
TEnK-U: Terrorist Attacks for Fake Exposure Notifications in

Contact Tracing Systems

Gennaro Avitabile1, Daniele Friolo1, and Ivan Visconti1

1DIEM, University of Salerno, Italy

Abstract

In this work we show that an adversary can leverage blockchain technology to attack the
integrity of contact tracing systems based on Google-Apple Exposure Notifications (GAEN).
We design a suite of smart contracts named TEnK-U allowing an on-line market where in-
fected individuals interested in monetizing their status will then upload to the servers of the
GAEN-based systems some keys (i.e., TEKs) chosen by an adversary. As a consequence,
there will be fake exposure notifications of at-risk contacts arbitrarily decided by the adver-
sary and allowed by infected individuals looking for money.

Such vulnerability can be exploited to anonymously and digitally trade valuable contact
tracing data without a mediator and without risks of being cheated. This makes infected
individuals prone to get bribed by adversaries willing to compromise the integrity of the
contact tracing system for any malicious purpose. For instance, large-scale attacks with
catastrophic consequences (e.g., jeopardizing the health system, compromising the result of
elections) are easy to mount and attacks to specific targets are completely straight-forward
(e.g., schools, shops, hotels, factories).

We show as main contribution a smart contract with two collateral deposits that works, in
general, on GAEN-based systems and concretely with Immuni and SwissCovid. In addition,
we show smart contracts with one collateral deposit that work with SwissCovid. Finally, we
also suggest the design of a more sophisticated smart contract that could potentially be used
to attack GAEN-based system even in case those systems are repaired to make the previous
attacks ineffective. This last smart contract crucially uses DECO to connect blockchains
with TLS sessions.

Our work shows that risks envisioned by Anderson and Vaudenay are absolutely concrete,
in particular TEnK-U shows how to realize with Immuni and SwissCovid the terrorist attack
to decentralized systems discussed by Vaudenay.

1 Introduction

During this COVID-19 pandemic several governments are deciding to use digital contact tracing
systems in addition to other practices to contain the spread of SARS-CoV-2. The motivation
is that digital contact tracing could help to notify at risk exposures to individuals that recently
have been in close proximity to other individuals subsequently tested positive to SARS-CoV-2.
If such systems worked perfectly, they would certainly be effective in alerting at risk individuals
who, following some prescribed procedures (e.g., informing doctors, staying at home in self-
quarantine), may significantly limit the spread of the virus. In some cases (e.g., in Switzerland),
an alert received by a contact tracing smartphone application allows to get a test for free [Har20].

The most used contact tracing systems rely on Google-Apple Exposure Notifications (GAEN),
a feature offered by recent updates of iOS and Android and therefore available on a large frac-
tion of currently used smartphones. These systems are widely used in Europe (e.g., Austria,



Denmark, Estonia, Finland, Germany, Ireland, Italy, Latvia, Poland, Spain, Switzerland) and
soon there will be cross-border compatibility [eN20].

Moreover, in the US, the states of Alabama and Virginia are using GAEN and several other
states are planning to adopt such system soon. GAEN allows to run decentralized contact
tracing where there is very low control from governments and therefore attacks from third
parties are in general hard to mitigate.

Efficacy of digital contact tracing: the need of large adoption. Roughly, if n indi-
viduals out of m use the contact tracing app, the probability that a risky contact among two
individuals is detected by the app is (n/m)2. This very approximate estimation is anyway suf-
ficient to understand that a truly beneficial help can come from such systems only when they
are used by a large fraction of the population. Indeed, one should also take into account risky
contacts with asymptomatic individuals, who clearly have less chances to be detected since only
a small fraction of asymptomatic individuals is usually tested. Given such evident need for large
adoption, many governments as well as Apple and Google are very actively promoting the use
of national contact tracing apps.

Bluetooth low energy (BLE) and false positives due to technological limitations.
The approach of GAEN-based contact tracing systems is to use BLE to detect close proximity
contacts among smartphones. Each smartphone broadcasts a pseudonym via BLE, and this
information is received by smartphones in close proximity along with some encrypted metadata.
If a citizen is tested positive and decides to notify others, the receivers of her pseudonym will
then manage to decrypt the stored metadata to then evaluate a risk factor1. Since BLE was not
originally designed to detect a precise distance among devices, the evaluation of the risk factor
is prone to significant errors. In particular, the fact that there can be obstacles (e.g., human
bodies, clothes, purses) in between the two BLE devices negatively affects the precision of the
distance estimation. As a consequence, in order to make sure that an alert can be generated
when two individuals are close to each other (i.e., within 1.5/2 meters) despite obstacles, some
important parameters have been increased in some countries [up20, oPH20c]. Therefore, even
individuals that have been sufficiently far from each other (e.g., >2 meters) while properly
using protective masks and always looking towards opposite directions, can be considered in
close proximity and an alert is generated if one of them is then tested positive. The above
issue, along with the fact that a notification does not specify time and location of the risky
contact, indicates that when such systems are widely used, it is natural to expect false positive
alerts(i.e., alerts received by users who have not been in contact with infected individuals).
Depending of the efficiency of the health system of a country and the way it is connected to the
digital contact tracing system, a high number of false positive alerts could overload the health
system and heavily affect those individuals forced to a quarantine, even if healthy. Despite risks
of false positive alerts, several governments keep promoting digital contact tracing, therefore
considering the impact of those technological limitations marginal, or at least tolerable.

False positives due to attacks. While false positive due to BLE limitations in measuring
distance can affect all individuals using the smartphone apps, a much more concerning threat
allowing to direct false positive alerts to specific targets has been pointed out in prior work
(e.g., see [Vau20a, Pie20, BCC+20]). Indeed, GAEN-based contact tracing systems2 can be
heavily abused through replay attacks. Here the pseudonyms sent by an individual considered

1For example, metadata include information useful to estimate the distance among the smartphones which
clearly impacts on estimating the risk of a contact.

2Sometimes for brevity we will just say GAEN systems.

2



at risk (e.g., showing evident symptoms) can be transmitted by an adversary to a different
location in order to create a fake proximity contact. The attack can have a specific target but
can also be performed at large scale. Recently, in [RGK20] Gennaro et al. discussed how the
capability of running such attacks at large scale can be used to put a category of citizens in
quarantine with the consequence of severely compromising the results of an election. In general,
the malicious generation of false positives can be harmful in various ways, the health system
can be overloaded of requests that can penalize those citizens who instead are really affected
by the virus and would like to be tested as soon as possible, and preferably for free. A student
can cause the complete closure of a school or university and similar attacks can be directed to
shops, malls, gyms, post offices, restaurants.

Replay attacks were known already in April 2020 and in GAEN systems have a pretty large
time window to be realized (about 2 hours). Nevertheless, governments have so far considered
unlikely that such attacks can produce enough damage to cancel the positive effects of digital
contact tracing. This is perhaps due to some complications involved in the attack. For example,
an adversary may not want to get herself infected, or it could not be easy to identify, and be
in physical proximity with, an individual who will be likely tested positive later on3. Still a
replay attack is certainly not unlikely to happen and could contribute along with other attacks
to produce serious damages (e.g., biasing the result of an election, affecting severely the quality
of the selection process for testing individuals, damaging economy by stopping/delaying the
activities of some strategic industries).

In [And20], Anderson conjectured the possibility of trolling attacks to spread panic and close
schools. In [Vau20b], Vaudenay discussed the possibility of using smart contracts to realize a
terrorist attack against decentralized systems, therefore the attack could potentially apply to
GAEN-based systems as well. In this case, the attacker would spread on her targets some
pseudonyms subsequently promising through a smart contract a reward to whoever uploads the
corresponding keys. An infected individual that participates in this contract would therefore
cash the reward and false positive alerts will raise on the smartphones of those targets decided
by the terrorist.

More details about the above and various other attacks to GAEN systems are discussed in
Section 1.2.

1.1 Our Contribution

In this paper we show that the terrorist attack conjectured by Vaudenay can be concretely
mounted against currently deployed GAEN-based contact tracing systems. In particular, we
have analyzed only two cases (i.e., Immuni [IT20] used in Italy and SwissCovid [oPH20a], used
in Switzerland) and in both cases the terrorist attack can be successfully realized. We expect
several other deployed GAEN systems to suffer from the same vulnerabilities.

More generally, our work shows how to attack the integrity of currently deployed GAEN-
based contact tracing systems by leveraging blockchain technology. A very alarming side of
our contribution is that current systems can be severely compromised without a need for the
attacker to get infected and no need to be sure with high probability that an individual in
close proximity to the attacker will be soon detected positive and will upload the keys. Our
attacks use a suite of smart contracts named TEnK-U to establish a mediator-free market where
parties, without knowing each other, without meeting in person and without running risks to
be cheated, can abuse exposure notifications procedures of GAEN systems.

3Recall that a replay attack requires to start with pseudonyms of an individual that soon will be tested and
detected positive and that will perform the upload procedure to allow the contact tracing system to notify a risky
exposure.

3



As main contribution we show a generic smart contract Take-TEK that that works in general
on GAEN systems and in particular with both Immuni and SwissCovid. Additionally we show
two more generic smart contracts (Take-TEK-JWT, Auction-TEK) that require specific TEK-
upload procedures and work with SwissCovid. All above smart contracts rely on servers of
the contact tracing system publishing signed list of infected TEKs. Finally, we show that
even without such a signed list of TEKs, an (certainly more sophisticated) attack is possible
using DECO [ZMM+19]: we show another generic smart contract that relying also on off-chain
protocols executed by seller and buyer can allow the smart contract to verify that the seller
successfully uploaded TEKs during a TLS session with the contact tracing server.

All above smart contract are generic in the sense that we do not provide code directly
runnable on a mainstream blockchain, but we anyway provide sufficient details so that providing
runnable smart contracts merely consists of implementing our detailed specifications. From now
on we will omit the word “generic” when referring to our smart contracts.

Trading TEKs exploiting publicly verifiable lists of infected TEKs. We show a smart
contract named Take-TEK that allows a buyer (i.e., the adversary willing to spread false positive
alerts) to decide the TEKs that will be uploaded by a seller (i.e., the infected individual that is
willing to monetize his right to upload TEKs to the servers of the GAEN system). The smart
contract requires the buyer to deposit the amount of cryptocurrency (we will call it prize) that
she is willing to give to the seller. The seller instead will deposit an amount of cryptocurrency
in order to reserve a time slot in which she will try to upload the TEKs. In case she will
not manage to complete the upload of the TEKs, the deposit will be assigned to the terrorist.
The deposit of the seller is therefore useful to make unlikely that a seller might try to prevent
other sellers to complete the job. Additionally, we can hide the TEKs so that, even observing
all transactions, it is not clear which TEKs have been traded among the many TEKs jointly
published in a slot by the server of the contact tracing system. Take-TEK crucially relies on
the server publishing such lists of TEKs along with a signature verifiable with a publicly known
public key.

We show that the Take-TEK attack can be deployed to generate fake false positive alerts
w.r.t. both Immuni and SwissCovid. Indeed, both systems follow strongly the design of GAEN
and announce such signed lists of TEKs using ECDSA as signature scheme.

Regardless of Immuni and SwissCovid making or not available public keys of the signature
scheme, we have successfully extracted the public keys from previously released signatures and
therefore Take-TEK can be instantiated to attack both systems. More details are discussed in
Section 2.

Trading TEKs exploiting publicly verifiable upload-authorization tokens. Despite
being easy to carry out, the Take-TEK attack requires the seller to make a deposit which will
remain blocked until the next update released by the contact tracing server. This, depending
on the particular system, may take from a few hours up to one day. Removing the need for this
deposit is therefore interesting from a theoretical point of view, and has also the practical effect
of reducing the entry barrier, allowing more sellers to join this adversarial market. Interestingly,
some systems (e.g., SwissCovid) provide infected users with long-lived upload authorization
tokens that can act, for the seller, as a proof of having the right to upload TEKs. Such tokens
include a signature computed with ECDSA, and thus it is possible to extract the corresponding
public key by simply getting access to previously released tokens. Notice that tokens are not
public, therefore a buyer will trust such smart contract only if he manages to access an already
spent genuine token (e.g., if he received it in the past after being tested positive) released using
the current public key.

4



Similarly to Take-TEK, we will show the design of a smart contract Take-TEK-JWT that
includes the public key used to verify the validity of such tokens. The seller would then post a
token (omitting its signature) and a non-interactive zero-knowledge (NIZK) proof of knowledge
of a valid signature in order to reserve a time-slot to complete the upload procedure and cash
the prize. Concretely, in Take-TEK-JWT part of the token along with a NIZK proof replaces the
seller’s deposit of Take-TEK. The attack works for the next-day JWT (i.e., the specific token
used in this system to upload, on the following day, the TEK of the current day.) of SwissCovid
(cfr., Section 3.3), but they may also work for other systems using the same idea. Moreover,
we show the design of a smart contract Auction-TEK which exploits the credibility the token
gives to the seller to allow him to be an auctioneer so that several buyers can compete, by
placing bids, for having their TEKs uploaded to the official contact tracing server. We stress
that in both cases the buyer needs to know the public key associated to the token. As discussed
above, this knowledge is certainly possible but it does not come for free in SwissCovid. As a
consequence, more effort is required for a buyer to participate in the attack. More details are
given in Section 3.

Trading TEKs without publicly verifiable signatures: DECO. Given the above two
cases, one might think that realizing the terrorist attack via smart contracts crucially relies
on exploiting signed information which is produced within the contact tracing protocol itself.
Indeed, up to now we relied on smart contracts knowing a special public key and using it to
regulate the fate of deposited coins. Therefore, one might consider as a possible fix to such
vulnerabilities to hide the public keys and to use a signature scheme such that it is hard to
extract the public key from signed messages. However, we show that things are actually more
complicated for designers of contact tracing systems. In particular, we show another way to
buy/sell TEKs that follows a completely different approach. The key idea is requiring the seller
to prove that a TLS session with the server led to a successful upload of the buyer’s TEKs.
The only requirements on the communication between smartphone app and server are that 1)
both the TEKs and the positive (or negative) outcome of the upload procedure are part of
the exchanged application data in the TLS session, and 2) the upload phase consists of just
one request made by the client and the response of the sever (e.g., as it is in SwissCovid).
At first sight, the attack seems very hard to realize since notoriously TLS produces deniable
communication transcripts when it comes to application data (i.e., exchanged messages are only
authenticated and not digitally signed). However, we exploit a very recent work of Zhang et
al. [ZMM+19]. They show how to build a fully decentralized TLS oracle, named DECO, for
commonly used ciphersuites.

Very roughly, two entities, a prover (the seller) and a verifier (the buyer), jointly perform
the TLS handshake with the server. Let G be the generator of an Elliptic-Curve Group. Let
Y = s·G be the message the client sends in the Elliptic-Curve version of the Diffie-Hellman (DH)
key-exchange protocol. In DECO, the client’s (P and V are seen by the server as a single client)
contribution to the DH key is jointly computed by the prover and the verifier. In particular,
the verifier sends a value (that we call a DH share) YV = sV ·G to the prover. The prover then
will calculate her share YP = sP ·G, and will compute YP + YV = Y , that is sent to the server
(now sP + sV corresponds to the DH secret s of the client). The server will then operate as
usual by providing its DH message YS = sS ·G thus computing the shared DH key as Z = sS ·Y ,
from which it can derive the TLS session keys by evaluating a PRF. Given the DH contribute
YS from the server, P and V respectively calculate their own secret shares ZV = sV · YS and
ZP = sP · YS of the exchanged key Z (from which ZV + ZP = Z). The prover and the verifier
will now perform a two-party computation protocol (2PC) starting from their own secret shares
to derive shares of the MAC keys that will be used later to jointly compute the application

5



data messages (in the CBC-HMAC ciphersuite, after the 2PC, the entire encryption key is also
obtained by the prover). When computing those TLS application data messages, since such
messages require to compute a MAC, prover and verifier run a two-party computation protocol
to compute the MAC while keeping their own shares of the MAC key private. The message on
which the MAC is computed also remains private, and is not disclosed to the verifier. When the
communication with the server ends, in order to preserve data confidentiality, the prover proves
to the verifier statements on the exchanged application data using zero-knowledge proofs. For
our purposes zero-knowledge proofs are not essential, therefore we will not deal with them and
we will use DECO in a modified and greatly simplified form.

