cases θ is invertible and its inverse is dense.

https://doi.org/10.1007/978-3-662-45611-8_9
https://competitions.cr.yp.to/round3/morusv2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://doi.org/10.1007/978-3-642-42033-7_20
https://doi.org/10.1007/978-3-642-42033-7_20

Security Analysis of Subterranean 2.0 25

B Differential/Linear Trails

This section presents two exact differential/linear trails of Subterranean-m in Table 8 and 9,
based on which state collisions or linear bias can be detected. The approximation derived from
the linear trail in Table 9 can be found in Table 10 and its correlation can be verified using
Lemma 1 and 2. When d varies, the correlations (resp. probabilities) of linear (resp. differential)
trails of Subterranean-m regarding keystream bias (resp. state collisions) are displayed in
Figure 7 (resp. Figure 8).

Table 8: Differential trail of Subterranean-m(41) using 4 blocks with probability 2−47

for state collisions

Round i Difference − log2(pi)

0

∆Z 0x0000000000000000200000010

4α 0x0000000000000000200000010
β 0x0000000000000000200000010

π ◦ θ(β) 0x0240000800000000020008080

1

∆Z 0x0010000000000000000400052

19α 0x02500008000000000204080D2
β 0x125C00080000000002040C0DB

π ◦ θ(β) 0x0D1215A000040801200404EAC

2

∆Z 0x0010000000040801200400042

24α 0x0D0215A000000000000004EEE
β 0x1BC2908000000000000004965

π ◦ θ(β) 0x0000000000000800001000010

3 ∆Z 0x0000000000000800001000010
α 0x0000000000000000000000000

Table 9: Linear trail of Subterranean-m(58) using 3 blocks with correlation 2−23

Round i Difference − log2(|Cor|)

0

Z 0x1090000000000000000000242

11α 0x1090000000000000000000242
β 0x109000000000000000015FF40

π ◦ θ(β) 0x0000000080200A02000000000

1

Z 0x0000000000000000000000000

12α 0x0000000080200A02000000000
β 0x00000001EEE01EEE000000000

π ◦ θ(β) 0x1290000000000000000000252

2 Z 0x1290000000000000000000252
α 0x0000000000000000000000000

26 Ling Song et al.

Table 10: Detailed approximation and the final approximation derived from Table 9

Z0
0 = s0

1 + s0
96,

Z0
10 = s0

91 + s0
6,

w0
8 = s0

8 + s0
9 ∗ s0

10 + s0
10,

w0
10 = s0

10 + s0
11 ∗ s0

12 + s0
12,

w0
12 = s0

12 + s0
13 ∗ s0

14 + s0
14,

w0
14 = s0

14 + s0
15 ∗ s0

16 + s0
16,

w0
16 = s0

16 + s0
17 ∗ s0

18 + s0
18,

w0
20 = s0

20 + s0
21 ∗ s0

22 + s0
22,

w0
91 = s0

91 + s0
92 ∗ s0

93 + s0
93,

s1
67 = w0

6 + w0
9 + w0

14,

s1
47 = w0

10 + w0
13 + w0

18,

s1
45 = w0

88 + w0
91 + w0

96,

w1
38 = s1

38 + s1
39 ∗ s1

40 + s1
40,

w1
41 = s1

41 + s1
42 ∗ s1

43 + s1
43,

w1
43 = s1

43 + s1
44 ∗ s1

45 + s1
45,

w1
46 = s1

46 + s1
47 ∗ s1

48 + s1
48,

w1
48 = s1

48 + s1
49 ∗ s1

50 + s1
50,

w1
58 = s1

58 + s1
59 ∗ s1

60 + s1
60,

w1
61 = s1

61 + s1
62 ∗ s1

63 + s1
63,

w1
63 = s1

63 + s1
64 ∗ s1

65 + s1
65,

w1
66 = s1

66 + s1
67 ∗ s1

68 + s1
68,

w1
68 = s1

68 + s1
69 ∗ s1

70 + s1
70,

s2
4 = w1

38 + w1
41 + w1

46,

s2
91 = w1

40 + w1
43 + w1

48,

s2
1 = w1

58 + w1
61 + w1

66,

s2
88 = w1

60 + w1
63 + w1

68,

Z2
1 = s2

88 + s2
9,

Z2
10 = s2

91 + s2
6.

