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Abstract. Deep learning approaches have become popular for Side-Channel Analysis
(SCA) in the recent years. Especially Convolutional Neural Networks (CNN) due to
their natural ability to overcome jitter-based as well as masking countermeasures.
However, most efforts have focused on finding optimal architecture for a given dataset
and bypass the need for trace pre-processing. However, trace pre-processing is a
long studied topic and several proven techniques exist in the literature. There is no
straightforward manner to integrate those techniques into deep learning based SCA.
In this paper, we propose a generic framework which allows seamless integration of
multiple, user defined pre-processing techniques into the neural network architecture.
The framework is based on Multi-scale Convolutional Neural Networks (MCNN) that
were originally proposed for time series analysis. MCNN are composed of multiple
branches that can apply independent transformation to input data in each branch
to extract the relevant features and allowing a better generalization of the model.
In terms of SCA, these transformation can be used for integration of pre-processing
techniques, such as phase-only correlation, principal component analysis, alignment
methods etc. We present successful results on publicly available datasets. Our findings
show that it is possible to design a network that can be used in a more general way
to analyze side-channel leakage traces and perform well across datasets.

Keywords: Multi-scale convolutional neural networks · MCNN · Side-channel attacks
· Deep learning

1 Introduction
Deep neural networks (DNN) have gained popularity in the last decade due to advances
in available computation resources. While image classification has benefited the most,
the capability of DNN is also demonstrated in other domains like natural language
processing, bioinformatics etc. Security evaluation of cryptography against classical and
implementation level attacks has also seen rapid adoption of DNN. In particular, side-
channel attacks (SCA) have received the most attention as being a classification problem,
DNN comes as a natural candidate. Various works in the literature have demonstrated
the capability of DNN to break protected implementations, triggering a wave of research
in understanding its limits and in turn design of strong countermeasures.
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1.1 Related Works
Maghrebi et al. [MPP16] first demonstrated the power of Deep Learning (DL)-based
SCA to break protected implementations, specially masking countermeasures. Further,
Cagli et al. [CDP17] showed the advantages of Convolutional Neural Networks (CNN)
against jitter based countermeasures. Authors exploited the input in-variance property
of CNN to perform SCA evaluation on misaligned traces without the need for trace re-
alignment. On the other hand, Zhou et al. [ZS19] showed that trace re-alignment can still
be helpful for deep learning which is also clear by looking at the results of Cagli et al. when
comparing ASCAD datasets with different misalignment. These works triggered further
research into the usage of DL-based techniques for SCA. The methodology to determine
suitable hyper-parameters for CNN and MLP was investigated by Prouff et al. [BPS+19].
An observation was later reported by Picek et al. [PHJ+19], which highlighted that
accuracy, widely used metric in the machine learning field, is not an optimal metric in
SCA context, instead propose to use guessing entropy. Further, Kim et al. [KPH+19]
proposed a VGG-like network, inspired by the similarity of side-channel measurements to
time series data like audio signals. The proposed VGG-like network, along with (enternally
introduced) regularization due to added Gaussian noise, was shown to produce promising
results against multiple datasets. In the context of metrics for side-channel, Masure et
al. [MDP20] theoretically showed that minimization of negative log-likelihood loss (NLL)
corresponds to estimation of perceived information, a classical side-channel metric. Zaid
et al. [ZBHV20a] proposed a methodology to design efficient CNN for SCA context. The
authors study different side-channel datasets and design an optimal CNN for each case,
reporting promising results for each studied dataset. The difference between the approach
of Kim et al. and Zaid et al. is that the latter optimizes CNN architecture to each use
case, while the former uses the same CNN architecture to evaluate several datasets. Not
to surprise, Zaid et al. present better results. Perin et al. [PCP19] use ensemble models to
focus on generalization but their focus lays in model generalization targeting one dataset
at a time. Further, Won et al. [WJB20] showed that results of Zaid et al. can be further
boosted by applying data oversampling technique. Wouters et al. [WAGP20] showed the
importance of pre-processing for DL-based SCA evaluation to reduce network size. They
also highlighted the need for study of networks which are optimal across datasets and
indicated the existing literature on time-series classification as a direction. Golder et
al. [GDD+19] showed DL-based SCA for cross-device attacks. They also showed that
pre-processed traces with Dynamic Time Warping (DTW) and Principal Component
Analysis (PCA)-based pre-processing outperforms stand alone MLP and CNN in terms of
testing accuracy. As mentioned earlier, accuracy is not an optimal metric for evaluating
the model performance with regards to SCA. The results in [GDD+19] were obtained by
using traces collected from an 8-bit ChipWhisperer platform and the dataset was not made
public.

1.2 Motivation
Scanning through the series of previous works, we notice that the majority of the research
has been done towards the direction of designing efficient network which can provide
best attacks against a set of public trace datasets [KPH+19, ZBHV20a, WAGP20] or
on techniques to boost the results of existing networks like augmentation or oversam-
pling [PHJ+19, CDP17, WJB20]. The general focus of these works has been to optimize
CNN to defeat underlying countermeasures. Independently, the advantage of pre-processing
training set for DL based SCA was shown in [ZS19, GDD+19]. To the best of our knowl-
edge, no work has investigated the possibility of strengthening DNN architecture with
capability of integrating existing side-channel pre-processing or filtering technqiues. This
forms the key motivation of this work, where we would like to propose a framework to
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Figure 1: MCNN architecture proposed in [CCC16] for time series classification.

integrate previously developed and proven techniques for side-channel pre-processing into
deep-learning based evaluation.

