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Abstract

This paper is devoted to a more precise classification of the family of curves

Eb : y2 = x3 + b/Fp. For prime p ≡ 1 (mod 3), explicit formula of the number

of Fp-rational points on Eb is given based on the the coefficients of a (primary)

decomposition of p = (c + dω)(c + dω) in the ring Z[ω] of Eisenstein integers. More

specifically,

#Eb(Fp) ∈ p + 1−
{
± (d− 2c),±(c + d),±(c− 2d)

}
.

The correspondence between these 6 number of points and the 6 isomorphism classes

of the groups Eb(Fp) can be efficiently determined.

For prime p ≡ 2 (mod 3), it is shown that Eb(Fp) ∼= Zp+1. Two efficiently com-

putable isomorphisms are described within the single isomorphism class of groups for

representatives E1(Fp) and E−3(Fp)
The explicit formulas #Eb(Fp) for p ≡ 1 (mod p) are used in searching prime

(or almost prime) order Koblitz curves over prime fields. An efficient procedure is

described and analyzed. The procedure is proved to be deterministic polynomial

time, assuming the Generalized Riemann Hypothesis.

Several tools that are useful in computing cubic residues are also developed in this

paper.
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1 Introduction

Let p > 3 be a prime. For any b ∈ F∗p, y2 = x3 + b defines an elliptic curve over Fp. This is

a family of simple and interesting curves. For prime p ≡ 2 (mod 3), it is well known that

they belong to the family of supersingular curves. Such curves are useful in Pairing based

cryptography because of their low embedding degree, on the other hand, one should avoid
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supersingular curves in normal elliptic curve cryptography (ECC) due to MOV attack [18]

and Frey-Rück attack [11].

However, for suitable prime numbers p, there are curves of the form y2 = x3 + b/Fp
that are of great interest in ECC. For example, the Standards for Efficient Cryptography

Group (SECG) describes three such curves [1]:

secp192k1: y2 = x3 + 3/Fp1
secp224k1: y2 = x3 + 5/Fp2
secp256k1: y2 = x3 + 7/Fp3

where p1, p2 and p3 are primes numbers of length 192, 224, and 256 respectively, which

are of certain sparse forms. These curves are called Koblitz curve as they admit efficiently

computable endomorphisms. A faster scalar multiplication for this kind of Koblitz curves

over a special prime field can be achieved by using the GLV method [12]. It is pointed out

that Koblitz curve was introduced as binary anomalous curves y2 + xy = x3 + ax2 + b/F2m

with a, b ∈ {0, 1} [15]. In the binary case, the Frobenius map τ , which is an efficiently

computable endomorphisms, is used in window-τNAF to perform scalar multiplication

with a remarkable speed [21, 6, 22].

On the aspect of point counting for Eb : y2 = x3 + b/Fp with prime p ≡ 1 (mod 3),

there are many results in literature, some of them can be found in [10, 13, 14, 19, 24]. The

approaches are mainly based on cubic character sum as the family of curves is a special

case of CM curves and the number of points is governed by a Hecke character. Some

recent study provided more concrete information towards to the values of #Eb(Fp). For

examples,
∑

b∈F∗
p

#Eb3(Fp) = p2−1 was proved in [10]; in [14],
∑

b∈F∗
p

#Eb(Fp) = p2−1 was

established and values #Eb(Fp) (mod 24) were examined. It is interesting to note that it

was shown in [14] that there exactly 6 isomorphism classes for the groups Eb(Fp). These 6

classes are represented by E1(Fp), Eg(Fp), Eg2(Fp), Eg3(Fp), Eg4(Fp) and Eg5(Fp), where g is

a primitive root modulo p. However, to get precise values of #Eb(Fp), some computational

tools are needed, especially for dealing with cubic residues.

