Terrorist Attacks for Fake Exposure Notifications in Contact
Tracing Systems®

Gennaro Avitabile, Daniele Friolo, and Ivan Visconti

DIEM, University of Salerno, Italy
{gavitabile,dfriolo,visconti}@unisa.it

Abstract

In this work we show that an adversary can attack the integrity of contact tracing systems
based on Google-Apple Exposure Notifications (GAEN) by leveraging blockchain technol-
ogy. We show that through smart contracts there can be an on-line market where infected
individuals interested in monetizing their status can upload to the servers of the GAEN-
based systems some keys (i.e., TEKs) chosen by a non-infected adversary. In particular,
the infected individual can anonymously and digitally trade the upload of TEKs without a
mediator and without running risks of being cheated. This vulnerability can therefore be
exploited to generate large-scale fake exposure notifications of at-risk contacts with serious
consequences (e.g., jeopardizing parts of the health system, affecting results of elections,
imposing the closure of schools, hotels or factories).

As main contribution, we design a smart contract with two collateral deposits that works,
in general, on GAEN-based systems. We then also suggest the design of a more sophisticated
smart contract, using DECO, that could be used to attack in a different way GAEN-based
systems (i.e., this second smart contract can succeed even in case GAEN systems are repaired
making ineffective the first smart contract).

Our work shows how to realize with GAEN-based systems (in particular with Immuni
and SwissCovid), the terrorist attack to decentralized contact tracing systems envisioned by
Vaudenay.

Keywords: Contact Tracing, GAEN, Smart Contracts

1 Introduction

During the COVID-19 pandemic, several governments have decided to use digital contact tracing
systems in addition to other practices to contain the spread of SARS-CoV-2. The reason is that
digital contact tracing could help in notifying at-risk exposures to individuals that have been
in close proximity to people who subsequently tested positive to SARS-CoV-2. This could
be very useful especially when the involved individuals do not know each other. If digital
contact tracing systems worked perfectly, they would certainly be effective in alerting at-risk
individuals who, following some prescribed procedures (e.g., informing doctors, staying at home
in self-quarantine), may significantly limit the spread of the virus. Such systems have been
highly recommended by some governments and in some cases (e.g., in Switzerland) an alert
received by a contact tracing smartphone application allows to get a test for free.

*This paper is the full version of an ACNS Publication [AFV21].

The most used contact tracing systems rely on Google-Apple Exposure Notifications (GAEN),
a feature offered by recent updates of iOS and Android and therefore available on a large frac-
tion of currently used smartphones. These systems are widely used in Europe (e.g., Austria,
Belgium, Germany, Ireland, Italy, Poland, Spain, Switzerland) and cross-border compatibility
has recently been implemented[HMoreover, in the US, several states have adopted GAEN-based
systems. GAEN allows to run decentralized contact tracing where there is very low control from
governments, and this makes attacks from third parties generally simpler to mount and harder
to mitigate.

GAEN-based contact tracing systems. The approach of GAEN-based contact tracing
systems is to use Bluetooth Low Energy (BLE) to detect close proximity contacts among
smartphones. Each smartphone broadcasts random pseudonyms via BLE, and this informa-
tion is received by smartphones in close proximity along with some encrypted metadata. If
a citizen is tested positive and decides to notify others, she will upload a set of secret keys
named Temporary Exposure Keys (we will refer to them as TEKSs in the remainder of the pa-
per) corresponding to previous days in which she was presumably contagious. Starting from
a TEK, it is possible to generate all the pseudonyms broadcast by a user during a day. The
receivers of such pseudonyms will then manage to decrypt the stored metadata to then evaluate
a risk factof} The TEKSs are disseminated to the users via a back-end server that periodi-
cally posts a list of digitally signed TEKs. A detailed description of GAEN can be found at
https://covidl9.apple.com/contacttracing,.

An important point is that GAEN evaluates the reported TEKs if and only if the digital
signature verifies successfully under a public key that has been previously communicated by the
developers to Apple and Google. Google motivates this requirement saying that it ensures that
keys received by the devices are actually from the authorized server and not from malicious
third partiesﬂ Theoretically, one could also rely on server authentication using TLS, but the
use of Content Delivery Networks (CDNs) to disseminate TEKs (e.g., the CDN used by Immuni
is operated by Akamai, while the SwissCovid’s one is operated by Amazon) requires protection
against malicious modifications operated by the CDN itself. Unfortunately, as we will see next,
this requirement paves the way for the development of dark economies where TEKs to be
uploaded by infected users are traded through smart contracts.

False positives due to attacks. Since BLE was not originally designed to detect a precise
distance among devices, the evaluation of the risk factor is prone to significant errors. To this
regard, Leith and Farrell recently evaluated the reliability of BLE for digital contact tracing in
several real-world scenarios |[LF20Db)].

While false positives due to BLE limitations in measuring distance can indiscriminately affect
all individuals using the smartphone apps, a much more concerning threat allowing to direct false
positive alerts to specific targets has been pointed out in prior work (e.g., see [Vau20a,Pie20]).
Indeed, GAEN-based contact tracing systemsE] can be heavily abused through replay attacks.
In this case, the pseudonyms sent by an individual considered at risk (e.g., a person who is
taking a test) are transmitted by an adversary to a different location in order to create a fake
proximity contact. The attack can have a specific target but can also be performed at large

'EU eHealth Network: European Proximity Tracing. An Interoperability Architecture https://lasec.epfl.
ch/people/vaudenay/swisscovid/swisscovid-ana.pdf.

“For example, metadata include information useful to estimate the distance among the smartphones which
clearly impacts on estimating the risk of a contact.

3Google: Exposure Notification Reference Key Server https://google.github.io/
exposure-notifications-server/.

“*Sometimes for brevity we will just say GAEN systems.

https://covid19.apple.com/contacttracing
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://google.github.io/exposure-notifications-server/
https://google.github.io/exposure-notifications-server/

scale. Recently, in [RGK20| Gennaro et al. discussed how the capability of running such attacks
at large scale can be used to put a category of citizens in quarantine with the consequence of
severely compromising the results of an election. In general, the malicious generation of false
positives can be harmful in various ways, the health system can be overloaded of requests that
can penalize those citizens who instead are really affected by the virus. A student can cause the
complete closure of a school or university and similar attacks can be directed to shops, malls,
gyms, post offices, restaurants, factories.