1.3 Multi-Scale Convolutional Neural Networks
Multi-Scale Convolutional Neural Networks (MCNNs) were proposed for time series classi-
fication (TSC) in [CCC16]. The idea is to incorporate feature extraction and classification
in a single framework by using a multi-branch model. Working principle of MCNN is to
extract features at different scales and frequencies by transforming the original data and
feeding the result to different branches of the model. One convolutional layer is capable of
detecting local patterns, combing multiple convolutional layers can recognize more complex
patterns. Later, the branches are concatenated and the computation follows a standard
CNN architecture.

Overall architecture of MCNN is depicted in Figure 1. The MCNN framework from [CCC16]
has three sequential stages:

1. Transformation stage: various transformation are applied on the input data. In the
TSC domain, the proposed transformations were identity mapping, down-sampling
in the time domain, and spectral transformation in the frequency domain. Each part
is called a branch, and serves as an input to the CNN. Long-term features reflect
overall trends and short-term features characterize small changes in local regions,
while both of these can be important for the prediction.

2. Local convolution stage: several convolutional layers are used in each branch to extract
the features. Convolutions for different branches are independent. Max pooling is also
performed between the convolutions to prevent overfitting and improve computation
efficiency.

3. Full convolution stage: extracted features are concatenated and several more convo-
lutional layers are applied, followed by fully connected layers, and a softmax layer to
generate the output.

MCNN was applied to 44 time series datasets in [CCC16], achieving better results than
a standard CNN on 41 of them. These networks were also successfully used in the past for
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predicting heart diseases [YZC17] and for speech emotion recognition [SHKW17] where
they outperformed CNNs. Multi-scale recurrent CNNs were used for financial time series
classification [GXR19].

One of the advantages of the MCNN over the classical CNN is the ability to extract
features at different time scales. Each branch can be specified to work on a different scale
and frequency, and therefore, help to extract features that are relevant on such scale.
As side-channel leakages come from various operations, working at different frequencies,
MCNN naturally fit for this problem.

1.4 Contributions
In this work, we propose a generic framework to integrate side-channel oriented pre-
processing into deep learning architecture for side-channel evaluations. The framework
is based on MCNN. Each branch of MCNN can be configured to perform a different
transformation of the raw data. These transformations can be from time domain or
frequency domain. Each convolution layer in an individual branch is expected to learn
local patterns or features which when stacked with other layers result in a more complex
learning. This makes the network more generic and consistent across datasets.

The main contributions of this work as follows:

• We propose a generic framework based on MCNN to enable seamless integration of
side-channel oriented pre-processing techniques into deep learning based side-channel
evaluations.

• By choosing a CNN architecture fine tuned for ASCAD(desync=100) as a building
block from [ZBHV20a], we show that the constructed MCNN performs better across
a range of side-channel datasets as compared to the original network which performs
only for optimised dataset or its trivial variants.

• We integrate well known methods from side-channel literature like Phase-Only
Correlation (POC), Principal Component Analysis (PCA), Elastic Alignment (EA)
into MCNN to boost its performance.

• We present a successful key recovery results for a masked FPGA implementation of
AES-128.

• We also demonstrate that pre-processing alone is not always helpful. Indeed, it is
the MCNN architecture which learns different features in each branch to result in a
strong classifier.

1.5 Organization
The rest of the paper is organised as follows. Section 2 recalls general background concepts
used in the rest of the paper. Section 3 describes the adaption of MCNN for side-channel
evaluation. Section 4 compares the performance of MCNN across public side-channel
datasets against the state of art network. Section 5 demonstrates the capability of
MCNN to seamlessly integrate well established side-channel pre-processing methods in the
evaluation process. Finally, conclusions are drawn in Section 6.

2 Background
This section highlights general background concepts used in the following sections.
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2.1 Time Series
A time series is a real-valued, high-dimensional vector that contains observations that
are naturally ordered w.r.t. time. A time series often comes from recording time-varying
measurements of an underlying process, e.g. stock market valuations, electronic health
measurements, acoustic signals, etc. A univariate time series consists of sequentially
collected observations of a single time-varying measurement and a multivariate time series
consists of collected observations of two or more time-varying measurements. Given a
collection of side-channel measurements, if the attacker focuses on exploiting one particular
time sample (e.g. one sample during one XOR operation), the side-channel traces are
considered as univariate times series. On the other hand, if the attacker exploits multiple
points of interest in each trace, corresponding to one or more operations, we can view a
single trace as a multivariate time series.

In time-series analysis, the main objective is to apply algorithms to analyze and extract
previously unknown information in time series. In terms of SCA, this usually means
recovery of information related to secret key used for encryption. As stated in [WAGP20],
analyzing network architectures built for time series classification and adopting them for
SCA might be beneficial for the community.