The purpose of this paper is to present a systematic study of the family of curves

Eb : y2 = x3 + b/Fp. These curves have the same j-invariant, but that is not sufficient for

determining the precise stricture for the groups of Fp-rational points Eb(Fp).
For the case that p ≡ 1 (mod 3), we are able to give an explicit formula for the number

of points in Eb(Fp). In this case there is an efficient way to find a pair of integers c, d such

that c ≡ 2 (mod 3) and d ≡ 0 (mod 3) and

p = c2 − cd+ d2.

In this paper, we give the exact 6 possible values of #Eb(Fp), one for each isomorphism

class of the groups Eb(Fp). More precisely

#Eb(Fp) ∈ p+ 1−
{

(d− 2c),−(c+ d), (c− 2d),−(d− 2c), (c+ d),−(c− 2d)
}
. (1)
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In practice, for each number in p+1−
{

(d−2c),−(c+d), (c−2d),−(d−2c), (c+d),−(c−
2d)
}

, it is easy to determine an element b ∈ F∗p such that the number is exactly #Eb(Fp).
Especially when a primitive root g is available, this task is trivial. Note that because Egr

and Egr+3 are twist, so #Egr(Fp) + #Egr+3(Fp) = 2(p + 1). Thus we only need to get
formulas for #Egr(Fp),#Eg(r+1) (mod 6)(Fp) and #Eg(r+2) (mod 6)(Fp) for some 0 ≤ r < 5. Let
s = c (mod 2), t = d (mod 2). We choose r = 4(s+1)t (mod 6) and denote r + j = (r+j)
(mod 6), then one of our results states

#Egr(Fp) = p + 1− (d− 2c),#Egr+1(Fp) = p + 1 + (c + d),#Egr+2(Fp) = p + 1− (c− 2d).

These results can be used to create an efficient procedure to find a Koblitz curve Eb over

prime field with the order of group Eb(Fp) being prime (or almost prime). Knowing which

value in (1) is a prime (or almost prime), one would just need to find a right coefficient

b. We prove that, assuming Generalized Riemann Hypotheses, such procedure runs in

deterministic polynomial time.

For the case that p ≡ 2 (mod p), the curves Eb are known to be supersinger so

#Eb(Fp) = p+1. We show that in this case, there is exactly one isomorphism class, namely

the class of cyclic groups of order p+1. We also describe two explicit efficiently computable

isomorphisms in the class. If b is a quadratic residue, then Eb(Fp) ∼= E1(Fp) with a simple

isomorphic map. Similarly, if b is a quadratic non-residue, then Eb(Fp) ∼= E−3(Fp).
The rest of our paper is arranged into four sections. In chapter 2 we provide or prove

some useful facts about the ring of Eisenstein integers and elliptic curves. Our main results

are discussed in section 3. The application of searching Koblitz curves over prime fields is

the content of Section 4. We conclude the paper in Section 5.

2 Preliminaries

We will need a set of basic facts about finite fields, Eisenstein integers and elliptic curves.

Lemma 2.1. Let p be a prime > 5 and g a primtive root modulo p. Consider the homo-

morphism
τ : F∗p → F∗p

x 7→ x3

then

1. If p ≡ 2 (mod 3), τ is an isomorphism;

2. If p ≡ 1 (mod 3), ker(τ) = {1, u, u2} where u = g
p−1
3 (mod p).

Proof. Assume that p ≡ 2 (mod 3), then x3 − 1 = 0 has only one root (namely x = 1) in

Fp, therefore τ is one-to-one.
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Now suppose that p ≡ 1 (mod 3). Thus 1, g
p−1
3 , and g

2(p−1)
3 are three distinct roots of

x3 − 1 = 0, i.e., ker(τ) = {1, u, u2}.

Remark. It is easy to see that −3 is a quadratic residue modulo p if and only if p ≡ 1

(mod 3). In this case if we write U to be such that U2 = −3 and let W be a primitive 3rd

root of unit in F∗p, then

W = g
p−1
3 =

−1 + U

2

holds in the field Fp with F∗p = 〈g〉.