Risks related to replay attacks were already known back in April 2020, and GAEN systems
have a pretty large time window (about 2 hours)E] for pseudonyms to be replayed successfully.
Nevertheless, governments have so far considered unlikely that such attacks can produce enough
damage to cancel out the positive effects of genuine notifications of at-risk contacts. This is
could be due to complications involved in the attack. Indeed, an adversary may not want to
get herself infected, or it could not be easy to identify, and be in physical proximity with, an
individual that soon will report to be infected.

In [Vau20b], Vaudenay envisioned the possibility of using smart contracts to realize a ter-
rorist attack against decentralized systems, therefore the attack could potentially apply to
GAEN-based systems as well. In this case, the attacker would spread on his targets some
pseudonyms, subsequently promising through a smart contract a reward to whoever uploads
the corresponding keys. Therefore, an infected individual who participates in the contract will
cash a reward, and false positive alerts will raise on the smartphones of the targets selected by
the terrorist. More details are discussed Sec. [L.21

1.1 Owur Contribution

In this paper, we show that the terrorist attack envisioned by Vaudenay can be concretely
mounted against currently deployed GAEN-based contact tracing systems. In particular, we
have analyzed its concrete feasibility with respect to two systems, such as Immuni [Imm20],
used in Italy and SwissCovid [Swi20], used in Switzerland. We expect several other deployed
GAEN systems to suffer from the same vulnerabilities.

More generally, our work shows how to attack the integrity of currently deployed GAEN-
based contact tracing systems by leveraging blockchain technology. A very alarming side of our
contribution is that current systems can be compromised without the need for the attacker to
get infected, or to be with high probability in close proximity to individuals that will be soon
detected positive and will upload the keys. Our attacks consist of smart contracts to establish
a mediator-free market where parties, without knowing each other, without meeting in person
and without running risks to be cheated, can abuse exposure notifications procedures of GAEN
systems. We give a brief description of the mentioned smart contracts in the following.

Trading TEKSs exploiting publicly verifiable lists of infected TEKs. As a main con-
tribution we show a smart contract named Take-TEK that allows a buyer (i.e., the adversary
willing to spread false positive alerts) to decide the TEKs that will be uploaded by a seller (i.e.,
the infected individual that is willing to monetize her right to upload TEKSs to the servers of the
GAEN system). The smart contract requires the buyer to deposit the amount of cryptocurrency
(we will call it prize) that he is willing to give to the seller. The seller instead will deposit an
amount of cryptocurrency in order to reserve a time slot in which she will try to upload the
TEKSs. In case she does not manage to complete the upload of the TEKS, the deposit will be
assigned to the buyer. The deposit of the seller is therefore useful to make unlikely that a seller

Google: Exposure Notification Specification https://blog.google/documents/69/Exposure_
Notification_-_Cryptography_Specification_v1.2.1.pdf.

https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf

tries to prevent other sellers from completing the job. Additionally, we can hide the TEKS so
that, even observing all transactions, it is not clear which TEKs have been traded using the
smart contract among the many TEKSs jointly published by the server of the contact tracing
system during a slot.

Take-TEK crucially relies on the server publishing such lists of TEKs along with a signature
verifiable with a publicly known public key. We show that the Take-TEK attack can be deployed
to generate fake false positive alerts w.r.t. both Immuni and SwissCovid. Indeed, both systems
follow strongly the design of GAEN and announce such signed lists of TEKs using ECDSA
signatures.

Regardless of Immuni and SwissCovid making available or not their signature public keys,
we have successfully extracted the public keys from previously released signatures. Therefore,
Take-TEK can be instantiated to attack both (and possibly many more) systems. More details
are discussed in Sec. 2

Trading TEKs without publicly verifiable signatures: DECO. One might think that
realizing the terrorist attack via smart contracts (e.g., Take-TEK) crucially relies on exploiting
those signed lists of TEKs under a known (or extractable) public key. At first sight, a fix to such
vulnerabilities consists of hiding the public keys and to use a signature scheme such that it is
hard to extract the public key from signed messages. However, we show that things are actually
more complicated for designers of contact tracing systems. In particular, we show another way
to buy/sell TEKs that follows a completely different approach. The key idea is requiring the
seller to prove that a TLS session with the server led to a successful upload of the buyer’s
TEKs. The only requirements on the communication between smartphone app and server are
that 1) both the TEKs and the positive (or negative) outcome of the upload procedure are
part of the exchanged application data in the TLS session, and 2) the upload phase consists of
just one request made by the client and the response of the sever (e.g., as it is in SwissCovid).
At first sight, the attack seems very hard to realize since notoriously TLS produces deniable
communication transcripts when it comes to application data (i.e., exchanged messages are
only authenticated and not digitally signed). However, we exploit a very recent work of Zhang
et al. [ZMMT™]. They show how to build a fully decentralized TLS oracle, named DECO, for
commonly used ciphersuites. Further details are described in Sec.

Remark on the actual work done by our smart contracts. Both our smart contracts
provide full guarantees to both seller and buyer at the expense of running some cryptographic
operations that can obviously produce transaction costs. Nevertheless, if we make an additional
optimization based on pragmatism, the expensive computations may happen very rarely in
practice. Indeed, we notice that the main computational cost for those smart contracts consists
of checking at the very end that the seller has completed the task of uploading TEKs correctly.
We observe that a buyer can check that TEKs are published by the server on his own. As
a result, he would be satisfied in finding out that the trade has been completed successfully.
Therefore, it is natural to expect that the buyer would give his approval to the smart contract to
transfer the money to the seller avoiding the execution of expensive computations, and therefore
saving transaction costsﬂ Since this behavior would be visible in the wild, the reputation of
the buyer would also benefit from such approvals and more sellers would want to run contracts

50bviously, the smart contract can be adjusted so that, in case the buyer does not give his approval and the
seller shows that she completed successfully her part of the contract, the expensive transactions costs due to the
lack of help from the buyer are charged to the wallet of the buyer. A simple way to realize this could be asking
for an additional deposit made by the buyer which could clearly cover the transaction costs of the seller in case
the buyer does not give his approval and the seller shows that she successfully completed the upload procedure.

with him. Moreover, a (somewhat irrational) buyer that refuses to speed up the execution of
the smart contract would anyway not stop the final transfer of the deposited money to the
seller. As a result, the buyer would only get a worse reputation. In conclusion, the expensive
work done by our smart contracts belongs to pieces of code that would rarely be executed in
practice.