We keep running the DECO protocol off-chain but we find a way to connect the DECO run
between the prover and the verifier to the state of the smart contract, so that the smart contract
will eventually be able to act as an impartial judge ensuring both parties behaved honestly, or
punishing the malicious one otherwise. We let the verifier create, before performing the TLS
handshake, a smart contract with a deposit indicating the prize for the seller. The requested
TEKs are also posted on the smart contract when it is initialized. To prevent the verifier from
cheating, he is also supposed to fix, at the beginning, the secret sV he is going to use during the
DECO protocol run by providing his DH share YV = sV ·G. After that, the prover will reserve a
time slot in the smart contract during which the prover and the verifier will exchange messages
off-chain. We slightly modify the DECO handshake phase by making the prover verify that
the share YV provided by the verifier is indeed the one posted on the smart contract. If this
is not the case, the prover aborts preventing the verifier from cheating afterwards. At the end
of the off-chain communication, the prover will send, in clear, the application data messages
exchanged with the server , along with their MAC tags, the server’s DH message YS, and her
own DH share YP . The verifier then, will have to publish a valid preimage coherent with the
previously posted DH share (i.e., s′V such that s′V · G = YV). The smart contract will then
locally re-calculate the MAC key, the MAC tags and pay the seller if everything verifies and
the messages are as expected. Further details are described in Section 4.

Remark on the actual work done by our smart contracts. All of our smart contracts
provide full guarantees to both seller and buyer at the expense of running some cryptographic
operations that can obviously produce transaction costs. Nevertheless, we notice that the expen-
sive computations might in practice happen very rarely if we make an additional optimization
based on pragmatism. Indeed, we notice that the main computational cost for those smart
contracts consists of checking at the very end that the seller has completed the task of upload-
ing TEKs correctly. We observe that a buyer can check on its own that TEKs are published
by the server, and can be happy that the trade has been completed successfully. Therefore, it
is natural to expect that the buyer would give his approval to the smart contract to transfer
the money to the seller avoiding the execution of expensive computations, and therefore saving
transaction costs4. Since this behavior would be visible in the wild, the reputation of the buyer
would also benefit of such approvals and more sellers would want to run contracts with him.
Moreover, a (somewhat irrational) buyer that refuses to speed up the execution of the smart
contract would anyway not stop the final transfer of the deposited money to the seller. As a
result, the buyer would get a worse reputation. In turn, the expensive work done by our smart
contracts belongs to pieces of code that would rarely be executed in practice. Pragmatically

4Obviously, the smart contract can be adjusted so that, in case the buyer does not give his approval and the
seller shows that she completed successfully her part of the contract, the expensive transactions costs due to the
lack of help of the buyer are charged to the wallet of the buyer. A simple way to realize this could be asking for
a larger deposit made by the buyer which could clearly cover the transaction costs of the seller in case the buyer
does not give his approval and seller shows that she successfully completed the upload procedure.

6



speaking, all our smart contracts even when adding stronger protection (e.g., hiding the traded
TEKs) are very efficient when run in practice, except the last smart contract that without the
approval of the buyer does not protect seller privacy and is furthermore quite expensive.

1.2 Related Work

The design of GAEN is very similar to the low-cost design of DP-3T [DT20], and thus several
vulnerabilities identified in prior work generally apply to both systems. In [Vau20a], Vaudenay
reports both privacy and security issues. The most famous privacy attack is the so-called
Paparazzi attack. Basically, it is possible to track infected individuals over a certain time
window5 during which pseudonyms are linkable. All the attacker needs to do is to place passive
antennas in the locations of his interest. A proof of concept implementation of the Paparazzi
attack has been realized by Seiskari [Sei20]. Several limitations of GAEN systems are also
discussed in [ABIV20].

Regarding security issues, Vaudenay extensively considers false alert injection attacks, where
the adversary manages to to raise false alerts on the smartphone apps of targeted victims.
Within this category, there are replay and relay attacks. Replay attacks involve capturing a
pseudonym P at a location L1 and transmitting it, at a later time, at a different location L2.
In relay attacks, instead, pseudonyms re-broadcasting happens in real time. If such attacks
are successful, users may be alerted even if they have never met an infected person. GAEN
is vulnerable to relay attacks and to replay attacks carried out within two hours [Goo20b].
Vaudenay in [Vau20a] and Pietrzak in [Pie20] proposed already in April 2020 some solutions
to defeat these attacks, but they have not been included in DP-3T and GAEN designs so far.
Baumgärtner et al. [BDF+20] provide empirical evidence of the concrete feasibility of both
Paparazzi and replay attacks. Pietrzak et al. [Aus20] analyze inverse-sibyl attacks in which
multiple adversaries cooperate to use the same pseudonyms. If one of the attackers gets to
upload his TEKs, many false alerts may be raised. This attack can be easy to realize to
generate a large amount of false positive alerts both when mounting a replay attack and when
mounting our attacks based on smart contracts.

Several GAEN-based systems are currently used in the world for digital contact tracing.
Vaudenay and Vuagnoux, and later Dehaye and Reardon extensively evaluated SwissCovid
[VV20b, VV20a, VV20c, DR20a, DR20b], confirming some vulnerabilities showed in previous
works and elucidating new ones. For example, desynchronized rotation of pseudonyms and BLE
MAC address makes certain phones traceable even w.r.t. citizens that have never been infected;
this is known as Little Thumb attack [VV20d]. In addition, a bug of SwissCovid allowed anyone
to upload arbitrary TEKs by just setting the JWT algorithm field to null6.

Finally, another class of attacks leading to false alerts involves bribing. Vaudenay envisions
various possibilities for the development of dark economies [Vau20b] which could support false
alert injection attacks, allowing them to be carried out at very large scales. In particular, the
Lazy Student attack describes a dark economy where hunters collect pseudonyms of individu-
als who will likely become infected later on, and deposit them on a smart contract. If such
pseudonyms are uploaded to the contact tracing system, the hunter gets a reward paid by a
buyer. If replay attacks are doable, the buyer of such pseudonyms (i.e., the lazy student) can use
them to make target victims’ apps raise false alerts. As noted by Vaudenay, this dark economy
is sustainable only if the smart contract has a way to check that pseudonyms were actually

5In GAEN this time amounts to 14 days if the adversary colludes with the authorities, and otherwise to one
day assuming TEKs are properly mixed and anonymized prior to publication.

6The bug was found and responsibly disclosed by André Cirne. More on this at https://mrsuicideparrot.

github.io/security/2020/07/30/CVE-2020-15957.htmland https://www.melani.admin.ch/melani/en/home/

public-security-test/current_findings.html

7

https://mrsuicideparrot.github.io/security/2020/07/30/CVE-2020-15957.html
https://mrsuicideparrot.github.io/security/2020/07/30/CVE-2020-15957.html
https://www.melani.admin.ch/melani/en/home/public-security-test/current_findings.html
https://www.melani.admin.ch/melani/en/home/public-security-test/current_findings.html


reported to the official server. Another form of dark economy described by Vaudenay is the
terrorist attack. It involves users reporting pseudonyms that differ from the ones used during
previous days. In fact, in both Immuni and SwissCovid there is no mechanism enforcing users
to upload genuine TEKs. Again, a TEK could be posted on a smart contract automatically
issuing a reward to whoever reports it to the contact tracing system. This purchase may lead to
a massive amount of fake notifications, without relying on replay attacks that instead is required
by the Lazy Student attack. The huge impact of such attacks seems to have gone unnoticed
or just ignored. In [LHML20] the cybersecurity risks of contact tracing systems are reviewed
and compared using a subjective scoring scheme. The report considers injection of false alerts
notifications by only mentioning replay attacks or trivial attacks such as recruiting people with
symptoms. The terrorist attack is not even mentioned and thus, in light of our results, their
scores might require some adjustments.

Vaudenay and Vuagnoux expressed these and other concerns in their analysis of Swiss-
Covid [VV20a]. The Swiss National Cyber Security Center (NCSC) answered to their criticism
seemingly downplaying those risks. The possible development of dark economies was ignored
[Cen20a] and a recap table on security issues reports on SwissCovid marks the concerns ex-
pressed by Vaudenay as addressed, including false alert injection attacks (see page 8 [Cen20b]).
Nevertheless, no solution or mitigation to such problems is reported. In this paper, we show
how GAEN’s design is prone to abuses allowing smart contracts to automatically verify that
some given TEKs have been uploaded to the backend server. This demonstrates that harmful
scenarios envisioned by Vaudenay can actually be reality in those countries using GAEN-based
contact tracing systems. Such dark economies could act as a platform facilitating certain at-
tacks that could jeopardize the health system of a country, slow down target businesses or even
compromise the result of elections as recently discussed in [RGK20].

Bribing attacks on smart contracts. As we will discuss in more details in Section 2,
trading TEKs is practically realizable and reduces the risk of one party of interacting with
a dangerous entity like a criminal, at the minimum. Bribery attacks on Smart Contracts for
different scenarios have been proposed in the context on bribing miners in Ethereum and Bitcoin
[MHM18, LK17, TJS16, VTL17, KNW20].

2 Trading TEKs in GAEN Systems

The GAEN API has been created to provide an efficient platform for exposure notifications on
top of which countries can easily develop digital contact tracing systems. GAEN is supposed
to solve various technical problems (e.g., changing BLE MAC address synchronously with the
rotation of pseudonyms, keeping BLE advertisements on in background) on a large fraction of
available smartphones7. At the same time, Google and Apple put themselves in the role of
regulators creating a somewhat inflexible API that basically forces anyone who is willing to
benefit from it to adopt a specific design for contact tracing. What is left in the hand of the
developers is merely the creation of the graphical interface, the choice of some parameters and
the realization of a server to gather and spread data about infected users and, more importantly,
an authentication mechanism to avoid the upload of data by non-infected users.

A useful overview of the above state of affairs, along with privacy and security issues of
GAEN and SwissCovid (i.e. the Swiss contact tracing application), has been reported by Vau-
denay and Vuagnoux [VV20b].

7Indeed, see the case of UK that tried to develop a system without GAEN but had to give up because of
technical barriers https://www.bbc.com/news/technology-53095336.

8

https://www.bbc.com/news/technology-53095336


start_timestamp: 1591254000 //start of the time window of included keys

end_timestamp: 1591268399 //end of the time window of included keys.

region: "222"

batch_num: 1

batch_size: 1

signature_infos {

verification_key_version: "v1" //version of the used verification key

verification_key_id: "222"

signature_algorithm: "1.2.840.10045.4.3.2"

1: "it.ministerodellasalute.immuni"

}

keys {

key_data: ".." //base64 encoded TEK

transmission_risk_level: 8

rolling_start_interval_number: 2651616 //date of usage of TEK

rolling_period: 144

}...

Figure 1: Example of an export.bin file for Immuni, the Italian contact tracing app. The
meaning of the key fields is commented on the side. The start timestamp and end timestamp

are expressed in UTC seconds, rolling start interval number is expressed in 10 minutes
increments from UNIX epoch. The export.sig contains the digital signature of the export.bin
file, along with the field signature infos.

In order to evaluate the contagion risk, GAEN provides an appropriate method. In the
android version this method is called provideDiagnosisKeys, while in iOS it is called
detectExposures [Goo20e, App20a]. Such two methods require various arguments and among
them there must be two files with a specific format. The first file is named export.bin and
contains, along with other fields, a list of TEKs belonging to infected users that have decided
to perform the upload procedure. Each TEK has also a date attached, which indicates when
such TEK was used. The second file, named export.sig, contains a digital signature of the
file export.bin [Goo20a, App20b]. An example of export.bin is shown in Figure 1. The
methods provideDiagnosisKeys and detectExposures match the reported TEKs with the
smartphone’s internal database if and only if the digital signature verifies under a public key that
has been previously communicated by the developers to Apple and Google. Google motivates
this requirement saying that it ensures that keys received by the devices are actually from
the authorized server and not from malicious third parties [Goo20c]. However, this is also
automatically accomplished by using TLS while connecting to the server. As many contact
tracing systems use Content Delivery Networks (CDNs) to disseminate TEKs (e.g., the CDN
used by Immuni is operated by Akamai, while the one used by SwissCovid by Amazon), perhaps
this requirement has been put in place to thwart malicious modifications operated by the CDN
itself. Unfortunately, as we will see next, this requirement paves the way for the development
of dark economies where TEKs to be uploaded by infected users are traded through smart
contracts.

9



2.1 Take-TEK Smart Contract: Buying/Selling TEKs Uploads

Whenever a user is tested positive, she is given the right to upload her TEKs to the server so
that the other users can be notified a risk of infection. The mechanism can be implemented in
different ways. For example, a simple method consists of a code generated by the app that is
given first to the health operator in order to activate it on the server. Then, once the server has
authorized the code, the app will upload the TEKs along with the code (e.g., Immuni follows
this approach). More complex mechanisms may be put in place. However, the attack we show
next works for every GAEN-based contact tracing system under some natural assumptions that
we will discuss later.

To simplify the description, from now on we talk about export.bin as a list of pairs of
values. In each pair the first value is a TEK and the second value is the corresponding date
of usage date (i.e., the rolling start interval number). Let the seller P be an infected user
who would like to monetize her right to upload TEKs, and buyer B someone who is interested
in paying P in order to upload TEKs of her interest. If the seller is able to prove she acted as
promised, this selling process can be executed remotely remaining automated, anonymous, and
scalable. GAEN’s choice for the list of TEKs to be signed by the server makes the verification
easy to the smart contract, therefore it greatly facilitates such trades.

To be more specific, the trade can be performed using a blockchain capable of executing
sufficiently powerful smart contracts (e.g., Ethereum). Such smart contract guarantees that P
gets an economic compensation if and only if P uploads to the server the TEKs specified by B. In
fact, the requirement of having a digital signature makes possible for the smart contract to easily
verify that P held up his end of the bargain and therefore can be rewarded. Implementing this
kind of check would not be so straightforward otherwise since smart contracts cannot execute
non-deterministic calls such as checking on the internet for updates.

The high-level functioning of the smart contract is as follows. B creates the smart-contract
posting a list of TEKs with the related date, and deposits a prize to be redeemed by a seller. An
interested P also makes a small deposit to declare her intention to upload the TEKs specified by
B (the purpose of this small deposit is explained later). After having made this deposit, P has
a specified amount of time to complete the upload procedure. Before the time runs out, P must
provide a list of TEKs which includes all the pairs (tek, date) specified by B, along with a valid
signature under the server’s public key. If P manages to do so, she gets a reward, otherwise both
deposits go back to B. By making a deposit, the seller reserves a time slot during which she
can perform the upload. Such deposit protects the buyer from denial of service (DoS) attacks
by sellers who actually do not have the right to upload TEKs. Here, as in the remainder of
the paper, with the word DoS we mean attacks carried out by fake sellers which prevent honest
sellers from participating to the trade.