2.2 Profiled Side-Channel Analysis
Considering a strong adversary with an access to a clone device, profiled SCA [CRR02]
operates in two phases. In the profiling or training phase, the adversary acquires side-
channel measurements for known plaintext/ciphertext and known key pairs. This training
set is used to characterize or model the device. The adversary then acquires few mea-
surements from the target device, usually identical to the clone device, with known
plaintext/ciphertext but the key is secret. These measurements from the target device are
then tested against the characterized model from the clone device. For a well trained model,
predicted labels corresponding to measurements from the target device reveal information
on the secret key. First known profiled SCA used Gaussian templates [CRR02]. Later,
machine learning [HGDM+11] and eventually deep learning [MPP16] were shown to be
better in practise when the traces are limited in number with intentional disturbance from
countermeasures and measurement noise.

2.2.1 Performance Metrics

To evaluate the performance of an applied SCA, one must choose a suitable metric. While
accuracy is a common metric to evaluate performance of neural networks, it was shown
that it is not optimal for side-channel based key recovery attacks [PHJ+19]. As a result, we
use guessing entropy (GE), a metric commonly used for side-channel evaluations [SMY09],
even in deep-learning context. GE can be described as an average rank of the correct key
after the attack, where GE = 0 indicates that the correct key is recovered by the attacks.

2.3 Pre-processing Techniques for SCA
We recall four pre-processing techniques for SCA that are utilized in this paper.

Moving Average (MA). In the context of SCA, moving average technique is usually
combined with the fundamental SCA techniques to resist the jitter-based countermeasure.
For example, correlation [FW18, GW15], T-test [DCE16] is combined with moving average
for boosting the performance. The original proposal of MCNN uses moving average as
one of the transformations to act as a low-frequency filter, reducing the variance of time
series [CCC16].
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Principal Component Analysis (PCA). Template attacks exploit multivariate leakages
by exploiting information in covariance matrix [APSQ06]. However, with the increase
in number of samples in the trace, the size of co-variance matrix grows quickly beyond
computation limits. Thus, PCA [BHvW12] was proposed as a technique for dimensionality
reduction. PCA finds linear transformation that projects high-dimensional data to a lower
dimensional subspace while preserving the data variance. Several variants of template
attacks had used PCA as a pre-processing tool [APSQ06, CK13].

Phase-Only Correlation (POC). POC is used for high-accuracy image matching prob-
lems [CDD94]. This technique was adopted as an alignment scheme by [HNI+06, GW15]
in the context of side-channel analysis. POC is based on phase components in the discrete
Fourier transform, and provides the shift value to properly match with the reference
trace for alignment. In the case of EM signal with sharp shaped samples in numerical
data, the alignment technique based on correlation might be useless, and requires many
trial-and-error methods for searching proper parameters. Since the shift value for alignment
is based on Peak-to-Sidelobe Ratio in POC, there is no need for parameter adjustments.

Elastic Alignment (EA). As desynchronization such as random jitters and random
process interrupts are frequently employed to reduce the signal-to-noise ratio in the context
of SCA, it is sometimes hard to align using the alignment technique based on correlation.
One of the solutions overcoming this obstacle is EA [vWWB11], which is based on dynamic
time warping algorithm adopted from speech recognition [SC78]. As a result, the elastic
alignment naturally concentrates on resynchronizing the traces. However, it might cause
a loss of data leakage since it focuses the synchronization on traces shape and generates
artificial samples.

3 Tailoring MCNN for SCA
In SCA domain, the time series data normally comes from leakage measurements like power
consumption or electromagnetic (EM) emanation during the execution of the cryptographic
algorithm. Different types of SCA countermeasures are usually utilized to prevent the
attacker from extracting the secret information from these measurements. It was shown
that hiding countermeasures based on random delay insertion (RDI) can be defeated by
data pre-processing techniques [MOP08]. These techniques aim at minimizing misalignment
either by re-aligning the original traces according to a reference trace or by selecting points
of interest that contribute to the information leakage. Therefore, if we aim at overcoming
RDI-protected implementations, a natural way is to select MCNN branches that provide
such feature.

3.1 Main Characteristics of the Framework
In this part, we discuss the basic characteristics of the framework based on MCNN
architecture. As shown in Figure 1, MCNN is composed of different branches. Each
branch consist of convolutional and pooling layers applied on different transformation of
the input data. The branches are then concatenated followed by full convolutional stage.
Compared to a CNN, MCNN has one salient feature. This interesting feature is these
transformation stages which in the following we call plug-in branch components (PBC).
Moreover, concatenation is also an important part of MCNN followed by full convolutional
layers, which enables the network to co-learn features from individual branches, together
with the following layers. Combined, they strengthen MCNN to learn a more complex model.
In the following we detail the PBC feature, model requirements, and data pre-processing.
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3.1.1 Plug-in Branch Components (PBC).

As we focus on modular design for our MCNN SCA framework, we introduce a concept of
Plug-in Branch Components (PBC). The design of the original MCNN utilizes 3 PBCs,
one of them taking the original data as an input, and the other two transformed data. In
the context of SCA, we propose using transformations that were shown to be helpful when
analyzing leakage traces, such as PCA, or moving average. Alignment techniques, such
as elastic alignment, and signal processing and noise filtering techniques like Fast Fourier
Transform can also be used as PBCs. As neural networks naturally select important
features during the training phase, it is expected that the PBC providing more relevant
features will be prioritized. This unburdens the user from trying out various pre-processing
techniques to get the best result. The choice of PBC can also profit from attacker’s
expertise who can carefully choose PBC based on the underlying countermeasure. Linking
these PBC based transformations to data pre-processing is what enables natural and
seamless integration of widely used techniques to DL-based SCA.

