
Rescue-Prime: a Standard Specification (SoK)

Alan Szepieniec1, Tomer Ashur2,3, and Siemen Dhooghe2

1 Nervos Foundation
alan@nervos.org

2 imec-COSIC KU Leuven, Heverlee-Leuven, Belgium
{tomer.ashur, siemen.dhooghe}@esat.kuleuven.be

3 TU Eindhoven, Eindhoven, the Netherlands

Abstract. This document provides a simple standard specification for
the Rescue-Prime family of arithmetization-oriented hash functions.

Keywords: Arithmetization-Oriented · Hash · Rescue · Standard

1 Introduction

A large number of projects are being developed and deployed that rely on the
evaluation of a hash function inside of a cryptographic protocol such as a multi-
party computation or a zero-knowledge proof system. The common strategy
employed by both types of protocols is to represent a computation as a series
of native finite field operations, a process called arithmetization. The complex-
ity of the resulting protocol is linked to that of the arithmetic representation.
Consequently, there is a high demand for hash functions with an efficient arith-
metization — arithmetization-oriented hash functions.

We consider one particular family of arithmetization-oriented hash functions
called Rescue, first introduced as part of the Marvellous4 universe [2]. In the
time since the publication of the first electronic preprint, the paper’s scope has
been proven needlessly broad on two counts.

– The advanced cryptographic protocols almost universally prefer prime fields
over binary extension fields. As a result, the Rescue family has received much
more attention than its binary field (and equally Marvellous) counterpart,
Vision.

– The original paper specifies the Vision and Rescue hash functions in multiple
steps in order to offer more flexibility with regards to the exact symmetric
primitive required. However, the demand for arithmetization-oriented hash
functions dwarfs the demand for alternative symmetric constructions with
similar properties. In light of this imbalance, the flexibility is unnecessary
and the stepwise derivation convoluted.

4 No idea why it is spelled with two L’s.

2 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

The complexity arising from this broad focus is compounded by the paper’s
target audience. It is written primarily for symmetric key cryptanalysts and ci-
pher designers who must be led by the hand and in tiny steps to the understand-
ing that their hard-won knowledge and intuition about traditional cipher design
and analysis needs adaptation in order to apply to arithmetization-oriented ci-
phers. Rather than merely specifying the new proposals, the paper surveys the
field in order to identify differences and pitfalls before proceeding to formulate
(candidates for) sound design principles. When the ciphers finally are specified,
this specification is overshadowed by an elaborate security analysis and perfor-
mance benchmark justifying the proposals’ existence by driving home once again
the alternate target for optimization — arithmetic complexity, not hardware or
software complexity.

In the mist of this discussion, the instructions for implementers are lost.

1.1 This Document

This document specifies the arithmetization-oriented hash function Rescue-Prime,
which is based on the original Rescue proposal [2]. The hash function is presented
in an easy-to-digest format. The target audience consists of implementers rather
than cryptanalysts. We can therefore omit discussions that distract from the
matter at hand.

No scientific novelty is claimed. Rather, the contribution consists in making
existing knowledge more accessible to a wider audience. This document should be
read through the lens of a standards document or a systematization of knowledge.

That being said, we do make use of the opportunity to apply three simplifi-
cations to the construction. The motivation for these changes is segregated from
the specification itself.

– We change the derivation of round constants.
– We reduce the security margin from 100% to 50%.
– We flip the order of S-Boxes.

The resulting families of permutations and hash functions are technically dis-
similar from their analogues in the original proposal. To draw a clear distinction
between all objects, we introduce new names for the primitives specified here.
Rescue-XLIX (pronounced Rescue Forty Nine) refers to the permutation that
incorporates these changes. Rescue-Prime refers to the hash function obtained
by instantiating the sponge construction with this permutation.

1.2 Not in This Document

This document targets brevity and clarity. As a result, any discussion on the
following questions is omitted.

– The Vision and Rescue block ciphers, as well as the Vision hash function.
– How to arithmetize Rescue-Prime.
– Other symmetric-key primitives derived from Rescue-XLIX.
– Security arguments.