When working with prime p ≡ 1 (mod 3), one often needs the ring Z[ω] = Z + Zω of

Eisenstein integers, where ω = −1+
√
−3

2
∈ C. As we will see later, there are integers c, d

such that p = c2−cd+d2, and such pair of (c, d) can be obtained by some efficient method.

This efficient construction is important in our later discussion.

Write π = c + dω, then N(π) := ππ̄ = c2 − cd + d2 = p. This π is a prime in Z[ω].

We will need π to be primary in the sense that c ≡ 2 (mod 3) and d ≡ 0 (mod 3). For

p ≡ 1 (mod 3), we can always find a primary π = c+ dω such that p = ππ̄. In fact, we can

replace π by one of the element in A = {±π,±ωπ,±ω2π}, as it is actually proved in [13]

(Prop. 9.3.5) that there is exactly one primary element in A.

The cubic residue character
( ·
π

)
3

is defined as(α
π

)
3

= α
N(π)−1

3 (mod π).

The values of
(
α
π

)
3

can be 1, ω or ω2. It is an extension of Legendre symbol
(
·
p

)
for

quadratic case, and
(
α
π

)
3

= 1 iff x3 = α (mod π) is solvable.

Lemma 2.2. If p ≡ 1 (mod 3), then one can find c, d ∈ Z in polynomial time such that

p = c2 − cd+ d2.

Proof. In this case, we know that −3 is a quadratic residue. Let 0 < U < p be such that

U2 ≡ −3 (mod p). We assume that U is odd (otherwise replace U by p− U), then we get

U2 = −3 (mod 4p).

Letting U2 − 4pt = −3 for some integer t. This means that the binary quadratic form

f(x, y) = px2 + Uxy + ty2,

which takes the value p at (1, 0), has discriminant d = −3. Note that f(x, y) is equivalent

to the form

g(x, y) = x2 + xy + y2,

4



as it also has discriminant d = −3. g is in reduced form and Gauss reduction procedure

(the 2-dimensional case of LLL algorithm [16]) transforms f to g. Gauss reduction uses

number of steps comparable to that of the Euclidean algorithm [9], so one can find c, d ∈ Z
in polynomial time such that

p = c2 − cd+ d2.

For any b ∈ F∗p, the curve Eb/Fp : y2 = x3 + b is not singular and hence defines an

elliptic curve.

Next we derive some simple arguments about the number of points in Eb/Fp.

Lemma 2.3. If p ≡ 1 (mod 3), then

#Eb(Fp) (mod 3) =

{
0, if b is a quadratic residue modulo p,

1, if b is a quadratic nonresidue modulo p.

Proof. Since p ≡ 1 (mod 3). In this case, as we noted earlier that for ω = g
p−1
3 , 1, ω, ω2

are three distinct roots of x3− 1 = 0. If (x, y) ∈ Eb(Fp) \ {O} and x 6= 0, then Eb(Fp) must

contain two more points of the form (ωx, y) and (ω2x, y). This implies that

|{(x, y) ∈ Eb(Fp) \ {O} : x 6= 0}|

is a multiple of 3.

If b is a quadratic residue modulo p, then Eb(Fp) \ {O} contains two more points

(0,
√
b), (0,−

√
b), so #Eb(Fp) (mod 3) = 0 by counting the point at infinity.

If b is a quadratic nonresidue modulo p, |Eb(Fp)\{O}| = |{(x, y) ∈ Eb(Fp)\{O} : x 6= 0}|
so #Eb(Fp) (mod 3) = 1.

Recall that a curve E/Fp is supersingular if #E(Fp) = p + 1. For the special case Eb,

we see that

Lemma 2.4. For b ∈ F∗p
Eb/Fp : y2 = x3 + b

is supersingular iff p ≡ 2 (mod 3).

Proof. If p ≡ 2 (mod 3), then it is a standard argument that Eb is supersingular, see, for

example, [23] (Proposition 4.33).