Data Pre-processing. Pre-processing is a general practise in SCA. Most evaluation labs
dealing with real products with countermeasures spend majority of effort in data pre-
processing. If pre-processing is done correctly, the following process of key recovery is
straightforward. Adopting MCNN structure for SCA allows us to feed the pre-processed
traces into the neural network. Note that this is a salient feature of MCNN where as for
other used architectures, such pre-processing is applied on training data. Being a time
series data, side-channel traces contain both short term and long term features, while
also exhibiting different frequency features. Processing only the transformed data can
also lead to loss of information. With pre-processing, we can create training data with
more distinct features when exploited together with the original data in another branch,
thus increasing the learning power of the trained network. We have discussed several
existing pre-processing techniques for SCA in Section 2.3. Moving averages are a simple
and common type of smoothing used in time series analysis and time series forecasting. For
SCA, it helps to remove noise and better expose the signal of the underlying operations
within each averaged interval of the trace. Hence, moving average assists in capturing short
term features and merging leakages spread over several neighbouring samples together.
PCA projects high-dimensional data to a low-dimensional subspace and preserves the
most important directions. It helps in identifying important features in different frequency
domains. Similarly, POC analyzes the discrete Fourier transforms of waveforms, hence
extracting features in various frequency domains. Elastic alignment aims to align the
entire trace to counter jitter and random interrupts. The pre-processed traces will then
contain enhanced long term features.

Model Requirements. We can summarize our requirements on the neural network model
based on MCNN in following points:

• Perform well on multiple datasets without the need of hyperparameter tuning.

• Overcome side-channel countermeasures, specially commonly studied jitter-based
and masking countermeasures for hardware and software implementations.

• Easy to replace a PBC with a different one, in case a better pre-processing method
is available in the future.
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Figure 2: Main Structure for MCNN.

3.2 MCNN Architecture for SCA

For comparison, we use the state-of-the-art architecture from Zaid et al. [ZBHV20a]1.
In [ZBHV20a] the authors have proposed different CNN architecures for different datasets.
For example, they fine-tuned the filter size based on jitter amount. However, in practice,
one would expect the attacker to not be able to access this kind of knowledge. Since we
aim to propose a generic architecture that can be utilized for any dataset, we choose one
particular network structure from [ZBHV20b] for comparison. We have chosen the CNN
proposed for ASCAD(desync=100) as it has the most complicated structure and we expect
it to perform reasonably well on other datasets as well. We will denote this CNN as Base
Network (BN) throughout the rest of the paper. We note that as BN is not optimized for
other datasets, we expect sub-optimal performances of BN on other datasets.

In line with the MCNN structure presented in Section 1.3, we consider three plug-
in branch components in the transformation stage, with one PBC being the identity.
Therefore, the other two PBCs have to be chosen carefully to provide extraction of
relevant features. Naturally, there are a lot of the candidates for PBC since many pre-
processing techniques have been suggested in the context of side-channel analysis. As a
representative example, we consider the moving average and PCA. The moving average
techniques are widely combined with the fundamental side-channel analysis to boost
the performance against jitter countermeasures. For example, the correlation based on
sliding window is employed because the points of interest are normally spread over several
points. Hence, moving average is used as one of PBCs in the transformation stage of
our MCNN. For the second PBC, we can choose one of representative pre-processing
techniques performing dimensionality reduction such as PCA. PCA has been used for years
in the context of profiled SCA. Especially, this technique is used for noise reduction and
overcoming of misalignment, and it has been recently applied to increase the performance
of DL [GDD+19].

While for our basic MCNN structure, we use identity, moving average, and PCA as
PBCs for the transformation stage, we propose MCNN as a generic framework where
the PBCs can be user-defined and seamlessly integrated into the network structure. We
therefore show a few examples for variations of the basic MCNN structure in Section 5.

1In this work, we have put into consideration the issue raised by Wouters et al. [WAGP20] and noted
the follow up response from Zaid et al. [ZBHV20b].
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3.3 MCNN Structure
Structure of the MCNN used in this paper is depicted in Figure 2. It closely follows
the original proposal from [CCC16], using two convolutional layers in each branch, one
convolutional layer after the merging of the branches, and dense layers at the end. As
stated in [ZBHV20a], three convolutional layers in a sequence can provide optimal feature
extraction for SCA tasks.

To make sure the model architecture is well-fit for SCA, we experimented with a few
different candidate models. We used the AES_HD dataset to benchmark the models as
it is more challenging compared to software datasets due to low SNR. Therefore, the
performance difference can be clearly recognizable between good and bad options. Results
of these experiments are stated in Figure 3. Differences of the candidate models over the
main model are as follows:

• Candidate 1: One additional convolutional layer was added to each branch, making
the total number of branch layers three.

• Candidate 2: Same as Candidate 1, but with removing the convolutional layer
after the branch merging.