Z0
1 = s0

88 + s0
9,

w0
6 = s0

6 + s0
7 ∗ s0

8 + s0
8,

w0
9 = s0

9 + s0
10 ∗ s0

11 + s0
11,

w0
11 = s0

11 + s0
12 ∗ s0

13 + s0
13,

w0
13 = s0

13 + s0
14 ∗ s0

15 + s0
15,

w0
15 = s0

15 + s0
16 ∗ s0

17 + s0
17,

w0
18 = s0

18 + s0
19 ∗ s0

20 + s0
20,

w0
88 = s0

88 + s0
89 ∗ s0

90 + s0
90,

w0
96 = s0

96 + s0
0 ∗ s0

1 + s0
1,

s1
57 = w0

8 + w0
11 + w0

16,

s1
37 = w0

12 + w0
15 + w0

20,

w1
37 = s1

37 + s1
38 ∗ s1

39 + s1
39,

w1
39 = s1

39 + s1
40 ∗ s1

41 + s1
41,

w1
42 = s1

42 + s1
43 ∗ s1

44 + s1
44,

w1
45 = s1

45 + s1
46 ∗ s1

47 + s1
47,

w1
47 = s1

47 + s1
48 ∗ s1

49 + s1
49,

w1
57 = s1

57 + s1
58 ∗ s1

59 + s1
59,

w1
59 = s1

59 + s1
60 ∗ s1

61 + s1
61,

w1
62 = s1

62 + s1
63 ∗ s1

64 + s1
64,

w1
65 = s1

65 + s1
66 ∗ s1

67 + s1
67,

w1
67 = s1

67 + s1
68 ∗ s1

69 + s1
69,

s2
9 = w1

37 + w1
40 + w1

45,

s2
96 = w1

39 + w1
42 + w1

47,

s2
6 = w1

57 + w1
60 + w1

65,

s2
93 = w1

59 + w1
62 + w1

67,

Z2
0 = s2

1 + s2
96,

Z2
7 = s2

4 + s2
93,

Z0
0 + Z0

1 + Z0
10 + Z2

0 + Z2
1 + Z2

7 + Z2
10 =

s0
0 ∗ s0

1 + s0
7 ∗ s0

8 + s0
9 ∗ s0

10 + s0
10 ∗ s0

11 + s0
11 ∗ s0

12 + s0
12 ∗ s0

13 + s0
13 ∗ s0

14+

s0
14 ∗ s0

15 + s0
15 ∗ s0

16 + s0
16 ∗ s0

17 + s0
17 ∗ s0

18 + s0
19 ∗ s0

20 + s0
21 ∗ s0

22 + s0
89 ∗ s0

90+

s0
92 ∗ s0

93 + s1
38 ∗ s1

39 + s1
39 ∗ s1

40 + s1
40 ∗ s1

41 + s1
42 ∗ s1

43 + s1
43 ∗ s1

44 + s1
44 ∗ s1

45+

s1
46 ∗ s1

47 + s1
47 ∗ s1

48 + s1
48 ∗ s1

49 + s1
49 ∗ s1

50 + s1
58 ∗ s1

59 + s1
59 ∗ s1

60 + s1
60 ∗ s1

61+

s1
62 ∗ s1

63 + s1
63 ∗ s1

64 + s1
64 ∗ s1

65 + s1
66 ∗ s1

67 + s1
67 ∗ s1

68 + s1
68 ∗ s1

69 + s1
69 ∗ s1

70+

s0
17 + s0

22 + s0
90 + s0

93 + s1
38 + s1

40 + s1
42 + s1

44 + s1
45 + s1

46 + s1
47 + s1

49 + s1
50+

s1
58 + s1

60 + s1
62 + s1

64 + s1
66 + s1

67 + s1
69 + s1

70

Security
A

nalysis
ofSubterranean

2.0
27

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
d

23
24
25
26
27
28
29
30
31
32
33
34
35

-lo
g

|C
or

|

3 blocks
4 blocks
5 blocks

Fig. 7: Correlations of keystreams with 3 ∼ 5 blocks for Subterranean-m

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
d

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

-lo
g

p

3 blocks
4 blocks
5 blocks
6 blocks

Fig. 8: Differential probabilities with 3 ∼ 6 blocks for Subterranean-m

	Introduction
	Notations and Specification of Subterranean 2.0
	Properties of Subterranean 2.0 and Three Attack Scenarios
	Differential and Linear Analysis Tailored for Keystream Biases and State Collisions
	Key Recovery of Subterranean-SAE in the Nonce-misuse Setting
	Concluding Remarks
	Algebraic Properties of
	Differential/Linear Trails

