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Abstract. Most blockchain solutions are susceptible to quantum attackers as they rely on cryp-
tography that is known to be insecure in the presence of quantum adversaries. In this work we
advance the study of quantum-resistant blockchain solutions by giving a quantum-resistant con-
struction of a deterministic wallet scheme. Deterministic wallets are frequently used in practice
in order to secure funds by storing the sensitive secret key on a so-called cold wallet that is not
connected to the Internet. Recently, Das et al. (CCS’19) developed a formal model for the secu-
rity analysis of deterministic wallets and proposed a generic construction from certain types of
signature schemes that exhibit key rerandomization properties. We revisit the proposed classical
construction in the presence of quantum adversaries and obtain the following results.

First, we give a generic wallet construction with security in the quantum random oracle model
(QROM) if the underlying signature scheme is secure in the QROM. We next design the first
post-quantum secure signature scheme with rerandomizable public keys by giving a construction
from generic lattice-based Fiat-Shamir signature schemes. Finally, we show and evaluate the
practicality by analyzing an instantiation of the wallet scheme based on the signature scheme
qTESLA (ACNS’20).

Keywords: blockchain protocols · deterministic wallets · post-quantum · rerandomizable sig-
natures · provable security · lattice-based cryptography

1 Introduction

In the past decade cryptocurrencies such as Ethereum [eth15] and Bitcoin [Nak09] have gained huge
popularity introducing a revolutionary payment paradigm. Cryptocurrencies do not rely on any central
authority (i.e., banks) for the validation of transactions but instead use a consensus protocol to reach
agreement on the validity of transactions in a decentralized network. As the name suggests the security
of cryptocurrencies heavily relies on cryptographic building blocks – most importantly, on digital
signature schemes. Digital signatures are used to authenticate money transfers between parties, where
each party is identified by a public key with respect to the signature scheme. In a nutshell, a transfer
of v coins from sender pkS to receiver pkR is represented by a transaction tx := (pkS, pkR, v). The
transaction tx is then sent together with a signature of tx with respect to the sender’s public key
pkS to the network of miners who validate the transaction. Besides digital signatures many other
(partially advanced) cryptographic building blocks are used by cryptocurrencies to achieve a variety of
goals. This includes, for instance, non-interactive zero-knowledge proofs and ring signatures for privacy
preserving transactions [Noe15, EZS+19], threshold signatures and deterministic wallets for securing
funds [DFL19], aggregate signatures for scalability [HMW18], and many more [GS15,FTS+19,TVR16].



Unfortunately, most cryptographic primitives used by cryptocurrencies today can be broken by quan-
tum adversaries. Most notably, the ECDSA signature scheme that is implemented by nearly all popular
cryptocurrencies relies on the hardness of computing discrete logarithms, and hence can be broken by
Shor’s algorithm [Sho94]. Since quantum computers can have devastating consequences for the secu-
rity of cryptocurrencies [ABL+18], several recent works design cryptocurrencies with post-quantum
security features, i.e., they resist both classical and quantum attacks, but run on classical machines.
Cryptocurrency projects such as “Bitcoin Post Quantum” [Bit] or QRL [QRL] replace ECDSA with
hash-based post-quantum signatures. Other examples include a Monero-based cryptocurrency with
privacy guarantees that hold against quantum adversaries [EZS+19], or a security analysis of the proof
of work consensus protocol in the quantum random oracle model [CGK+19]. In this work, we follow this
line of work and investigate the post-quantum security of deterministic wallet schemes, and propose
the first construction that provably resists quantum adversaries.

Deterministic wallets. In cryptocurrencies, secret keys are a particular attractive target for attackers.
Indeed, the most devastating attacks in the cryptocurrency space have typically targeted secret keys
of users resulting in billions of dollars worth of cryptocurrency being stolen [Ske18,Blo18,Bit18]. To
protect keys against theft, one of the most prominent solutions is the concept of a deterministic wallet.
A deterministic wallet scheme consists of two components: a hot wallet that is permanently connected
to the Internet, and a cold wallet, which comes online only rarely (e.g., when a large amount of money
has to be transferred). Das et al. [DFL19] formalized the concept of deterministic wallets and defined
its security goals. The first security goal is wallet unforgeability which states that funds sent to the
cold wallet must remain secure even if the hot wallet is corrupted. Second, wallet unlinkability, which
guarantees that individual transactions that sent money to the same wallet are unlinkable despite
being publicly available on the blockchain.

At a high-level a hot/cold wallet scheme works as follows. In an initialization phase, it generates a
master key pair (msk,mpk), where the master secret key msk is stored on the cold wallet, while the
hot wallet keeps the corresponding master public key mpk. The main ingredient of a deterministic
wallet scheme is a deterministic key derivation procedure, which allows both, cold and hot wallet, to
derive matching secret and public session keys without interacting with each other. To this end, in
addition to the master secret/public key, the hot and cold wallet share a state St. From this state each
wallet can derive the corresponding session key by combining the master key with a deterministically
derived value H(St, ID), where ID is an arbitrary key identifier and H is a cryptographic hash function.
More concretely, consider a simplified version of the BIP32 deterministic wallet scheme [BIP17] used for
Bitcoin. The master secret/public key pair consists of a valid ECDSA key pair (msk,mpk) := (x, x ·G),
where G is a generator of the ECDSA elliptic curve. The session key pair for identity ID is computed
as pkID := mpk + w ·G and sk := msk + w with w := H(St, ID).

Post-quantum security of deterministic wallets. While deterministic wallet schemes offer an elegant
solution to increase the security of users’ funds, they are particularly susceptible to attacks by quan-
tum adversaries. To illustrate this, let us first consider how quantum attacks against the underlying
signature scheme of a cryptocurrency such as Bitcoin work. Recall that in Bitcoin (as in most other
cryptocurrencies) an address for transferring funds to is not represented by the public key itself but
by its hash value. More concretely, when a party transfers v coins to some receiver R with public key
pkR, then the transaction will store h = H(pkR). Only when R wants to spend these coins he reveals
pkR together with a signature with respect to pkR. This leaves a quantum adversary that wants to
steal v coins from R, with two options: either he tries to find pk ′ such that H(pk ′) = h, or he waits
until pkR is revealed by R and computes the corresponding secret key skR. The first type of attack is
believed to be hard because common cryptographic hash functions such as SHA3-512 are known to be
preimage resistant even under quantum attacks when appropriately choosing their parameters. While
in the second case a quantum adversary can indeed efficiently attack the signature scheme, he has only
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a very small window of time to carry out this attack4. In particular, he has to frontrun the transaction
published by R, which is unlikely, assuming that the majority of miners is following the protocol.

A quantum attacker can have more devastating consequences against a deterministic wallet scheme.
More concretely, unlike for normal addresses (hashes of public keys), in a deterministic wallet all session
keys are related, and in particular efficiently computable from (msk,mpk). Hence, if the adversary
manages to learn mpk then he can recover the corresponding master secret key msk and from that
recover all session secret keys. Hence, all the money that was ever transferred to the cold wallet is at
stake.

1.1 Our Contributions

Our main contribution in this work is to give the first construction of a post-quantum secure deter-
ministic wallet. Our scheme is intended to be used on classical computers, and to remain secure even
in the presence of quantum adversaries. To achieve our goal we extend the security model of Das et
al. [DFL19] to the quantum setting and prove that certain standard post-quantum secure signature
schemes can be used to construct post-quantum secure wallets. Concretely, our contributions are as
follows:

– We extend the security model for deterministic wallets introduced by Das et al. [DFL19] to the
quantum world. In particular, we show that if the underlying signature scheme satisfying the
property of honestly rerandomizable keys is post-quantum secure, then it can be used to build
post-quantum secure deterministic wallets. We relax the notion of rerandomizable keys as given
by [DFL19] to consider only rerandomization of public keys. Subsequently, we show that this
relaxed notion is sufficient for the security of wallets, and hence we are able to prove post-quantum
security based on this relaxed notion.

– We design the first post-quantum secure signature scheme with rerandomizable public keys. This
is achieved by giving a generic construction from a Fiat-Shamir signature scheme based on lattice
assumptions.

– We discuss optimizations of our post-quantum secure signature scheme with rerandomizable public
keys and evaluate its feasibility for blockchains.

1.2 Our Techniques

Signature schemes with rerandomizable keys [FKM+16] are the main building block of the wallet
scheme presented in [DFL19]. At a high-level besides the standard algorithms of a digital signature
scheme for key generation, signing, and verification, a signature scheme with rerandomizable keys has
two additional algorithms, namely RSig.RandSK and RSig.RandPK. These algorithms take as input the
secret key sk, respectively public key pk and randomness ρ, and output fresh keys sk ′, respectively pk ′.
Moreover, the unforgeability property of the signature scheme must hold even if the adversary sees
signatures that are generated using rerandomized secret keys.

We show that certain post-quantum secure signature schemes support rerandomization of keys and
satisfy the security notion of unforgeability under honestly rerandomized keys in the quantum world.
In [FKM+16] it was shown that Schnorr’s signature scheme [Sch91] has rerandomizable keys with
unforgeability in the random oracle model (ROM). This motivates to study post-quantum secure
Schnorr-like signature schemes. More concretely, we investigate if lattice-based, Schnorr-like signa-
ture schemes can have rerandomizable keys with unforgeability in the quantum random oracle model
4 In Bitcoin in most cases transactions are considered to be final after 60 minutes.
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(QROM). Lattice-based schemes are particularly suitable for constructing post-quantum secure reran-
domizable signature schemes because (a) lattice-based assumptions are conjectured to be secure under
quantum computer attacks; and (b) unlike hash-based signature schemes, lattice-based schemes exhibit
an algebraic structure, which enables rerandomization of keys.

The key pair (pk, sk) of such Schnorr-based lattice schemes consists of an instance of a hard lattice
problem, where the secret key sk typically follows either the discrete Gaussian distribution or the
uniform distribution over a small set. The first idea that comes to mind when rerandomizing keys in
the lattice setting is the following: Given (pk, sk) and randomness ρ, sk is rerandomized additively
by computing sk ′ = sk + ρ (as carried out in [FKM+16] for Schnorr’s scheme). In the lattice setting
however, we must ensure that the sum sk ′ follows the correct distribution, e.g., the Gaussian or uniform
distribution. If this is not the case, one can sample a new randomness from ρ in a deterministic way
until a valid sk ′ is generated. Naturally, the same (correct) ρmust be used when rerandomizing pk. This
approach satisfies (under a specified distribution of sk) the original definition of signature schemes with
rerandomizable keys (see Definition 3), as the initially generated key pair and any rerandomization
of it are identically distributed. However, this approach cannot be used for building hot/cold wallets,
because the hot and cold wallet must agree on the correct ρ for each session key generation. This
contradicts the main goal of using hot/cold wallets, which requires that the cold wallet stays off-line,
and hence cannot frequently communicate with the hot wallet to synchronize on ρ. In Section 4.3 we
give more details on this approach as well as others, and argue why they are not suitable in the wallet
setting.