1.2 Related Work

The design of GAEN is very similar to the low-cost design of DP-3TE], and thus several vulner-
abilities identified in prior work generally apply to both systems. Tang [Tan20] observes that
DP-3T is vulnerable to identification attacks and presents an accurate survey about contact
tracing systems. In [Vau20a], Vaudenay reports both privacy and security issues. The most
famous privacy attack is the so-called Paparazzi attack. Basically, it is possible through passive
antennas to track infected individuals over a certain time window{ﬂ during which pseudonyms
are linkable.

Regarding security issues, Vaudenay extensively considers false alert injection attacks, where
the adversary manages to raise false alerts on the smartphone apps of targeted victims. Within
this category, there are replay and relay attacks. GAEN is vulnerable to relay attacks and
to replay attacks carried out within two hours. Vaudenay in [Vau20a] and Pietrzak in [Pie20]
proposed, back in April 2020, some solutions to defeat these attacks, but they have not been
included neither in DP-3T nor in GAEN designs so far. Baumgirtner et al. [BDF 20| provide
empirical evidence of the concrete feasibility of both Paparazzi and replay attacks. Pietrzak
et al. [ACK™21] analyze inverse-sibyl attacks in which multiple adversaries cooperate to use
the same pseudonyms. If one of the attackers gets to upload his TEKs, many false alerts
may be raised. This attack could be used in combination with either the replay attack or our
smart-contract based attacks in order to increase the number of affected targets. Iovino et
al. [IVV21] concretely demonstrate the possibility to inject false alerts by replaying released
TEKSs. In particular, pseudonyms associated with already published TEKSs are transmitted to
smartphones whose clock is corrupted in order to make them believe these pseudonyms are
valid for risk matching. They also show that several apps may publish TEKSs that are still valid.
These TEKSs can be used to generate false alerts without the need of corrupting smartphones’
clocks.

Several GAEN-based systems are currently used in the world for digital contact trac-
ing. Vaudenay and Vuagnoux, and later Dehaye and Reardon, extensively evaluated Swiss-
Covid [VV20,DR20b, DR20a], confirming some vulnerabilities showed in previous works and
elucidating new ones.

Finally, another class of attacks leading to false alerts involves bribing. Vaudenay envisions
various possibilities for the development of dark economies [Vau20b] which could support false
alert injection attacks, allowing them to be carried out at very large scales. In particular, the
Lazy Student attack is connected to replay attacks. It is based on a dark economy where a
hunter (i.e., seller) collects pseudonyms of individuals who will likely become infected later on,
and deposits them on a smart contract. If the TEKs corresponding to such pseudonyms are
uploaded to the server of the contact tracing system, the hunter gets a reward paid by a buyer
(i.e., the lazy student). If replay attacks are doable, the buyer can use them to make target
victims’ apps raise false alerts. This dark economy is sustainable only if the smart contract

"Decentralized Privacy-Preserving Proximity Tracing https://github.com/DP-3T/documents/blob/master/
DP3T%20White/20Paper . pdf

°In GAEN, depending on the particular application, this time may amount to up 14 days if the adversary
colludes with the authorities, and to one day assuming TEKs are properly mixed and anonymized prior to
publication.

https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf

has a way to check that pseudonyms were actually reported to the official server. Another
form of dark economy described by Vaudenay is the terrorist attack. It involves users reporting
pseudonyms that differ from the ones used during the previous days. In fact, in both Immuni
and SwissCovid there is no mechanism forcing users to upload genuine TEKs. Again, a TEK
could be posted on a smart contract automatically issuing a reward to whoever reports it to
the contact tracing system. This purchase may lead to a massive amount of fake notifications,
without relying on replay attacks.

On the (missing) risk assessment of the terrorist attack. The huge impact of false
injection attacks seems to have gone unnoticed or just ignored. In [LHML20] the cybersecurity
risks of contact tracing systems are reviewed and compared using a subjective scoring scheme.
The report considers injection of false alerts notifications by only mentioning replay attacks or
trivial attacks such as recruiting people with symptoms, while the terrorist attack is not even
mentioned.

Vaudenay and Vuagnoux expressed these and other concerns in their analysis of Swiss-
Covid [VV20]. The Swiss National Cyber Security Center (NCSC) answered to their criticism
seemingly downplaying those risks. The possible development of dark economies was ignoredﬂ7
and a recap table on security issues reports on SwissCovid marks the concerns expressed by
Vaudenay as addressed, including false alert injection attack&{r_q Nevertheless, no solution or
mitigation to such problems is reported.

Bribing attacks on smart contracts. As we discuss in Section 2] our smart contracts make
possible to trade TEKSs reducing at a minimum the risks related to interacting with a dangerous
entity such as a criminal. Bribery attacks on smart contracts for different scenarios have been
proposed in the context of bribing miners in Ethereum and Bitcoin [MHM18, LK17,(TJS16,
VTL17,NKW21].

2 Trading TEKs in GAEN Systems

The GAEN API has been created to provide an efficient platform for exposure notifications on
top of which countries can easily develop digital contact tracing systems. GAEN is supposed
to solve various technical problems (e.g., changing BLE MAC address synchronously with the
rotation of pseudonyms, keeping BLE advertisements on in background) on a large fraction
of available smartphones{ﬂ At the same time, the API is so inflexible that it forces anyone
who is willing to benefit from it to adopt a specific design for contact tracing. What is left in
the hand of the developers is merely the creation of the graphical interface, the choice of some
parameters and the realization of a server to gather and spread data about infected users and,
more importantly, an authentication mechanism to avoid the upload of data by non-infected
users.

Whenever a user is tested positive, she is given the right to upload her TEKSs to the server
so that the other users can be notified a risk of infection. The mechanism can be implemented

9Swiss National Cyber Security Center: Security Issue Submission [INR-4434]. Detailed analy-
sis. https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.
download.pdf/INR-4434_NCSC_Risk_assessment.pdf

USwiss National Cyber Security Center: SwissCovid Proximity Tracing System - Public Security Test,
page 8 https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_
Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf

“*Indeed, see the case of UK that tried to develop a system without GAEN but had to give up https:
//www.bbc.com/news/technology-53095336.

https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.bbc.com/news/technology-53095336
https://www.bbc.com/news/technology-53095336

in different ways. For example, a simple method consists of a code generated by the app that is
given first to the health operator in order to activate it on the server. Then, once the server has
authorized the code, the app will upload the TEKSs along with the code (e.g., Immuni follows
this approach). More complex mechanisms may be put in place. However, the attack we show
next works for every GAEN-based contact tracing system under some natural assumptions that
we will discuss later.