Rescue-Prime: a Standard Specification (SoK) 3

2 Specification of Rescue-Prime

2.1 Parameters

A member of the Rescue-Prime family of hash functions is fully determined by
a tuple of primary parameters (p,m, cq, s).

– p determines the prime field Fp over which the operations are defined. p must
be a prime number with a binary expansion of at least 32 bits.

– m determines the state width of the hash function. Phrased differently, in
the evaluation of the function, the state is fully determined by m > 1 field
elements.

– cp is the capacity of the arithmetic sponge. The complement, rp = m −
cp is the rate of the arithmetic sponge which determines the number of
field elements that are absorbed between invocations of the Rescue-XLIX
permutation.

– 80 ≤ s ≤ 512 is the target security level, measured in bits.

Furthermore, there are parameters that depend entirely on the tuple of pri-
mary parameters but are included in the parameter list for convenience.

– α and α−1 are the exponents in the power maps in the S-boxes. These
parameters are set to guarantee that (xα)α

−1

= x for all x ∈ Fp.
– M ∈ Fm×mp is an m×m MDS matrix.
– N ∈ N is the number of rounds. A single Rescue-XLIX permutation consists

of N iterations of a simpler base permutation called a round.

Lastly, there are an additional 2mN field elements {Ci}2mN−1i=0 called the
round constants. These serve to individualize each round of the permutation.
We provide a way to derive them pseudorandomly in Section 2.4.

2.2 The Rescue-Prime Hash Function

The Rescue-Prime hash function sends arbitrary-length sequences of field ele-
ments to rp field elements:

fR′ : F∗p → Frpp .

It is obtained by employing the Rescue-XLIX permutation in a sponge construc-
tion. The resulting sponge function sends arbitrary-length sequences to infinite-
length sequences of field elements:

fR′-sponge : F∗p → F?p .

Rescue-Prime results from truncating this sponge function. Specifically, the first
rp elements are retained and the rest is ignored.

The evaluation of the sponge function involves a permutation fRXLIX : Fmp →
Fmp , a register of m field elements called the state, and two phases. The state is
initially set to the all-zero sequence 0 ∈ Fmp .

4 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

In the absorbing phase, the following iteration is repeated: the next rp ele-
ments from the input sequence are added to the rp top elements of the state,
after which the permutation fRXLIX is applied to the state. This loop runs until
all the input elements have been absorbed.

In the squeezing phase, the top rp elements of the state are output. In theory,
the permutation fRXLIX can be applied to the state iteratively to produce an
arbitrarily long sequence of output elements. However, this specification restricts
the number of output elements to at most rp.

Fig. 1 illustrates the computation. Algorithm 1 captures this procedure with
SageMath code.

Absorbing phase Squeezing phase

+

m0

cp

rp

fRXLIX

+

m1

cp

rp

fRXLIX

z0

cp

rp

Fig. 1. The Rescue-Prime hash function with two absorbing iterations.

Padding A sponge function operating on arbitrary-length inputs requires a
padding rule. To pad the input, append a single 1 ∈ Fp and as many 0 ∈ Fp
elements as required to make the number of input elements a multiple of rp. A
wrapper adding this padding is provided in Alg. 2.

Truncation and generic security For some applications only n < rp field ele-
ments are required. The most straightforward way to obtain them is to truncate
the output of Rescue-Prime.

In general, the security proof for sponge constructions assumes that the un-
derlying permutation is uniformly sampled from the set of all permutations on
the state space. The discussion in Section 2.3 is aimed to ensure that the Rescue-
XLIX permutation is indistinguishable from a random permutation, thus satisfy-
ing the prerequisite for the security proof. When this is the case, a sponge-based
hash function whose output is truncated to n ≤ rp field elements, generically
affords at least log2

(√
p
)
· min(n, cp) bits of security against finding collisions,

preimages, and second-preimages.