In this work we show that the key pair (pk, sk) can still be rerandomized additively in a way that
fits to the setting of hot/cold wallets. The main observation that we exploit is that the sum of two
Gaussians is also Gaussian distributed (see Lemma 3). Based on this observation, our approach works
as follows. Let sk be Gaussian distributed. Given randomness ρ, sk is rerandomized additively by
adding to sk a freshly Gaussian distributed secret key sk∗. The key sk∗ is deterministically sampled
using the randomness ρ, i.e., we use ρ as the randomness required in the Gaussian sampler algorithm.
We obtain a rerandomized secret key that is Gaussian distributed, but with a slightly larger standard
deviation than the one of the original secret key (cf. Lemma 3). Consequently, we can construct a
signature scheme with rerandomizable keys, in which the distribution of rerandomized public keys is
identical to the distribution of the original public key, while rerandomized secret keys follow a different
distribution than a freshly sampled secret key. We formally define such relaxed notion in Section 2 and
call it a signature scheme with rerandomizable public keys. We then show in Section 3 that this notion
is sufficient for post-quantum secure wallets and present a lattice-based construction of such a scheme
in Section 4 with a security proof in the QROM. Finally, we show in Section 5 that our construction
can be instantiated with state-of-the-art lattice-based signature schemes such as qTESLA [ABB+20].
Hence, it can use their proposed parameters and enjoy their performance and efficiency.

We emphasize that the post-quantum security model considers the adversary to be quantum while the
challenger - representing the honest user in a real-world application - remains classical. As a result,
every oracle that is provided by the challenger can be accessed only classically, while oracles that
can be accessed by the adversary directly can be accessed using quantum computing power, i.e., in
superposition. This describes a threat model where an adversary can use its quantum power to locally
access the random oracle, while he observes signatures created by a user on a classical machine. In our
work, we consider this standard post-quantum security model since it entails that the cryptographic
scheme is still used on classical computers. This is, in contrast to the (fully-) quantum setting, where
the scheme itself is implemented on quantum computers as well. While this is a stronger security
model, it is more of theoretical interest as it requires users to have access to quantum computers as
well.
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1.3 Related Work

The concept of hot/cold wallets is used in many cryptocurrencies in order to provide stronger security
guarantees to its users. Various works have proposed formal security models for analyzing the security
of wallet schemes. Gutoski and Stebila [GS15] have discussed flaws in the BIP32 construction [BIP17]
and possible countermeasures. However, they do not consider the standard notion of unforgeability but
rather a restricted model where the adversary can corrupt the cold wallet and recover secret keys. Other
works worth mentioning are “privilege escalation attacks” by Fan et al. [FTS+19] which unfortunately
lacks any formal security analysis, and the analysis of the Bitcoin Electrum wallet in the Dolev-Yao
model by Turuani et al. [TVR16]. The latter considers cryptographic primitives (e.g., signature schemes
and encryption schemes) as idealized objects, hence fails to capture potential vulnerabilities such as
related key attacks which are relevant in case of hot/cold wallets.

As mentioned earlier, we closely follow the model introduced by Das et al. [DFL19], where the notion
of a stateful deterministic wallet is introduced and two desirable security properties called wallet
unlinkability and wallet unforgeability are considered. The first property ensures that the session public
keys generated by SW.RandPK are unlinkable to the master public key. This property is guaranteed as
long as the hot wallet has not been corrupted. The second property ensures unforgeability of signatures
signed by the secret keys of the cold wallet even when the hot wallet is corrupted.

According to [DFL19] a stateful deterministic wallet SW consists of two components – a hot wallet and
a cold wallet which share a common state St. SW is given by a tuple of algorithms (SW.KGen, SW.RandSK,
SW.RandPK, SW.Sign, SW.Verify), where the session public key and secret key derivation algorithms
SW.RandPK and SW.RandSK are run respectively within the hot and cold wallet to deterministically derive
matching session (public/secret) keys from the (public/secret) master keys. Unlike deterministic wallets
in use (e.g., the BIP32 construction), the state St of the wallet scheme of [DFL19] is refreshed within the
(hot/cold) wallets with each key derivation. This approach allows to show forward unlinkability, which
intuitively means that even upon leakage of the state, all session keys derived before the state leakage
remain unlinkable. The second security property – wallet unforgeability – is achieved by a reduction
to standard EUF-CMA security of a concrete signature scheme (such as ECDSA and Schnorr) in a
modularized fashion. As the intermediary step the authors show that these signature schemes satisfy
the properties of signature schemes with rerandomizable keys.

We note that the model by Das et al. [DFL19] only considers adversaries in the classical setting and does
not protect against quantum adversaries. Our work fills this gap by designing the first post-quantum
secure deterministic wallet.

Many prior works have investigated lattice-based Fiat-Shamir signatures, e.g., [Lyu09,DDLL13,BG14,
DKL+18,ABB+20], and in particular, their security was analyzed in the QROM, e.g., by [KLS18,Unr17,
LZ19, DFMS19]. To the best of our knowledge we propose the first work on lattice-based signature
schemes with honestly rerandomizable keys and prove its security in the QROM. Inspired by Das
et al. [DFL19] and Fleischhacker et al. [FKM+16], we use the abstraction of signature schemes with
rerandomizable keys but transfer this concept to the post-quantum setting.

As mentioned in the introduction, various works build blockchains with security features against quan-
tum adversaries. Most recently, Esgin et al. [EZS+19] have proposed a new ring signature scheme based
on lattice assumptions for the blochchain setting which focus on similar anonymity guarantees to Mon-
ero [Noe15]. In Monero-like cryptocurrencies the sender of a transaction can hide her identity in a set
of transactions using ring signatures. In particular, the public key related to the sender’s signature is
never revealed explicitly in the blockchain network, hence remains unlinkable to the sender. We note
that this notion of unlinkability is different from our notion of session key unlinkability.

Blockchain initiatives such as the "Bitcoin Post-Quantum" [Bit] and QRL [QRL] replace ECDSA with
hash-based signature schemes which are post-quantum secure. Despite the hash-based schemes being
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quite efficient, the underlying hash function does not permit to construct a signature scheme with
rerandomizable keys which plays a key role in our wallet scheme.

2 Preliminaries

2.1 Basic Notations

We let N,Z,R denote the set of natural numbers, integers, and real numbers, respectively. For any
positive integer k we write [k] to denote the set of integers {1, . . . , k}. For a positive integer q we let Zq
denote the set of integers in the range [− q2 ,

q
2 )∩Z. We define the ring R = Z[x]/〈xn+1〉 and its quotient

Rq = R/qR, where n is a power of 2. Elements in R and Rq (including Z and Zq) are denoted by regular
font letters. Column vectors and matrices with entries from R or Rq are denoted by bold lower-case
letters and bold upper-case letters, respectively. We define the `2 and `∞ norms of v =

∑n−1
i=0 vix

i ∈ R
by ‖v‖ = (

∑n−1
i=0 |vi|2)1/2 and ‖v‖∞ = maxi |vi|, respectively. For w = (w1, . . . , wk) ∈ Rk we define

‖w‖ = (
∑k
i=1 ‖wi‖

2)1/2 and ‖w‖∞ = maxi ‖wi‖∞. We let Tnκ denote the set of all (n − 1)-degree
polynomials with coefficients from {−1, 0, 1} and Hamming weight κ. We always denote the security
parameter by λ ∈ N, and o(λ) denotes a linear function in λ. A function f : N −→ R is called
negligible if there exists an n0 ∈ N such that for all n > n0, it holds f(n) < 1

p(n) for any polynomial
p. With negl(λ) we denote a negligible function in λ. A probability is called overwhelming if it is at
least 1− negl(λ). The statistical distance between two distributions X,Y over a countable domain D
is defined by 1

2
∑
n∈D |X(n) − Y (n)|. We write x ← D to denote that x is sampled according to a

distribution D. We let x←$ S denote choosing x uniformly random from a finite set S. Unless specified
otherwise, every adversary is considered to be an efficient quantum polynomial time algorithm.

2.2 Quantum Random Oracle Model

In this section, we recall the quantum random oracle model and existing results that we will use. Since
quantum computation is only necessary in the proofs of these results, we do not provide information
on quantum computation here, but refer to [NC11] for a detailed discussion on the topic.

In [BR93], Bellare and Rogaway introduced the random oracle model (ROM). In this model every
party has access to an oracle implementing a random function. Upon being queried on some input
x, the oracle answers with a random output y. Every further invocation on input x, even by other
parties, results in the same y. In security proofs, one often models a hash function as a random oracle.
Since hash functions are public, Boneh et al. [BDF+11] observed that the ROM is not appropriate
in the post-quantum setting. In the real world an adversary equipped with a quantum computer is
able to implement the hash function and evaluate it in superposition. Thus, Boneh et al. introduced
the quantum random oracle model (QROM). In this model, parties with quantum computing power
get access to the oracle |H〉, where |H〉 : |x, y〉 7→ |x, y ⊕ H(x)〉. In our proofs we will also consider
reprogrammed random oracles. For a random oracle H we write Hx→y for the random oracle that is
reprogrammed on input x to y. Further on, we denote the classical random oracle by the symbol H
and the quantum random oracle by the notation |H〉.

Nowadays, the QROM is considered the de facto standard for post-quantum security proofs of crypto-
graphic primitives which rely on random oracles. Below we describe some results for quantum random
oracles that are required for our proofs.

The one-way to hiding (O2H) lemma [Unr15] is an important tool for security proofs in the quantum
random oracle model. It gives bounds on the advantage of an adversary in distinguishing between
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different random oracles when the adversary is allowed to query them in superposition. Below we state
the lemma using the reformulation by Ambainis et al. [AHU19].

Lemma 1 (One-way to hiding (O2H) [AHU19]). Let G, H : X → Y be random functions, let z
be a random value, and let S ⊂ X be a random set such that ∀x /∈ S, G(x) = H(x). (G,H,S, z) may
have arbitrary joint distribution. Furthermore, let A|H〉 be a quantum oracle algorithm which queries
|H〉 at most q times. Let Ev be an arbitrary classical event. Define an oracle algorithm B|H〉 as follows:
Pick i ←$ [q]. Run A|H〉(z) until just before its i-th round of queries to |H〉. Measure the query in the
computational basis, and output the measurement outcome. It holds that∣∣∣Pr[Ev : A|H〉(z)]− Pr[Ev : A|G〉(z)]

∣∣∣ ≤ 2q
√

Pr[x ∈ S : B|H〉(z)⇒ x] .