In order to evaluate the contagion risk, GAEN provides appropriate methods that take
as input two files containing the last TEKs and the related signature. The matching is not
performed if the signature does not verify under a public key previously known to Google and
Apple. The first file is named export.bin and contains, along with other fields, a list of TEKs
belonging to infected users that have decided to perform the upload procedure. Each TEK
has also a date attached, which indicates when such TEK was used. The second file, named
export.sig, contains a digital signature of the file export .bin[r_gl An example of export.bin
is reported in App [C]

2.1 Take-TEK Smart Contract: Buying/Selling TEKs Uploads

To simplify the description, we will refer to the TEKs file published by the server as a list of
pairs of values. In each pair, the first value is a TEK and the second value is the corresponding
date of usage date. Let the seller P be an infected user who would like to monetize her right to
upload TEKs, and buyer B someone who is interested in paying P in order to upload TEKs of
his interest. If the seller can prove she acted as promised, this selling process can be executed
remotely remaining automated, anonymous, and scalable. GAEN’s design requiring the list of
TEKs to be signed makes the verification easy to the smart contract, and greatly facilitates
such trades. The trade can be performed using a blockchain capable of executing sufficiently
powerful smart contracts (e.g., Ethereum). Such smart contract guarantees that P gets an
economic compensation if and only if P uploads to the server the TEKSs specified by B.

The high-level functioning of the smart contract is as follows. (1) B creates the smart-
contract posting a list of TEKs with the related date, and deposits a prize to be redeemed by
a seller. (2) An interested P also makes a small deposit to declare her intention to upload the
TEKSs specified by B (the purpose of this small deposit is explained later). After having made
this deposit, (3) P has a specified amount of time to complete the upload procedure. Before the
time runs out, P must provide a list of TEKs which includes all the pairs (tek, date) specified
by B, along with a valid signature under the server’s public key. If P manages to do so, she
gets a reward, otherwise both deposits go back to B.

By making a deposit, the seller reserves a time slot during which she can perform the upload.
Such deposit protects the buyer from denial of service (DoS) attacks by sellers who actually do
not have the right to upload TEKs. Here, as in the remainder of the paper, with the word DoS
we mean attacks carried out by fake sellers which prevent honest sellers from participating to
the trade.

We name the above smart contract Take-TEK and the attack that leverages the use of this
smart contract Take-TEK attack. The time window given to P must be wide enough to take
into account that new TEKSs are not continuously released by the server, in fact, several hours
may pass between the submission of a TEK and its publication. Obviously, the amounts of
both deposits will be significantly higher than transaction fees. A custom software is needed to
upload arbitrary TEKs. However, this simple software may be developed even by other entities

12Apple: Setting Up an Exposure Notification Server https://developer.apple.com/documentation/
exposurenotification/setting_up_an_exposure_notification_server. Google: Exposure Key ex-
port file format and verification https://developers.google.com/android/exposure-notifications/
exposure-key-file-format

https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format

(not just the buyers), and publicly distributed on the Internet or other sources (e.g., Darknet).
Therefore, all the seller would need to do is just running a software on a smartphone/computer;
something that is easily doable by a large fraction of the infected citizens willing to gain mone
Additionally, the time given to the seller to complete the upload after having been tested positive
must be long enough to reserve a slot on the blockchain (i.e., enough to wait that the transaction
related to the seller’s deposit gets confirmed) and subsequently send the TEKSs via the custom
software.

Attack description. B and P owns wallets pkg and pkp respectively. The buyer has no
assurance that the seller is actually an infected person, and she is not just a malicious party
trying to slow down the buyer’s plan. Thus, some collateral must be deposited by P too. The
seller will lose the collateral deposit in case she is not able to prove that she sent the buyer’s
TEKSs to the server S. We use a signature scheme (Gens, Signg, Vers). The protocol description
is depicted in Fig. [I| and a brief overview of the main functions follows below.

Constructor(Tp,vks,t,dp): It takes as input a set of tuples Ty := (tek?,date?)ie[n] with
n < maxteks [13-], where tek; is the i-th TEK of the buyer and date; is the associated date,
the verification key vks to be used to verify the signature of the TEKSs list, a timestamp
t, indicating the maximum time the seller has to provide the correct list and signature,
and the collateral value dp that the seller must deposit.

Deposit(): must be triggered by B and takes as input a quantity p of coins as the payment for
the seller.

Promise(): must be triggered by the seller P by sending a quantity of collateral deposit dp as
a payment when invoked.

SendTeks(Tks, or): must be triggered by the seller P to provide a list of TEKs together with
its signature op. Let the list released by the server be T = (tek;, datei)ie[N], where N is
the number of published TEKSs. It checks that:

e T C T and Vers(T, or;vks) = 1.

If the checks passes, dg coins are transferred to the seller’s wallet pkp.

2.2 On the Practicality of Take-TEK Attack

Various proposed upload authorization mechanisms include manual steps (e.g., SwissCovid uses
an authorization code, termed covidcode, which lasts for 24 hours) which, in order to function
properly, naturally give the seller enough time to perform the steps mentioned in the section
above. For example, if a code is communicated to the infected user via a phone call, she should
be given a fairly large amount of time to write down the code and insert it in the app later on
(the needs of people with disabilities and of elder people must be taken into account). Even
systems that have fairly strict requirements on the time by which the upload procedure must be
completed should allow for errors and recovery procedures, which may give additional time to
the future seller. For example, Immuni requires that the infected user dictates, via phone call,
a code that appears on her device. After that, the user must complete the upload within two

13COVID-19 by itself caused a global economic crisis which led to lower wages and job losses. More details at
https://en.wikipedia.org/wiki/COVID-19_recession.

"The maximum number of TEKs that can be uploaded in one shot depends on the particular contact tracing
system.

https://en.wikipedia.org/wiki/COVID-19_recession

Take-TEK Attack

We consider two entities: the seller P and the buyer B, with wallets pkz and pkp respectively.
The protocol works as follows:

1. B invokes the constructor, taking as input the buyer’s TEKs list Tz, the server veri-
fication key vkg that will be used to verify the signed TEKSs list, a timestamp ¢, and a
value dp indicating the minimal amount that 7P must deposit in order to participate.
After having created the contract, B triggers the function Deposit to deposit the prize
p aimed for the seller who uploads Tz to the server.

2. P deposits her collateral by triggering the function Promise. Now the seller has at
most time ¢ to send a TEKSs list T signed by the server.