Rescue-Prime: a Standard Specification (SoK) 5

Algorithm 1 Obtaining the Rescue-Prime hash function (without padding)
from the Rescue-XLIX permutation

def rescue_prime_hash(parameters , input_sequence):

p, m, capacity , security_level , alpha , alphainv , N, MDS ,

round_constants = parameters

rate = m - capacity

Fp = FiniteField(p)

assert len(input_sequence) % rate == 0

initialize state to all zeros

state = matrix ([[Fp(0)] for i in range(m)])

absorbing

absorb_index = 0

while absorb_index < len(input_sequence):

for i in range(0, rate):

state[i,0] += input_sequence[absorb_index]

absorb_index += 1

state = rescue_XLIX_permutation(parameters , state)

squeezing

output_sequence = []

for i in range(0, rate):

output_sequence.append(state[i,0])

return output_sequence

Algorithm 2 The Rescue-Prime hash function, with padding.

def rescue_prime_wrapper(parameters , input_sequence):

p, m, capacity , security_level , alpha , alphainv , N, MDS ,

round_constants = parameters

rate = m - capacity

Fp = FiniteField(p)

padded_input = input_sequence + [Fp(1)]

while len(padded_input) % rate != 0:

padded_input.append(Fp(0))

return rescue_prime_hash(parameters , padded_input)

2.3 The Rescue-XLIX Permutation

The Rescue-XLIX permutation fRXLIX consists of N iterations of the Rescue-
XLIX round function. A single round consists of the following components:

6 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

– S-box layer: apply the power map (·)α to each element of the state.
– Linear layer: apply the MDS matrix to the state, through matrix-vector

multiplication.
– Constants injection: add the next m constants from the list of round con-

stants {Ci}2mN−1i=0 into the state.

– Inverse S-box layer: apply the inverse power map (·)α−1

to each element of
the state.

– Linear layer: apply the MDS matrix to the state, through matrix-vector
multiplication.

– Constants injection: add the next m constants from the list of round con-
stants {Ci}2mN−1i=0 into the state.

A diagram of a single round is provided in Fig. 2. SageMath code for the full
permutation (N rounds) is given in Alg. 3.

(·)α

(·)α

(·)α

MDS

+

+

+

C2im
C2im+1

C2im+2

(·)α
−1

(·)α
−1

(·)α
−1

MDS

C2im+5

C2im+4

C2im+3

+

+

+

Fig. 2. Round i of the Rescue-XLIX permutation, with m = 3.

2.4 Selecting the Parameters

Selecting the MDS Matrix. Let g be the smallest primitive element of Fp.
Typically g = 2 is fine, but for some choices of p, g only generates a subgroup
of Fp\{0},×. To test whether a candidate g is primitive, raise it to all factors of
p− 1 and verify that the result is not 1.

Build a Vandermonde matrix V ∈ Fm×2mp by setting the (i, j)th element

to gij , with both indices starting from zero. The rows of V form a basis for a
maximum distance separable (MDS) code. To obtain a generator matrix for this
code, bring V into reduced row-echelon form. At this point, V has the shape
(I|MT), where M is the sought-after MDS matrix.

Selecting the Round Constants Let |p| denote the number of bits in the

binary representation of p. Generate a string of (d |p|8 e + 1) × 2mN bytes using
SHAKE-256 to expand the ASCII string “Rescue-XLIX(%i,%i,%i,%i)” where

Rescue-Prime: a Standard Specification (SoK) 7

Algorithm 3 The Rescue-XLIX permutation

def rescue_XLIX_permutation(parameters , state):

p, m, capacity , security_level , alpha , alphainv , N, MDS ,

round_constants = parameters

Fp = state [0,0]. parent ()

for i in range(N):

S-box

for j in range(m):

state[j,0] = state[j,0]^ alpha

mds

state = MDS * state

constants

for j in range(m):

state[j,0] += round_constants[i*2*m+j]

inverse S-box

for j in range(m):

state[j,0] = state[j,0]^ alphainv

mds

state = MDS * state

constants

for j in range(m):

state[j,0] += round_constants[i*2*m+m+j]

return state

Algorithm 4 Generating the MDS matrix

def get_mds_matrix(p, m):

get a primitive element

Fp = FiniteField(p)

g = Fp(2)

while g.multiplicative_order () != p-1:

g = g + 1

get a systematic generator matrix for the code

V = matrix ([[g^(i*j) for j in range(0, 2*m)] for i in

range(0, m)])

V_ech = V.echelon_form ()

the MDS matrix is the transpose of the right half of

this matrix

MDS = V_ech[:, m:]. transpose ()

return MDS

8 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

the %i wildcards represent the decimal expansions of the primary parameters
p,m, cp, s, respectively.