Conversely, if p 6≡ 2 (mod 3), then p ≡ 1 (mod 3), hence by lemma 2.3, #E(Fp)
(mod 3) = 0 or 1. This contradicts to #Eb(Fp) = p+ 1.

Remark. It has been proved that y2 = x3 + 1/Fp is supersingular iff p ≡ 2 (mod 3) in [23]

(Proposition 4.37). But our proof uses a completely different method.
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3 Classification

In this section, we classify the groups Eb(Fp) by their precise number for the case of p ≡ 1

(mod 3) and by their precise group structure for the case of p ≡ 2 (mod 3).

3.1 The case p ≡ 1 (mod 3)

Study of equations y2 = x3 + b modulo p with p ≡ 1 (mod 3) has been an interesting

mathematical topic. In [19], Rajwade derived a formula for points on Eb/Fp based on cubic

character sum. We state the result using notation from [24], where a very clean and short

treatment of Rajwade’s result was described by Williams.

Theorem (Rajwade). Let p ≡ 1 (mod 3) be a prime number that has a factorization

p = ππ in Z[ω], with π being primary. Then

#Eb(Fp) = p+ 1 +

(
b

p

){(
4b

π

)
3

π +

(
4b

π̄

)
3

π̄

}
.

Note that
(

4b
π̄

)
3
π̄ =

(
4b
π

)
3
π, we see that

#Eb(Fp) = p+ 1 + 2

(
b

p

)
<
((4b

π

)
3
π

)
. (2)

It can be deduced that from the formula there are 6 possible different cardinalities for

the groups Eb(Fp) with p fixed. In fact, Jeon and Kim [14] proved that for prime p ≡ 1

(mod 3), there are exactly 6 classes of isomorphic groups for all Eb(Fp) with b 6= 0. More

precisely, let F∗p = 〈g〉, then any Eb(Fp) is isomorphic to one of the following groups

E1(Fp), Eg(Fp), Eg2(Fp), Eg3(Fp), Eg4(Fp), Eg5(Fp).

What we would like to emphasize is that the isomorphism is concrete and efficiently com-

putable. Suppose b = gk and let r = k (mod 6) and q = k−r
6

. Then the following is

obviously an isomorphism:

Φ : Eb(Fp)→ Egr(Fp)
(x, y) 7→

(
x
g2q
, y
g3q

)
, O 7→ O.

We are able to describe an explicit and efficiently computable formula for the number

of points in Eb(Fp), based on the result from [19]. Such formula can be useful in several

applications. We start by developing some tools for dealing with cubic residues.

Again, we fix a generator g for F∗p, so that we can only focus on the case of b ∈
{1, g, g2, g3, g4, g5}. Let π = c+ dω be a primary prime in Z[ω], we need to compute

(
g
π

)
3
.

This value is either ω or ω2, since there are two cubic non-residues. Our next result provides
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a criterion to determine cubic residues for a rational integer in terms of rational integer

operations. It can be used to determine whether
(
g
π

)
3

is ω.

Lemma 3.1. Let p ≡ 1 (mod 3) and p = c2 − cd + d2 such that π = c + dω is primary.

Let 0 < b < p be an integer and denote V = b
p−1
3 (mod p). Then

(
b

π

)
3

=


1, if V = 1

ω, if p|(c+ dV )

ω2, if p|(c− d− dV ).

In particular,
(
b
π

)
3

= ω if and only if c+ dV ≡ 0 (mod p).

Proof. The condition for
(
b
π

)
3

= 1 is trivial as
(
b
π

)
3

= b
p−1
3 (mod π).

Now we assume that b is a cubic non-residue. Note that π = c− d− dω, we only need

to check for the condition for
(
b
π

)
3

= ω.

We will prove the following claim.

Claim.
(
b
π

)
3

= ω if and only if c+ dV ≡ 0 (mod p).

Suppose that
(
b
π

)
3

= ω. This is equivalent to

b
p−1
3 ≡ ω (mod π).