3. If P, before time t, triggers the function SendTeks submitting a signed TEKs list
T such that it satisfies conditions T C T and Vers(T, or;vks) = 1, the collateral
deposit dp of P and the prize p are transferred to P’s wallet. Otherwise, if ¢ seconds
have passed, they are moved to B’s wallet.

Figure 1: The steps followed by buyer B and seller P to carry out the Take-TEK attack.

minutes. If this does not happen, the procedure must be repeated. Additionally, the system
should be tolerant. People should have the opportunity to perform the upload procedure later on
if they are unable to do it in that precise moment. It is worth noting that strict requirements on
the upload phase reduce users’ privacy. A clear example is Immuni, where the medical operator,
by checking whether a code has been used or is instead expired, gets to know whether or not
the infected user actually uploaded her TEKs.

Implementation. We implemented our results as a smart contract for Ethereum, published
it in a public repositoryE] and tested it locally. Since Ethereum does not use ECDSA-SHA256
(i.e., the one used in GAEN) for built-in transaction signature verification, there is the need
to use specific solidity smart contract librariesFE] which lead to extra gas usage. Considering
the change of 206 dollars per single ETH token on the 20th of July 2020, signature verification
costs around 11 dollars (1235000 of gas). In order to compute the full cost, one should add
about 0.4 dollars (45000 of gas) for each TEK that is contained in the export.bin ﬁle{ﬂ Note
that our smart contract can handle export files large as the maximum data that an Ethereum
transaction can handle at most. Details on how to deal with such limitation can be found in

App.

2.3 Subtleties in the Wild

In we gave a high-level overview of how TEKs uploads can be sold safely via blockchains.
However, there are some subtleties we overlooked for the sake of simplicity. We first analyze the

5Code available at https://github.com/danielefriolo/TEnK-U.

The one we wused for signature verification is available at https://github.com/tdrerup/
elliptic-curve-solidity.

""The cost of 45000 of gas includes TEK extraction, hashing of the export file for signature verification, checking
if the stored TEKs are in the extracted ones. To simplify the gas evaluation, we assume that B stores only one
TEK in the contract.

https://github.com/danielefriolo/TEnK-U
https://github.com/tdrerup/elliptic-curve-solidity
https://github.com/tdrerup/elliptic-curve-solidity

advantages for adversaries when using automated trade compared to already known attacks.
Then, we consider certain problems that arise while trying to concretely mount our attack
against deployed GAEN-based contact tracing systems. We also show how these difficulties are
easily tackled if very small modifications to our attack are made.

Advantages of automated trade (for an adversary). One might think that malicious
injection of fake TEKSs is inherent in decentralized contact tracing systems since there is no
control over the smartphone used by infected individuals and thus, when the time of the upload
comes, the infected person can always use a smartphone belonging to someone else.

While it is true that such simple attacks are very hard to tackle, they have limited impact

for at least two main reasons: 1) the buyer must handover his smartphone to the seller, and this
requires physical proximity; 2) sellers and buyers must trust each other since an illegal payment
must be performed without being able to rely on justice in case of missing payment or aborted
upload of keys. Indeed, even if in need of money, people are generally afraid of dealing with
criminals since they may get scammed or threatened. Additionally, the buyer might expose the
sellers’ identities to the authorities in case he gets arrested or legally persecuted. Equally, the
buyer may share the same concern with respect to an unreliable seller. It goes without saying
that some citizens are prone to violate the rulesf;g] when they believe that risks are low compared
to the advantages.
As such, attacks involving the exchange of smartphones, or the usage of a malicious app up-
loading TEKSs sent by a criminal contacted directly by the infected citizen, do not scale and
their damage may be considered tolerable. Having a mechanism which allows this trade to
happen remotely, in anonymity and ensuring no party is cheated, solves all the above problems
for parties willing to abuse contact tracing systems. In fact, it provides a framework for large-
scale black markets of TEKs. The seller would not feel threatened in any way and could easily
earn money, on the other hand, the buyers would benefit from a larger set of users to be in
business with, therefore succeeding in many possible attack scenarios. Other systems for black
markets based on reputations could also be used, but they are clearly less appealing than the
transparency and usability of mediator-free smart contracts.

A worry-free seller. The effectiveness of a digital contact tracing system is strictly related
to various factors among which the percentage of active population using them. Appropriate
measures should be taken to earn citizens’ trust since it is the only way to guarantee broad
adoption. With this in mind, the European Commission released a series of recommendations
in relation to data protection stating the need of identifying solutions that are the least intrusive
and comply with the principle of data minimization [Eur20]. A similar recommendation has been
given by the Chaos Computer Club (CCC)EgL the Europe’s largest ethical hackers association,
which explicitly states that “data which is no longer needed must be deleted”. Corona-Warn, the
German contact-tracing system, declares to be fully compliant with CCC’s guidelineﬂ Many
other systems are inspired by similar principles. For example, the Italian system Immuni also
declares that data is deleted when no longer neededFE]7 as well as the Swiss system SwissCovid
which also specifies a retention period for the TEKSs and the upload authorization codes @ In

8The infected person also commits a violation by allowing the injection of fake TEKs.

1910 requirements for the evaluation of “Contact Tracing” apps https://www.ccc.de/en/updates/2020/
contact-tracing-requirements.

“OCriteria for the Evaluation of Contact Tracing Apps https://github.com/corona-warn-app/
cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine . mdl

“'https://github.com/immuni-app/immuni-documentation,

22Corona-Warn-App Solution Architecture https://github.com/corona-warn-app/cwa-documentation/
blob/master/solution_architecture.md.

10

https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/immuni-app/immuni-documentation
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md

its recommendation to build a verification server authenticating the uploaded TEKSs, Google
states that identifiable information should not be associated with uploaded data]

The adoption of the above measures ensures that uploaded data do not link to, nor identify a
particular individual. This is very important considering that GAEN systems are vulnerable to
the Paparazzi attack@ [Vau20a.