We name the above smart contract Take-TEK and the attack that leverages the use of this
smart contract Take-TEK attack.

The time window given to P must be wide enough to take into account that new TEKs are
not continuously released by the server, in fact, several hours may pass between the submission
of a TEK and its publication. Obviously the amounts of both deposits will be significantly
higher than transaction fees. A custom software is needed to upload arbitrary TEKs, however,
this simple software may be developed even by other entities (not just the buyers), and publicly
distributed on the Internet or other sources (e.g., Darknet). Therefore, all the seller would need
to do is just downloading and using the software that could run both on smartphones or on
computers, being easily approachable by a large fraction of the infected citizens willing to gain
money8.

8COVID-19 by itself caused a global economic crisis which led to lower wages and job losses. More details at

10



Additionally, the time given to the seller to complete the upload after having been tested
positive must be long enough to reserve a slot on the blockchain (i.e., enough to wait that the
transaction related to the seller’s deposit gets confirmed) and subsequently send the TEKs via
the custom software.

Various proposed upload authorization mechanisms include manual steps (e.g., SwissCovid
uses an authorization code, termed covidcode, which lasts for 24 hours [oPH20b]) which, in
order to function properly, naturally give the seller enough time to perform the steps mentioned
above. For example, if a code is communicated to the infected user via a phone call, he should
be given a fairly large amount of time to write down the code and insert it in the app later
on (the needs of people with disabilities and of elder people must be taken into account).
Even systems that have fairly strict requirements on the time by which the upload procedure
must be completed since the authorization token is given, should allow for errors and recovery
procedures, which may give additional time to the future seller. For example, Immuni9 requires
that the infected user dictates, via phone call, a code that appears on his device. After that, the
user must complete the upload within two minutes. If this does not happen, the procedure must
be repeated. Additionally, the system should be tolerant. People should have the opportunity
to perform the upload procedure later on if they are unable to do it in that precise moment.
For example, consider the case of someone who is not at home while receiving the call and,
after having heard of such bad news, wants to complete the operation in the comfort of her
place (not all people who take a test have to stay in self-isolation). It is worth noting that
strict requirements on the upload phase reduce user’s privacy. A clear example of this is the
just described mechanism of Immuni, by which the medical operator, by checking whether a
code has been used or is instead expired, gets to know whether or not the infected user actually
uploaded her TEKs. Anyway, we would point out that, as things stand at the moment, due
to the huge connection timeout (2 hours) of the Immuni (and SwissCovid) key servers (see
Appendix D for more details), sellers do not necessarily need to ask to the health authority to
repeat the uploading procedure after reserving a slot in the blockchain. Right after receiving
the code, a seller can start the TLS handshake with the server, keep the connection open, send
the transaction to the blockchain (thus waiting for confirmation), and complete the uploading
procedure on time.

Take-TEK: attack description. Let us consider a buyer B who wants to pay an infected
person, that we call seller P, to upload B’s TEKs to the contact tracing system. B and P owns
wallets pkB and pkP respectively. In this setting the buyer has no assurance that the seller is
actually an infected person, and she is not just a malicious party trying to slow down the buyer’s
plan. Thus, some collateral must be deposited from P too. The seller will lose the collateral in
case she is not able to prove that she sent the buyer’s TEKs to the server S. We assume the
existence of an unforgeable signature scheme (GenS, SignS, VerS) used by the server. A brief
overview of the main functions follows below.

Constructor(TB, vkS, t, dP): It takes as input a set of tuples TB := (tekBi , date
B
i )i∈[n] with

n ≤ maxteks 10, where teki is the i-th TEK of the buyer and datei is the associated date,
the verification key vkS to be used to verify the signature of the TEKs list, a timestamp

https://en.wikipedia.org/wiki/COVID-19_recession.
9See page 9 of this presentation held by an Italian Health Authority representative (the reference is in Italian).

http://www.amcli.it/wp-content/uploads/2020/07/7-luglio-2020-BATTILOMO-MINSALUTE-App-Immuni.pdf
10The maximum number of TEKs that can be uploaded in one shot depends on the particular application.

GAEN provides up to 14 TEKs related to the previous two weeks. SwissCovid, allows to upload only keys between
the onset of symptoms and the upload date. Obviously, if the smart contract demands more than maxteks TEKs,
no one would ever be interested in the transaction.

11

https://en.wikipedia.org/wiki/COVID-19_recession
http://www.amcli.it/wp-content/uploads/2020/07/7-luglio-2020-BATTILOMO-MINSALUTE-App-Immuni.pdf


t, indicating the maximum time the seller has to provide the correct list and signature,
and the collateral value dP that the seller must deposit.

Deposit(): must be triggered by B and takes as input a quantity p of coins as the payment for
the seller.

Promise(): can be triggered by the seller P by sending a quantity of collateral deposit dP as a
payment when invoked.

SendTeks(TKS, σT ): can be triggered by the seller P to provide a list of TEKs together with
its signature σT . Let the list released by the server be T = (teki, datei)i∈[N ], where N is
the number of published TEKs. It checks that:

• TB ⊆ T,
• VerS(T, σT; vkS) = 1.

If both checks pass, dB coins are transferred to the seller’s wallet pkP .

The protocol description is depicted in Figure 2.

Take-TEK Attack

We consider two entities: the seller P and the buyer B, with wallets pkB and pkP respectively.
The protocol works as follows:

1. B invokes the constructor, taking as input the buyer TEKs list TB, the server verifi-
cation key vkS that will be used to verify the signed TEKs list, a timestamp t, and a
value dP indicating the minimal amount that P must deposit in order to participate.
After having created the contract, B triggers the function Deposit to deposit the prize
p aimed for the seller who uploads TB to the server.

2. P deposits her collateral by triggering the function Promise. Now the seller has at
most time t to send a TEKs list T signed by the server.

3. If P, before time t, triggers the function SendTeks submitting a signed TEKs list
T such that it satisfies conditions TB ⊆ T and VerS(T, σT; vkS) = 1, the collateral
deposit dP of P and the prize p are transferred to P’s wallet. Otherwise, if t seconds
have passed, they are moved to B’s wallet.

Figure 2: Interaction between the buyer B and the seller P to carry out the double deposit
bribery attack.

2.2 Subtleties in the Wild

In Section 2.1 we gave an high-level overview of how uploads can be sold safely via blockchains.
However, there are some subtleties we overlooked for the sake of simplicity. In this section, we
first analyze the advantages for adversaries when using automated trade compared to already
known attacks. Then we consider certain problems that arise while trying to concretely mount
our attack against deployed GAEN-based contact tracing systems. We also show how these
difficulties are easily tackled if very small modifications to our attack are made.

Advantages (for an adversary) of automated trade. One might think that malicious
injection of fake TEKs is inherent in decentralized contact tracing systems since there is no
control over the smartphone of an infected person and thus, when the time of the upload comes,

12



the infected person can always use a smartphone belonging to someone else. Moreover, even in
case some digital procedure with the smartphone is required when the individual is tested, still
a different smartphone could be used.

While it is true that such simple attacks are very hard to tackle, they have limited impact
for at least two main reasons: 1) the buyer must handover his smartphone to the seller, and this
requires physical proximity; 2) sellers and buyers must trust each other since an illegal payment
must be performed without being able to rely on justice in case of missing payment or aborted
upload of keys. Indeed, even if in need of money, people are generally afraid of dealing with
criminals since they may get scammed or threatened. Additionally, the buyer might expose the
sellers’ identities to the authorities in case he gets arrested or legally persecuted. Equally, the
buyer may share the same concern with respect to an unreliable seller. It goes without saying
that some citizens are prone to violate the rules11 when they believe that risks are low compared
to the advantages.

As such, the simple and inherent attacks consisting of exchanging smartphones, or even of
using a malicious app with TEKs sent by a criminal contacted directly by the infected citizen,
do not scale and can pollute the system in some tolerable way.

Having a mechanism which allows this trade to happen remotely, in anonymity and ensuring
no party is cheated, solves all the above problems for parties willing to abuse of such contact
tracing systems. In fact, it provides a framework for large-scale black markets of TEKs. The
seller would not feel threatened in any way and could easily earn money, on the other hand, the
buyers would benefit from a larger sets of users to be in business with, therefore succeeding in
many possible attack scenarios.

Extracting public keys from signatures. Take-TEK obviously requires that the server’s
public key is known to both the involved parties. This guarantees that the buyer is sure the
reward is paid only to sellers who actually upload data to the contact tracing system, and that
honest sellers are sure they will be able to satisfy the conditions to be paid, namely obtaining
a valid digital signature for reward redemption. A Github issue asking for the public key of
the Italian contact tracing app has been opened on the 7th of June and it has still not been
addressed at the time of writing [um20]. SwissCovid Android app contains a bucket public
key value inside the configuration file (the values BUCKET PUBLIC KEY and CONFIG CERTIFICATE

can be found in [ST20b]) that is used to perform signature verification outside GAEN. Any-
way, as we can notice with Immuni, this is not a requirement. One might think that keeping
secret verification keys may prevent attacks as the one of Section 2.1. However, it turns out
that it is actually not the case. In fact, since GAEN uses ECDSA, starting from a signature
and the related message we can recover two candidate public keys, one of which will match
the actual one with overwhelming probability. A practical example showing this procedure
can be found in [Yan19]. Such message/signature pairs are generally made publicly available
and are easily accessible by appropriately querying the server of the specific contact tracing
system. Multiple pairs per day may be released. A comprehensive description on how to get
this data has been provided by the Testing Apps for COVID-19 Tracing (TACT) project, along
with scripts to automate the downloading process [LF20]. We also practically performed the
extraction procedure, successfully extracting the keys for both SwissCovid and Immuni which,
as every GAEN-compliant contact tracing system, use ECDSA to sign TEKs to be distributed
for contagion risk evaluation.

11Note that the infected person is also committing a violation by allowing the injection of external TEKs.

13



Updates of public keys. There is a subtle technical problem with the attack described in
Section 2.1. The digital signature keys that the server uses may change over time. In fact, as
shown in Figure 1, the export.bin file includes a field indicating a version for the verification
key. This field follows a progressive numeration, that is the first version is termed v1, the second
one v2 and so on. This means that the server may change the verification key it uses, perhaps
within a set of keys that have been pre-shared with Google and Apple. Therefore, it might
happen that, after the seller makes the deposit and accepts to upload the buyer’s TEK, the
server, by coincidence, decides to use a new key which was never used before, thus producing a
signature that is not verifiable under the public key posted on the smart contract.

However, by making a slight modification to the smart contract, it is possible to handle
also this unfortunate event. Having realized that he would be unable to redeem the reward,
the seller might activate a special recovery condition. After this, the buyer will be able to
collect both deposits if and only if he manages to provide a pair of export files which have an
end timestamp (see Figure 2) subsequent to the time of the recovery request and verify under
the public key originally posted on the smart contract; otherwise the deposits are returned to
the original owners. Obviously, enough time should be given to the buyer to provide the export
files, similarly to what happens to the seller after her deposit.

This event is certainly very annoying for the seller and might play as disincentive to join the
trade, but taking a look at real-world data one realizes that this is a relatively rare event. We
considered several countries which are currently using a digital contact tracing system, namely:
Italy, Switzerland, Austria, Germany, Ireland, Northern Ireland, Denmark, Latvia, Canada and
US Virginia. Until August 23rd (last time we checked), only US Virginia and Italy have switched
to the second version of the verification key. In particular, the change to the Italian system
dates back to the 15th of June 12 and no modifications have been made since then. Notably,
some countries’ systems, like Switzerland and Germany’s ones, are active from several months
now and the verification key has not changed at all. To the best of our knowledge, the criteria
by which the verification key should change is not documented anywhere.

A worry-free seller. As previously discussed, the effectiveness of a digital contract tracing
system is strictly related to various factors among which the percentage of active population
using them. Appropriate measures should be taken to earn citizens’ trust since it is the only
way to guarantee broad adoption. With this in mind, the European Commission released a se-
ries of recommendations in relation to data protection stating the need of identifying solutions
that are the least intrusive and comply with the principle of data minimization [Com20]. A
similar recommendation has been given by the Chaos Computer Club (CCC) [Clu20], the Eu-
rope’s largest ethical hackers association, which explicitly states that “data which is no longer
needed must be deleted”. Corona-Warn, the German contact-tracing system, declares to be
fully compliant with CCC’s guidelines [CT20b]. Many other systems are inspired by similar
principles. For example, the Italian system Immuni also declares that data is deleted when no
longer needed [IT20], as well as the Swiss system SwissCovid which also specifies a retention
period for the TEKs and the upload authorization codes [oPH20b]. In its recommendation to
build a verification server authenticating the uploaded TEKs, Google states that identifiable
information should not be associated with uploaded data [Goo20d]. Corona-Warn’s documen-
tation also clearly specifies that all upload authorization data are retained only as far as they
are needed for the authenticating uploads [CT20a].

The adoption of the above measures ensures that uploaded data do not link to, nor identify a
particular individual. This is an important contract between government and citizens, therefore,
it should be impossible for a government to link the TEKs with the real identity of users who

12This change occurred in the 4th export file.

14



submitted them without violating the contract with citizens, that, at least in part, would
obviously loose trust in the government, delete the apps, switch their preference towards other
political parties and so on.

This is very important considering that GAEN systems are vulnerable to the Paparazzi
Attack described by Vaudenay [Vau20a]. Basically, it is possible to link an infected users’
pseudonyms tracing him over the duration of a TEK, or for 14 days if the TEKs are linked,
by only using passive antennas. Leaving to malicious parties the ability to link this data to a
person’s real identity would be extremely incautious.

With that being said, one might ask himself the following question: are the seller and the
buyer at risk of being legally persecuted for a trade that may be deemed as illegal? The answer
seems to be no. If data is handled as specified above, there would be no way to associate the
seller to its uploaded TEKs at a later time. Data exchanged during the attack would also not
directly compromise nor the buyer or the seller13.

However, there is a problem for a seller who really wants to minimize the chance of getting
caught. In fact, since the TEKs proposed by the buyer are posted in clear on the blockchain,
authorities may become aware of them and activate ad-hoc procedures monitoring the incrimi-
nated TEKs and exploiting the upload authorization process to identify the guilty seller. This,
in fact, does not seem to directly contradict the data minimization principle when national
security is at stake. If the server getting the TEKs upload monitors the requests (e.g. by
storing connection logs) without colluding with the health authority, the seller could be easily
incriminated after the TEKs have been detected in the smart contract by just looking at his
IP stored together with such request. However, in this case, the usage of an anonymity service
like Tor [DMS04] can easily reduce the chance of getting caught. In case that the authorities
are colluding, by slightly increasing the complexity of the smart contract, such risk may be
completely avoided. It suffices for the buyer to encrypt his TEKs with a public key provided
by the seller, who then will use a NIZK proof system14 to prove that the TEKs encrypted
under the specified public key are indeed contained in the list signed with the server’s public
key. This requires an additional interaction with the buyer, who has to publish the encrypted
TEKs. Once again, the seller is protected by a timer which assigns her all the deposits if
the buyer does not reply. Efficient Ethereum implementations of NIZK proofs are known in
literature, like NIZKs for Σ-protocols [Wil18], Bulletproofs [BAZB20], Zero-Knowledge Range
Proofs [KRvW17], zk-SNARKs [ST20a, ZT20b, ZT20a]. An informal description of NIZK proofs
is given in Appendix A.3.