Another tool that we will use are Zhandry’s small range distributions, defined below. These are distri-
butions where the set of possible outputs is limited.

Definition 1 (Small-range distributions [Zha12a]). Let X , Y be sets, r be an integer, D be a
distribution on Y, P be a random function from X to [r], and y = (y1, . . . , yr) be r samples of D.
Define a function H : X → Y by H(x) 7→ yP (x). The distribution of H, induced by P and y, is called a
small-range distribution with r samples of D.

The following lemma provides a bound on the distinguishing advantage between a random oracle and
an oracle drawn from a small-range distribution when superposition access is granted.

Lemma 2 ([Zha12a]). There is a universal constant C such that, for any set X and Y, distribution
D on Y, integer l, and any quantum algorithm A making q queries to an oracle H : X → Y, the
following two cases are indistinguishable, except with probability less than Cq3

l :

– H(x) = yx where y is a list of samples of D of size |X |.
– H is drawn from the small-range distribution with l samples of D.

2.3 Cryptographic Primitives

Definition 2 (Signature Scheme). Let λ be a security parameter. A signature scheme Sig with
key space K, message space M, and signature space S is a tuple of polynomial-time algorithms
(KGen, Sign, Verify) such that

KGen(1λ) is the key generation algorithm that outputs a key pair (pk, sk) ∈ K, where pk is a public key
and sk is a secret key.

Sign(sk,m) is the signing algorithm that takes as input a secret key sk and a message m ∈ M. It
outputs a signature σ ∈ S.

Verify(pk,m, σ) is the verification algorithm that takes as input a public key pk, a message m with a
signature σ. It outputs 1 if σ is valid and 0 otherwise.

Correctness: A signature scheme is correct if for all λ ∈ N, m ∈ M, (pk, sk) ← KGen(1λ), and all
σ ← Sign(sk,m), it holds that Pr[Verify(pk,m, Sign(sk,m)) = 1] ≥ 1− negl(λ).

We will use the notion of signature schemes with rerandomizable keys [FKM+16]. In the following we
recall its definition.
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Definition 3 (Signature Scheme with Rerandomizable Keys). A signature scheme with per-
fectly rerandomizable keys RSig is given by a tuple of algorithms:

(RSig.KGen, RSig.RandSK, RSig.RandPK, RSig.Sign, RSig.Verify),

where RSig.KGen, RSig.Sign, and RSig.Verify satisfy the definition of a standard signature scheme
(cf. Definition 2). For randomness space R, (RSig.RandSK, RSig.RandPK) are two polynomial-time al-
gorithms such that

RSig.RandSK(sk, ρ) is a secret key rerandomization algorithm that takes as input the secret key sk and
a randomness ρ ∈ R and outputs a randomized secret key sk ′.

RSig.RandPK(pk, ρ) is a public key rerandomization algorithm that takes as input the public key pk and
a randomness ρ ∈ R and outputs a randomized public key pk ′.

RSig satisfies the following properties:

Rerandomizability of keys: For all (sk, pk) ∈ RSig.KGen(1λ) and all ρ ∈ R, the distributions of
(sk ′, pk ′) and (sk ′′, pk ′′) are identical, where (sk ′′, pk ′′)← RSig.KGen(1λ) and
sk ′ ← RSig.RandSK(sk, ρ), pk ′ ← RSig.RandPK(pk, ρ).

Correctness under rerandomizable keys:
1. For all λ ∈ N, (pk, sk)← RSig.KGen(1λ), m ∈M, and all σ ← RSig.Sign(sk,m), it holds that

Pr[RSig.Verify(pk,m, RSig.Sign(sk,m)) = 1] ≥ 1− negl(λ) .

2. For all (pk, sk) ← RSig.KGen(1λ), all ρ ∈ R, m ∈ M, and for a pair of rerandomized keys
sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandPK(pk, ρ), it holds

Pr[RSig.Verify(pk ′,m, RSig.Sign(sk ′,m)) = 1] ≥ 1− negl(λ) .

We also consider a relaxed version of Definition 3. In the following definition we introduce the notion
of signature schemes under rerandomizable public keys, where the property of rerandomizability of
keys holds only for the generated public keys, but not in case of secret keys. We present a concrete
instantiation of such a scheme in Section 4.

Definition 4 (Signature Scheme with Rerandomizable Public Keys). A signature scheme with
perfectly rerandomizable public keys RSig′ is given by a tuple of algorithms (RSig′.KGen, RSig′.RandSK,
RSig′.RandPK, RSig′.Sign, RSig′.Verify), which are defined as in Definition 3. RSig′ satisfies the fol-
lowing properties:

Rerandomizability of public keys: For all public keys (·, pk) ← RSig′.KGen(1λ) and ρ ∈ R, the
distributions of pk ′ and pk ′′ are identical, where pk ′ ← RSig′.RandPK(pk, ρ), and pk ′′ ← RSig′.KGen(1λ).

Correctness under rerandomizable keys: This property is defined as the property of correctness
for signature schemes under rerandomizable keys in Definition 3.

2.4 Security Notions

Security of signature schemes is captured by the standard security notion of existential unforgeability
under adaptive chosen-message attacks (EUF-CMA), presented below.
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Game EUF-CMAAΣ
1: Q := ∅
2: H := ∅
3: (pk, sk)← KGen(1λ)
4: (m∗, σ∗)← AH,O(pk)
5: if (m∗ ∈ Q) then
6: return 0
7: return Verify(pk,m∗, σ∗)

H(m′)
1: if (m′ ∈ H) then
2: return H(m′) ∈ H
3: H(m′)←$ {0, 1}o(λ)

4: H := H ∪ {(m′,H(m′))}
5: return H(m′)

O(m)
1: Q := Q∪ {m}
2: σ ← Sign(sk,m)
3: return σ

Fig. 1. The security game EUF-CMA of signature schemes.

Definition 5 (EUF-CMA Security). Let H : {0, 1}∗ → {0, 1}o(λ) be a hash function modeled as
(quantum) random oracle. A signature scheme Σ is called (t, qSign, qH, ε)-EUF-CMA in the (quantum)
random oracle model if for any adversary A running in time at most t and making at most qSign

signature queries and at most qH (superposition) queries to H, the game EUF-CMAAΣ depicted in Figure 1
outputs 1 with probability at most ε, i.e., Pr[EUF-CMAAΣ = 1] ≤ ε.

In the following we present the notion of EUF-CMA-HRK security under honestly rerandomizable
keys due to [DFL19]. This notion is similar to EUF-CMA-RK security under rerandomizable keys due
to [FKM+16], however with certain differences which makes it a weaker notion. In the EUF-CMA-RK
game, an adversary A gets access to a signing oracle. The signing oracle takes a message and a ran-
domness as input and provides a signature on this message under the rerandomized key as an answer.
Note that the rerandomized key was derived from the randomness input by A. This means that A can
obtain signatures under keys with randomness of A’s choice. A can win the EUF-CMA-RK game if it
can produce a valid forgery under a rerandomized key of its choice (note that the randomness can also
be null).

In the EUF-CMA-HRK game, we restrict A’s capabilities in the following way. In addition to the signing
oracle, in the EUF-CMA-HRK game A is given access to a Rand oracle to derive a fresh randomness.
This randomness can be later used to get a signature under the rerandomized key by querying the
signing oracle. Here, A can only win the EUF-CMA-HRK game if it produces a valid forgery under
a rerandomized key, where the underlying randomness was obtained honestly by querying the Rand
oracle. We formally present EUF-CMA-HRK security under honestly rerandomizable (public) keys below.

Definition 6 (EUF-CMA-HRK Security under Honestly Rerandomized (Public) Keys). Let
H : {0, 1}∗ → {0, 1}o(λ) be a hash function modeled as (quantum) random oracle. A signature scheme
with honestly rerandomizable (public) keys RSig is called (t, qSign, qH, ε)-EUF-CMA-HRK in the (quan-
tum) random oracle model if for any adversary A running in time at most t and making at most qSign

signature queries and at most qH (quantum) random oracle queries to H, the game EUF-CMA-HRKARSig

depicted in Figure 2 outputs 1 with probability at most ε, i.e., Pr[EUF-CMA-HRKARSig = 1] ≤ ε.

2.5 Lattice-Based Fiat-Shamir Signatures

In this section we review a generic construction of lattice-based Fiat-Shamir signatures. We first de-
fine the discrete Gaussian distribution and recall a lemma, which shows that the sum of Gaussian
distributed random variables is also Gaussian distributed. This property is crucial for our analysis.
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Game EUF-CMA-HRKARSig

1: RList := ∅
2: Q := ∅
3: H := ∅
4: (pk, sk)← RSig.KGen(1λ)
5: (m∗, σ∗, ρ∗)← AH,Rand,OHR(pk)
6: if (m∗ ∈ Q) then
7: return 0
8: if (ρ∗ 6= NULL) then
9: if (ρ∗ /∈ RList) then
10: return 0
11: pk ← RSig.RandPK(pk, ρ∗)
12: return RSig.Verify(pk,m∗, σ∗)

H(m′) (see Figure 1)
Rand
1: ρ←$ R
2: RList← RList ∪ {ρ}
3: return ρ

OHR(m, ρ)
1: Q := Q∪ {m}
2: if (ρ 6= NULL) then
3: if (ρ /∈ RList) then
4: return ⊥
5: sk ← RSig.RandSK(sk, ρ)
6: σ ← RSig.Sign(sk,m)
7: return σ

Fig. 2. The security game EUF-CMA-HRK of signature schemes with rerandomizable (public) keys.

Definition 7 (Discrete Gaussian Distribution). The discrete Gaussian distribution DZn,σ,c over
Zn with standard deviation σ > 0 and center c ∈ Rn is defined as follows: For every x ∈ Zn

the probability of x is given by DZn,σ,c(x) = ρσ,c(x)/ρσ,c(Zn), where ρσ,c(x) = exp(−‖x−c‖2

2σ2 ) and
ρσ,c(Zn) =

∑
x∈Zn ρσ,c(x). The subscript c is taken to be 0 when omitted.