Evaluation of seller’s risks. Considering the above data minimization principles, are the
seller and the buyer at risk of being legally persecuted for a trade that may be deemed as illegal?
The answer seems to be no. If data is handled as specified above, there would be no way to
associate the seller to its uploaded TEKs at a later time. Data exchanged during the attack
would also not directly compromise neither the buyer nor the seller@

However, there is a problem for a seller who really wants to minimize the chance of getting
caught. In fact, since the TEKs proposed by the buyer are posted in clear on the blockchain,
authorities may become aware of them and activate ad-hoc procedures monitoring the incrimi-
nated TEKs and exploiting the upload authorization process to identify the guilty seller. This,
in fact, does not seem to directly contradict the data minimization principle when national
security is at stake. If the server getting the TEKs upload monitors the requests (e.g., by
storing connection logs) without colluding with the health authority, the seller could be easily
incriminated after the TEKs have been detected in the smart contract by just looking at her IP
stored together with such request. However, in this case, the usage of an anonymity service like
Tor [DMS04] can easily reduce the chance of getting caught. If the authorities are colluding, the
upload authorization codes (e.g., the covidcode) may be associated with the identities of infected
users, and TEKs could be in turn mapped to a precise individual via such codes. However, by
slightly increasing the complexity of the smart contract, such risk may be completely avoided. It
suffices for the buyer to encrypt his TEKs with a public key provided by the seller, who then will
use a non-interactive zero-knowledge (NIZK) proof system to prove that the TEKs encrypted
under the specified public key are indeed contained in the list signed with the server’s public
key. This requires an additional interaction with the buyer, who has to publish the encrypted
TEKs (see App. for more details). Once again, the seller is protected by a timer which
assigns her all the deposits if the buyer does not reply. Efficient Ethereum implementations
of NIZK proofs (see App. are known in literature, like NIZKs for Y-protocols [Will8] or
zk-SNARKs [Sem20,ZoK20.|ZkD20].

Even if the buyer decides to claim the authorship of the attack at a later point in time (e.g.,
as it usually happens for terrorist attacks) by opening the encrypted values on the blockchain to
published TEKSs, the seller would not be at risk if data was handled according to the principles
of data economy and anonymity. Any evidence based on contact tracing data would be a clear
indicator that those principles have been violated. This could result in a big disincentive in using
the app, since citizens may think (probably rightfully) that data could also be abused for other
reasons, perhaps for mass surveillance purposes. Finally, we want to point out that even if several
researchers raised the concern about the possible birth of black markets [Vau20b, RGK20], we
did not find any document related to any contact-tracing system, either issued by governments

23Google: Exposure Notification Verification Server https://developers.google.com/android/
exposure-notifications/verification-system.

“*In Paparazzi attack, through passive antennas one can link pseudonyms used by an infected user tracing him
over the duration of a TEK or for more days if the TEKs are linked. Therefore leaving open the possibility to
link such data to a person’s real identity would be extremely incautious.

25In this analysis, we refer only to contact tracing system data and messages exchanged via the blockchain
during the execution of the attack. We do not take into account border-line situations as, for example, the case
where there is only a single infected individual. We also ignore additional information that may help investigators
figuring out who the seller is, for example how the money are spent after the trade.

11

https://developers.google.com/android/exposure-notifications/verification-system
https://developers.google.com/android/exposure-notifications/verification-system

or national security agencies, which deeply evaluates these risks. To the best of our knowledge,
no risk analysis ever mentions to monitor the dark web and blockchains looking for suspicious
smart contracts. It goes by itself that if blockchains are not monitored, all extra measures taken
in this paragraph to protect the seller are not necessary.

Other subtleties. There are two other subtleties with limited impact to consider for the
actual realization of the attack. We describe them in App. and App. and shortly
mention here:

o Extracting public keys from signatures: Generally, servers’ public keys do not seem to have
been made publicly available neither by Google and Apple, nor by the countries which
deployed GAEN-based contact tracing systems{z_q However, the signature algorithm used
(i.e., ECDSA) allows to retrieve this public key starting from a pair of signed messages.

e Updates of public keys: The structure of the export.bin file allows for updates of the
used digital signature key (see App. . Therefore, it might happen that, after the seller
makes the deposit and accepts to upload the buyer’s TEK, the server, by coincidence,
decides to use a new key which was never used before, thus producing a signature that
is not verifiable under the public key posted on the smart contract. However, by making
a slight modification to the smart contract, it is possible to handle also this unfortunate
event. Moreover, keys have changed very rarely in export files up to now.

3 Connecting Smart Contracts to TLS Sessions

The Take-TEK attack relies on the fact that a digital signature is used to authorize uploads.
Additionally, the ability to extract the public key from signed messages may also play a key role.
Therefore, one might think that to protect GAEN systems the public key should remain hidden
and the signature scheme should be such that extracting the public key from message-signature
pairs is hard. In this way, due to the inability of allowing a smart contract to verify that a
TEK is officially in a list of infected TEKSs, the attack would fail. However, things are not so
easy. The previous smart contract exploited the public verifiability of the signatures because
this is what is used in GAEN systems. If a different method is used, it might be abused again.
Indeed, we show that TLS oracles can be used to prove to a smart contract that an upload was
successfully performed, without relying on signatures of TEKSs.

3.1 Decentralized Oracles

Recently, Zhang et al. [ZMMT], introduced the concept of Decentralized Oracles. Roughly, an
oracle is an entity that can be queried by a client to interact with a TLS server and help the client
proving statements about the connection transcript. Previously known oracle constructions rely
on trusted/semi-trusted execution environments [ZCC™ 16|, thus not giving any help in our case.
DECO [ZMMT] is the first work where a fully-decentralized construction is proposed for specific
ciphersuites such as CBC-HMAC and AES-GCM coupled with DH key exchange with ephemeral
secrets. We recall that a TLS connection is divided in two parts: a handshake phase where key
exchange is performed, and a phase during which the transferred data is encrypted/decrypted by
the client/server using the key exchanged in the previous phase. GAEN servers usually accept
Elliptic-Curve Diffie-Hellman key Exchange (ECDHE) for the first phase, while for the second

260Once a contact tracing system handles his public key to Google, it can completely rely on GAEN APIs
to perform signature verification without storing the public key in clear to the app source code (see https:
//developers.google.com/android/exposure-notifications/exposure-key-file-format for more details).

12

https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format

phase some servers accept only AES-GCM (e.g., Immuni), whereas others, like SwissCovid’s
one, accept also CBC-HMAC as a ciphersuite. To guarantee the integrity of data, the plaintext
is usually compressed and a MAC on the compressed string is calculated using a key derived
from the DH exchanged key.

Decentralized Key-Exchange. We provide below an informal description of the key-exchange
in DECO for ECDHE that is called Three Party Handshake (3PHS).