Even if the buyer decides to claim the authorship of the attack at a later point in time (e.g.,
as it usually happens for terrorist attacks) by opening the encrypted values on the blockchain to
published TEKs, the seller would not be at risk if data was handled according to the principles
of data economy and anonymity. Any evidence based on contact tracing data would be a clear
indicator that those principles have been violated. This could result in a big disincentive in
using the app, since citizens may think (probably rightfully) that data has been abused or
even used for mass surveillance purposes. Finally, we want to point out that even if several
researchers raised the concern about the possible birth of black markets [Vau20b] [RGK20], we
did not find any document, related to any contact-tracing system, either issued by governments
or national security agencies, which deeply evaluates these risks. The Swiss National Cyber
Security Center (NCSC) answered concerns expressed by Vaudenay and Vuagnoux [VV20a],

13In this analysis, we refer only to contact tracing system data and messages exchanged via the blockchain
during the execution of the attack. We do not take into account border-line situations as, for example, the case
where there is only a single infected individual. We also ignore additional information that may help investigators
figuring out who the seller is, for example how the money are spent after the trade.

14In practice, efficient Σ-protocols coupled with Fiat-Shamir heuristic [FS87] can be used, thus getting efficient
NIZK proof systems in the random oracle model.

15



marking them as addressed, without specifying any countermeasure, apart from very generic
statements (see [Cen20a] and page 8 [Cen20b]). To the best of our knowledge, no risk analysis
ever mentions to monitor the dark web and blockchains looking for suspicious smart contracts.
It goes by itself that if blockchains are not monitored, all the extra measures taken in this
paragraph to protect the seller are actually not necessary.

3 Exploiting JWTs to Trade TEKs

The Take-TEK attack proposed in Section 2.1 requires that both the buyer and seller deposit
some amount of cryptocurrency. It is natural (both for theoretical and practical reasons) to
check if there are other effective ways to trade TEKs having one deposit from the buyer only.
Indeed, in Take-TEK the seller’s coins are blocked until an updated TEKs list is released and this,
depending on the particular system, can take from few hours up to one day. Although the seller
is guaranteed her money will not get lost, this could in some case be an entry barrier for users
who either can not wait so long or own a very little amount of currency. An attack which does
not require a seller’s deposit would be more appealing for users who do not possess currency,
since they would have to make a very low initial investment just covering the transaction fees.
Obviously the situation is different for the buyer since he is motivated by a malicious (perhaps
catastrophic) intent and he is interested in spending that money anyway. With this regard,
note that the presence of a digitally signed TEKs list acts as a proof for the seller of having
acted according to the bargain and this unlocks automated trade of uploads. Similarly, the use
of a digitally signed token for upload authorization allows the seller to prove possession of a
credential that allows to upload TEKs. It follows that proving the possession of a valid token
can functionally replace the seller’s deposit. Observe that such tokens are not easy to obtain
and could limit DoS attacks even more effectively than a monetary deposit. The key idea is
that, similarly to what is done for the export files, the smart contract is instantiated with the
public key used to verify the JWT. The seller could post her token whose validity is verified
by the smart contract (or by the buyer), obtaining the right to redeem the reward afterwards.
However, there are some subtleties in this approach:

1. The key for the tokens’ signature verification is usually not publicly distributed. Although,
for ECDSA, it can be extracted from signed messages as shown in Section 2.2, it is also
required to obtain signed message and this is not for free since tokens are given only to
infected individuals. However, a buyer might consist of a group of terrorists and it is
not unlikely at all that one of them gets infected at some point and that would be the
beginning of the attack. Note that just one message-signature pair suffices to extract two
possible public keys such that one of them is with very high probability the correct one.

2. It is not clear whether the key used to sign the token may change over time as it happens
for the export files. If done frequently, this could reduce the applicability of the attack.

3. The token cannot be posted in clear on the blockchain, otherwise anyone could steal it
and use it instead of the seller. However, a simple solution is to omit the digital signature
part of the token, proving in zero knowledge the ownership of the digital signature itself.
More details on how to do this for ECDSA can be found in Appendix B.2.

3.1 Take-TEK-JWT and Auction-TEK: Attacks Leveraging JWTs

Exploiting long-lived JWT tokens, we propose two smart contracts removing the need for a
seller’s deposit:

• Take-TEK-JWT: The most straightforward one involves directly replacing the seller’s de-
posit with a valid JWT in the Take-TEK attack. To be more specific, the seller would post

16



a JWT with the digital signature wiped out, along with a NIZK proof of holding a valid
signature, in order to reserve a slot. The smart contract would then verify both the proof
and that the JWT is not expired. From this point on, the attack goes on as explained in
Section 2.1.
• Auction-TEK: This other variant could give the seller the opportunity to increase her profits

even more. Since the token acts as a guarantee of the seller’s ability to upload TEKs, the
seller may start an auction where different buyers place bids by making deposits. Similarly
to what we have seen in Take-TEK, the seller is rewarded if and only if she proves of having
uploaded the TEKs specified by the winning buyer. Since the token is valid till after the
end of the auction, buyers can be pretty confident the seller is not a fraud. Nevertheless,
if the seller does not perform the upload of the specified TEKs, the winning buyer will
not lose his money. We remark that buyers can trust the auction only if they know the
public key used for verifying the validity of a JWT.

We provide a more detailed description of the above attacks in the following paragraphs.

Playground. We refer to the identity of some player I as pkI , which stands also for I’s wallet
address. We assume the existence of two signatures schemes such as (GenJWT, SignJWT, VerJWT),
indicating the scheme used to sign the JWT (we refer to the verification key being used as
vkJWT), and (GenT, SignT, VerT) as the scheme used to sign the list of infected TEKs (we refer
to the verification being used as vkT). We also assume the existence of a NIZK proof system
(NIZKProve, NIZKVer) for proving the knowledge of a signature of the scheme being used for
the JWT. In particular NIZKProve takes as an input a pair (s, vk) as a statement, and the
value σ as a witness, where s is a JWT string, vk the signature scheme verification key, σ the
corresponding signature, and outputs a proof π. The algorithm NIZKVer takes as an input a
statement (s, vk) and a proof π, and outputs 1 if and only if Ver(σ; vk) = 1. Recall that NIZKVer
can verify this last statement without taking σ as an input, but a proof π. The zero-knowledge
property of the proof system ensures that π does not leak even a single bit of information related
to the signature σ (being a proof of knowledge also guarantees that who generates the proof π
actually knows the signature), but the statement can still be successfully verified by NIZKVer

knowing such proof. In both the following attacks, we call k the maximum number of seconds
needed for a list of signed TEKs to be published after that P performs the upload interacting
with KS (i.e., providing the buyer’s TEKs together with the JWT). Furthermore, we define two
auxiliary functions that are useful for both the attacks:

JWTValidate(s, πs, vkJWT, tend): takes as input a JWT string s together with a proof πs that
P owns the signature σs of s under the key vkJWT. The algorithm does the following:

• Checks if s is a valid base64 string.
• Parses s into JWT fields, and checks that the value15 expiration exp is less then tend

and checks that all the expected claims are correctly set (e.g., in SwissCovid, checks
that scope scope is set to currentDayExposed).
• Check that NIZKVer((s, vkJWT), πs) = 1,

If all the checks pass the function returns 1.
TEKValidate(T, s): Takes as input a TEKs list T = (teki, datei)i∈[n] and a JWT string (omit-

ting the signature) and checks that:

• For each i ∈ [n], teki is in the correct format (i.e., 16 bytes base64 string).
• The JWT s entitles for the upload of the whole T:

15The list of JWT claims can be found at http://jwt.io/introduction.

17

http://jwt.io/introduction


– Checks that T does not contain too much elements both in total and for each
given datei, with respect to the rules of the contact tracing system.

– Checks that, for each i ∈ [n], datei is compatible is an allowed date for s. For
example, in SwissCovid, the claim delayedKeyDate indicates the date for the
TEK to be published the following day.

Auction-TEK attack. We do not provide an explicit full smart contract description for this
attack, but we assume the functions Lock and SendTeks to be definable within a smart contract.
Lock can be triggered by any potential buyer, while SendTeks exclusively by the seller. Let pkP
be the identity of the seller and pkBi the identity of the i-th potential buyer joining the auction.
Let t be the smart contract creation time. We define the following functions:

Constructor(vkT, vkJWT, k, t1, s, πs): Triggered by the seller, it takes as input the verification
keys vkT and vkJWT for verifying the signature of T and of the JWT respectively, a value
k indicating the time offset by which the seller must provide the signed TEKs, t1 a time
value specifying when the auction ends, a JWT string s (omitting the digital signature),
and a proof πs ← NIZKProve((s, vkJWT), σs).

Lock(TBi): It can be triggered by a potential new buyer, and takes as input the buyer’s TEKs
list TBi = (tekBij , date

Bi
j )j∈[n] together with a quantity of coins di as a bid for the auction.

It runs TEKValidate(TBi , s) and, if it outputs 1, compares the bid with the current
highest one, and stores the tuple (i, pkBi , di,TBi) if and only if di > di−1. If the checks
are successful, the current highest bid is updated and deposit di−1 is returned to Bi−1.
When time t1 has passed, Lock does not accept any further invocation.

SendTeks(T, σT): It can be triggered only by the seller P before time t+ k. It takes as input
a TEKs list T = (tekKSi , dateKSi )i∈[N ] where N is the number of published TEKs, together
with a signature σT. The algorithm does the following:

• Retrieve a timestamp t′ indicating when SendTeks is triggered, and check if t′ ≤ t+k.
• Checks that TBj ⊆ T
• Checks that VerT(T, σT; vkT) = 1

If all the checks above are successful, it transfers the dj coins from the elected buyer’s
deposit to P’s wallet. It does not accept any further invocation.

For the sake of simplicity, we describe a trivial unfair highest-bid auction, but of course protocols
offering more appealing properties can be used [CCL18, GY18]. A description of the attack can
be found in Figure 3.

Take-TEK-JWT attack. We address now the scenario in which B creates the smart contract,
and inputs the list of his TEKs TB = (tekBi , date

B
i )i∈[n] when triggering the constructor. In this

setting, both the functions Lock and SendTeks are invoked by the seller. In particular:

Constructor(vkT, vkJWT, p, k,TB): The constructor takes as input and stores the verification
keys vkT, vkJWT, the seller’s prize p, a value k indicating the time offset by which the
seller must provide the signed TEKs, and the buyer’s TEKs list TB to be uploaded by
the seller.

Lock(s, πs): It can be triggered by a potential seller and takes as input a JWT string s (omitting
the digital signature) and a proof of knowledge of a signature of s that verifies under
vkJWT. The auxiliary functions JWTValidate(s, πs, tnow + tup), where tnow is the current
time and tup is an upper bound on the time needed to complete the upload procedure, and
TEKValidate(TB, s) are invoked. If they both output 1, the address pkP is designated as

18



Auction-TEK Attack

Let us consider a seller P with wallet pkP . We indicate with pkBi the identity of the i-th
buyer joining the auction. Let (GenT, SignT, VerT) be the signature scheme used by the
key server KS to sign the TEKs list T, and vkT the corresponding verification key. Let
(GenJWT, SignJWT, VerJWT) be the signature scheme used to issue the JWTs, and vkJWT

the corresponding verification key. We also assume the existence of a NIZK proof system
(NIZKProve, NIZKVer) for proving the knowledge of a signature under the signature scheme
(GenJWT, SignJWT, VerJWT).
The protocol of the attack works as follows:

1. P creates a smart contract featuring the functions Lock to be triggered by any po-
tential buyer and SendTeks to be triggered only by P herself. When triggering the
constructor of the smart contract, P sends the values (vkT, vkJWT, k, t1, s, πs) to it. It
automatically instantiates a value t with the smart contract creation time.

2. Bi checks that vkJWT and vkT are the correct verification keys and invokes
JWTValidate(s, vkJWT, πs, t1 + tup) to check if the JWT is valid, where the value tup is
an upper bound on the time needed to complete an upload. If JWTValidate returns
1, Bi triggers Lock(TBi) by sending di coins as a payment, thus placing his bid.

3. Once time t1 elapses, Lock(TBi) does not accept any further invocation.
4. If P triggers SendTeks(T, σT) before time t + k and all the conditions are met (i.e.,

TB ⊆ T and VerKS(T, σT; vkT) = 1), the smart contract automatically transfers di
coins to P’s wallet.

5. If P does not provide (T, σT) before time t+ k, di coins are returned back to Bi.

Figure 3: Auction-TEK Attack: exploiting long-lived JWTs to sell uploads via auctions.

19



the elected seller’s address. The pair (s, πs) is stored in the smart contract and t is set as
the function invocation time. It does not accept any further invocation.

SendTeks(T, σT): It can be triggered only by the elected seller P before time t+k and takes as
input a list of TEKs T together with a signature σT. The algorithm does the following:

• Retrieve a timestamp t′ indicating when SendTeks is triggered, and check if t′ ≤ t+k.
• Check that TB ⊆ T
• Check that VerT(T, σT; vkT) = 1

If all the above checks are successful, it transfers d coins to the elected P’s wallet pkP . It
does not accept any further invocation.

We provide a detailed description of the attack in Figure 4.

Take-TEK-JWTAttack

Let us consider a seller P and a buyer B with wallets pkP and pkB. Let (GenT, SignT, VerT)
be the signature scheme used by the key server KS to sign the TEKs list T, and vkT the
corresponding verification key. Let (GenJWT, SignJWT, VerJWT) be the signature scheme
used to issue the JWTs, and vkJWT the corresponding verification key. We also assume
the existence of a NIZK proof system (NIZKProve, NIZKVer) for proving the knowledge of a
signature under the signature scheme (GenJWT, SignJWT, VerJWT).
The protocol of the attack works as follows:

1. B creates a smart contract allowing the function Lock to be triggered by any potential
seller, while SendTeks can be invoked only by the elected seller. When triggering the
constructor of the smart contract, B inputs the values (vkT, vkJWT, d, k,TB).

2. P checks if vkJWT and vkT are the correct verification keys. Then, P triggers
Lock(s, πs) with input his JWT string s (omitting the digital signature), and a proof
of knowledge πs←$ NIZKProve((s, vkJWT), σs).

3. P, once the list of signed TEKs is published by KS, triggers SendTeks(T, σT) before
time t+k, and, if all the conditions are met (i.e., TB ⊆ T and VerT(T, σT; vkT) = 1),
p coins are transferred to P’s wallet pkP . Otherwise, the coins are returned to B.

Figure 4: Take-TEK-JWT attack: one deposit only, exploiting long-lived JWTs.

3.2 Worry-Free Seller with JWT

As in Section 2.2, one might wonder whether publishing (part of) the JWT poses additional
threats for the seller in terms of chances of being legally persecuted. Obviously, for both
Take-TEK-JWT and Auction-TEK attacks, the risks related to publishing the TEKs in clear can
be addressed as shown in Section 2.2. On the other hand, encrypting the JWT and proving
statements about it in zero-knowledge would not be as practical as it is for the TEKs; this is
for two reasons:

• Proving the knowledge of an ECDSA signature when both the message and the simulatable
part of the signature (i.e., r) are also witnesses is a way more involved process. To this
regard, Backes et al. [BHH+19] provide a construction to prove such statements non-
interactively and without trusted setups. (Nevertheless, it may be not practical enough
to be used on-chain, both in terms of proof size and verification time.)

20



• Proving knowledge of a valid signature is not enough because the signed message must also
comply to certain requirements. In particular, statements about JWT claims should be
proved (e.g., the JWT must not be expired). This would require quite a lot of engineering
and the use of custom techniques.