Therefore, there are integers x, y such that V − ω = (c+ dω)(x+ yω) = (cx− dy) + (dx+

(c− d)y)ω. From {
cx− dy = V

dx+ (c− d)y = −1.

This gives (−c2 + cd− d2)y = c+ dV . i.e., So −py = (c+ dV ), hence c+ dV ≡ 0 (mod p).

Conversely, if c+ dV ≡ 0 (mod p) but
(
b
π

)
3
6= ω. Since b is a cubic non-residue modulo

π, so
(
b
π

)
3

= ω2 = −1− ω. Using a similar argument as above, we have integer x′, y′ such

that {
cx′ − dy′ = V + 1

dx′ + (c− d)y′ = 1.

But this gives us py′ = (c − d) − dV . This would force p|(2c − d). This is impossible as

p = ππ and (2c− d) = π + π.

Remark. If
(
g
π

)
3

= ω2, then
(
g
π

)
3

= ω. Note that if π is primary, so is π. Therefore,

without loss of generality, we can always assume
(
g
π

)
3

= ω.

We also need to compute the precise value of
(

2
π

)
3
. It is a well-know result that

(
2
π

)
3

= 1

iff c = 1 (mod 2) and d = 0 (mod 2) [13] (Prop.9.6.1). It would be beneficial to have the

whole spectrum of
(

2
π

)
3
, in order to perform certain computational tasks. Here we derive

such a computational tool.
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Lemma 3.2. Let p ≡ 1 (mod 3) and p = c2 − cd + d2 such that π = c + dω is primary.

Let s = c (mod 2), t = d (mod 2) (with s, t ∈ {0, 1}), then(
2

π

)
3

= ω(s+1)t. (3)

Proof. Note that in Z[ω], N(2) = 22 = 4. Since N(π) 6= 3 and N(π) 6= N(2), the law of

cubic reciprocity applies. So (
2

π

)
3

=

(
π

2

)
3

.

By definition,
(
π
2

)
3
≡ π

N(2)−1
3 (mod 2), namely,

(
π
2

)
3
≡ π (mod 2). This means that(

π

2

)
3

≡ s+ tω (mod 2).

This is equivalent to saying that

(
π

2

)
3

=


1 if c is odd, d is even

ω if c is even, d is odd

ω2 if c is odd, d is odd.

Turn this to a single expression, we have proved our lemma.

With all the preparation and computational tools, we are ready to our main result of

this subsection.

Theorem 3.1. Let p ≡ 1 (mod 3) and p = c2 − cd + d2 such that π = c + dω is primary,

and
(
g
π

)
3

= ω. Let s = c (mod 2), t = d (mod 2), then for integer 0 ≤ r < 6,

#Egr(Fp) = p+ 1 + 2(−1)r<
(
ω2(s+1)t+r(c+ dω)

)
. (4)

More precisely, letting m = 4(s + 1)t (mod 6) and denote m+ j = (m + j) (mod 6), we
have

#Egm(Fp) = p + 1− (d− 2c),#Egm+1(Fp) = p + 1 + (c + d),#Egm+2(Fp) = p + 1− (c− 2d).

and all #Egr(Fp) with r = 0, 1, · · · 5 can be easily derived from these three cases.

Proof. We shall prove the theorem by using formula (2).

#Egr(Fp) = p+ 1 + 2

(
gr

p

)
<
((

4gr

π

)
3

π

)
.

Note that gr is quadratic residue iff 2|r, so
(
gr

p

)
= (−1)r. As we choose π to be such
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that
(
g
π

)
3

= ω, so (
4gr

π

)
3

=

(
2

π

)2

3

(
gr

π

)
3

= ω2(s+1)t+r.

Thus we have derived the formula for #Egr(Fp):

#Egr(Fp) = p+ 1 + 2(−1)r<
(
ω2(s+1)t+r(c+ dω)

)
.

When r = m = 4(s+ 1)t (mod 6), then r is an even number, ω2(s+1)t+r = ω6(s+1)t = 1,

so

#Egr(Fp) = p+ 1 + 2< ((c+ dω)) = p+ 1− (d− 2c).