We assume three entities: a prover P, a verifier V and a server S. P and V jointly act as
a TLS client. The overall idea of DECO is that the prover and verifier, after performing some
two-party computations, compute shares of the exchanged key, while the server computes the
entire key without even noticing that P and V are two distinct interacting entities.

When using CBC-HMAC, the keys k¢, ¥ (such that k5 + K¢ = KMAC) are learned by
P and V respectively, while kE*° is only known to P. When using AES-GCM, the same key is
used for both encryption and MAC, therefore both P and V just get a share of it. While P and
V only learn their secret shares of the key, the server S gets to know both kE*¢ and kMAC,

Let G be an EC group generator. The key exchange phase works as follows:

e P establishes a TLS connection with the server S.
e When receiving the DH share Ys = sg - G from S, P forwards it to V.
e)V samples a DH secret sy and sends his DH share Yy = sy - G to P.

e P samples her DH secret sp, calculates her DH share Yp = sp -G, calculates the combined
DH share Y = Yp + Yy, and sends Y to S.

Finally, S computes the DH exchanged key as Z = ss-Y. P and V will compute their secret
shares of Z as Zp = sp - Ys and Zy = sy - Ys. Note that Zp + Zg = Z, where + is the EC
group operation. Now that P and V have secret shares of EC points, they use secure two-party
computation (2PC) to evaluate a PRF (that we call TLS-PRF) to derive the keys k¢ and kC.
The authors face and solve several challenges in order to derive keys efficiently via 2PC. We do
not cover this part, a more detailed description can be found in [ZMMT].

Encrypted communication. At the end of the 3PHS, P and V have to engage in a 2PC
protocol to correctly calculate the MAC and the encryption on the plaintext to be sent to the
server, without revealing the shares to each other. Privacy of the plaintext is also ensured with
respect to V. For CBC-HMAC, the encryption of such plaintext is computed exclusively by P
who holds the encryption key. The authors |[ZMM™| provide hand-optimized protocols which
are much more efficient then the ones obtained by directly applying 2PC techniques. The 2PC
protocol for AES-GCM is a lot slower than the one for CBC-HMAC since for AES-GCM P and
VY must cooperate also for the encryption.

Proving statements. An important feature of DECO is that P, when the communication
with S ends, can prove, in zero knowledge, statements on the communication transcript in a
clever and efficient way. However, to make their protocol practical for our goal, we do not try
to maintain the transcript private. As a result, we will not discuss this part of DECO which
can be found in [ZMMT]. In the following, we describe how to adapt DECO to our scenario.

13

3.2 A Smart Contract Oracle

Our goal is to make the smart contract play the role of the DECO verifier. In this way, the
smart contract would be able to verify that the intended communication between the seller and
the server took place and to reward the seller accordingly. Unfortunately we can not just plug
DECO into a smart contract for several reasons. For example, DECO requires to run intensive
2PC related tasks, to sample random values and to maintain a private statﬂ

Therefore, we keep running the DECO protocol off-chain but we find a way to connect the
DECO run between the prover and the verifier to the state of the smart contract, so that the
smart contract will eventually be able to act as an impartial judge punishing the malicious party
when a deviation from the prescribed honest behavior is detected. In particular, the seller acts
as a prover and the buyer as a verifier, and we guarantee no party is able to cheat (i.e., the
seller is paid if and only if she performs the upload of the requested TEKs) by binding the
off-chain execution to the state of the smart contract itself. Furthermore, we guarantee privacy
of the messages exchanged between the server and the prover only until their TLS connection
is open. After the communication ends, the seller proves that she acted honestly by providing
the application-level messages exchanged with the server, along with the corresponding MAC
tags w.r.t. the MAC key which is bound to the smart contract. To be more specific, the smart
contract freezes a share of the MAC key and the seller has to show a communication transcript
(i.e., the messages exchanged with the server and corresponding MAC tags) which is consistent
with such share. Privacy of the upload request message to be sent to the server is crucial while
the TLS session is open because the verifier may abort the protocol and use the authorization
token of the prover to upload data by himself without paying out the promised reward. On
the other hand, making the communication public after it took place does not endanger the
prover, apart from the considerations made in Section [2.3] and makes the verification procedure
much more practical. What we need is that the shares of the prover and the verifier are kept
private until the end of the protocol, and then revealed to the smart contract, along with other
information, for verification and reward paying. In addition, the TLS session timeout should
be big enough to allow for the 2PC execution. To this regard, Zhang et. al already verified
the practical feasibility of their protocol |[ZMM™]. Obviously, P must know how to reach V
to carry out the protocol. To address concerns regarding anonymity, V may set up a Tor
hidden serviceF_gl Using hidden services may significantly slow down the process, however we
found both Immuni and SwissCovid servers to give a generous time out window of two hourﬁ
Another point to consider is that upload authorization tokens may have a limited duration. For
example, in SwissCovid,the smartphone, by interacting with an appropriate server (different
from the TEKSs upload server, called CovidCode-Service), exchanges the covid code for a signed
JWT token that is valid for 5 minuteﬂ Then, this token is sent by the smartphone to the
server along with the TEKSs to complete the upload. Thus, the upload message, containing the
TEKSs and the authorization token, must be computed and sent to the server within 5 minutes
from the reception of the JWT token. Given the high efficiency of DECO when CBC-HMAC
is used, even when bandwidth is limited [MMZ"20], it is reasonable to think that the attack is
feasible in SwissCovid. In Immuni instead, no signed token is used. In fact, the upload must
be completed within 2 minutes after the infected user has communicated the code to the health

2TKeeping a private state inside a smart contract is not possible and computationally intensive operations
generate high costs.

28More on Tor hidden services can be found at https://2019.www.torproject.org/docs/onion-services)

Interestingly, in June the timeout of a TLS session with both Immuni and SwissCovid upload servers was
limited to 5 minutes, but it has been then extended to two hours.

308ee CovidCode-Service configuration https://github.com/admin-ch/CovidCode-Service/blob/develop/
src/main/resources/application-prod.yml,

14

https://2019.www.torproject.org/docs/onion-services
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml

operator. Therefore, in Immuni the attack would less likely be operative, especially with Tor,
given that the slower AES-GCM ciphersuite is required (see App. .

Protocol description. From now on, we refer to the seller and the buyer as prover P and
verifier V respectively; we denote the server as S. In the following, we explain the detailed
attack for the CBC-HMAC ciphersuite. When creating the smart contract, V also posts the
DH share Yy = sy - G he is willing to use during the 3PHS, along with requested TEKs (and
dates).