Since TEKs are uploaded only after the JWT is revealed, ad-hoc monitoring procedures
could be put in place for the JWT as well. However, according to data minimization principles,
the system should not build mappings between authorization codes, JWTs, and identifiable
information; especially when there is no reason to believe the user is dishonest. Google also
recommends to not associate identifiable information with this data [Goo20d]. This implies that
authorities should not possess any mapping between a JWT and the identity of an infected user
by the time the JWT gets published.

Comparing the Take-TEK attack with Auction-TEK and Take-TEK-JWT attacks, the first one
offers better privacy guarantees to the seller. In fact, in the Take-TEK attack, if the buyer does
not open the encrypted TEKs, the seller is protected also against malicious servers retaining
more information than advertised. Obviously, if blockchains are not monitored there are no risks
at all for the seller, regardless of the attack. Finally, we want to point out that all the attacks
proposed in the previous sections are practical and guarantee honest sellers to be eventually
rewarded. If the seller is more concerned of getting caught, she could look for a smart contract
offering a Take-TEK attack, while if she wants to avoid depositing coins she could go for JWT
attacks.

3.3 SwissCovid’s Additional Risk: Next-Day JWT

As explained in Section 2 GAEN API’s goal is to provide only an efficient decentralized pseudonyms
management through BLE advertisements allowing to check for risk exposure and to export
TEKs. A digital contact tracing system using GAEN has still some tasks to accomplish and
one of them is the upload authorization protocol. In this section we illustrate the choice of
SwissCovid that consists of digitally signed authorization tokens. We will show that this choice,
can also be abused to realize terrorist attacks. The protocol involves four entities: the infected
user U (and his device), the health authority HA, the verification server VS, and the key server
KS. The protocol proceeds as follows.

1. Once U is diagnosed the disease, HA asks VS for a numerical code, called covidcode, and
forwards it back to U (e.g., via a phone call or a text message).

2. U inputs the covidcode to his device which hands it to VS in exchange for a token that
can be used to upload the TEKs to KS. This token is implemented via a JSON Web
Token (JWT) 16 digitally signed by VS itself. Among other claims, these tokens contain
a validity period.

3. When U decides to share his TEKs, he submits the JWT along with his TEKs to KS.
Since GAEN does not allow to extract the TEK of the current day17, a JWT valid for
uploading an additional TEK the next day is also issued by KS and sent to U.

4. KS verifies the correctness of the data and eventually publishes the TEKs distributing the
appropriate export files.

16A JSON Web Token (JWT), is a compact way of representing and transferring claims. The claims in a
JWT are encoded as a JSON object that can be digitally signed or authenticated with a MAC. A more detailed
description can be found at https://tools.ietf.org/html/rfc7519.

17The TEK of the current day could be used by malicious entities to generate valid pseudonyms linked to a
positive test, thus causing fake at-risk notifications. However, this limitation might change since the current
version of GAEN (v1.6) allows to extract it in debug mode. Google’s documentation state this feature will be
soon activated in production (see “Release Notes” in [Goo20e]).

21

https://tools.ietf.org/html/rfc7519


The key point here is that a numerical non-publicly verifiable code is exchanged for a digitally
signed token. Therefore, if a token has a long enough validity, it can be used effectively in
smart contracts to prove of having the capability to upload TEKs. The JWT issued by VS has
a validity period of 5 minutes and uses an RSA signature (see [FOoITF20]), while the one issued
by KS is valid for two days (see row 207 in [ST20c]) and uses ECDSA as signature algorithm.
This last JWT easily accommodates the attacks discussed in Section 3, allowing to trade a TEK
with the first upload’s day as date. We also point out that the use of signed tokens seems to
be a practice used in other contact tracing systems (e.g., Corona-Warn [CT20c]), the attacks
may apply also to them if JWTs are valid for a long-enough time interval. However, we want
to stress that we have focused our research on Immuni and SwissCovid only. Immuni uses only
a numerical non-publicly verifiable code, and thus is not affected by this additional issue.

4 No Signatures? Connecting Smart Contracts to TLS Sessions

All the attacks we have shown up to now rely on the fact that a digital signature is used to
authorize uploads. Additionally, the ability to extract the public key from signed messages
also plays a key role. Therefore, one might think that to protect GAEN systems the public
key should remain hidden and the signature scheme should be such that extracting the public
key from message-signature pairs is hard. In this way, due to the inability of allowing a smart
contract to verify that a TEK is officially in a list of infected TEKs, all the attacks proposed
up to now would fail. However, things are not so easy and designers of digital contact tracing
systems should be careful. The previous smart contracts were exploiting the public verifiability
of the signatures because this is what is used in GAEN systems. If a different method is used,
it might be abused again.

Indeed, just to present one more instantiation of a terrorist attack, we show that TLS oracles
can be used to prove to a smart contract that an upload was successfully performed, therefore
without relying on signatures of TEKs.

4.1 Decentralized Oracles

Recently, Zhang et al. [ZMM+19], introduced the concept of Decentralized Oracles. Roughly, an
oracle is an entity that can be queried by a client to interact with a TLS server and help the client
proving statements about the connection transcript. Previously known oracle constructions rely
on trusted/semi-trusted Execution Environments [ZCC+16], thus not giving any help in our
case. DECO [ZMM+19] is the first work where a fully-decentralized construction is proposed
for specific ciphersuites as CBC-HMAC and AES-GCM coupled with DH key exchange with
ephemeral secrets. We recall that a TLS connection is divided in two parts: a handshake phase
where key exchange is performed, and a phase during which encrypted messages are exchanged,
data is encrypted/decrypted by the client/server using the key exchanged in the previous phase.
GAEN servers usually accept Elliptic-Curve Diffie-Hellman key Exchange (ECDHE) for the first
phase, while for the second phase some servers accept only AES-GCM (e.g., Immuni), whereas
others, like SwissCovid’s one, accept also CBC-HMAC as a ciphersuite. To guarantee integrity
of data, the plaintext is usually compressed and a MAC on the compressed string is calculated
(using once again a key derived from the DH exchanged key).

Decentralized Key-Exchange. We provide below an informal description on how key-
exchange is executed in DECO for ECDHE. This phase is called Three Party Handshake (3PHS).

We assume three entities: a prover P, a verifier V and a server S. P and V jointly act as
a TLS client. The overall idea of DECO is that the prover and verifier, after performing some

22



two-party computations, compute shares of the exchanged key, while the server computes the
entire key without even noticing that P and V are two distinct interacting entities.

When using CBC-HMAC, the keys kMACP , kMACV (such that kMACP + kMACV = kMAC) are learned by
P and V respectively, while kEnc is only known to P. When using AES-GCM, the same key is
used for both encryption and MAC, therefore both P and V get just a share of it. While P
and V only learn their secret shares of the key, the server S gets to know both kEnc and kMAC.
From its perspective, the server is communicating only with a single entity knowing the same
exchanged key. The key exchange phase works as follows:
Let G be an EC group generator.

• P generates a random nonce rc and sends it to S in the (ClientHello) message.
• When receiving a certificate, the server nonce rs, and a signed DH share YS = sS ·G from
S, P checks the certificate and the signature, and forwards them to V.
• V samples a DH secret sV and sends his DH share YV = sV ·G to P.
• P samples her DH secret sP , calculates her DH share YP = sP ·G, calculates the combined

DH share Y = YP + YV , and sends Y to S.

Finally, S computes the DH exchanged key as Z = sS · Y . P and V will compute their secret
shares of Z as ZP = sP ·YS and ZV = sV ·YS. Note that ZP +ZS = Z, where + is the EC group
operation. Now that P and V have secret shares of EC points, they use 2PC to evaluate a PRF
(that we call TLS-PRF) to derive the keys. The authors face and solve several challenges in
order to derive keys efficiently via 2PC. We do not cover this part, a more detailed description
can be found in [ZMM+19].

Encrypted communication. At the end of the 3PHS, P and V have to engage in a 2PC
protocol to correctly calculate the MAC and the encryption on the plaintext to be sent to the
server, without revealing the shares to each other. Privacy of the plaintext is also ensured with
respect to V. For CBC-HMAC, the encryption is computed exclusively by P who holds the
encryption key. The authors provide hand-optimized protocols which are much more efficient
then the ones obtained by directly applying 2PC techniques. Since P and V must cooperate also
for encryption, the 2PC protocol for AES-GCM is a lot slower than the one for CBC-HMAC.

Proving Statements. An important feature of DECO is that P, when the communication
with S ends, can prove, in zero knowledge, statements on the communication transcript in a
clever and efficient way. However, to make their protocol practical for our goal, we give up on
maintaining the transcript private. As a result, we do not cover this part of DECO which can
be found in [ZMM+19]. In Section 4.2, we provide a description on how to adapt, by simplifying
it, DECO to our scenario.

4.2 A Smart Contract Oracle

The starting idea of the attack we introduce in this section is to make the smart contract play
the role of the DECO verifier. In this way, the smart contract would be able to verify that
the intended communication between the seller and the server took place and to reward the
seller accordingly. Unfortunately, doing so directly by plugging DECO into a smart contract
is not possible for several reasons. For example, DECO requires a lot of interaction and to
run intensive 2PC related tasks, to sample random values and most notably to maintain a
private state. Therefore, we run the DECO protocol off-chain with the seller acting as prover
and the buyer as verifier, but we guarantee no party is able to cheat (i.e., the seller is paid
if and only if she performs the upload of the requested TEKs) by binding its execution to

23



the state of the smart contract itself. Furthermore, we guarantee the privacy of the messages
exchanged between the server and the prover only until their TLS connection is open. After the
communication ends, the seller proves that she acted honestly by providing the application-level
messages exchanged with the server, along with the corresponding MAC tags w.r.t. the MAC
key which is bound to the smart contract. To be more specific, the smart contract freezes a
share of the MAC key and the seller has to show a communication transcript (i.e., the messages
exchanged with the server and corresponding MAC tags) which is consistent with such share.
Privacy of the upload request message to be sent to the server is crucial while the TLS session is
open because the verifier may abort the protocol and use the authorization token of the prover
to upload data by himself without paying out the promised reward. On the other hand, making
the communication public after it took place does not endanger the prover, apart from the
considerations made in Sections 2.2 and 3.2, and makes the verification procedure much more
practical. What we need is that the shares of the prover and the verifier are kept private until
the end of the protocol, and then revealed to the smart contract, along with other information,
for verification and reward paying. In addition, the TLS session timeout should be big enough
to allow for the 2PC execution. To this regard, Zhang et. al already verified the practical
feasibility of their protocol [ZMM+19]. Obviously, P must know how to reach V to carry out
the protocol. To address concerns regarding anonymity, V may set up a TOR hidden service18.
Using hidden services may significantly slow down the process, however we found both Immuni
and SwissCovid servers to give a generous time out window of two hours19 (see Appendix D).

From now on, we refer to the seller and the buyer also as prover P and verifier V respectively;
we denote the server as S. In the following, we explain the attack in more detail for the CBC-
HMAC ciphersuite. At smart contract creation time, V posts the DH share YV = sV · G he is
willing to use during the 3PHS, along with requested TEKs (and dates).

First, P transacts on the smart contract to reserve a time slot of duration t1 by which a
DECO protocol run must be performed together with V and S, and the data needed to redeem
the reward must be posted on the smart contract by P. If time t1 elapses, P loses her slot. This
reservation mechanism is needed to prevent V from getting back the reward while an honest
P performs the upload of the requested TEKs. In fact, the verifier could also act as a prover
and simulate a reward-paying interaction with the server to the smart contract, which would
have no mean to distinguish it from a fake one. By adding a reservation mechanism, we are
sure a malicious V cannot play a simulated transcript in the smart contract while honest P
is performing with him the DECO protocol run. Furthermore, since the communication for
the upload between server and the prover consists of just a single query followed by a single
response, it is not possible for a cheating verifier to make the timer expire avoiding to pay the
prover while at the same time the upload of the TEKs happens successfully. In fact, once the
V cooperates with P to build a valid request, S will reply to P independently of what V does,
thus giving V all she needs to redeem the reward.

When executing the 3PHS, P checks that the value Y ′V sent by V during the handshake
corresponds to the value YV posted to the smart contract. This prevents V from providing an
erroneous DH share and blaming P for it. If this is not the case, P aborts. Since no upload
message has been sent to the server yet, no party gains advantage from this operation. If
V’s share is correct (i.e., YV = Y ′V), parties engage in the communication with S and jointly
compute the MAC (via 2PC as in [ZMM+19]) on the upload request mc generated by P . If
the connection ends successfully20, the elected P posts (only who reserved this slot is allowed

18More on TOR hidden services can be found at https://2019.www.torproject.org/docs/onion-services.
19Interestingly, in June the timeout of a TLS session with both Immuni and SwissCovid upload servers was

limited to 5 minutes, but it has been then extended to two hours.
20This can be inferred from the communication transcript. For example, as in SwissCovid [ST20c], S may reply

24

https://2019.www.torproject.org/docs/onion-services


to post this message) to the smart contract the following:

• The entire communication transcript, that is (mc,ms) together with the MACs (θc, θs),
calculated by the client(s) P ↔ V and the server S respectively.
• The prover’s secret sP .
• The DH share of the server YS received during the 3PHS.

Then, the smart contract starts a timer t2 indicating the maximum time V has to reveal his
secret sV . In the case he does not do that, the prize is automatically transferred to the seller.
Now V, in order to avoid paying the prize for no reason, reveals sV . The smart contract does
the following:

• Check that YV = sV ·G and if not, transfer the prize to P.
• If the check passes, reconstruct the secret Z from sV , sP , Ys, and apply TLS-PRF to derive

the MAC key kMAC.

Now the smart contract has everything it needs to check that the fields inside the uploading
message mc (from the prover to the server) are correct (i.e., the buyer’s TEK are present) and
the response message (from the server to the prover) is positive, and that the MACs (θc, θs)
verify w.r.t. kMAC. If all the checks pass, the prize is transferred to P, otherwise P gains no
prize and the deposit is returned back to V.

As mentioned before, V is not encouraged to provide a different public key w.r.t. the one
he used in DECO execution, otherwise P will just abort. On the other hand, the prover is not
able to earn a reward without uploading the promised TEKs. In fact, the probability for the
prover to come up with a pair (m′c, θ

′
c) (resp. (m′s, θ

′
s)) that verifies under the key k′MAC derived

from Z ′ = Z ′P +Z ′V with Z ′P := s′P · Y ′S and ZV := sV · Y ′S is negligible due to the fact that sP is
fixed and honestly generated, thus randomizing Z ′, hence k′MAC.

CBC-HMAC vs AES-GCM. As mentioned before, differently from CBC-HMAC, AES-
GCM relies on the same key for both encryption and MACs. The impact of AES-GCM is
twofold: 1) more computation is needed to perform the required 2PC to calculate messages
from/to the server, due to the AES algorithm itself, 2) the prover does not learn the encryption
key after 3PHS, meaning that both encryption and decryption must be done via 2PC as well.
On the smart contract side, this difference boils down to a lack of fairness. After V and P have
calculated together the upload message and sent it then to S, V could decide not to help the
prover to decrypt the server’s response. Now, P has no witness in her hands to give to the smart
contract in order to prove that she has correctly performed the TEKs upload. As a result, she
cannot redeem the prize. The problem can be easily solved by giving to the smart contract the
burden of decrypting the server’s ciphertext. In our approach, V must commit to his key and
open it later. When this happens, the server reconstructs the MAC/encryption key, decrypts
the ciphertext, do the necessary checks, and pay the prize to P. The CBC-HMAC version of
DECO is way faster then the AES-GCM one. However, looking at practical evaluations made
by the authors [ZMM+19] it is reasonable to think that all their solutions may fit in the time
window given by contact tracing servers (e.g., 2 hours in Immuni and SwissCovid) for the TLS
connection, even when hiding V through TOR hidden services.