• Candidate 3: Same as Candidate 2, but with adding an extra batch normalization
step after the branch merging.

• Candidate 4: One additional convolutional layer was added after the branch
merging, making the total number of convolutional layers in the full convolutional
stage two.

As can be seen from the figure, the chosen MCNN architecture performs the best among
the five models. Number of convolutional blocks for this architecture is the same as
in [ZBHV20a], which is in line with their findings. While Candidate 2 also has the same
number of convolutional blocks, the performance is degrading because of properties of
MCNN architecture – a convolutional layer after the branch merging is beneficial to further
extract the features. Different number of branches was explored in [GXR19] (see Table
7) for analyzing financial time-series data, where authors tried 1-3 branches. From their
results, 3 branches provide the best accuracy.
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Table 1: Network Architecture for BN and MCNN
Arch.

Transformation
stage (PBC)

Local convolution stage Full convolution stage Multiperceptron
layerfilters kernel pool filters kernel pool

size size size size

MCNN
Original (32,64) (1,50) (2,50)

128 3 2 20 × 20 × 20Moving average (32,64) (1,50) (2,50)
PCA (32,64) (1,1) (2,1)

MCNN
Original (32,64) (1,50) (2,50)

128 3 2 20 × 20 × 20Moving average (32,64) (1,50) (2,50)
POC (32,64) (1,50) (2,50)

MCNN
Original (32,64) (1,50) (2,50)

128 3 2 20 × 20 × 20Moving average (32,64) (1,50) (2,50)
Elastic Alignment (32,64) (1,50) (2,50)

BN Original - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20
BN Moving Average - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20
BN PCA - - - (32,64,128) (1,1,3) (2,1,2) 20 × 20 × 20
BN POC - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20
BN Elastic Alignment - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20

All hyperparameters for MCNN and BN are employed from [ZBHV20a].

Table 2: Number of train/test sets in all open datasets to perform BN and MCNN
Dataset #Train #Validation #Test
AES_HD 45, 000 5, 000 5, 000

AES_HD_MM 45, 000 5, 000 5, 000
AES_RD 20, 000 5, 000 5, 000
ASCAD 45, 000 5, 000 5, 000

ASCAD(desync=50) 45, 000 5, 000 5, 000
ASCAD(desync=100) 45, 000 5, 000 5, 000

For local convolution and full convolution stages, we follow the properties of the BN
architecture. Since there are three convolution and pooling layers in BN, it can be split
into two convolution and pooling layers for local convolution stage and last one convolution
and pooling layers for full convolution stage in MCNN. Moreover, the convolution filters,
convolution kernel size, pooling size, and pooling strides are also adopted from BN. For
PCA, there are some modifications as the number of points is is different compared to
other branches. In the second convolution block of local stage, the convolution kernel size
and pooling size are set to 1. Similar to BN, batch normalization is applied to the next
pooling layer. The architecture requires the batch normalization before concatenation as
data of different dimensions are merged before the full convolution stage. We summarize
our MCNN architectures and compare it to BN in Table 1. We use Original to indicate the
branch with identity function in order to emphasis the traces are without pre-processing.
For example, the loss function and optimizer are NLL and Adam, respectively.

4 Experimental Results
In this section, we evaluate the performance of the proposed MCNN architectures from
Table 1 against BN. The comparison is performed on various publicly available datasets.
While [ZBHV20a] recommend different architectures for different datasets with an objective
of achieving best results for all datasets, our MCNN experiments do not aim at minimizing
N̄tGE , but we aim at demonstrating that MCNN performs well across datasets in general.
Therefore, the evaluation is performed with a fixed network architecture. The chosen
BN as a baseline architecture is motivated as the most complex architecture of all the
architectures proposed in [ZBHV20a] as it will learn different datasets with ease compared
to smaller architectures.

4.1 Target Dataset & Notations
For the experiments we consider the following 4 public datasets, which are freely available
online, for reproducibility.
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ASCAD. The dataset2 contains side-channel measurements of protected AES imple-
mentations running on an 8-bit AVR microcontroller. It was introduced by Benadjila et
al. [BPS+19], as a public dataset for comparing the performance of deep-learning based side-
channel attacks. The ASCAD database traces correspond to first order masking protected
AES with artificially introduced random jitter. In particular, for the experiments, the
introduced jitter (desynchronization) are set to range up to 50 and 100 sample points. We
represent the desynchronization of 50 and 100 as ASCAD(desync=50) ASCAD(desync=100),
respectively. The dataset consists of 60, 000 traces, with 700 features each.

AES_RD. The dataset3 is based on AES software implementation on an 8-bit AVR micro-
controller. The implementation is protected with a random delay countermeasure [CK09]
to cause misalignment in the traces, which in turn reduces the SNR. The dataset consists
of 50, 000 traces, with 3, 500 features each.

AES_HD. The dataset4 includes an unprotected AES hardware implementation on
FPGA. Unlike software implementations, the last round is considered as a main target, in
order to utilize the register update leakage from last round to output ciphertext. There
are 50, 000 traces with 1, 250 points in the dataset.