Similarly, we get

#Egm+1(Fp) = p+ 1 + (c+ d),#Egm+2(Fp) = p+ 1− (c− 2d).

Note that Egr is a twist of Egr+3 by g [23], so #Egr(Fp) + #Egr(Fp) = 2(p+ 1) holds. Since

m,m+ 1,m+ 2 are three consecutive (in the sense of modulo 6) integer in {0, 1, 2, 3, 4, 5},
the number of points for Egk(Fp) with k ∈ {0, 1, 2, 3, 4, 5} \ {m,m+ 1,m+ 2} is easy to

get through its twist.

Remark. We can explicitly list all cases for the numbers #Egr(Fp):

#E1(Fp) = p+ 1− (d− 2c), #Eg(Fp) = p+ 1− (−c− d), #Eg2 (Fp) = p+ 1− (c− 2d), if c is odd, d is even,

#E1(Fp) = p+ 1− (c− 2d), #Eg(Fp) = p+ 1− (2c− d), #Eg2 (Fp) = p+ 1− (c+ d), if c is even, d is odd,

#E1(Fp) = p+ 1− (c+ d), #Eg(Fp) = p+ 1− (2d− c), #Eg2 (Fp) = p+ 1− (d− 2c), if c is odd, d is odd.

Corollary 3.1. We have the following invariants:

1. #E1(Fp) is an even number.

2.

#E1(Fp) + #Eg(Fp) + #Eg2(Fp) = 3(p+ 1) + <
(

(cω + dω2)

(
2

π

)
3

)
.

3. For any 0 ≤ j ≤ p−7
6

,

#Eg6j (Fp)+#Eg6j+1(Fp)+#Eg6j+2(Fp)+#Eg6j+3(Fp)+#Eg6j+4(Fp)+#Eg6j+5(Fp) = 6(p+1).

Proof. (1) and (2) follow directly by examining the formulas of #Egr(Fp).
For (3), we know that

#Eg6j (Fp) + #Eg6j+1(Fp) + #Eg6j+2(Fp) + #Eg6j+3(Fp) + #Eg6j+4(Fp) + #Eg6j+5(Fp)
= (#E1(Fp) + #Eg3(Fp)) + (#Eg(Fp) + #Eg4(Fp)) + (#Eg2(Fp) + #Eg5(Fp))
= 6(p + 1).
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Remark. Certain sums of #Egr(Fp) have been studied in literature. For example, the

following were reported in [10, 14]:

p−2∑
r=0

#Egr(Fp) =

p−2∑
r=0

#Eg3r(Fp) = p2 − 1.

Our results can be used to produce even finer formulas

3.2 The case p ≡ 2 (mod 3)

For the case of p ≡ 2 (mod 3), it is well-known that the curves Eb : y2 = x3 + b are su-

persingular and #Egr(Fp) = p+ 1. However, some interesting algebraic and computational

properties are observed. Compared to the case p ≡ 1 (mod 3) where there exist 6 isomor-

phism classes of groups of Fp-rational points, this case has only one such class, namely, the

class of cyclic group of size p+ 1.

Here is our main result of this subsection.

Theorem 3.2. Let p ≡ 2 (mod 3) then

1. Eb(Fp) is a cyclic group.

2. There are efficiently computable group isomorphisms

φ : Eb(Fp) −→

{
E1(Fp) if

(
b
p

)
= 1,

E−3(Fp) if
(
b
p

)
= −1.

Proof. 1. By the structure theorem [20, 23], we know that there are positive integers

n,m such that n2m = p+ 1 and

Eb(Fp) ∼= Zn ⊕ Znm.

This implies that there are n2 points in Eb(Fp) whose order divides n. Namely

E[n] ⊂ Eb(Fp) where E[n] is the n-torsion subgroup of Eb(Fp). By the Weil pairing

over E[n], we see that µn = {x ∈ Fp : xn = 1} ⊂ F∗p. This forces that n|(p − 1).