Lemma 3 ([BF11, Theorem 9]). Let L ⊆ Zm be a lattice and σ ∈ R. For i = 1, . . . , n let ti ∈ Zm
and let Xi be mutually independent random variables sampled from DL+ti,σ. Let c = (c1, . . . , cn) ∈ Zn
and define d = gcd(c1, . . . , cn), t =

∑n
1 citi. Suppose that σ > ‖c‖·ηε(L), where ηε(L) is the smoothing

parameter [MR04] for some negligible ε. Then Z =
∑n

1 ciXi is statistically close to DdL+t,‖c‖σ.

Next, we describe two functions used in the signature scheme:

– E : {0, 1}∗ −→ {0, 1}∗ is a function that expands given strings to any desired length. It is used to
extract the randomness used for signing.

– H : {0, 1}∗ −→ Tnκ is a hash function modeled as a (quantum) random oracle and used for signing
and verification.

The signature scheme is formally described in Figure 3. It makes use of a uniformly random matrix
A ∈ Rk1×k2

q , which is publicly known and shared among all users in a multi-user setting. We assume
that A is an implicit input to all algorithms of the scheme in addition to all algorithms in Section 4.
In order to save bandwidth it can also be generated by expanding a uniformly random seed using the
function E, and including the seed in the secret and public key rather than storing the whole matrix
A. In this case, E is modelled as a random oracle. We note that this setting makes sense in the context
of blockchains, since the randomly chosen seed can be included in the first block known as the genesis
block, which is assumed to be honestly generated. Furthermore, since A is computed as the output
of the random oracle on input the seed, A is truly random and cannot have a trapdoor embedded as
shown in [MP12].

Basically, the key generation algorithm generates an instance of a computationally hard lattice problem
called Module Learning with Errors (MLWE) [LS15] (or a special variant of it such as Ring Learning
with Errors (RLWE) [LPR10]). The secret of this instance is chosen from some distribution χ. In the
state-of-the-art lattice-based signature schemes, e.g., Dilithium [DKL+18] and qTESLA [ABB+20], the
distribution of the secrets is either the discrete Gaussian distribution DZn,σ or the distribution Rd that
outputs uniformly random polynomials from R whose `∞ norm is bounded by some integer d ≥ 1.
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LB.KGen(1λ)

1: s← χk2 , e← χk1

2: b← As + e (mod q)
3: sk := (s, e), pk := b
4: return (sk, pk)
LB.Verify(pk,m, (z1, z2, c))
1: w← Az1 + z2 − bc (mod q)
2: if

(
(z1, z2) ∈ Rk2

B1
×Rk1

B2
∧

H(w,m) = c
)

then
3: return 1
4: return 0

LB.Sign(sk,m)

1: r←$ {0, 1}o(λ)

2: ctr← 1
3: (y1,y2) ∈ Rk2

Y ×R
k1
Y ← E(r, ctr)

4: v← Ay1 + y2 (mod q)
5: c← H(v,m)
6: z1 ← y1 + sc
7: z2 ← y2 + ec
8: if

(
(z1, z2) 6∈ Rk2

B1
×Rk1

B2

)
then

9: ctr← ctr + 1
10: goto 3
11: return (z1, z2, c)

Fig. 3. A formal description of a generic (non-optimized) Fiat-Shamir signature scheme from lattice assump-
tions.

A signature consists of a tuple (z1, z2, c), where the pair (z1, z2) is uniformly random over a subset of
Rk2 × Rk1 and c ∈ Tnκ is output from the random oracle H. The vectors z1, z2 are each generated by
adding a masking term to a term related to the secret key and c. More precisely, we have z1 = y1 + sc
and z2 = y2 + ec, where the secret masking pair (y1,y2) is uniformly random over Rk2

Y × R
k1
Y and

RY ⊂ R for some predefined positive integer Y . The signature is only output after verifying that the
pair (z1, z2) lies in Rk2

B1
×Rk1

B2
, i.e., ‖z1‖∞ ≤ B1 and ‖z2‖∞ ≤ B2, where the bounds B1, B2 are defined

depending on the distribution of the secret key. This ensures that signatures are uniformly distributed
over Rk2

B1
× Rk1

B2
× Tnκ and do not leak information about the secret key. If this is not the case, the

algorithm restarts with a fresh masking pair (y1,y2). The average number of repetitions is denoted by

M = O(1). Valid signatures are generated with probability
(

2B1+1
2Y+1

)k2n

·
(

2B2+1
2Y+1

)k1n

, which is usually
chosen such that it is at least 1/M . We note that this generic construction can be optimized by either
following the technique due to Bai and Galbraith [BG14] (adopted in qTESLA) or the approach used
in Dilithium. The first one optimizes the signature size, while the second one optimizes the total size
of public key and signature.

Finally, the EUF-CMA security of lattice-based Fiat-Shamir signatures in the quantum random oracle
model was analyzed in several works, e.g., in [KLS18,DKL+18,ABB+20,Unr17,LZ19,DFMS19].

3 The Stateful Model for Wallets

Our formal security model for post-quantum secure stateful deterministic wallets is based on the model
of [DFL19]. In this section, we recall the formal definition of a stateful wallet and the security properties
that we want to guarantee for such a wallet. A stateful deterministic wallet scheme consists of two
entities, a cold wallet and a hot wallet, that can respectively derive a valid pair of secret and public
keys without the need for any interaction among each other. In more detail, upon initialization of the
scheme, the cold wallet generates a master key pair (msk,mpk) and some initial state information
St0 and forwards (mpk,St0) to the hot wallet. After this initial setup, the idea is that an arbitrary
number of valid session key pairs can be generated by using the session secret/public key derivation
algorithms within the respective wallets without further interaction. More precisely the public key
derivation algorithm takes as input the current state and the master public key to generate a session
public key. While the secret key derivation takes as inputs the current state and the master secret
key and generates a session secret key. Since both public key and secret key derivation algorithms are
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SW.KGen(1λ)

1: St ←$ {0, 1}λ
2: (mpk,msk)← RSig.KGen(1λ)
3: return (St,mpk,msk)
SW.Sign(sk, pk,m)
1: m′ ← (m, pk)
2: σ ← RSig.Sign(sk,m′)
3: return σ

SW.Verify(pk,m, σ)
1: m′ ← (m, pk)
2: return RSig.Verify(pk,m′, σ)

SW.RandSK(msk, ID,St)
1: (ρ,St)← H(St, ID)
2: skID ← RSig.RandSK(msk, ρ)
3: return (skID,St)
SW.RandPK(mpk, ID,St)
1: (ρ,St)← H(St, ID)
2: pkID ← RSig.RandPK(mpk, ρ)
3: return (pkID,St)

Fig. 4. Generic Construction of a stateful deterministic wallet SW from a signature scheme with honestly
rerandomizable keys RSig and a random oracle H.

deterministic, and the two wallets share the same current state, the key derivation algorithms output
a valid session key pair. In order to keep track of which key has been derived with which state, each
session key is indexed by a parameter ID, which is given as input into the key derivation procedures.
In the following we recall the definition of a deterministic stateful wallet scheme and its correctness.

Definition 8 (Stateful Wallet). A stateful wallet scheme is a tuple of algorithms SW := (SW.KGen
, SW.RandSK, SW.RandPK, SW.Sign, SW.Verify), which are defined as follows:

SW.KGen: The master key generation algorithm takes as input public parameters param and outputs a
master key pair (msk,mpk) as well as an initial state St0.

SW.RandSK: The secret key derivation algorithm takes as input a master secret key msk, a state St and
an identity ID and outputs a session secret key skID and the state St.

SW.RandPK: The public key derivation algorithm takes as input a master public key mpk, a state St and
an identity ID and outputs a session secret key pkID and the state St.

SW.Sign: The probabilistic signing algorithm takes as input a session secret key skID for some ID and
a message m and outputs a signature σ.

SW.Verify: The verification algorithm takes as input a session public key pkID for some ID, a message
m, and a signature σ and outputs 1 if σ is a valid signature for m under public key pkID. It outputs
0 otherwise.

Definition 9 (Correctness of Stateful Wallets). For n ∈ N, any (St0,msk,mpk) ∈ SW.KGen(param),
and any ID := (ID1, ..., IDn) ∈ {0, 1}∗, we define the sequence (ski,Sti) and (pki,Sti) for 1 ≤ i ≤ n
recursively as

(ski,Sti) := SW.RandSK(msk, IDi,Sti−1),
(pki,Sti) := SW.RandPK(mpk, IDi,Sti−1).

SW is correct if for all m ∈ {0, 1}∗ and i with 1 ≤ i ≤ n it holds that

Pr
σ←$ SW.Sign(ski,m)

[SW.Verify(pki, σ,m) = 1] ≥ 1− negl(λ) .

A generic construction of a stateful deterministic wallet scheme SW := (SW.KGen, SW.RandSK, SW.RandPK,
SW.Sign, SW.Verify) from a signature scheme with honestly rerandomizable keys RSig following Defi-
nition 8 is presented in Figure 4. Such a scheme should satisfy the following two security properties -
wallet unlinkability and wallet unforgeability - which are described below.
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Game WUNL
1: (mpk,msk,St)← SW.KGen()
2: b←$ {0, 1}
3: ID∗ ← AWalSign,PK

1 (mpk)
4: if (Keys[ID∗] 6= ⊥) then
5: return 0
6: (pk0

ID∗ ,St∗)← SW.RandPK(mpk, ID∗,St)
7: (sk0

ID∗ ,St∗)← SW.RandSK(msk, ID∗,St)
8: St ← St∗
9: (mpk,msk,St)← SW.KGen()
10: (pk1

ID∗ ,St∗)← SW.RandPK(mpk, ID∗,St)
11: (sk1

ID∗ ,St∗)← SW.RandSK(msk, ID∗,St)
12: Keys[ID∗]← (pkbID∗ , skbID∗)
13: b′ ← AWalSign,PK,getState

2 (mpk, pkbID∗)
14: return b′ = b

Oracle PK(ID)
1: (pkID,St∗)← SW.RandPK(mpk, ID,St)
2: (skID,St∗)← SW.RandSK(msk, ID,St)
3: Keys[ID]← (pkID, skID)
4: St ← St∗
5: return pkID

Oracle getState()
1: return St
Oracle WalSign(m, ID)
1: if (Keys[ID] = ⊥) then
2: return ⊥
3: (pkID, skID)← Keys[ID]
4: σ ← SW.Sign(skID,m)
5: return σ

Fig. 5. Unlinkability game WUNL for stateful wallets.

3.1 Wallet Unlinkability

Intuitively, the unlinkability property guarantees that session public keys that have been derived from
the same master public key are computationally indistinguishable from the distribution of session
public keys that have been derived from a different, independently chosen master public key. However,
considering that hot wallet corruptions reveal the state and hence trivially break the unlinkability
property, [DFL19] introduces the notion of forward unlinkability. This notion guarantees unlinkability
prior to any hot wallet corruption.