AES_HD_MM. In all the previous works, DL based SCA have focused on countermea-
sures implemented for software targets. However, AES_HD_MM dataset5 is based on
multiplicative masking countermeasure [AG01] implemented in hardware. The implementa-
tion performed masked AES on SASEBO-GII FPGA board [SAS]. According to [DZFL14],
the success rate for this countermeasure is only 90%, even though they launched second-
order attacks [DZFL14] with 500, 000 traces. Dataset contains 5, 600, 000 traces with 3, 125
points are provided in their open URL5. For attack, the leakage model is identical to
AES_HD dataset, which means second-order attack on a hardware countermeasure.

Notations and Parameters. BN(x) and MCNN(PBC1(x),PBC2(x),PBC3(x)) indicate
the Base Network with original traces x and MCNN with PBCs (PBC1, PBC2, PBC3),
respectively. For MCNN, PBC1 is an identity function (org), PBC2 is moving average
(ma) and PBC3 as PCA (pca). For later experiments, we change PBC3 to POC (poc)
and EA (ea). In the case of moving average technique, step size is a required parameter
when merging from n points to single point. Hence, we represents it as man. For
example, BN(ma100) (instead of BNma100(x) for simplicity) means Base Network having
input as original traces applied moving average technique with merging 100 points to
single point. The original traces are datasets such as AES_HD, AES_HD_MM, ASCAD,
ASCAD(desync=50), and ASCAD(desync=100).

Additionally, "+" notation which is used as the input for BN in order to fairly compare
with the MCNN indicates merging of datasets. For instance, org+ma means that atraining
dataset consists of original traces and the output of moving average applied to original
traces. If the dimension is not matched, we use a zero padding scheme.

4.2 Comparing MCNN with BN
Performance of MCNN and BN is compared across datasets. All experiments in this section
are done with MCNN(org, ma100, pca). Traces in each dataset were split for training,
validation and testing. For fair comparison, we followed the similar split as in [ZBHV20a].

2https://github.com/ANSSI-FR/ASCAD
3https://github.com/ikizhvatov/randomdelays-traces
4https://github.com/AESHD/AES_HD_Dataset
5https://chest.coe.neu.edu/?current_page=POWER_TRACE_LINK&software=ptmasked

https://github.com/ANSSI-FR/ASCAD
https://github.com/ikizhvatov/randomdelays-traces
https://github.com/AESHD/AES_HD_Dataset
https://chest.coe.neu.edu/?current_page=POWER_TRACE_LINK&software=ptmasked
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Figure 4: Results for AES_HD and AES_HD_MM.

We also use a similar dataset split ratio for AES_HD_MM. The ratio is listed in Table 2.
The attack is repeated 100 times and GE is obtained by averaging the result over these
100 attacks.

In Figure 4, we first report the results for the attacks on AES hardware implementations.
For the unprotected implementation, AES_HD, we can see that the proposed model, MCNN,
performs better than BN. Here BN only learns from the raw AES_HD traces, MCNN also
learns from the PBC branches obtained through moving average with step 100 and PCA.
To have a better insight into the results, we repeat the experiments with BN by training it
with transformed traces using moving average with step 100 and PCA in two independent
experiments. In this case, the transformations are applied on training set directly. As
shown in Figure 4, the transformation of the traces alone does not give good results as
shown for BN(ma100) and BN(pca). This shows that it is an inherent property of MCNN
which allows it to learn more features than BN alone and result in better attacks. Note
that BN is not designed for AES_HD and thus the results are worse than those reported
in [ZBHV20a], still we report significant improvements with MCNN. Next, we take a
look into FPGA implementation of AES-128 protected with multiplicative masking in
AES_HD_MM dataset. MCNN shows a significant faster convergence to GE 1 as compared
to BN with original traces as well as two sets of transformed traces.

Next, we look into datasets for software implementation of AES. These include AES_RD
dataset and ASCAD dataset with different desynchronization. Figure 5 shows the results
ASCAD dataset with no desynchronization and AES_RD. These two datasets are easy to
break as shown in various previous works [ZBHV20a, KPH+19]. Both MCNN and BN

Table 3: Overall performance of MCNN vs. BN on different datasets. Good indicates GE
≤ 10 at 5k traces, Average indicates GE declining steadily but not reaching GE ≤ 10 at 5k traces,
and Bad means that it is not clear when the GE can converge.

Arch. ASCAD ASCAD ASCAD AES_RD AES_HD AES_HD_MM(desync=50) (desync=100)
MCNN Good Good Good Good Good Good
BN Good Bad Good Good Average Average
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Figure 5: Results for AES_RD and ASCAD.

have no trouble in learning these dataset and perform very well.
We next move to test the ASCAD dataset with desynchronization. Here we have

two cases, ASCAD(desync=50) and ASCAD(desync=100). Recall that BN as proposed
in [ZBHV20a] is optimised for ASCAD(desync=100) and indeed as shown in Figure 6, BN
performs best. While MCNN performs fine in this case, it is not as good as BN. This
reinstates the results of [ZBHV20a] that networks optimised for a chosen dataset perform
best. Figure 6 shows the results for ASCAD(desync=50). ASCAD(desync=50) is a special
case as it can be considered a subset of ASCAD(desync=100) where desynchronization
is limited to 50 samples only. Intuitively, we expect BN to perform well in it, however,
our results show that BN struggles with this dataset and MCNN performs best. This
shows that BN is probably over-optimised for ASCAD(desync=100) dataset. BN(ma100)
and BN(pca) GE results for ASCAD and AES_RD did not converge as in previous cases.