Next, build the list of constants one by one. To do this, iterate over all 2mN

chunks of (d |p|8 e + 1) bytes from this string and cast the chunk into an integer
using least significant byte first encoding. Reducing this integer modulo p gives
the next element of the list of constants.

Algorithm 5 Generating the round constants

def get_round_constants(p, m, capacity , security_level , N):

generate pseudorandom bytes

bytes_per_int = ceil(len(bin(p)[2:]) / 8) + 1

num_bytes = bytes_per_int * 2 * m * N

seed_string = "Rescue -XLIX(%i,%i,%i,%i)" % (p, m,

capacity , security_level)

byte_string = SHAKE256(bytes(seed_string , "ascii"),

num_bytes)

process byte string in chunks

round_constants = []

Fp = FiniteField(p)

for i in range (2*m*N):

chunk = byte_string[bytes_per_int*i : bytes_per_int *(

i+1)]

integer = sum (256^j * ZZ(chunk[j]) for j in range(len

(chunk)))

round_constants.append(Fp(integer % p))

return round_constants

2.5 Computing α and α−1

The parameter α is defined as the smallest integer that is coprime with p − 1,
and α−1 is defined as its multiplicative inverse in the ring Z/〈p − 1〉. For fields
satisfying gcd(p− 1, 3) = 1, we have α = 3 and α−1 = 2p−1

3 . However, for other
fields α must be larger and α−1 must be computed with the extended Euclidean
algorithm. Algorithm 6 shows how to compute these parameters.

Choosing the Number of Rounds For |p| ≥ 32 and 80 ≤ s ≤ 512, the
Gröbner basis attack performs best and should be used to set the number of
rounds. Let dcon = 0.5(α − 1)m(N − 1) + 2 and v = m(N − 1) + rp. The

complexity of a Gröbner basis attack is at least
(
dcon+v
v

)2
field operations. Set `1

Rescue-Prime: a Standard Specification (SoK) 9

Algorithm 6 Computing α and α−1

def get_alphas(p):

for alpha in range(3, p):

if gcd(alpha , p-1) == 1:

break

g, alphainv , garbage = xgcd(alpha , p-1)

return (alpha , (alphainv % (p-1)))

to the smallest positive value for N that makes this binomial expression larger
than 2s, or formally

`1 = min
N

subject to

(
dcon + v

v

)2

> 2s .

Additionally, account for a sanity factor of at least 5 rounds and a security
margin of 50%. This makes the number of rounds equal to

N = d1.5 ·max(5, `1)e.

Algorithm 7 shows provides SageMath code for determining the number of
rounds.

Algorithm 7 Calculating the number of rounds

def get_number_of_rounds(p, m, capacity , security_level ,

alpha):

get number of rounds for Groebner basis attack

rate = m - capacity

dcon = lambda N : floor (0.5 * (alpha -1) * m * (N-1) + 2)

v = lambda N : m*(N-1) + rate

target = 2^ security_level

for l1 in range(1, 25):

if binomial(v(l1) + dcon(l1), v(l1))^2 > target:

break

set a minimum value for sanity and add 50%

return ceil (1.5 * max(5, l1))

3 Motivation for Changes from the Original Publication

Rescue-XLIX departs from the original specification of Rescue [2] in three ways.

10 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

3.1 Flipped Order of S-boxes

In Rescue, the first step of each round involves the α−1 power map, and the
second step uses α. In Rescue-XLIX, this order is reversed. As a result, the
arithmetization technique the original publication called folding — representing
two steps as a single set of equations without increasing their degree and omitting
intermediate state variables — now applies across the entire cipher and does not
require special care for the very first and last steps.