We want to stress that this completely different instantiation of a terrorist attack is only an
example of attacks that could potentially be mounted on GAEN system even when the public
verifiability of the list of infected TEKs is removed. Therefore what we aim to show here is
that designers of digital contact tracing systems should take also these alternative attacks into

P with either a success message such as “200 OK” or an error message.

25



account. Ideally, the protocol designers should not focus on specific realizations of an attack,
but instead should prove that the protocol is secure against any automated instantiation of a
terrorist attack.

A note on DoS attacks. As noted before, it is important to prevent DoS attack run by sellers
who actually do not have the right to upload TEKs and end up by just wasting buyer’s precious
time. In the attack explained in this section, this protection is not provided: a malicious P
could post fake transcripts, forcing V to open his DH share in order to not lose his deposit.
What is worse is that since it has to be opened for verification, V’s share cannot be reused in
another DECO protocol run. The above problem can be solved by introducing the two following
key modifications:

1. The moment the slot is reserved is moved after the 3PHS of DECO, when P gets to know
the MAC tag θc on the upload request mc to be sent to S later on. P forwards (mc, θc)
to S only after the slot reservation is confirmed on the blockchain.

2. When reserving a slot, P must attach a certain deposit of currency. Such deposit is
returned back to P if the final verification is successful, otherwise it is transferred to V.

Since the reply from S will be received by P regardless of what V does, the first step guarantees
that P will be able to eventually redeem the prize when she makes a reservation. On the
other hand, the money deposit effectively discourage any attempt on DoS. Nevertheless, this
construction introduces an additional waiting time, accounting for the blockchain verification
time, in the overall DECO run. This means that the TLS time out offered by S should be long
enough to accommodate also this additional waiting time.

5 Acknowledgments

We thank the first author of DECO [ZMM+19] Fan Zhang for all the clarifications about their
paper, Stephen Farrell of the TACT project [LF20] for his help on how to gather contact tracing
data, Serge Vaudenay and Martin Vuagnoux for useful information about the implementation
and configuration of SwissCovid. This research is supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 780477 (project PRIV-
iLEDGE).

References

[ABIV20] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti. Towards
defeating mass surveillance and sars-cov-2: The pronto-c2 fully decentralized au-
tomatic contact tracing system. IACR Cryptol. ePrint Arch., 2020:493, 2020.

[And20] Ross Anderson. Contact tracing in the real world.
https://www.lightbluetouchpaper.org/2020/04/12/

contact-tracing-in-the-real-world/, 2020. Accessed: 2020-09-18.

[App20a] Apple. detectExposures method description from Apple’s EN documenta-
tion. https://developer.apple.com/documentation/exposurenotification/

enmanager/3586331-detectexposures, 2020. Accessed: 2020-08-23.

[App20b] Apple. Setting up an Exposure Notification server. https://developer.apple.

com/documentation/exposurenotification/setting_up_an_exposure_

notification_server, 2020. Accessed: 2020-08-23.

26

https://www.lightbluetouchpaper.org/2020/04/12/contact-tracing-in-the-real-world/
https://www.lightbluetouchpaper.org/2020/04/12/contact-tracing-in-the-real-world/
https://developer.apple.com/documentation/exposurenotification/enmanager/3586331-detectexposures
https://developer.apple.com/documentation/exposurenotification/enmanager/3586331-detectexposures
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server


[Aus20] The Crypto Group IST Austria. Inverse-sybil attacks in automated contact tracing.
IACR Cryptol. ePrint Arch., 2020:670, 2020.

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: To-
wards privacy in a smart contract world. In Financial Cryptography, pages 423–443,
2020.

[BCC+20] Xavier Bonnetain, Anne Canteaut, Véronique Cortier, Pierrick Gaudry, Lucca
Hirschi, Steve Kremer, Stéphanie Lacour, Matthieu Lequesne, Gaëtan Leurent, Léo
Perrin, André Schrottenloher, Emmanuel Thomé, Serge Vaudenay, and Christophe
Vuillot. Anonymous tracing, a dangerous oxymoron. a risk analysis for non-
specialists. https://tracing-risks.com/docs/tracing-risks.pdf, 2020. Ac-
cessed: 2020-09-07.

[BDF+20] Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben, Alexander Gruler,
Jonas Höchst, Joshua Kühlberg, Mira Mezini, Markus Miettinen, Anel
Muhamedagic, Thien Duc Nguyen, Alvar Penning, Dermot Frederik Pustelnik,
Filipp Roos, Ahmad-Reza Sadeghi, Michael Schwarz, and Christian Uhl. Mind the
GAP: security & privacy risks of contact tracing apps. CoRR, abs/2006.05914,
2020.

[BHH+19] Michael Backes, Lucjan Hanzlik, Amir Herzberg, Aniket Kate, and Ivan Pryvalov.
Efficient non-interactive zero-knowledge proofs in cross-domains without trusted
setup. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I, volume 11442
of LNCS, pages 286–313. Springer, Heidelberg, April 2019.

[CCL18] Yi-Hui Chen, Shih-Hsin Chen, and Iuon-Chang Lin. Blockchain based smart con-
tract for bidding system. In 2018 IEEE International Conference on Applied Sys-
tem Invention (ICASI), pages 208–211. IEEE, 2018.

[Cen20a] Swiss National Cyber Security Center. Security issue submission [inr-4434].
detailed analysis. https://www.melani.admin.ch/dam/melani/de/dokumente/

2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_

Risk_assessment.pdf, 2020. Accessed: 2020-08-23.

[Cen20b] Swiss National Cyber Security Center. Swisscovid proximity tracing system - pub-
lic security test. https://www.melani.admin.ch/dam/melani/de/dokumente/

2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.

pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf, 2020. Ac-
cessed: 2020-08-23.

[Clu20] Chaos Computer Club. 10 requirements for the evaluation of
”contact tracing” apps. https://www.ccc.de/en/updates/2020/

contact-tracing-requirements, 2020. Accessed: 2020-08-23.

[Com20] European Commission. Guidance on apps supporting the fight against COVID 19
pandemic in relation to data protection. Official Journal of the European Union,
2020.

[CT20a] Corona-Warn’s Team. Corona-warn-app solution architecture. https:

//github.com/corona-warn-app/cwa-documentation/blob/master/

solution_architecture.md, 2020. Accessed: 2020-08-23.

27

https://tracing-risks.com/docs/tracing-risks.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md


[CT20b] Corona-Warn’s Team. Criteria for the evaluation of contact trac-
ing apps. https://github.com/corona-warn-app/cwa-documentation/blob/

ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md, 2020. Ac-
cessed: 2020-08-23.

[CT20c] Corona-Warn’s Team. Software design verification server.
https://github.com/corona-warn-app/cwa-verification-server/

blob/f43c6be9b9cb3017dc77c38e50211aaa32fd33c4/docs/

architecture-overview.md, 2020. Accessed: 2020-08-23.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In USENIX, pages 303–320, 2004.

[DR20a] Paul-Olivier Dehaye and Joel Reardon. Proximity tracing in an ecosystem of
surveillance capitalism. CoRR, abs/2009.06077, 2020.

[DR20b] Paul-Olivier Dehaye and Joel Reardon. Swisscovid: a critical analysis of risk
assessment by swiss authorities. CoRR, abs/2006.10719, 2020.

[DT20] DP-3T’s Team. Decentralized privacy-preserving proximity tracing. https: //

github. com/ DP-3T/ documents/ blob/ master/ DP3T% 20White% 20Paper. pdf ,
2020.

[eN20] EU eHealth Network. European proximity tracing. an interoperability archi-
tecture. https://ec.europa.eu/health/sites/health/files/ehealth/docs/

mobileapps_interoperabilitydetailedelements_en.pdf, 2020. Accessed:
2020-09-17.

[FOoITF20] Systems Federal Office of Information Technology and Telecommunication
FOITT. Swisscovid custom token provider. https://github.com/admin-ch/

CovidCode-Service/blob/18b8f3f6a268d9d245c69ea61fcc146f73b8e11f/

src/main/java/ch/admin/bag/covidcode/authcodegeneration/service/

CustomTokenProvider.java, 2020. Accessed: 2020-09-05.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In STOC, pages 291–304, 1985.

[Goo20a] Google. Exposure Key export file format and verification. https://developers.
google.com/android/exposure-notifications/exposure-key-file-format,
2020. Accessed: 2020-08-23.

[Goo20b] Google. Exposure Notification Cryptography Specification. https:

//blog.google/documents/69/Exposure_Notification_-_Cryptography_

Specification_v1.2.1.pdf, 2020. Accessed: 2020-08-23.

[Goo20c] Google. Exposure Notification Reference Key Server. https://google.github.

io/exposure-notifications-server/, 2020. Accessed: 2020-08-23.

[Goo20d] Google. Exposure Notification verification server. https://developers.google.
com/android/exposure-notifications/verification-system, 2020. Accessed:
2020-08-23.

28

https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-verification-server/blob/f43c6be9b9cb3017dc77c38e50211aaa32fd33c4/docs/architecture-overview.md
https://github.com/corona-warn-app/cwa-verification-server/blob/f43c6be9b9cb3017dc77c38e50211aaa32fd33c4/docs/architecture-overview.md
https://github.com/corona-warn-app/cwa-verification-server/blob/f43c6be9b9cb3017dc77c38e50211aaa32fd33c4/docs/architecture-overview.md
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://ec.europa.eu/health/sites/health/files/ehealth/docs/mobileapps_interoperabilitydetailedelements_en.pdf
https://ec.europa.eu/health/sites/health/files/ehealth/docs/mobileapps_interoperabilitydetailedelements_en.pdf
https://github.com/admin-ch/CovidCode-Service/blob/18b8f3f6a268d9d245c69ea61fcc146f73b8e11f/src/main/java/ch/admin/bag/covidcode/authcodegeneration/service/CustomTokenProvider.java
https://github.com/admin-ch/CovidCode-Service/blob/18b8f3f6a268d9d245c69ea61fcc146f73b8e11f/src/main/java/ch/admin/bag/covidcode/authcodegeneration/service/CustomTokenProvider.java
https://github.com/admin-ch/CovidCode-Service/blob/18b8f3f6a268d9d245c69ea61fcc146f73b8e11f/src/main/java/ch/admin/bag/covidcode/authcodegeneration/service/CustomTokenProvider.java
https://github.com/admin-ch/CovidCode-Service/blob/18b8f3f6a268d9d245c69ea61fcc146f73b8e11f/src/main/java/ch/admin/bag/covidcode/authcodegeneration/service/CustomTokenProvider.java
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://google.github.io/exposure-notifications-server/
https://google.github.io/exposure-notifications-server/
https://developers.google.com/android/exposure-notifications/verification-system
https://developers.google.com/android/exposure-notifications/verification-system


[Goo20e] Google. Exposure Notifications API. https://developers.google.com/

android/exposure-notifications/exposure-notifications-api, 2020. Ac-
cessed: 2020-08-23.

[GY18] Hisham S. Galal and Amr M. Youssef. Verifiable sealed-bid auction on the
ethereum blockchain. In Financial Cryptography, pages 265–278, 2018.

[Har20] Charlie Hartmann. Taking the covid-19 test in switzerland. https://livingin.

swiss/2020/09/11/taking-the-covid-19-test-in-switzerland/, 2020. Ac-
cessed: 2020-09-17.

[IT20] Immuni’s Team. Immuni’s high-level description. https://github.com/

immuni-app/immuni-documentation, 2020. Accessed: 2020-08-23.

[KNW20] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. Timelocked bribes.
IACR Cryptol. ePrint Arch., 2020:774, 2020.

[KRvW17] Tommy Koens, Coen Ramaekers, and Cees van Wijk. Efficient zero-
knowledge range proofs in ethereum. https://www.ingwb.com/media/2667860/

zero-knowledge-range-proofs.pdf, 2017.

[LF20] Dough Leith and Stephen Farrell. Testing apps for COVID-19 tracing (TACT).
https://down.dsg.cs.tcd.ie/tact/, 2020. Accessed: 2020-08-23.

[LHML20] Franck Legendre, Mathias Humbert, Alain Mermoud, and Vincent Lenders. Con-
tact tracing: An overview of technologies and cyber risks. CoRR, abs/2007.02806,
2020.

[LK17] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transac-
tions. In Financial Cryptography, 2017.

[MHM18] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for
bribing miners. In Financial Cryptography, pages 3–18, 2018.

[oPH20a] Swiss Federal Office of Public Health. New coronavirus: Swisscovid app and
contact tracing. https://www.bag.admin.ch/bag/en/home/krankheiten/

ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/

novel-cov/swisscovid-app-und-contact-tracing/

datenschutzerklaerung-nutzungsbedingungen.html#-11360452, 2020. Ac-
cessed: 2020-08-23.

[oPH20b] Swiss Federal Office of Public Health. Swisscovid app: Data protection statement
& conditions of use. https://www.bag.admin.ch/bag/en/home/krankheiten/

ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/

novel-cov/swisscovid-app-und-contact-tracing.html, 2020. Accessed:
2020-08-23.

[oPH20c] Swiss Federal Office of Public Health. Swisscovid app: Threshold
change. https://www.bag.admin.ch/dam/bag/en/dokumente/cc/kom/

swisscovid-anpassung-schwellenwerte.pdf.download.pdf/SwissCovid%

20app_Threshold%20Change.pdf, 2020. Accessed: 2020-09-17.

[Pie20] Krzysztof Pietrzak. Delayed authentication: Preventing replay and relay attacks
in private contact tracing. IACR Cryptol. ePrint Arch., 2020:418, 2020.

29

https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://livingin.swiss/2020/09/11/taking-the-covid-19-test-in-switzerland/
https://livingin.swiss/2020/09/11/taking-the-covid-19-test-in-switzerland/
https://github.com/immuni-app/immuni-documentation
https://github.com/immuni-app/immuni-documentation
https://www.ingwb.com/media/2667860/zero-knowledge-range-proofs.pdf
https://www.ingwb.com/media/2667860/zero-knowledge-range-proofs.pdf
https://down.dsg.cs.tcd.ie/tact/
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing.html
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing.html
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing.html
https://www.bag.admin.ch/dam/bag/en/dokumente/cc/kom/swisscovid-anpassung-schwellenwerte.pdf.download.pdf/SwissCovid%20app_Threshold%20Change.pdf
https://www.bag.admin.ch/dam/bag/en/dokumente/cc/kom/swisscovid-anpassung-schwellenwerte.pdf.download.pdf/SwissCovid%20app_Threshold%20Change.pdf
https://www.bag.admin.ch/dam/bag/en/dokumente/cc/kom/swisscovid-anpassung-schwellenwerte.pdf.download.pdf/SwissCovid%20app_Threshold%20Change.pdf


[RGK20] Adam Krellenstein Rosario Gennaro and James Krellenstein. Exposure
notification system may allow for large-scale voter suppression. https:

//www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_

Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_

Public_Security_Test_Current_Findings.pdf, 2020. Accessed: 2020-08-23.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

[Sei20] Otto Seiskari. Contact Tracing BLE sniffer PoC. https://github.com/oseiskar/
corona-sniffer, 2020. Accessed: 2020-06-02.

[ST20a] Semaphore’s Team. Semaphore. https://semaphore.appliedzkp.org/, 2020.
Accessed: 2020-09-15.