Comparing Figure 5 and Figure 6, we can see that MCNN performs well in all the
datasets. Since BN is fine-tuned for ASCAD(desync=100), it performs the best on that
particular dataset, but its performance on other datasets is not guaranteed.

Overall result across all the datasets are stated in Table 4. It shows that MCNN can
scale to different datasets without the need of changing the network structure or even
PBCs.

4.2.1 Comparison on the Resistance of Reinforced Jitter-based Countermeasure

To investigate the capability of MCNN in generalizing further, we conduct a special
experiment. In this case, the training dataset is derived from ASCAD(desync=50), while
the testing dataset is derived from ASCAD(desync=100). Note that ASCAD(desync=50)
and ASCAD(desync=100) differ in the jitter offset range only, while everything else remains
the same. Thus, we are testing the trained network with cases never seen by the training
model. In other words, while the network learns to recognise jitter up to 50 samples in
either direction, the testing data can have jitter up to 100 samples. The results are shown
in Figure 7. It can be clearly seen that MCNN performs better thus being able to learn
the underlying problem with more ease than BN.
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Figure 6: Results for ASCAD(desync=50) and ASCAD(desync=100).

5 Integrating Proven SCA Pre-Processing Techniques in
MCNN

In the previous section, we show on public datasets that MCNN can achieve consistent per-
formance even without modifying the network architecture. While the MCNN architecture
used two well known pre-processing techniques, these pre-processing techniques were not
chosen based on the dataset. Nevertheless, MCNN performed better across the datasets.

As discussed previously, we propose MCNN as a general framework where the PBCs
can be exploited to integrate any pre-processing technique into the framework. Consider
an evaluation lab conducting security evaluation of several products on a daily basis. Over
the course of years, evaluators in these labs see various countermeasures and develop
various pre-processing techniques to optimize the evaluation. The current state of deep
learning research for SCA has majorly focused on optimizing architectures so as to bypass
the pre-processing phase altogether. With PBC in the proposed MCNN architecture,
MCNN provides the opportunity for an evaluator to integrate those tested and proven
pre-processing techniques directly into deep learning based SCA evaluation. While the
list of pre-processing techniques (including their parameter space) is non-exhaustive, we
demonstrate this feature of the proposed MCNN framework by two distinct case studies.
In the first case study, we focus on improving current MCNN architecture by optimizing
transformation parameters. The second case study focuses on integrating other well known
pre-processing techniques as PBCs to MCNN.

5.1 Case Study 1: Optimizing Transformation Parameters in Existing
MCNN Architecture

The choice of moving average as a PBC in MCNN was inspired by the original MCNN [CCC16].
However, in the previous experiments, we did not consider optimization of moving av-
erage parameters to suit dataset characteristics, while still showing good results across
datasets. In this part, we experiment with moving average parameters to evaluate its effect
on AES_HD dataset. As mentioned earlier, AES_HD implements an AES-128 parallel
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Figure 7: Results for Train: ASCAD(desync=50) and Test: ASCAD(desync=100).

architecture to compute one round per clock. Here, different sub-components of the
cipher leak in different parts of the clock cycle. By measuring on a high sampling rate
oscilloscope, these leakages might be spread over different points but within a single clock
cycle or to a neighbouring clock cycle in some cases. This is unlike software computation
where sub-operations might be separated by several clock cycles. Thus, for hardware
implementation, simple signal processing techniques like moving average allow combination
of leakage, allowing an attacker to exploit contribution of several leakages spread over a
number of points.

For AES_HD, we investigated the effect of the parameters for moving average. We con-
sider the parameters space with varying step size ∈ {100, 200, 300}, thus MCNN(org, ma100, pca),
MCNN(org, ma200, pca) and MCNN(org, ma300, pca). Here step size refers to the width
of the window used for calculating moving average while sliding through the trace. The
results are shown in Figure 8. By choosing a bigger step size for the moving average, the
result of MCNN can be largely improved as compared to previous result in Figure 4. On
the other hand, playing with moving average parameters, does not improve the attack
results for BN.

5.2 Case Study 2: Integrating New Pre-Processing Techniques In
MCNN

Finally, in this case study we investigate the effectiveness of MCNN by plugging in
known pre-processing techniques in SCA to replace PCA used as PBC in the original
architecture. We choose 2 known techniques. The first technique was proposed by Homma
et al. [HNI+06] in CHES 2006 and is known as POC. The second technique investigated is
EA [vWWB11] which was proposed at CT-RSA 2011 and also available in few commercial
tools for SCA evaluations. To perform the evaluations, we choose ASCAD(desync=50) and
ASCAD(desync=100), as these datasets implement jitter or misalignment countermeasure.
Both POC and EA are designed to overcome misalignment. It was also shown previously
that pre-processing traces can improve efficiency of deep learning based evaluations [ZS19,
GDD+19]. MCNN is different from these previous works because, while previous works
were modifying the training dataset altogether by pre-processing, MCNN applies these
pre-processing on the fly in one of its branches through PBC, while the training set remains
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Figure 8: Results for AES_HD in various moving averages.
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Figure 9: Results for ASCAD(desync=50) and ASCAD(desync=100) in various input/PBC
types.

unchanged. Few sample traces from ASCAD(desync=100) before and after alignment are
shown in Figure 10. It can be seen that EA works better than POC in this case. In essence,
a good alignment method is converting these traces close to synchronised ASCAD database
and one should expect similar results. The two modified MCNN used in the following
experiments are MCNN(org, ma100, poc) and MCNN(org, ma100, ea).