Conceptually, the new variant can be thought of as adding a single step to the
front and to the back. The number of equations and variables in a Gröbner basis
attack does not change as a result of this addition, because the same improved
arithmetization is available to the attacker. However, the shape of the equations
at the very first and last steps are different.

3.2 Simplified Specification of Round Constants

The specification of the round constants for the original version of Rescue is
rather convoluted. It specifies the round constants for the block cipher’s key
schedule using an affine relation determined by SHAKE-256. By setting the key
to zero, the sub-keys are fixed, and these are the round constants that are used
in the hash function.

The specification of the round constants for Rescue-XLIX is much more
straightforward. In principle, uniformly random round constants suffice. How-
ever, we chose to use SHAKE-256 to expand a seed phrase and derive the con-
stants from the resulting byte stream. This achieves two goals:

– It establishes that the designers did not select these round constants because
they hide a secret trapdoor, an approach known as nothing-up-my-sleeve.

– It provides a single standard way to instantiate Rescue-Prime that different
projects and implementations can agree on. After all, this paper provides a
reference standard.

3.3 Reduced Security Margin

The original specification of Rescue had a 100% security margin. A reasonable
amount of time has passed since the publication of the preprint. In the interven-
ing time multiple projects have chosen to use Rescue [9,6,10], several studies of
the security of arithmetization-oriented hash functions and Rescue in particular
have appeared [4,3,7,8,5], and even a bountiful competition has run its course [1].
None of these endeavors have exposed any weaknesses in the construction. We
therefore determine that it is timely and fitting to reduce the security margin to
50%.

4 Deviations from the Rescue-Prime Standard
Specification

Following Section 2 is the simplest and most straightforward way to generate
a safe instance of Rescue-Prime. However, certain special cases may warrant

Rescue-Prime: a Standard Specification (SoK) 11

deviation from the standard approach. In this section we outline directions for
such deviations and assign a confidence score to the security claim of the resulting
variant. We stress that we highly recommend whenever possible to follow the
specification in Section 2 and to seek an expert’s help before deciding to deviate.

4.1 Small Fields and High Security

Section 2 mandated that binary expansion of p is at least 32-bit long and offered
a formula for a safe number of rounds when the security level is between 80 bits
and 512 bits. This ensures that resistance against Gröbner basis attacks is the
decisive factor in setting the number of rounds.

However, the original publication allows for fields as small as 4-bit long. In
some cases, when both the field size p and the state size m are small compared
to the required security, differential cryptanalysis may outperform Gröbner basis
attacks.

In this case, the number of rounds should take into account the maximal
number of rounds that can be attacked by a differential attack:

`0 =
2s

log2(pm+1)− log2((α− 1)m+1)
=

2s

(m+ 1)(log2(p)− log2(α− 1))
.

The number of rounds is then set to N = d1.5 ·max(5, `0, `1)e. Algorithm 8 shows
how to derive this number of rounds in this case.

Algorithm 8 Calculating the number of rounds for high-security/small-field
instances

def get_number_of_rounds1(p, m, capacity , security_level ,

alpha):

get number of rounds for Groebner basis attack

rate = m - capacity

dcon = lambda N : floor (0.5 * (alpha -1) * m * (N-1) + 2)

v = lambda N : m*(N-1) + rate

target = 2^ security_level

for l1 in range(1, 25):

if binomial(v(l1) + dcon(l1), v(l1))^2 > target:

break

get number of rounds for differential attack

l0 = 2* security_level / (log (1.0*p^(m+1), 2.0) - log

(1.0*(alpha - 1)^(m+1), 2.0))

take minimum of numbers , sanity factor , and add 50%

return ceil (1.5 * max(5, l0, l1))

Many of the parameter choices where differential attacks are relevant, are
artificial. In order to generate a practical generic security level for the sponge

12 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

construction, a small field must be paired with a large state size, or vice versa.
In other words, at most one of {m, |p|} can be small, practically speaking.