[ST20b] SwissCovid’s Team. Swisscovid app gradle. https://github.com/DP-3T/

dp3t-app-android-ch/blob/master/app/backend_certs.gradle, 2020. Ac-
cessed: 2020-09-22.

[ST20c] SwissCovid’s Team. Swisscovid server controller. https://github.com/DP-3T/

dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/

dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/

backend/sdk/ws/controller/GaenController.java, 2020. Accessed: 2020-09-
05.

[The03] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. www.

openssl.org, 2003.

[TJS16] Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine
their own business. In Financial Cryptography, pages 499–514, 2016.

[um20] Github user mt19937 64. Please publish the public key needed for verifying EN ex-
port files. https://github.com/immuni-app/immuni-documentation/issues/

114, 2020. Accessed: 2020-08-23.

[up20] Github user pdehaye. Configuration of the apps changed overnight. https://

github.com/immuni-app/immuni-documentation/issues/112, 2020. Accessed:
2020-09-17.

[Vau20a] Serge Vaudenay. Analysis of DP3T. IACR Cryptol. ePrint Arch., 2020:399, 2020.

[Vau20b] Serge Vaudenay. Centralized or decentralized? the contact tracing dilemma. IACR
Cryptol. ePrint Arch., 2020:531, 2020.

[VTL17] Yaron Velner, Jason Teutsch, and Loi Luu. Smart contracts make bitcoin mining
pools vulnerable. In Financial Cryptography, pages 298–316, 2017.

[VV20a] Serge Vaudenay and Martin Vuagnoux. Analysis of swisscovid. https://lasec.

epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf, 2020. Accessed:
2020-08-23.

[VV20b] Serge Vaudenay and Martin Vuagnoux. The dark side of swisscovid. https:

//lasec.epfl.ch/people/vaudenay/swisscovid.html, 2020. Accessed: 2020-
08-23.

30

https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://github.com/oseiskar/corona-sniffer
https://github.com/oseiskar/corona-sniffer
https://semaphore.appliedzkp.org/
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
www.openssl.org
www.openssl.org
https://github.com/immuni-app/immuni-documentation/issues/114
https://github.com/immuni-app/immuni-documentation/issues/114
https://github.com/immuni-app/immuni-documentation/issues/112
https://github.com/immuni-app/immuni-documentation/issues/112
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid.html
https://lasec.epfl.ch/people/vaudenay/swisscovid.html


[VV20c] Serge Vaudenay and Martin Vuagnoux. Lessons from swisscovid. https://lasec.
epfl.ch/people/vaudenay/swisscovid/lessons-from-swisscovid.pdf, 2020.
Accessed: 2020-09-07.

[VV20d] Serge Vaudenay and Martin Vuagnoux. Little thumb attack on swisscovid. https:
//vimeo.com/453948863, 2020. Accessed: 2020-09-07.

[Wet] Dirk Wetter. testssl.sh. https://testssl.sh/.

[Wil18] Zachary J. Williamson. Aztec. https://github.com/AztecProtocol/AZTEC/

blob/master/AZTEC.pdf, 2018. Accessed: 2020-09-15.

[Yan19] H. Yang. EC Cryptography Tutorials - Herong’s Tutorial Examples. Herong’s
Tutorial Examples. Herong Yang, 2019.

[ZCC+16] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town
crier: An authenticated data feed for smart contracts. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 270–282. ACM Press, October 2016.

[ZMM+19] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and
Ari Juels. DECO: liberating web data using decentralized oracles for TLS. CoRR,
abs/1909.00938, 2019.

[ZT20a] ZkDAI’s Team. Zkdai. https://github.com/atvanguard/

ethsingapore-zk-dai, 2020. Accessed: 2020-09-15.

[ZT20b] ZoKrates’s Team. Zokrates. https://zokrates.github.io/, 2020. Accessed:
2020-09-15.

A Tools

A.1 MACs and Signature Schemes

A Message-Authentication Code consists of a tuple of algorithms (Gen, Tag, Ver) such that

Gen(1λ): Takes as an input the security parameter and outputs a key k in the key space K.
Tag(m; k): Takes as an input a message m in the message space M and a key k, and outputs

a tag θ.
Ver(m, θ; k): Takes as an input a message m and a key k, and outputs 1 iff θ is a correct tag

on m under key k.

It must satisfy the following properties:

• Completeness: The probability that Ver((m, θ); k) outputs 1 for an honestly generated
tag θ ← Tag(m; k) is 1.
• Unforgeability: The probability that an adversary, knowing only challenge message m∗

and having access to an oracle giving back tags θi on messages mi 6= m∗ (for all i ∈ [n]
with n polynomially bounded in the security parameter), outputs a pair (m∗, θ∗) such
that Ver(m∗, θ∗; k) = 1 is negligible.

A Signature Scheme consists of a set of algorithms (Gen, Sign, Ver), such that

Gen(1λ): Takes as an input the security parameter and outputs a pair (sk, vk) sampled from the
key space, where sk is the signing key and vk the verification key.

31

https://lasec.epfl.ch/people/vaudenay/swisscovid/lessons-from-swisscovid.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/lessons-from-swisscovid.pdf
https://vimeo.com/453948863
https://vimeo.com/453948863
https://testssl.sh/
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/atvanguard/ethsingapore-zk-dai
https://github.com/atvanguard/ethsingapore-zk-dai
https://zokrates.github.io/


Sign(m; sk): Takes as an input a message m in the message spaceM and a signing key sk, and
outputs a signature σm on that message.

Ver(m,σ; vk): Takes as an input a pair (m,σ) and the verification key vk, and outputs 1 if the
signature σ correctly verifies under vk.

It must satisfy the following properties:

• Completeness: The probability that Ver((m,σ); vk) outputs 1 for an honestly generated
signature σ ← Sign(m; sk) is 1.
• Unforgeability: The probability that an adversary, knowing only the challenge message
m∗ and having access to an oracle giving back tags σi on messages mi 6= m∗ (for all i ∈ [n]
with n polynomially bounded in the security parameter), outputs a pair (m∗, σ∗) such
that Ver(m∗, σ∗; vk) = 1 is negligible.

A.2 Public-Key Encryption Schemes

A Public-Key Encryption Scheme is a tuple of algorithms (Gen, Enc, Dec) such that

Gen(1λ): Takes as an input the security parameter, outputs a couple (pk, sk) of keys sampled
in the key spaces.

Enc(m; pk): Takes as an input a message m in the message space and a public key pk, and
outputs the ciphertext c in the ciphertext space.

Dec(c; sk): Takes as an input a ciphertext c and a secret key, and output a message m′.

A PKE scheme is CPA-Secure if the following properties are satisfied

• Completeness The probability thatm = m′, wherem′ ← Dec(c; sk) with c←$ Enc(m; pk)
for an honestly generated pair (pk, sk)←$ Gen(1λ) is 1.
• CPA-Security The probability that an attacker, after choosing two messages (m0,m1),

giving them to a challenger, and receiving back the encryption of one of the two (chosen by
the challenger flipping a coin), can distinguish which of the two messages were encrypted,
is negligible.

A.3 NIZK proofs

In a zero-knowledge proof system [GMR85] an entity P, called prover, can prove to another
entity, called verifier, that an NP-statement x is in some language L (i.e., exists at least a
witness w such that the relation RL(x,w) for the language L is satisfied) without revealing
a single bit of information on the witness used. Informally, the following properties must be
satisfied by a zero-knowledge proof system:

• Completeness: The probability that an honest prover P (i.e. computing the proof by
providing a valid (x,w) such that RL(x,w) = 1) convinces the verifier V about the validity
of the statement is 1.
• Soundness: The probability that a cheating prover convinces the verifier that a statement
x is not in the language L is negligible.
• Zero Knowledge: If the statement x is true, the verifier learns no more information

other than the fact that the statement is true. This concept is formalized by showing that
there exists an efficient simulator that, given only the statement, can produce a protocol
transcript that is indistinguishable from a real protocol execution.

32



A proof is said to be non-interactive when the interaction consists solely on a message sent by
the prover to the verifier. A zero-knowledge proof of knowledge is a zero-knowledge proof where
the prover shows that he actually knows a witness for the statement x and this is formalized
by showing an efficient extractor that gives a witness in output. When we refer to NIZK proofs
throughout the paper we usually intend NIZK-PoKs.

In the random oracle model both prover and verifier access to a cryptographic hash function
that in the security proof is modelled as a random oracle. The simulator for the zero-knowledge
property and the extractor for the proof of knowledge property have the power to program the
random oracle.

B Useful Instantiations

B.1 The ECDSA scheme

The ECDSA signature scheme works over an elliptic curve of prime order n with generator P .
The key generation algorithm works as follows. Let d ∈ [1, n − 1] be an uniformly random
chosen integer, the public key is given by Q = dP while the private key is d. We now describe
the signature and verification algorithms. Let m be the message to sign, and h(m) its hash.

Sign(m; d): Takes as an input a message m and the private key d, and performs the following
steps.

• Sample a random k ∈ [1, n− 1]
• Sets R := (rx, ry) = kP ,
• r := rx mod n,
• s := k−1(h(m) + rd) mod n,
• and return (r, s).

Verify(m, (r, s);Q): Takes as an input a message m, a pair (r, s) and the public key Q. It
performs the following steps.

• Calculates v = h(m)P + rQ and
• if sR = v then return 1;
• else returns 0.

B.2 Proving Knowledge of ECDSA signature

Consider a message m along with its ECDSA signature (r, s). P wants to prove he owns a valid
signature (r, s) for a message m to a verifier V, without letting V obtain such signature. Since
r is perfectly simulatable, giving it away would obviously not allow a malicious V to derive s
in order to compute a valid signature on m. After having revealed r, P could now prove in
zero-knowledge that he knows s such that Verify(m, (r, s), Q) outputs 1 for given m, s and Q.
By taking a look at the verification procedure (cfr., Section B.1) one can note that it basically
consists of raising R, a value known to V , to the witness s and checking if it is equal to v, which
is also known to V. Therefore it is evident that proving the above statement is equivalent to
proving the knowledge of the discrete logarithm of v. This can be easily and efficiently done
by using the Schnorr Σ-protocol [Sch90]. The protocol can be converted to a NIZK proof of
knowledge in the random oracle model via the Fiat-Shamir heuristic [FS87]. In addition, one
can make this proof non-transferable by giving in input to the random oracle an information
which identifies the prover.

33



C Adding Seller’s Privacy

As discussed in Section 2.2, using publicly posted TEKs is dangerous for the seller due to
possible risks of incrimination. This could disincentivize the seller to utilize such smart contract
mechanism. To guarantee seller’s privacy, in all of our attacks we can enrich our playground by
assuming the existence of a CPA-Secure PKE encryption scheme (Gen, Enc, Dec) and a NIZK
proof system. The proposed protocols can be modified as follows:

• When the buyer creates the smart contract, waits that a seller P is elected before providing
his TEKs. When P is elected, B posts his TEKs encrypted with P’s public key pkP , by
triggering an algorithm SendBuyerTeks(CB) where CB = (c1, . . . , cn), with ci←$ Enc(ti)
for each ti ∈ TB. TEKs are pairs ti = (teki, datei).
• When the signed TEKs list is available, the seller triggers SendTeks(T, σT ,Π, T̃), where

T = (t̃1, . . . , t̃N ) are the published TEKs, σT the corresponding signature, and Π =
(π1, . . . , πn) is a sequence of proofs in which πi is a NIZK proof that the prover knows
ti ← Dec(ci; skP) and that at least one element t̃j in a subset T̃ ⊆ T such that |T̃| > |TB|
is equal to ti. The Smart Contract checks all the proofs, and if all of them verify, transfer
the prize to the seller.

Now the only information that an external observer can deduce by looking at the proofs is that
all the encrypted buyer’s TEKs are indeed inside the list (or in a subset of them). To be sure
that an observer cannot pinpoint the buyer’s TEKs precisely, it is sufficient that the proofs
use as a statement a subset of the published TEKs that contains at least one more TEK w.r.t
the buyer’s TEKs (proving on a subset and not on the entire list can be beneficial in terms of
proof size and efficiency). The only harmful case is when the number of published keys matches
with the number of the buyer’s keys. We can argue that this condition happens quite rarely,
considering that one external more key is sufficient to guarantee buyer’s safety, and if GAEN
recommendations are followed, a decent amount of keys should be present in the list.

D TLS Connections with Immuni and SwissCovid

In this section we show useful informations about TLS sessions established running on the client
side the tools openssl [The03], and testssl [Wet] in order to connect to the TEKs upload
servers of Immuni and SwissCovid.

Immuni. Using testssl to connect to upload.immuni.gov.it one can see that the server ac-
cepts TLS 1.2 connections only and the preferred ciphersuite is ECDHE-RSA-AES256-GCM-SHA384,
256 bit ECDH (P-256). Moreover, one can also use ECDHE-RSA-AES128-GCM-SHA256.

Using openssl to connect to upload.immuni.gov.it one can see all the parameters of the
established TLS session, including in particular a timeout of 7200 seconds (i.e., 2 hours) that
is very large and thus beneficial for our attacks. For completeness we show here the content of
the standard output (we replace some potentially identifying data by “...”).

openssl s_client -connect upload.immuni.gov.it:443 -cipher ECDHE-RSA-AES256-GCM-SHA384

CONNECTED(00000003)

depth=2 C = IT, L = Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root

CA

verify error:num=19:self signed certificate in certificate chain

34



verify return:1

depth=2 C = IT, L = Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root

CA

verify return:1

depth=1 C = IT, ST = Bergamo, L = Ponte San Pietro, O = Actalis S.p.A./03358520967, CN =

Actalis Organization Validated Server CA G2

verify return:1

depth=0 C = IT, ST = ROMA, L = ROMA, O = Sogei S.p.A., OU = Server Sicuri, CN =

upload.immuni.gov.it

verify return:1

---

Certificate chain

0 s:C = IT, ST = ROMA, L = ROMA, O = Sogei S.p.A., OU = Server Sicuri, CN =

upload.immuni.gov.it

i:C = IT, ST = Bergamo, L = Ponte San Pietro, O = Actalis S.p.A./03358520967, CN =

Actalis Organization Validated Server CA G2

1 s:C = IT, ST = Bergamo, L = Ponte San Pietro, O = Actalis S.p.A./03358520967, CN =