However, n also divides p+ 1, so n must be 1 or 2.

If n = 2, then Eb(Fp) contains 3 points of order 2. Assume these points are (e1, 0), (e2, 0)

and (e3, 0), then e1, e2, e3 must be roots of x3 = −b. This cannot be true as by lemma

2.1, x3 = −b has only one root.

So n = 1 and Eb(Fp) ∼= Zp+1.

2. If
(
b
p

)
= 1, then b = α2 for some α ∈ F∗p. By lemma 2.1, α = β3 for some β ∈ F∗p.
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This gives that b = β6, and we can explicitly construct an isomorphism

φ : Eb(Fp)→ E1(Fp)
(x, y) 7→

(
x
β2 ,

y
β3

)
, O 7→ O.

If
(
b
p

)
= −1, then since

(−3
p

)
= −1, as discussed above, we can get a β ∈ F∗p such

that b = −3β6. This suggests us to use the isomorphism similar to the above.

φ : Eb(Fp)→ E−3(Fp)
(x, y) 7→

(
x
β2 ,

y
β3

)
, O 7→ O.

4 Searching for Koblitz Curves over Prime Fields

Recall that the binary Koblitz curves are the following elliptic curves defined over Ea :

y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1}. To determine a practical useful Koblitz curves,

one needs to find a prime number m such that #Ea(F2m) = n#Ea(F2) for a prime number

n. This can be done easily by using zeta function as a formula for #Ea(F2m) is available

to be used.

We now consider a similar problem for the curve Eb : y2 = x3 + b/Fp. With the explicit

formula of Eb(Fp) derived in last section, checking whether #Eb(Fp) is a prime or an almost

prime (a small multiple of a prime number) becomes easy. Thus determining a practical

useful Koblitz curve over prime fields is easy. We will describe such a procedure in this

section.

In this section, we will work with primes of the form 3k+ 1. As mentioned earlier, such

a prime can be factorized in Z[ω]:

p = c2 − cd+ d2 = ππ̄,

with π = c+ dω being primary, i.e., c ≡ 2 (mod 3) and d ≡ 0 (mod 3).

We have obtained explicitly computation of #Eb(Fp) in the previous section. As

Eb(Fp) ∼= Egr(Fp) for some 0 ≤ r < 6, the following table (Table 1) is the point counting

summary. To simplify some notation, we use Tr(Eb) to denote the trace of Eb, namely,

Tr(Eb) = p+ 1−#Eb(Fp)
If a primitive root g modulo p is available, then we have the set of representatives of

the 6 isomorphism classes of the curves: E1, Eg, Eg2 , Eg3 , Eg4 and Eg2 . Practically, this is

often the case.

If no primitive root is given, we can still get a set of representatives of the 6 iso-

morphism classes of the curves, in deterministic polynomial time, assuming the Gener-

alized Riemann Hypothesis (GRH). This is proved by the next proposition. We write
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Table 1: Number of points summary for Eb : y2 = x3 + b

(c, d) (mod 2) Tr(E1 Tr(Eg) Tr(Eg2) Tr(Eg3) Tr(Eg4) Tr(Eg5)
(1, 0) (d− 2c) −(c+ d) (c− 2d) −(d− 2c) (c+ d) (2d− c)
(0, 1) (c− 2d) (2c− d) (c+ d) −(c− 2d) −(2c− d) −(c+ d)
(1, 1) (c+ d) (2d− c) (d− 2c) −(c+ d) −(2d− c) (2c− d)

H = {t|t is the sixth power of an lement in F∗p}, then H is a subgroup of F∗p.

Proposition 4.1. Let p ≡ 1 (mod 3) be a prime. Assuming GRH, there is a deterministic

polynomial time algorithm outputs an element z ∈ F∗p such that 1, z, z2, z3, z4, z5 are in

different cosets of H.