The formal security game for unlinkability is defined in Figure 5 and proceeds as follows: Upon the ini-
tialization of the wallet scheme by executing (mpk,msk,St)←$ SW.KGen(), the adversary A = (A1,A2)
obtains mpk and runs its subprocedure A1 on input mpk, where A1 has access to oracles WalSign and
PK. These oracles represent the adversary’s capability to observe signatures with corresponding session
public keys of the wallet on the ledger. More concretely, A1 can call WalSign on an arbitrary message
m and any ID and receives a valid signature for m under public key pkID. Further, A1 can query the
PK oracle on any ID and receives the session public key pkID.

Finally, A1 outputs an ID∗. If neither WalSign nor PK has been queried on ID∗ before, the game
proceeds to the challenge phase, in which two session key pairs (pk0

ID∗ , sk0
ID∗) and (pk1

ID∗ , sk1
ID∗)

are generated, where (pk0
ID∗ , sk0

ID∗) are derived from mpk and msk respectively, while (pk1
ID∗ , sk1

ID∗)
are derived from a freshly generated master key pair. After a uniformly random bit b is chosen,
the subprocedure A2 is executed on input mpk and pkbID∗ . A2 gets access to oracles WalSign, PK
and getState, where getState returns the current state of the wallet scheme. A wins the game, if its
subprocedure A2 returns a bit b′, such that b′ = b. We define the advantage of an adversary A as its
winning probability in game WUNL over random guessing.

Definition 10 (Unlinkability). Let SW be a stateful wallet scheme (cf. Definition 8). We say that
SW is pq-unlinkable if for any quantum adversary A, the advantage in game WUNL (cf. Figure 5) is
negligible.
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Game WUF
1: (mpk,msk,St)← SW.KGen()
2: b←$ {0, 1}
3: (m∗, σ∗, ID∗)← AWalSign,PK(mpk,St)
4: if (Keys[ID∗] 6= ⊥) then
5: return 0
6: (pkID∗ , skID∗)← Keys[ID∗]
7: if (m∗ ∈ M [ID∗]) then
8: return 0
9: if (SW.Verify(pkID∗ ,m∗, σ∗) = 0) then
10: return 0
11: return 1

Oracle PK(ID)
1: (pkID,St∗)← SW.RandPK(mpk, ID,St)
2: (skID,St∗)← SW.RandSK(msk, ID,St)
3: Keys[ID]← (pkID, skID)
4: St ← St∗
5: return pkID

Oracle WalSign(m, ID)
1: if (Keys[ID] = ⊥) then
2: return ⊥
3: (pkID, skID)← Keys[ID]
4: σ ← SW.Sign(skID,m)
5: M ←∪ {m}
6: return σ

Fig. 6. Unforgeability game WUF for stateful wallets.

3.2 Wallet Unforgeability

At a high level, unforgeability for stateful wallets ensures that funds held by the cold wallet remain
secure even in case an adversary corrupts the hot wallet and/or observes transactions on the ledger
signed by the cold wallet. In order to model this property, we define the game WUF, in which the
adversary A obtains a master public key mpk and the initial state St0 as input. This models the
situation in which an adversary corrupts the hot wallet right after initialization of the wallet scheme.
Further, A gets access to the oracles PK and WalSign, which are defined in the same way as in the
game WUL, with the difference that WalSign now additionally keeps track of all queried messages.
Eventually, A outputs a forgery consisting of a message m∗, a signature σ∗ and an ID∗. A wins the
game if (1) m∗ has not been queried to WalSign before, (2) PK has been previously queried on ID∗
and (3) σ∗ is a valid signature for m∗ under public key pkID∗ .

Note that the adversary knows mpk and St0 and hence can generate any session public key for any
ID itself, which seems to make the PK oracle redundant. However, PK is still needed for bookkeeping
purposes, i.e., to ensure that the session key pair for A’s forgery has been created before A outputs
its forgery. We define the advantage of an adversary A as its probability of winning the game WUF.

As mentioned in [DFL19], the fact that the adversary can derive arbitrary session public keys makes
the wallet scheme vulnerable to related key attacks, in case the underlying signature scheme is prone
to such attack. Intuitively, upon an adversary learning a signature σID and a corresponding session
public key pkID, a related key attack allows the adversary to transform σID into a valid signature
σID∗ under public key pkID∗ . This attack may have a severe impact on the security guarantees of
our wallet scheme, since it may allow an adversary to steal all funds of a cold wallet. One common
counter measure against related key attack used in [DFL19,MSM+15] is called public key prefixing, i.e.,
a signature on a message µ is computed as Sign(sk, (pk, µ)). In many signature schemes the signature
is computed on the hash of the message and not the message itself. Therefore by prefixing the public
key an adversary not only has to transform σID into a valid signature σID∗ under public key pkID∗ but
also find a collision for the hash function in order to mount a related key attack.

Definition 11 (Unforgeability). Let SW be a stateful wallet scheme (cf. Definition 8). We say that
SW is pq-unforgeable if for any quantum adversary A, the advantage in game WUF (cf. Figure 6) is
negligible.
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3.3 Relevance of Our Relaxed Notions

In Section 2 we defined the notions of signature schemes with rerandomizable public keys (cf. Defi-
nition 4) and EUF-CMA-HRK (cf. Definition 6). While these notions deviate from the ones used in
previous works [FKM+16, DFL19], it turns out that our relaxed notions are sufficient for building
deterministic wallets as we discuss below.
Rerandomizable public keys. One of the benefits of using deterministic wallets is that individual
payments to the wallet are unlinkable (cf. Figure 5). To satisfy the unlinkability definition, Das et
al. [DFL19] require that the underlying signature scheme must have rerandomizable secret and pub-
lic keys. However, as it can be observed in the unlinkability game, the adversary gets access only to
the public key, while the secret key is never revealed to the adversary (as revealing it would trivially
break the security of the scheme). Hence, it is sufficient to use our relaxed notion of rerandomizable
public keys in order to achieve the unlinkability property. While the post-quantum secure signature
scheme that we consider in this work does not offer rerandomizable public and secret keys as required
by [DFL19], it fortunately achieves our relaxed notion of rerandomizable public keys. Thus, it is suffi-
cient to instantiate a wallet scheme that achieves the unlinkability property.
EUF-CMA-HRK. As in [DFL19], we use the notion of EUF-CMA under honestly rerandomizable keys,
where unforgeability holds if the randomness used to derive the keys is honestly generated. This is in
contrast to the stronger notion of EUF-CMA-RK as defined in [FKM+16], where unforgeability must
hold for adversarial chosen randomness. Stateful deterministic wallet schemes, however, derive the ran-
domness deterministically from the state (see Figure 4), which is generated initially during a trusted
setup when the master keys are created. Hence, the adversary has no influence on the randomness
used during the rerandomization procedures. To conclude, the notion of EUF-CMA-HRK is not only
suitable but also sufficient in the wallet setting.

3.4 Post-Quantum Security of Wallets

In this section we show that the generic construction achieves both unlinkability and unforgeability
against quantum adversaries. Recall that since we are in the post-quantum setting, the oracles provided
by the challenger in the unlinkability game (PK, getState, WalSign) and in the unforgeability game
(PK, WalSign) are run on a classical computer. Hence, also the (quantum) adversary gets only classical
access to these oracles. However, the adversary can use its quantum computing power to access the
quantum random oracle |H〉, i.e., querying the random oracle in superposition.

The following theorem shows the unlinkability.

Theorem 1. Let RSig be a signature scheme with rerandomizable public keys (cf. Definition 4) and
H a random oracle. Then the stateful wallet scheme SW built from RSig and H (cf. Figure 4) is pq-
unlinkable according to Definition 10, i.e., against quantum adversaries which have access to |H〉.

First, we provide a proof intuition of Theorem 1. Let us first recall how the unlinkability property is
proven in the classical ROM setting (cf. [DFL19]). Note that the wallet public keys are derived from
the wallet state, which is stored within the wallet, hidden from the adversary. The classical adversary
can then try to guess one of the states of the wallet and make a “problematic query” to the random
oracle H on such a state, in order to derive one of the session public keys generated by the wallet. If the
adversary guesses the wallet’s state correctly, it can distinguish a public key generated by the wallet
from a randomly generated one, and hence the adversary will be able to win the unlinkability game. The
classical proof consists of two steps: (1) showing the probability that the adversary makes the above
mentioned problematic query to the random oracle is negligible, and (2) showing that the adversary
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has no advantage in winning the unlinkability game conditioned on the event that it does not make
any problematic query. Finally, note that while this proof uses the stronger notion of rerandomizable
public and secret keys (cf. Definition 3), it is easy to see that it also works with our relaxed definition
of rerandomizable public keys (cf. Definition 4). This is because the unlinkability game requires the
adversary to distinguish a public key generated by the wallet from a randomly generated public key.

Our proof in the QROM follows the same approach, however, the first step requires a different tech-
nique. Recall that the wallet state gets refreshed with every public key query. In [DFL19], the challenger
keeps a list of the states of the wallet scheme – starting from the initial state till the one obtained
during last public key query. In the analysis a simple comparison allows to check whether a query by
the classical adversary is problematic, i.e., whether it coincides with one of the states of the wallet.
Since the adversary can access the random oracle H only classically (it can query on exactly one input
at a time), hence the challenger can store all these queries in a list. In the QROM, however, we can not
keep such a list as the adversary now has quantum computation power, hence can query the random
oracle on several, and even all, inputs in superposition.5 Instead, we consider a game hop which we
can bound by the advantage of the adversary in distinguishing two random oracles, which in turn
can be bound using the O2H lemma. For the resulting game, the same argument as in the classical
proof applies, i.e., the rerandomizable property of the underlying signature schemes ensures that the
adversary has no advantage in winning the game.

Proof (of Theorem 1). Throughout, let A = (A1,A2) be an adversary which makes q and qPK queries
to its oracles |H〉 and PK, respectively. To prove the theorem we use the following two games.

Game G0: This game is the game WUNL instantiated with SW (cf. Figure 4).