Actalis Organization Validated Server CA G2

i:C = IT, L = Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root CA

2 s:C = IT, L = Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root CA

i:C = IT, L = Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root CA

---

Server certificate

-----BEGIN CERTIFICATE-----

MIIGYzCCBUugAwIBAgIQRnoupUMoTHxpWMpARKffOTANBgkqhkiG9w0BAQsFADCB

lTELMAkGA1UEBhMCSVQxEDAOBgNVBAgMB0JlcmdhbW8xGTAXBgNVBAcMEFBvbnRl

IFNhbiBQaWV0cm8xIzAhBgNVBAoMGkFjdGFsaXMgUy5wLkEuLzAzMzU4NTIwOTY3

MTQwMgYDVQQDDCtBY3RhbGlzIE9yZ2FuaXphdGlvbiBWYWxpZGF0ZWQgU2VydmVy

IENBIEcyMB4XDTIwMDUxMzA3MTcyN1oXDTIxMDUxMzA3MTcyN1oweTELMAkGA1UE

BhMCSVQxDTALBgNVBAgMBFJPTUExDTALBgNVBAcMBFJPTUExFTATBgNVBAoMDFNv

Z2VpIFMucC5BLjEWMBQGA1UECwwNU2VydmVyIFNpY3VyaTEdMBsGA1UEAwwUdXBs

b2FkLmltbXVuaS5nb3YuaXQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB

AQC/2cqmDJieHJ8dMOzT/dlPpLGCAfWukniW5eFdNexZK3qxpESrrBm270T6llLv

0ui/laRlqOHwg+2xycf1+aIGFiTO8dKuVyoCdJxCiQqCNF9dtMpgA69DgfYv/4o6

GwXvyx0PjQ/eF5+wJbjO1hIGYDm83J0WNbmHhqA8NzHrqP5Q554aNYrLnzXDVpdN

3I3Gdo/KlUkuH5RUutYhbVZand8uf069MFROzL1xifdHLVqCwYrNRkyc6BqyCVoV

c2f1TEQZ9T9OQxijXkMdXXwNkUXKS6O/SVtGUiUm2KgQ098XqOzEs6U/OaWVyFPt

YMSSh8hpT3bR3eaLjI2yMX/5AgMBAAGjggLIMIICxDAMBgNVHRMBAf8EAjAAMB8G

A1UdIwQYMBaAFGL+uyeKZETtaJZaWHmh21omrf+7MH4GCCsGAQUFBwEBBHIwcDA7

BggrBgEFBQcwAoYvaHR0cDovL2NhY2VydC5hY3RhbGlzLml0L2NlcnRzL2FjdGFs

aXMtYXV0aG92ZzIwMQYIKwYBBQUHMAGGJWh0dHA6Ly9vY3NwMDkuYWN0YWxpcy5p

dC9WQS9BVVRIT1YtRzIwHwYDVR0RBBgwFoIUdXBsb2FkLmltbXVuaS5nb3YuaXQw

UQYDVR0gBEowSDA8BgYrgR8BFAEwMjAwBggrBgEFBQcCARYkaHR0cHM6Ly93d3cu

YWN0YWxpcy5pdC9hcmVhLWRvd25sb2FkMAgGBmeBDAECAjAdBgNVHSUEFjAUBggr

BgEFBQcDAgYIKwYBBQUHAwEwSAYDVR0fBEEwPzA9oDugOYY3aHR0cDovL2NybDA5

LmFjdGFsaXMuaXQvUmVwb3NpdG9yeS9BVVRIT1YtRzIvZ2V0TGFzdENSTDAdBgNV

HQ4EFgQUFCzbrEIZXwf4JgUy4YCgmpuPKJcwDgYDVR0PAQH/BAQDAgWgMIIBBQYK

KwYBBAHWeQIEAgSB9gSB8wDxAHYARJRlLrDuzq/EQAfYqP4owNrmgr7YyzG1P9Mz

lrW2gagAAAFyDO5cFgAABAMARzBFAiBc/J6oayZGC43Uoec5S432UxCy/AmXaX2P

0gDXEUjJxwIhAKr6mS90XWxe/wa599GmXLD0FYG7QFYYt3Hw2ef/7hk6AHcA9lyU

L9F3MCIUVBgIMJRWjuNNExkzv98MLyALzE7xZOMAAAFyDO5cVQAABAMASDBGAiEA

sdib2FsWyErV+T3IgJqnlw0quecJ8nlerqxHSi+jX+MCIQDySdDQ5ssmiu3pW9MY

60td+s/UOb6oIekdqZKCYTv1aDANBgkqhkiG9w0BAQsFAAOCAQEAD0DHgxyVPgl+

IOwRl6huoOiaFseBfR5dBHTyPa/axCCZxwtZNU8rkPPWfHp36e4iSb0HwEmMjAEr

h9lWR786ohUerN9EUd98Xais/RgJ0uN1TZfQM72nmgw0hYciy0MyUmULUSbbPSDs

JL5zs3pn2E7oCoagdNS14kpp/LDGo8iwitTK7XYtdOu/SAv1k9WfLjY3tR+hNAfJ

R9FTxyRYNFDOaWlwMgDISAdS3WHU8yJ6QntFTpLQ3vEHvTgswe+pTFzz2Yxl3CFk

D0AbbJ7AcBWDbAr+9H6GDF8uQ7om5SVm0CIUqdQRlG6RMetdz+36QPWuNiCV4c4O

gP7cycp+/Q==

35



-----END CERTIFICATE-----

subject=C = IT, ST = ROMA, L = ROMA, O = Sogei S.p.A., OU = Server Sicuri, CN =

upload.immuni.gov.it

issuer=C = IT, ST = Bergamo, L = Ponte San Pietro, O = Actalis S.p.A./03358520967, CN =

Actalis Organization Validated Server CA G2

---

No client certificate CA names sent

Peer signing digest: SHA256

Peer signature type: RSA

Server Temp Key: ECDH, P-256, 256 bits

---

SSL handshake has read ... bytes and written ... bytes

Verification error: self signed certificate in certificate chain

---

New, TLSv1.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384

Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

SSL-Session:

Protocol : TLSv1.2

Cipher : ECDHE-RSA-AES256-GCM-SHA384

Session-ID: ...

Session-ID-ctx:

Master-Key: ...

PSK identity: None

PSK identity hint: None

SRP username: None

Start Time: ...

Timeout : 7200 (sec)

Verify return code: 19 (self signed certificate in certificate chain)

Extended master secret: no

---

SwissCovid. Using testssl to connect to www.pt1.bfs.admin.ch one can see that the server
accepts TLS 1.2 connections only and accepts, interestingly, also the CBC-HMAC ciphersuite,
therefore allowing a more efficient attack using DECO. We report here a text extracted from
the standard output.

ECDHE-RSA-AES128-GCM-SHA256 ECDHE-RSA-AES256-GCM-SHA384

ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES256-SHA384

ECDHE-RSA-AES128-SHA

Cipher Suite Name (OpenSSL) KeyExch. Encryption Bits Cipher Suite Name (IANA/RFC)

---------------------------------------------------------------------------------------------

ECDHE-RSA-AES256-GCM-SHA384 ECDH 384 AESGCM 256 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

ECDHE-RSA-AES256-SHA384 ECDH 384 AES 256 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

ECDHE-RSA-AES128-GCM-SHA256 ECDH 384 AESGCM 128 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

ECDHE-RSA-AES128-SHA256 ECDH 384 AES 128 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

ECDHE-RSA-AES128-SHA ECDH 384 AES 128 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

Using openssl to connect to www.pt1.bfs.admin.ch with the CBC-HMAC ciphersuite,

36



one can see all the parameters of the established TLS session, including in particular a timeout
of 7200 seconds (i.e., 2 hours), that is very large and thus beneficial for our attacks. For
completeness we show here the standard output (we replace some potentially identifying data
by “...”).

openssl s_client -connect www.pt1.bfs.admin.ch:443 -cipher ECDHE-RSA-AES128-SHA

CONNECTED(00000003)

depth=2 C = BM, O = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

verify error:num=19:self signed certificate in certificate chain

verify return:1

depth=2 C = BM, O = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

verify return:1

depth=1 C = BM, O = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

verify return:1

depth=0 C = CH, ST = Bern, L = Bern, O = Bundesamt fuer Informatik und Telekommunikation

(BIT), OU = Swiss Government PKI, CN = www.pt1.bfs.admin.ch

verify return:1

---

Certificate chain

0 s:C = CH, ST = Bern, L = Bern, O = Bundesamt fuer Informatik und Telekommunikation

(BIT), OU = Swiss Government PKI, CN = www.pt1.bfs.admin.ch

i:C = BM, O = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

1 s:C = BM, O = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

i:C = BM, O = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

2 s:C = BM, O = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

i:C = BM, O = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

---

Server certificate

-----BEGIN CERTIFICATE-----

MIIHrDCCBZSgAwIBAgIUfE2HPqjnQrTf9FnR+q9p2lVpz3cwDQYJKoZIhvcNAQEL

BQAwTTELMAkGA1UEBhMCQk0xGTAXBgNVBAoTEFF1b1ZhZGlzIExpbWl0ZWQxIzAh

BgNVBAMTGlF1b1ZhZGlzIEdsb2JhbCBTU0wgSUNBIEczMB4XDTIwMDQyMTEwNDMw

OVoXDTIyMDQyMTEwNTMwMFowgakxCzAJBgNVBAYTAkNIMQ0wCwYDVQQIDARCZXJu

MQ0wCwYDVQQHDARCZXJuMT4wPAYDVQQKDDVCdW5kZXNhbXQgZnVlciBJbmZvcm1h

dGlrIHVuZCBUZWxla29tbXVuaWthdGlvbiAoQklUKTEdMBsGA1UECwwUU3dpc3Mg

R292ZXJubWVudCBQS0kxHTAbBgNVBAMMFHd3dy5wdDEuYmZzLmFkbWluLmNoMIIB

IjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA35hukOexPmA6JIyWxvxJWWvG

cB4AkeLloyKTf0nFr5NA4QxIhX8YmksDLL+HfkY+4Kf58PuWT00li00KpF4h9b4E

q5sOLFTJEkCmwLoZuP5E7dKFsOtXLfR/mH/5CqQAdLW8Tnhn2ZJ5YFvSDzjSOYuX

irRr5N3Y/FKrHa7ggYJKSdjvT25BIjtkimgEORAzqEwrgxgFgJ7rRqVVZ9G8I5q7

y3RIwYmJ4Qf/aF3R1iyYUxbcMQvk8G1sS/JEJ+MBALwgWXVNhswQSi0PcVtlSpNk

TGNB73SBbrzGEdozZqYQnoS378w0wu0iepY+K/hZx1D/euIe7CCxBG7XGKs+nQID

AQABo4IDJTCCAyEwCQYDVR0TBAIwADAfBgNVHSMEGDAWgBSzEom1qUs1vBUA8IDp

2HiH8RN8djBzBggrBgEFBQcBAQRnMGUwNwYIKwYBBQUHMAKGK2h0dHA6Ly90cnVz

dC5xdW92YWRpc2dsb2JhbC5jb20vcXZzc2xnMy5jcnQwKgYIKwYBBQUHMAGGHmh0

dHA6Ly9vY3NwLnF1b3ZhZGlzZ2xvYmFsLmNvbTAfBgNVHREEGDAWghR3d3cucHQx

LmJmcy5hZG1pbi5jaDBRBgNVHSAESjBIMEYGDCsGAQQBvlgAAmQBATA2MDQGCCsG

AQUFBwIBFihodHRwOi8vd3d3LnF1b3ZhZGlzZ2xvYmFsLmNvbS9yZXBvc2l0b3J5

MB0GA1UdJQQWMBQGCCsGAQUFBwMCBggrBgEFBQcDATA6BgNVHR8EMzAxMC+gLaAr

hilodHRwOi8vY3JsLnF1b3ZhZGlzZ2xvYmFsLmNvbS9xdnNzbGczLmNybDAdBgNV

HQ4EFgQU2F1pjrbfsqvpeWohTrbIn/4jRRQwDgYDVR0PAQH/BAQDAgWgMIIBfgYK

KwYBBAHWeQIEAgSCAW4EggFqAWgAdwCkuQmQtBhYFIe7E6LMZ3AKPDWYBPkb37jj

d80OyA3cEAAAAXGcXsluAAAEAwBIMEYCIQDJlsbMecVS6415SAqAI6ZqmRQLJq9M

U1dWJb/8fKJ2+gIhAJSksFLfhwuihMum/cONG0Bw1SnPODhBNLW1zAGeQnggAHUA

VhQGmi/XwuzT9eG9RLI+x0Z2ubyZEVzA75SYVdaJ0N0AAAFxnF7JcgAABAMARjBE

AiBNZUPkn8ArJVVnyRlthxUILagDylovYL393EbkQKXimwIgfdrGHf5n6Sjla2CC

37



P96wGdbOTls19hDMlYZK3W+eIQcAdgBvU3asMfAxGdiZAKRRFf93FRwR2QLBACkG

jbIImjfZEwAAAXGcXsncAAAEAwBHMEUCIGgZ4z5MgpIlcLvBkge/BEqJ/7sYT3ze

IXMrVizfwj2TAiEAyJYfJ6D9AYxRyvDcTwnWfHXers3SNbi7s0PuX5lkWsMwDQYJ

KoZIhvcNAQELBQADggIBAC3O3iZDQYcKZ+DyAx4HSzwLpIa5yMiungbkmQuN7RYO

40pPIiADc/V/P/x+cDSuttJa8eoUq9zXEA9VW+ETFOWszf5WE31+MjasmTqDyjqV

tNyrjAGACPhbH3J9ydGQX3SqdrGNwFiBRwTvxPqukFu3+JIoRpYMzwXfbRnig1fW

R+creYRgloizGYu/M4gqV8LBwE/k7plrwTwsA8BhijhcR5asC+htRSB2SaS+teN0

ski5EJ4ajcv78vkN9y+BFKMcq3Cb5jCjoCleUoMm/BVoQNs0ZAcLJmQ3VHVeeY/S

drI9OzODQ8dSyCZKm5KDMBS2inOljLyPinbtk7JZWLQDetbW1BsjaC98BNeriYQ1

0aavGr0TPFrC9NWAB5ze3342LsTPZwiIEeGhB4AGsVTO3oYRi3yc52r22W40mdcH

f+fRgCrqddoKdPgGGp8+p9+IsWConFjzEQpN5iJRJlzorCw8nvvuKkG2I+mj9hMK

WA3/r5m0C+/ZUw+rYLpLstbCoHDBymAFFOb6P66tMl3JSvb5/Rjnhrhmtccq7o5k

Qfmr2tGrNs+8cdrVN9efn4es30fljVGP98YNtVHz7rC/nicXU5eLxHSHna4iOwlU

wpuX5DOrnF35Y0YP6eJsJS/p7y+k3L3N/iavLOj0LVIILSlTJzOZgDSbK4tG6PNk

-----END CERTIFICATE-----

subject=C = CH, ST = Bern, L = Bern, O = Bundesamt fuer Informatik und Telekommunikation

(BIT), OU = Swiss Government PKI, CN = www.pt1.bfs.admin.ch

issuer=C = BM, O = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

---

No client certificate CA names sent

Peer signing digest: SHA256

Peer signature type: RSA

Server Temp Key: ECDH, P-256, 256 bits

---

SSL handshake has read ... bytes and written ... bytes

Verification error: self signed certificate in certificate chain

---

New, TLSv1.0, Cipher is ECDHE-RSA-AES128-SHA

Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

SSL-Session:

Protocol : TLSv1.2

Cipher : ECDHE-RSA-AES128-SHA

Session-ID: ...

Session-ID-ctx:

Master-Key: ...

PSK identity: None

PSK identity hint: None

SRP username: None

Start Time: ...

Timeout : 7200 (sec)

Verify return code: 19 (self signed certificate in certificate chain)

Extended master secret: no

---

38


	Introduction
	Our Contribution
	Related Work

	Trading TEKs in GAEN Systems
	 Take-TEK Smart Contract: Buying/Selling TEKs Uploads
	Subtleties in the Wild

	Exploiting JWTs to Trade TEKs
	Take-TEK-JWT and Auction-TEK: Attacks Leveraging JWTs
	Worry-Free Seller with JWT
	SwissCovid's Additional Risk: Next-Day JWT

	No Signatures? Connecting Smart Contracts to TLS Sessions
	Decentralized Oracles
	A Smart Contract Oracle

	Acknowledgments
	Tools
	MACs and Signature Schemes
	Public-Key Encryption Schemes
	NIZK proofs

	Useful Instantiations
	The ECDSA scheme
	Proving Knowledge of ECDSA signature

	Adding Seller's Privacy
	TLS Connections with Immuni and SwissCovid