Selection of the MDS Matrix is unaffected by this decision.

Selection the Round Constants is unaffected by this decision.

Confidence Level is medium-high. This variant was explicitly covered in the
generic security argument of the original publication. However, most of the focus
so far was on more natural settings.

4.2 Alternate MDS Matrices

There are cases where better performance is afforded by optimizing the MDS
with respect to some design criterion. Section 2.4 specifies Vandermonde ma-
trices as the standard way to generate the MDS matrix. However the original
publication did not limit the choice of MDS to any specific type and argues
its security with respect to any MDS matrix. The decision to be more restric-
tive merely simplifies the standard specification and is not known to have any
security implications for algorithms following the Marvellous design strategy.

Choosing the MDS matrix: any MDS matrix can be used.

The number of rounds is unaffected by this decision.

Selection the Round Constants is unaffected by this decision.

Confidence Level is high. This variant was explicitly covered in the generic
security argument of the original publication.

4.3 Omission of the Padding Rule

A padding rule is required when the sponge function is used to absorb inputs of
arbitrary length. If the length of the input is fixed and known in advance (when
building a Merkle tree, for instance) the padding can be omitted.

The number of rounds is unaffected by this decision.

Selection of the MDS matrix is unaffected by this decision.

Selection the Round Constants is unaffected by this decision.

Rescue-Prime: a Standard Specification (SoK) 13

Confidence Level is medium-high. This is a well known property of sponge
constructions and is independent of Rescue-Prime.

4.4 Algebraically Dependent Round Constants

The point in injecting round constants is to ensure that every round is unique,
thereby foiling attacks that exploit a repetitive structure of the cipher. In some
applications it is cumbersome to specify 2mN unstructured round constants, and
it would be convenient to derive some of the round constants from the others.
We sketch two ways to do this.

– Select Ci, i ≡ 0modm at random and set Ci+j = Cj+1
i , for 0 < j < m. The

Ci should be selected uniformly at random but with rejection sampling to
ensure that Ci generates the entire group Fp\{0},×.

– Select (C0, . . . , Cm−1) uniformly at random along with an invertible matrix
A ∈ Fm×mp and an offset vector b ∈ Fmp . Then derive (Cim, . . . , C(i+1)m−1)T =

A(C(i−1)m, . . . , Cim−1)T + b, for 1 ≤ i < 2N .

The number of rounds is unaffected by this decision.

Selection of the MDS matrix is unaffected by this decision.

Confidence Level is high. Consult an expert to avoid pitfalls.

4.5 Permitting n > rp

Doubly-extendable cryptographic (DEC) functions Such function allow to absorb
a sequence of arbitrary length and and output a sequence of arbitrary length (up
to the security bound). Hash functions are a private case of DEC functions with
a fixed length input.

The Rescue-Prime hash function specified in Section 2 restricts the squeezing
phase to a single iteration, and defines the output length as n ≤ rp. Algorithm 9
(resp., Algorithm 10) modifies Algorithm 2 (resp., Algorithm 1) for the case of
a DEC functions.

The number of rounds is unaffected by this decision.

Selection of the MDS matrix is unaffected by this decision.

Selection the Round Constants is high. This variant was explicitly covered
in the generic security argument of the original publication.

14 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

Algorithm 9 Obtaining Rescue-Prime Doubly-extendable cryptographic func-
tion from the Rescue-Prime sponge

def rescue_prime_DEC(parameters , input_sequence ,

output_length):

p, m, capacity , security_level , alpha , alphainv , N, MDS ,

round_constants = parameters

rate = m - capacity

Fp = FiniteField(p)

padded_input = input_sequence + [Fp(1)]

while len(padded_input) % rate != 0:

padded_input.append(Fp(0))

return rescue_prime_sponge(parameters , padded_input ,

output_length)

5 Conclusion

We close with a note on the utility of conclusions, making use of the opportunity
provided by a clear example of when there isn’t any. The purpose of a conclusion
is not to summarize a body of text (that would be an insult to the reader!) but
rather to cast new and more light on the knowledge conveyed therein. It serves
to interpret the results, and to suggest improved thought patterns appropriate
for the context at hand.