Game G1: This game is the same as G0, except that the randomness ρ and the new state St∗, prior
to running A2 (i.e., Line 13 in Figure 5), are sampled at random, independent of the random oracle.
In both games, the randomness and new state are distributed identical. The only difference lies in the
random oracle. From the point of view of A = (A1,A2), the random oracle in game G1 is |HS→$〉, i.e.,
the random oracle that is reprogrammed to random values for every x ∈ S, where S contains all pairs
of states and IDs prior to running A2. Hence, we can bound the advantage in distinguishing G0 and
G1 by the advantage in distinguishing the random oracles |H〉 and |HS→$〉. Applying the O2H Lemma
(cf. Lemma 1) yields∣∣∣Pr

[
A|H〉 ⇒ 1

]
− Pr

[
A|HS→$〉 ⇒ 1

]∣∣∣ ≤ 2q
√

Pr
[
x ∈ S : B|H〉 ⇒ x

]
.

where B is the adversary specified in Lemma 1. Note that A has no information about the states in
the set S until it queries getState to which only A2 has access. Furthermore, we have |S| ≤ qPK + 2 at
any point in time, qPK from A1’s queries and 2 from the challenge phase. This yields

Pr
[
x ∈ S : B|H〉 ⇒ x

]
≤ |S|2λ ≤

qPK + 2
2λ .

Combining the above equations yields that the advantage in distinguishing G0 and G1 is negligible in
the security parameter λ.

It remains to bound the advantage of A in game G1, where the same argument from the classical proof
applies. In G1, the challenge public key pkbID∗ given to A2 is independent of the random oracle (as
the random oracle is not used in G1 anymore for deriving keys). Hence, it is irrelevant whether the
5 We note that, to some extent, the compressed oracle technique by Zhandry [Zha19] allows the recording of
superposition queries.
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adversary makes any query (classical or quantum) to the random oracle. As RSig is a signature scheme
with rerandomizable public keys, the challenge public keys pk0

ID∗ and pk1
ID∗ are identically distributed,

which yields that the adversarial advantage is 0. Combining the above proves the theorem. ut

The following theorem shows that the generic construction is unforgeable in the presence of quantum
attackers.

Theorem 2. Let RSig be a signature scheme with rerandomizable public keys (cf. Definition 4) and
H a random oracle. Then the stateful wallet scheme SW built from RSig and H (cf. Figure 4) is pq-
unforgeable according to Definition 11, i.e., against quantum adversaries which have access to |H〉.

We briefly recap the classical proof in the ROM (cf. [DFL19]), thereby highlighting the challenge when
switching to a quantum adversary. Note again, that the classical proof uses the stronger notion of
rerandomizable keys (cf. Definition 3) but also holds for the weaker notion of rerandomizable public
keys (cf. Definition 4). The proof consists of a game hop in which the adversary loses the game if
there is a collision of session keys for different identities. Due to the construction, this occurs if the
random oracle outputs a collision which is bound by a simple counting argument. The advantage of an
adversary in the resulting game is bound by the security of the underlying signature scheme using a
reduction. The crucial part is that the reduction simulates the random oracle H for the adversary using
its oracle Rand from the EUF-CMA-HRK game. More precisely, for each query to H by the adversary,
the reduction makes a query to Rand.

Our proof in the QROM follows the same idea, however additionally needs to take care of the use of
the quantum random oracle |H〉 by the adversary. The first part works exactly as in [DFL19], since
the access to the oracle PK remains classical even for a quantum adversary. The second part, however,
does not work as in [DFL19]. While the adversary can query the quantum random oracle |H〉 in
superposition, the reduction can query its oracle Rand only classical as it is provided by its (classical)
challenger. By querying |H〉 on an equal superposition of all (i.e., exponentially many) inputs, the
reduction would need exponentially many queries to Rand in order to simulate |H〉 for the adversary.
Clearly, this would render the reduction useless as it would not be efficient. To tackle this issue, we do
an additional game hop in which we switch from a random oracle to an oracle drawn from a small-range
distribution. While this affects the advantage of the adversary only negligibly, it allows us to construct
a reduction which can simulate the quantum random oracle for the adversary by making a polynomial
number of (classical) queries to its oracle Rand.

Proof (of Theorem 2.). Let A be an adversary which makes qH queries to |H〉. The proof consists of
the following three games.

Game G0: This game is the game WUF instantiated with SW (cf. Figure 4). Assume that A has non-
negligible advantage ε = ε(λ) in winning G0. This means that there exists a polynomial p = p(λ) such
that p(λ) > 1

ε(λ) .

Game G1: This game is the same as G0, except the adversary loses when there is a collision of keys
for different identities. To detect the change, the adversary has to make queries to PK which result in
colliding keys. Note that the adversary only has classical access to PK as it is provided by the classical
challenger. Hence the bound from [DFL19] is applicable, which is a simple counting argument over the
number of queries to PK. This yields that the advantage of A in G1 is ε− negl(λ), i.e., it is negligibly
close to its advantage ε in G0.

Game G2: In this game the adversaries queries to |H〉 is simulated using Definition 1 and the Lemma 2.
Let l = 2Cq3

Hp with C being the constant from Lemma 2 and p being the polynomial described above.
At the start of the game, the challenger will generate l random values and draw the first output (the
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randomness ρ) of the quantum random oracle |H〉 from a small-range distribution using these l samples.
The second output (the new state St) is generated just as in G1. According to Lemma 2, A can only
distinguish this game from the previous one with probability less than 1

2p . Therefore, Lemma 2 yields
that the advantage of A in this game is at least ε− negl(λ)− 1

2p .

Bounding the advantage of A in Game G2: We now show how to transform an adversary A
playing G2 into an adversary B playing EUF-CMA-HRK (where, the underlying signature scheme is
RSig). W.l.o.g., we assume that A never makes a query which results in ⊥ and that there are no
collisions. At the start, B receives a public key pk. It performs l = 2Cq3

Hp queries to its oracle Rand
and samples an initial state St0. It invokes A on input (mpk = pk,St0).

Simulation of Quantum Random Oracle |H〉. B simulates the first output (the randomness ρ), by using
the l samples from Rand drawn from a small-range distribution. Note that Rand internally stores the
output ρ in its list RList. For the second output (the new state St), B simulates it using a 2qH-wise
independent function which is indistinguishable for an adversary making qH queries [Zha12b].

Simulation of PK oracle.WhenA queries its oracle PK on ID, B computes pkID ← RSig.RandPK(pk;ωID),
where (ωID,St∗)← H(St, ID), sets Keys[ID]← (pkID, ωID), and sends pkID to A.

Simulation of WalSign oracle. When A makes a query (m, ID) to its oracle WalSign, B obtains the
(pkID, ωID) = Keys[ID], sets m′ ← (m, pkID), queries its own oracle OHR on (m′, ωID), and forwards
the response to A. When A outputs a forgery (m∗, σ∗, ID∗), B obtains (pkID∗ , ωID∗) = Keys[ID∗], sets
m̂∗ ← (m∗, pkID∗), and outputs (m̂∗, σ∗, ωID∗).

If A’s forgery (m∗, σ∗, ID∗) is valid in Game G2, then B’s forgery (m̂∗, σ∗, ωID∗) is also valid in EUF-
CMA-HRK. We now show that the output of B is a valid forgery whenever the output of A is. First,
since (m∗, σ∗, ID∗) is a valid forgery by A, we know that A never queried (m∗, ID∗) to WalSign.
Recall that, for every WalSign query by A on any message (m), B made a OHR query on public key
prefixed message (m′ ← {m, pk}). Since A never queried WalSign on input (m∗, ID∗), B never queried
(m̂∗, ωID∗) to its oracle OHR, where m̂∗ ← {m∗, pk}. Second, it holds that ωID∗ ∈ RList. This follows
from the simulation of the quantum random oracle where, for every possible output (ρ,St), ρ is in
RList. Third, validity of the forgery by A yields validity of the forgery by B.

Recall that l = 2Cq3
Hp and as discussed at the beginning of this game, according to Lemma 2, the

advantage of the adversary in this game is equal to ε − negl(λ) − 1
2p . Assuming the security of the

underlying signature scheme RSig, we have that this advantage must be negligible. Combined with
ε > 1

p (see description of G0), this yields that 1
2p is negligible, resulting in a contradiction. Hence, we

conclude that ε, the advantage of A, is negligible. ut

4 PQ Signatures with Honestly Rerandomizable Public Keys

In this section we propose a lattice-based construction of a signature scheme with honestly reran-
domizable public keys (cf. Definition 4). In such a signature scheme, the distribution of honestly
rerandomized public keys is identical to the distribution of original public key, while honestly reran-
domized secret keys are allowed to be distributed differently from the original secret key. The scheme
extends the generic construction of lattice-based signatures from Section 2.5. We analyze the security
of our scheme in Section 4.2. In Section 4.3 we discuss alternative ways of key rerandomization in a
lattice-based signature scheme and argue why they fall short in building practical hot/cold wallets.
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RandG(ρ)

1: ρ := (ρs, ρe) ∈ {0, 1}2o(λ)

2: r← GenG(k2, σ, S/2, ρs)
3: u← GenG(k1, σ, E/2, ρe)
4: return (r,u)

RSig.KGen(1λ)

1: (sk, pk)← LB.KGen(1λ)
2: hpk← F(pk)
3: sk ← (hpk, sk)
4: return (sk, pk)
RSig.RandPK(pk, ρ)
1: (r,u)← RandG(ρ)
2: b′ ← b + Ar + u (mod q)
3: pk′ := b′
4: return pk′

RSig.RandSK(sk, ρ)

1: (r,u) ∈ Dk2
Zn,σ ×D

k1
Zn,σ ← RandG(ρ)

2: s′ ∈ Dk2
Zn,
√

2σ
← s + r

3: e′ ∈ Dk1
Zn,
√

2σ
← e + u

4: b′ ← As′ + e′ (mod q)
5: hpk′ ← F(b′)
6: sk′ := (hpk′, s′, e′)
7: return sk′

RSig.Sign(sk,m)
1: µ← (m, hpk)
2: (z1, z2, c)← LB.Sign(sk, µ)
3: return (z1, z2, c)
RSig.Verify(pk,m, (z1, z2, c))
1: µ← (m,F(pk))
2: return LB.Verify(pk, µ, (z1, z2, c))

Fig. 7. Construction of lattice-based signature scheme with honestly rerandomizable public keys.

4.1 Description of the Scheme

Let LB.Σ = (LB.KGen, LB.Sign, LB.Verify) be the lattice-based signature scheme given in Section 2.5,
Figure 3, and let A ∈ Rk1×k2

q be a uniformly random matrix as defined in Section 2.5, i.e., A is
publicly known and an implicit input to all algorithms. Furthermore, we define the following functions
and algorithms:

– Maxj is a function that on input a ∈ R, it outputs the jth largest absolute coefficient of a. This
function is used for bounding the secret-related terms, and hence the signatures generated by the
algorithm LB.Sign (cf. line 6–7 in Figure 3).