The results are reported in Figure 9. From the figure, we can see that in the case
of desynchronization = 50, all methods are working successfully, including BN, which is
unsuccessful in recovering the key in the original experiments (see Figure 6). Thus, we
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(a) Overlapped 20 traces for ASCAD(desync=100)

(b) ASCAD(desync=100) after applying POC

(c) ASCAD(desync=100) after applying EA

Figure 10: Overlapped 20 traces ASCAD(desync=100) after pre-processing techniques.

confirm the results of [ZS19, GDD+19] that pre-processing helps deep-learning based SCA
evaluations.

Now, we look at a comparatively difficult case of ASCAD(desync=100) with higher
desynchronization = 100. In this case, MCNN is performing slightly better than BN with
POC pre-processing, where we can observe faster convergence and smaller number of traces
required to recover the key, and much better than BN with other pre-processing methods. In
general, for all the experiments conducted, we can observe that the performance of MCNN is
consistent throughout different datasets and different parameter settings. WIth good choice
of PBC, we were able to match the performance of BNorg with MCNN(org, ma100, poc),
where BNorg is specifically designed to perform best for ASCAD(desync=100).

We note that even though visually EA results in better alignment compared to POC
(see Figure 10), BN(ea) performs worse than BN(poc). This demonstrates the importance
of capturing features in different scales and frequencies. EA helps to enhance the long
term features by aligning the traces, while POC analyzes the discrete Fourier transforms
of waveforms and extracts features in various frequency domains. The observation further
confirms the benefits of data prepossessing done in the PBCs.

Finally, we investigate if MCNN is not simply doing feature space augmentation. To
check this, we augment the training dataset with feature transformed traces and see if
BN can perform better. In other words, we take ASCAD(desync=100) dataset, transform
it using moving average and EA to get two separate datasets, merge it with the original
dataset to have an augmented dataset with 3× traces and use this augmented dataset
to train and test BN. As shown in Figure 9, the result is much worse and confirms that
MCNN is not simply augmenting the dataset but exploiting salient features from all the
transformations to bring a more complex model.

6 Conclusions
In this paper, we presented a neural network architecture for profiled side-channel attacks
based on multi-scale convolutional neural networks (MCNN). We proposed a general
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Table 4: Comparison of N̄tGE performance on MCNN and state-of-the-art results, (∗): GE
when the maximum number of traces is used

Dataset
Main
MCNN

(Section 4.2)

Best
MCNN

(Section 4)
BN(org)

State-of-the-art Results
Optimized
Network

[ZBHV20a]

Compatible Network
[KPH+19]

RD
Network

ASCAD
Network

AES_RD 18 18 12 36 3 > 450
ASCAD 606 606 509 191 > 500 1146

ASCAD(desync=50) 1112 798 > 5000 (22) 244 N/A > 5000
ASCAD(desync=100) > 5000 (1) 642 445 270 N/A > 5000
T rain 6= T est 7 4770 4770 > 5000 (22) N/A N/A N/A

AES_HD > 5000 (11) > 5000 (2) > 5000 (46) 1050 > 5000 > 2500
AES_HD_MM > 5000 (1) > 5000 (1) > 5000 (19) N/A N/A N/A

framework that can be used for building MCNN models that can effectively perform SCA
tasks on various datasets without fine-tuning of parameters. Our results show that MCNN
has a great potential to serve as an architecture of choice when the details of the leakage
traces are not available to the attacker while providing the power to the attacker to
integrate pre-processing seamlessly into the architecture.

Future directions. Different architectures based on the idea of MCNN would be interesting
to explore. For example, in [GXR19], the authors use multi-scale recurrent CNN (RCNN)
and report superior results on financial time series data compared to other models. They
claim that using RCNN over CNN improves capturing of temporal dependencies in the
data. In time series classification, long short-term memory (LSTM) models are a popular
approach to solve tasks that would not be possible to solve with traditional feed-forward
networks [GES02, KMDC17]. Therefore, LSTM might offer additional ways to analyze
SCA leakage traces.

Different PBCs could be explored to enhance the feature transformation step. Autoen-
coders, successfully used for SCA before [WP19, KKH20], could be plugged as a PBC to
improve the performance of the model. Moreover, we only looked at non-profiled data
pre-processing techniques in this work. it would be interesting to investigate methods to
integrate profiled pre-processing (like linear discriminant analysis, autocencoders) into
MCNN as a PBC.

Automated selection of PBCs with a usage of neural architecture search (NAS) [ZL16]
could be implemented. NAS approaches iterate over different architectures and try various
hyperparameters to find the best model for the task. In terms of SCA, there could be a
pool of different PBCs, and the branches would be chosen automatically by NAS based on
their performance.
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