This document does not introduce new results or even new knowledge. Read-
ers looking for a better way to think about arithmetization-oriented ciphers are
referred to the original Marvellous paper [2]. There is nothing left to say in this
conclusion; goodbye.

References

1. STARK-friendly hash challenge, https://starkware.co/developers-community/
hash-challenge/, accessed: 2020-09-09

2. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Cryptol.
ePrint Arch. 2019, 426 (2019), https://eprint.iacr.org/2019/426

3. Ben-Sasson, E., Goldberg, L., Levit, D.: STARK friendly hash - survey and rec-
ommendation. IACR Cryptol. ePrint Arch. 2020, 948 (2020), https://eprint.
iacr.org/2020/948

4. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of oddity - new
cryptanalytic techniques against symmetric primitives optimized for integrity proof
systems. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO, Part III. Lecture Notes
in Computer Science, vol. 12172, pp. 299–328. Springer (2020), https://doi.org/
10.1007/978-3-030-56877-1_11

https://starkware.co/developers-community/hash-challenge/
https://starkware.co/developers-community/hash-challenge/
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2020/948
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-030-56877-1_11

Rescue-Prime: a Standard Specification (SoK) 15

Algorithm 10 Obtaining the Rescue-Prime sponge from the Rescue-XLIX per-
mutation

def rescue_prime_sponge(parameters , input_sequence ,

output_length):

p, m, capacity , security_level , alpha , alphainv , N, MDS ,

round_constants = parameters

rate = m - capacity

Fp = FiniteField(p)

assert len(input_sequence) % rate == 0

initialize state to all zeros

state = matrix ([[Fp(0)] for i in range(m)])

absorbing

absorb_index = 0

while absorb_index < len(input_sequence):

for i in range(0, rate):

state[i,0] += input_sequence[absorb_index]

absorb_index += 1

state = rescue_XLIX_permutation(parameters , state)

squeezing

output_sequence = []

squeeze_index = 0

while squeeze_index < output_length:

for i in range(0, rate):

output_sequence.append(state[i,0])

squeeze_index += 1

if squeeze_index < output_length:

state = rescue_XLIX_permutation(parameters , state

)

return output_sequence [: output_length]

5. Beyne, T., Canteaut, A., Leander, G., Naya-Plasencia, M., Perrin, L., Wiemer, F.:
Report on the security of the Rescue hash function (2020), https://starkware.
co/wp-content/uploads/2020/06/report.pdf

6. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. IACR Cryptol. ePrint Arch. 2019, 1021 (2019), https://eprint.
iacr.org/2019/1021

7. Canteaut, A., Beyne, T., Dinur, I., Eichlseder, M., Leander, G., Leurent, G.,
Plasencia, M.N., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Report on the secu-
rity of STARK-friendly hash functions (version 2.0) (2020), https://starkware.
co/wp-content/uploads/2020/03/reportv2.pdf

8. Keller, N., Rosemarin, A.: Mind the middle layer: The HADES design strategy
revisited. IACR Cryptol. ePrint Arch. 2020, 179 (2020), https://eprint.iacr.

https://starkware.co/wp-content/uploads/2020/06/report.pdf
https://starkware.co/wp-content/uploads/2020/06/report.pdf
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://starkware.co/wp-content/uploads/2020/03/reportv2.pdf
https://starkware.co/wp-content/uploads/2020/03/reportv2.pdf
https://eprint.iacr.org/2020/179

16 Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe

org/2020/179

9. StarkWare: EthSTARK, https://github.com/starkware-libs/ethSTARK, ac-
cessed: 2020-09-09

10. Threadbare, B.: Distaff, https://github.com/GuildOfWeavers/distaff

https://eprint.iacr.org/2020/179
https://eprint.iacr.org/2020/179
https://github.com/starkware-libs/ethSTARK
https://github.com/GuildOfWeavers/distaff

	Rescue-Prime: a Standard Specification (SoK)