– GenG is an algorithm that on input (dim, σ, bnd, rnd), it outputs a vector x = (x1, . . . , xdim), where
xi ∈ R are sampled from DZn,σ such that

∑κ
j=1 Maxj(xi) ≤ bnd by using a randomness rndi that

is extracted from rnd, e.g., via the function E.
– F : {0, 1}∗ −→ {0, 1}o(λ) is a collision resistant hash function. It is used to hash the public key in

order to prevent related key attacks [MSM+15].

In this section we set the distribution used in the algorithm LB.KGen for the secret key to χ = DZn,σ.
More precisely, we assume that sk = (s, e) ∈ Dk2

Zn,σ × D
k1
Zn,σ, where s ← GenG(k2, σ, S/2, rnds) and

e ← GenG(k1, σ, E/2, rnde) for two predefined positive numbers S,E and randomnesses rnds, rnde.
Setting χ = DZn,σ is essential for rerandomizing the secret key in the construction introduced in this
section because the sum of Gaussian distributed elements with standard deviation σ is also Gaussian
distributed with standard deviation

√
2σ (cf. Lemma 3).

In the following we describe our signature scheme with honestly rerandomizable public keys. The
respective algorithms are formalized in Figure 7. In order to simplify the construction, we first define
the algorithm RandG (see Figure 7 for a formal description). This algorithm takes as input a randomness
ρ = (ρs, ρe) ∈ {0, 1}o(λ)×{0, 1}o(λ), and outputs two vectors r,u, which are generated by running the
algorithm GenG on input (k2, σ, S/2, ρs), (k1, σ, E/2, ρe), respectively.
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RSig.KGen: The key generation algorithm runs the algorithm LB.KGen to obtain a key pair (sk, pk),
where sk = (s, e) ∈ Dk2

Zn,σ ×D
k1
Zn,σ and pk = b ∈ Rk1

q . Then, it computes hpk = F(pk), prepends
hpk to sk, and returns the updated (sk, pk).

RSig.RandPK: Given a public key pk = b and an honestly generated randomness ρ, the algorithm
RSig.RandPK runs RandG(ρ) to generate a pair of Gaussian distributed vectors (r,u). Then, it
computes b′ = b + Ar + u (mod q) and outputs the honestly rerandomized public key pk ′ = b′.

RSig.RandSK: Given a secret key sk = (hpk, s, e) and an honestly generated randomness ρ ∈ {0, 1}2o(λ),
the algorithm RSig.RandSK runs RandG to obtain (r,u) ∈ Dk2

Zn,σ × Dk1
Zn,σ. Then, it computes

s′ = s+r and e′ = e+u. Note that by Lemma 3, the pair (s′, e′) is distributed asDk2
Zn,
√

2σ×D
k1
Zn,
√

2σ.
Finally, the algorithm computes hpk′ = F(b′) and outputs the honestly rerandomized secret key
sk ′ = (hpk′, s′, e′).

RSig.Sign: The algorithm RSig.Sign returns the signature obtained by calling the algorithm LB.Sign
on message µ = (m, hpk). Signing messages together with the hash value of (honestly rerandomized)
public keys ensures security under related key attacks [MSM+15].

RSig.Verify: The algorithm RSig.Verify returns the bit obtained by running LB.Verify(pk, µ), where
µ = (m,F(pk)).

We note that rerandomizing sk must be carried out only with the original secret key, i.e., a rerandom-
ized secret key cannot be used to generate a new rerandomized one. This ensures that all honestly
rerandomized secret keys have identical distribution, i.e., Dk2

Zn,
√

2σ ×D
k1
Zn,
√

2σ. Furthermore, signatures
generated using honestly rerandomized keys have different distribution from signatures generated us-
ing the original key pair. More precisely, the pair (z1, z2) is distributed uniformly at random over
Rk2
B1
×Rk1

B2
, where

B1 =
{
Y − S/2 if sk ← LB.KGen
Y − S if sk ← RSig.RandSK

B2 =
{
Y − E/2 if sk ← LB.KGen
Y − E if sk ← RSig.RandSK

The bound Y of the masking pair (y1,y2) is chosen such that the probability of generating valid
signatures (cf. Section 2.5) is at least 1/M , i.e.,(

2B1 + 1
2Y + 1

)k2n

·
(

2B2 + 1
2Y + 1

)k1n

≥ 1/M,

where M = O(1) is the repetition rate of the signing algorithm.

4.2 Security Analysis

In this section we analyze the EUF-CMA-HRK security of the scheme introduced in Section 4.1 in
the QROM. More precisely, we reduce its EUF-CMA-HRK security to the EUF-CMA security of the
lattice-based signature scheme LB.Σ = (LB.KGen, LB.Sign, LB.Verify) described in Section 2.5. The
correctness of the scheme directly follows from the correctness of LB.Σ. Note that rerandomizability
of public keys (see Definition 4) follows from the MLWE assumption [LS15]. That is, for any public key
b and any honestly rerandomized public key b′ both pairs (A,b), (A,b′) are indistinguishable from
the uniform distribution over Rk1×k2

q ×Rk1
q . Therefore, b and b′ are identically distributed.

Theorem 3 (EUF-CMA-HRK Security). The signature scheme with honestly rerandomizable public
keys depicted in Figure 7 is EUF-CMA-HRK secure in the QROM if scheme LB.Σ = (LB.KGen, LB.Sign,
LB.Verify) described in Figure 3 is EUF-CMA secure in the QROM.
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Reduction D(pk)
1: RList := ∅
2: Q := ∅
3: (m, ((z1, z2, c), ρ))← AH′,Rand,OHR(pk)
4: if (ρ = NULL) then
5: hpk← F(pk)
6: µ← (m, hpk)
7: return (µ, (z1, z2, c))
8: if (ρ 6= NULL) then
9: pk′ ← RSig.RandPK(pk, ρ)
10: hpk′ ← F(pk′)
11: µ′ ← (m, hpk′)
12: (r,u) ∈ Dk2

Zn,σ ×D
k1
Zn,σ ← RandG(ρ)

13: z′1 ← z1 − rc
14: z′2 ← z1 − uc
15: return (µ′, (z′1, z′2, c))

Fig. 8. Reduction from the EUF-CMA security of LB.Σ (Figure 3) to EUF-CMA-HRK security of signature
scheme with honestly rerandomizable public keys (Figure 7). Queries to OHR,H′, and Rand are answered as
shown in Figure 9.

Proof. Let A be an adversary that is able to generate valid forgeries under the signature scheme
with honestly rerandomizable public keys, i.e., A is able to win the game EUF-CMA-HRKARSig (cf.
Definition 6). We construct an algorithm D that runs A as subroutine in order to win the game
EUF-CMADLB.Σ (see Definition 5) against the scheme LB.Σ. According to the security model, A has
quantum access to a random oracle H′ and classical access to a random oracle Rand in addition to
classical access to the signing oracle OHR. The reduction D has quantum access to the random oracle
H and classical access to the signing oracle O, which returns to D signatures generated by LB.Σ. The
algorithm D is described in Figure 8. D initializes two empty lists RList,Q. These are used by D to
store queries to Rand and OHR, respectively. Simulation of OHR,H′, and Rand is given in Figure 9.

Analysis. Let (m, ((z1, z2, c), ρ)) be a valid forgery output by the adversary A. This means that m 6∈ Q
and RSig.Verify(pk,m, (z1, z2, c)) = 1. Moreover, ρ ∈ RList in case randomness ρ 6= NULL.

We first analyze the case that ρ = NULL. The signature satisfies (z1, z2) ∈ Rk2
Y−S

2
× Rk1

Y−E
2

and
c = H′(w,m, hpk) = H(w,m, hpk), where w = Az1 + z2 − bc (mod q). Hence, this forgery constitutes
a valid signature under LB.Σ on message µ = (m, hpk). Note that if c was not queried by some
input, then A produces such c only with negligible probability, i.e., 1/|Tnκ|. Thus, with probability of

1− 1/|Tnκ|, the value c must be a random oracle answer to a query made by A, where |Tnκ| = 2κ
(
n
κ

)
and κ is chosen such that |Tnκ| ≥ 22λ. This ensures that the probability of mapping two different values
to the same output of H is at most 2−2λ.

Next, we assume that A outputs a valid forgery (m, (z1, z2, c), ρ) under honestly rerandomized public
key b′ and ρ 6= NULL. This means that (z1, z2) ∈ Rk2

Y−S × Rk1
Y−E . In this case D transforms this

signature into a forgery under the original public key b as follows: D runs RandG(ρ) to obtain (r,u).
Then, it computes the vectors z′1 = z1 − rc and z′2 = z2 − uc. Note that

‖z′1‖∞ ≤ ‖z1‖∞ + ‖rc‖∞ ≤ Y − S + S/2 = Y − S/2,
‖z′2‖∞ ≤ ‖z2‖∞ + ‖uc‖∞ ≤ Y − E + E/2 = Y − E/2 .
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Sim(pk,m, ρ)
1: if (ρ = NULL) then
2: Q := Q∪ {m}
3: return SimNoR(pk,m)
4: if (ρ 6= NULL) then
5: if (ρ /∈ RList) then
6: return ⊥
7: Q := Q∪ {m}
8: return SimR(pk,m, ρ)
SimNoR(pk,m)
1: hpk← F(b)
2: µ← (m, hpk)
3: (z1, z2, c)← O(µ)
4: return (z1, z2, c)
H′(·)
1: return H(·)

SimR(pk,m, ρ)
1: (r,u)← RandG(ρ)
2: pk′ := b′ ← RSig.RandPK(pk, ρ)
3: hpk′ ← F(b′)
4: µ′ ← (m, hpk′)
5: (z′1, z′2, c)← O(µ′)
6: z1 ← z′1 + rc
7: z2 ← z′2 + uc
8: if

(
(z1, z2) 6∈ Rk2

Y−S ×R
k1
Y−E

)
then

9: goto 5
10: return (z1, z2, c)
Rand()

1: ρ←$ {0, 1}2o(λ)

2: RList← RList ∪ {ρ}
3: return ρ

Fig. 9. Description of algorithm Sim, which simulates signing queries to OHR. The algorithms SimNoR, SimR
are subroutines used by Sim. The first one is called when signing query does not include randomness ρ, while
the latter one is called when signing query includes honestly generated randomness ρ 6= NULL. Queries to H′
made by adversary A are redirected to the random oracle H, to which reduction D has access. Queries to Rand
are answered locally by D.

Hence, (z′1, z′2) ∈ Rk2
Y−S

2
×Rk1

Y−E
2
. Furthermore, we have

w = Az′1 + z′2 − bc = A(z1 − rc) + z2 − uc− bc = Az1 + z2 − b′c (mod q) .