Proof. An algorithm of Adleman, Manders, and Miller [2] states that for all m, under GRH,

there is a deterministic polynomial time algorithm which on input α ∈ N, outputs the least

x ∈ N such that xm = α, or “NO” if no such x exists.

Let H2 = {s|s is a square in F∗p} and H3 = {c|c is a cube in F∗p}, then H2 is a proper

subgroup of F∗p, and since p ≡ 1 (mod 3), H3 is a proper subgroup of F∗p, by lemma 2.1.

Let nq, nc be the least primes that are not in H2, H3 respectively. It has been proved

that, under GRH, nq, nc < log2 p, [3, 4, 17].

By the algorithm of Adleman, Manders, and Miller, checking whether nc ∈ H2, nq ∈ H3

is achievable in polynomial time. Therefore our result is prove by taking

z =


nq if nq /∈ H3,

nc if nc /∈ H2,

nqnc otherwise.

We are now ready for a procedure of generating Koblitz curves over prime field for

primes to be 1 modulo 3. The output is a number b so that #Eb(Fp) is prime.

Procedure 4.1. Searching Koblitz Curves Eb : y2 = x3 + b/Fp for p ≡ 1 (mod 3).
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Input: prime number p such that p ≡ 1 (mod 3);

Output: b ∈ F∗p such that #Eb(Fp) is prime, or “no such b exists”.

1. Write p as c2 − cd+ d2 such that π = c+ dω is primary;

2. For each number in

3. p+ 1− {(d− 2c),−(c+ d), (c− 2d),−(d− 2c), (c+ d),−(c− 2d)}
4. check its primality;

5. If a prime number, say n, is found

6. Compute z as in proposition 4.1;

7. Compute #Ezj(Fp) (0 ≤ j < 6) by Schoof Algorithm;

(*or by Schoof-Elkies-Atkin algorithm*)

8. If for some j, n = #Ezj(Fp)
9. Return b = zj (mod p);

10. Return “No prime order curve exists for this p”;

Remark. 1. Driving p = c2 − cd + d2 in step 1 and testing primality in step 4 can be

achived in polynomial time. So under GRH, the procedure is deterministic polynomial

time if we use Schoof point counting Algorithm in step 7.

2. This procedure can be more practical if Schoof-Elkies-Atkin algorithm is used in step

7, and if we choose several random z ∈ F∗p to check in step 6. Of course, it will be

much better if a primitive root is used in this step.

3. For finding curves whose order is an almost prime number, we just need a slight

modification to the above procedure.

Let us see an example.

Example. Let p = 2256 − 2224 − 232 + 19919. This is a prime with p ≡ 1 (mod 3). A

primary factor for p is π = c+ dω where

c = −68524741867453423335625304140397280874

d = 300805322263268044042343519469882788769.

In this case, g = 5 is a primitive root, so the determination of useful curves is much easier.

It is checked that N = p+ 1 + (c+ d) is a prime. According to table 1, this is the number

of point of Eg5(Fp). In the same isomorphism class, we also find

E10(Fp), E11(Fp), E12(Fp), E17(Fp), E21(Fp), E23(Fp), · · · .

The number p + 1 − (2c − d) is an almost prime, in fact, p+1−(2c−d)
7

is a prime. This

number corresponds to the group Eg(Fp). So, E5(Fp) also has some cryptographic meaning.
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5 Conclusion

In this paper, precise formulas for the number of Fp-rational points of Eb : y2 = x3 + b/Fp
are derived. When p ≡ 1 (mod 3), the numbers are determined by the coefficients of a

primary factor of p in the ring of Eisenstein integers. When p ≡ 2 (mod 3), it is a well-

known fact that the number of points of Eb is the constant p + 1, we consider the group

structure and show that Eb ∼= Zp+1.

Our results for the case of p ≡ 1 (mod p) is used in searching prime (or almost prime)

order Koblitz curves over prime fields. An efficient procedure is described.

Several useful tools are also developed in this paper.
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