Therefore, it holds that c = H′(w,m, hpk′) = H(w,m, hpk′). Hence, the forgery output by A can be
turned into a valid forgery under the original public key b for message µ′ = F(m, hpk′), i.e., it is a
forgery under LB.Σ.

Finally, we note that the environment of A is perfectly simulated, and whenever A wins the game
EUF-CMA-HRKARSig, D wins the game EUF-CMADLB.Σ . The number of signing queries made by D is at
most M ·Q, where M = O(1) is the repetition rate6 of LB.Σ and Q is the number of signing queries
made by A. ut

4.3 Alternative Methods for Rerandomization

In this section we describe alternative approaches for rerandomizing keys in the lattice setting and
show why our scheme introduced in Section 4.1 is the most suitable option in the context of hot/cold
wallets. First, we recall that our construction from the previous section assumes that the distribution
of the secrets used in the key generation algorithm are from the Gaussian distribution, i.e., χ = DZn,σ.
This allows us to use Lemma 3 in order to obtain rerandomized secret keys that are also Gaussian
distributed but with a slightly different standard deviation, i.e., DZn,

√
2σ. The key generation of our

scheme cannot use uniformly distributed secrets over a small subset Rd from R, where Rd is the set
of all polynomials from R with `∞ norm bounded by some integer d ≥ 1. This is because the sum
6 In practice, the repetition rate of the signing algorithm of standard lattice-based signature schemes is strictly
smaller than 4 (e.g., see [DKL+18,ABB+20]).
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of two uniformly random polynomials over Rd does not yield a polynomial that follows the uniform
distribution over a subset S ⊆ Rd. Using a uniformly random sk for rerandomization would yield
rerandomized secret keys with unknown distribution, and hence the hardness of the computational as-
sumption underlying the rerandomized key pairs would be unclear. Let us now discuss the alternative
approaches.
Rerandomizability of Gaussian distributed secret keys. It is (theoretically) possible to reran-
domize key pairs such that the rerandomized secret keys have the same distribution as the original
secret key. More precisely, assume that sk is Gaussian distributed with standard deviation σ. Given a
randomness ρ, a rerandomized secret key is computed as sk ′ = sk +ρ. Due to [GKPV10, Lemma 3], sk ′
is Gaussian distributed with the same σ when σ is of a super-polynomial size in the security parameter
λ. In other words, we must select σ large enough in order to make the statistical distance between
the distribution of sk and sk ′ negligible in λ. This value of σ gives secret keys of very large size, and
requires to increase the size of the masking vectors used in the signing algorithm. Hence, we obtain
signatures of very large size, which rules out using the resulting scheme in practice.
Rerandomizability of uniform distributed secret keys. In theory, it is possible to use uni-
formly distributed rather than Gaussian distributed secret keys as follows. Assume that χ = Rd and
ρ ∈ R1. The rerandomized secret key sk ′ = sk + ρ is uniformly distributed over Rd−1 with probability(

2d−1
2d+1

)(k1+k2)n
, where (k1 + k2)n is the dimension of sk ′. Therefore, for a very large d this probability

would be overwhelming in λ.

Example 1. By considering the parameters of Dilithium [DKL+18] proposed for λ = 128, we have
k1 = 5, k2 = 4, and n = 256. Hence, we have to set d ≈ 2139 in order to make the previously stated
probability at least 1− 2−128. This value of d yields a secret key of size ≈ 2147 Bytes.

The above given example shows that this approach is merely of theoretical interest only and is not
suitable for practical applications as it requires huge sizes of keys, and hence signatures.
Allowing rerandomization algorithms to communicate. Consider an application, in which the
rerandomization algorithms (i.e., RSig.RandSK and RSig.RandPK) synchronize after each invocation
of RSig.RandSK. Given sk and ρ, the algorithm RSig.RandSK uses ρ together with a counter ctr in
order to deterministically generate a randomness ρ′, e.g., by using the function E on input (ρ, ctr).
Then, it computes sk ′ = sk + ρ′ and outputs the rerandomized secret key sk ′ only after verifying
that it has the correct distribution. If this is not the case, it increases ctr by 1 and repeats this
process. The algorithm RSig.RandPK needs to receive the corresponding ctr from RSig.RandPK in order
to generate the rerandomized public key related to sk ′. Note that if sk is Gaussian distributed, then
we even obtain a scheme with rerandomizable public and secret keys as defined in [FKM+16]. While
this method is practical and may be applicable in the construction of sanitizable signatures proposed
in [FKM+16], it cannot be used in the setting of hot/cold wallets due to the fact that in each signing
process RSig.RandPK must obtain the correct ctr that were used to generate sk ′. This synchronization
requirement undermines the main concept of hot/cold wallets, namely the fact that hot and cold wallets
do not communicate with each other (except when they are being initialized).

5 Practical Instantiation

In this section we present an efficiency analysis of the wallet scheme introduced in Section 3. To this
end, we instantiate the signature scheme presented in Section 4 with a concrete lattice-based signature
scheme. The most recent Fiat-Shamir constructions of lattice-based signatures are Dilithium [DKL+18]
and qTESLA [ABB+20]. We consider the latter scheme, since the hard lattice problem underlying its
key generation algorithm uses Gaussian distributed secrets. This is essential for rerandomizing the
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secret key in our setting, and hence is sufficient for our scheme with honestly rerandomizable public
keys described in Figure 7. On the other hand, Dilithium’s key generation uses uniformly distributed
secrets for the underlying lattice problem, instead of Gaussian distributed secrets, which is not suitable
in our wallet setting (see Section 4.3). Employing the Gaussian distribution in the key generation
algorithm of Dilithium instead, requires to adjust the security analysis of Dilithium and to choose new
parameters. The resulting scheme would be similar to qTESLA, with slight differences in how signatures
are compressed. We choose not to modify Dilithium’s original design but stick to qTESLA, which does
not need any modification for our setting and is well-studied in comparison to a modified version of
Dilithium.

5.1 An Instantiation with qTESLA

In this section we show how the signature scheme with honestly rerandomizable public keys introduced
in Section 4 can be instantiated with qTESLA. We note that the parameters of qTESLA were selected
according to the security reduction from the RLWE problem. This approach has two different aspects:
On the one hand, it guarantees that qTESLA has the security level as long as the underlying RLWE
instance is hard enough. On the other hand, this approach affects the performance and sizes of keys
and signatures, because larger parameters are required to achieve the desired security level. The main
goal of our choice is to demonstrate that our wallet scheme can be instantiated with state-of-the-art
lattice-based signature schemes without taking into account any of the two different aspects mentioned
above.

The design of our scheme is based on lattices over modules. In order to employ qTESLA in our con-
struction we set k2 = 1 to obtain a variant based on lattices over ideals, and security based on the
hardness of RLWE. The (master) secret key includes polynomials s, e1, . . . , ek1 sampled from DZn,σ.
The polynomial s is bounded by S/2 using the function Maxj defined in Section 2.5, while e1, . . . , ek1

are each bounded by E/2 using Maxj . In qTESLA the bounds are S and E, respectively. However, our
wallet scheme uses the master key pair only for rerandomization, and signatures are generated using
honestly rerandomized key pairs, which already satisfy the bounds S and E. Therefore, we can use
exactly the same parameters proposed for qTESLA in [ABB+20, Table 4]).

Note that in comparison to the generic signature scheme shown in Figure 3, Section 2.5, the signa-
ture scheme qTESLA [ABB+20] compresses signatures by employing the technique of [BG14]. In this
technique the signer proves knowledge of only the secret polynomial s rather than s and e1, . . . , ek1 .
Therefore, signatures are of the form (z1, c) ∈ RY × Tnκ rather than (z1, z2, c) ∈ RY ×Rk1

Y × Tnκ. This
approach does not affect the EUF-CMA-HRK security of the signature scheme with honestly reran-
domizable public keys. That is, the reduction given in Figure 8 remains the same. Only simulating
the signing oracle (cf. Figure 9) requires to include an additional check to ensure the correctness of
simulated signatures. More concretely, after step 9 of algorithm SimR (see Figure 9) we add the last
for loop of qTESLA’s signature generation algorithm [ABB+20, Algorithm 4]. However, we have in our
setting

wi = aiz1 − b′ic− ric (mod±q) for all i = 1, . . . , k1,

where ai, b′i, and ri are the entries of the public vector a (replaced by the matrix A, since k2 = 1),
rerandomized public key b′, and the vector r, respectively.

5.2 Deploying PQ Wallets over Blockchains

In this section we give an overview of the transaction throughput that can be achieved in a cryptocur-
rency system using our signature scheme instantiated with qTESLA.
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A simple transaction in most cryptocurrency networks transfers coins from one party to another. Such
transactions must usually include the public key pk and the signature σ of the sender such that the
validity of the transaction can be verified. In order to give an estimated transaction throughput, we use
the raw transaction size of a regular Bitcoin transaction (i.e., without the size of pk and σ) and then
add the size of pk and σ of our scheme to it. The raw transaction size of a Bitcoin is roughly 100 Bytes
(B) [Bit19]. Hence, when instantiating our wallet scheme with qTESLA, we can take the corresponding
signature size (2,592 B) and public key size (14,880 B) [ABB+20, Table 4] for a post-quantum security
level of 95 bits7 and add those to the rough raw transaction size of 100 B. The size of a transaction
would then result in 100 B+ 14, 880 B+ 2, 592 B ≈ 17.5 KB. We note that it is possible for a party to
send coins to multiple receivers in a single transaction which would essentially allow for transactions
to be aggregated and increase efficiency.

Many cryptocurrencies (including Bitcoin and Ethereum) currently use the classical signature scheme
ECDSA. For the sake of drawing a comparison, note that the size of the ECDSA public key and
signature in Bitcoin is approximately 65 B and 73 B [ECD19], respectively, which results in more
compact transactions (minimum size of a transaction being 100B + 65B + 73B ≈ 240B), and hence
higher transaction throughput.

Naturally, there are various ways to improve the transaction throughput such as increasing block
size and the rate at which blocks are produced. For example, in a Bitcoin-like currency new blocks
are created roughly every 10 minutes, which tremendously limits the throughput and scalability of
the network. In contrast, one can consider a system with a block rate of a few seconds, say 15-20
seconds (e.g., this is the case for the Ethereum blockchain). This significantly increases transaction
throughput, and hence compensates for larger sizes of pk and σ. Yet these solutions are ad-hoc, while a
more interesting direction for future work is to design further efficient post-quantum secure signature
schemes with rerandomizable keys.
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