First, P transacts on the smart contract to reserve a time slot of duration ¢; by which a
DECO protocol run must be performed together with ¥V and S, and the data needed to redeem
the reward must be posted on the smart contract by P. If time t; elapses, P loses her slot. This
reservation mechanism is needed to prevent V from getting back the reward while an honest
P performs the upload of the requested TEKs. In fact, the verifier could also act as a prover
and simulate a reward-paying interaction with the server to the smart contract, which would
have no mean to distinguish it from a fake one. By adding a reservation mechanism, we are
sure a malicious V cannot play a simulated transcript in the smart contract while honest P is
performing with him the DECO protocol run. Furthermore, since the communication for the
upload between the server and the prover consists of just a single query followed by a single
response, it is not possible for a cheating verifier to make the timer expire avoiding to pay the
prover while at the same time the upload of the TEKs successfully completes. In fact, once V
cooperates with P to build a valid request, S will reply to P independently of what V' does,
thus giving V all she needs to redeem the reward.

When executing the 3PHS, P checks that the value Y}, sent by V during the handshake
corresponds to the value Yy posted on the smart contract. This prevents V from providing an
erroneous DH share and blaming P for it. If this is not the case, P aborts. Since no upload
message has been sent to the server yet, no party gains advantage from this operation. If V’s
share is correct (i.e., Yy = Y7)), parties engage in the communication with S and jointly compute
the MAC (via 2PC as in [ZMMT]) on the upload request m,. generated by P . If the connection
ends successfully@ the elected P posts (only who reserved this slot is allowed to post this
message) on the smart contract the following:

e The entire communication transcript, that is (m., ms) together with the MACs (6., 6;),
calculated by the client(s) P <+ V and the server S.

e The prover’s secret sp.
e The DH share of the server Ys received during the 3PHS.

Then, the smart contract starts a timer ¢, indicating the maximum time V has to reveal his
secret sy. In case V does not do that, the prize is automatically transferred to the seller P. If
V reveals sy, the smart contract does the following:

e Check that Yy = sy - G and if not, transfer the prize to P.

o If the check passes, reconstruct the secret Z from sy, sp, Ys, and apply TLS-PRF to derive
the MAC key KMAC,

31This can be inferred from the communication. For example, as in SwissCovid (see SwissCovid Server Con-
troller: https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/
dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/
GaenController. java), S may reply P with either a success message such as “200 OK” or an error mes-
sage.

15

https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)

Now the smart contract has everything it needs to check that the fields inside message m, (from
the prover to the server) are correct (i.e., the buyer’s TEK are present), the response message
(from the server to the prover) is positive, and that the MACs (0., 0;) verify w.r.t. kM. If all
the checks pass, the prize is transferred to P, otherwise P gains no prize and the deposit is
returned back to V.

As mentioned before, V is not encouraged to provide a different public key w.r.t. the one
he used in DECO execution, otherwise P will just abort. On the other hand, the prover is not
able to earn a reward without uploading the promised TEKs. In fact, the probability for the
prover to come up with a pair (mf,6.) (resp. (m/,0.)) that verifies under the key k™ derived
from Z' = Z, + Z3, with Z, := s, - Y{ and Zy := sy - Y¢ is negligible due to the fact that sp is
fixed and honestly generated, thus randomizing Z’, hence k™.

A note on DoS attacks. It is important to prevent DoS attacks run by sellers who actually
do not have the right to upload TEKs and end up by just wasting the buyer’s precious time.
In the previous discussion this protection is not provided: before sending the jointly computed
message (me, 6.), the seller can decide to not forward the message to the server. Now, the buyer
has to open his commitment to show his secret sy in order to not lose the prize. As a result,
the committed value cannot be used in other runs. To address this issue, the smart contract
can be modified to handle multiple sessions. Instead of storing Yy, as a single DH contribute,
the buyer stores the root of a Merkle tree. Now, when the seller interacts with the contract to
reserve a session, a session id (a simple counter j suffices) is assigned to her: the DH contribute
used in the 3HPS will correspond now to the j-th leaf of the Merkle tree. Now, when the buyer
has to open his secret sy, he also reveals the path of the Merkle tree from the root to the leaf
j. The smart contract will now verify that the contribute is correctly derived from the root
by following a path with correct openings. Let us consider a Merkle root committing to 2*
elements, thus allowing the buyer to open as many sessions. For a k large enough, a malicious
seller should spend a considerable amount of money in order to reserve all the sessions.

AES-GCM. Carrying out the attack when AES-GCM ciphersuite is required is more in-
volved. A discussion on this is reported in App

4 Conclusion

In our work we showed that the terrorist attack, previously envisioned by Vaudenay, is concretely
realizable against GAEN systems with the aid of cryptographic tools and a blockchain capable
of executing smart contracts (e.g., Ethereum). In particular, the Take-TEK attack exploits the
fact that the list of infected TEKSs, published by the server daily, has always a digital signature
attached to it. Such signature allows the smart contract to easily verify that the upload was
performed as requested by the terrorist. Even beyond the use of signatures, we have shown
a different instantiation of the terrorist attack using DECO. In conclusion, we advise protocol
designers not to look at the effects of a specific realization, but to prove the protocol secure
against any automated instantiation of a terrorist attack. Our work shows that the power of
blockchain technology to trade digital assets is still overlooked even when critical features are
digitized.

16

5 Acknowledgments

We thank the first author of DECO [ZMMT™| Fan Zhang for all the clarifications about their
paper, Stephen Farrell of the TACT project |[LF20a] for his help on how to gather contact
tracing data, Serge Vaudenay and Martin Vuagnoux for useful information about the imple-
mentation and configuration of SwissCovid. This research is supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 780477 (project

PRIVILEDGE).

References

[ACK21]

[AFV21]

[BDF+20]

[DMS04]

[DR20a]

[DR20b]

[Eur20]

[Imm20]

[IVV2i]

[LF20a]

[LF20D)]

[LHML20]

Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak., Michael Walter, and Michelle Yeo. Inverse-sybil attacks in
automated contact tracing. In Proc. of CT-RSA, volume To appear, 2021.

Gennaro Avitabile, Daniele Friolo, and Ivan Visconti. Tenk-u: Terrorist attacks for
fake exposure notifications in contact tracing systems. Applied Cryptography and
Network Security 2021, To appear, 2021.

Lars Baumgértner, Alexandra Dmitrienko, Bernd Freisleben, Jonas Hochst, Mira
Mezini, Markus Miettinen, Thien Duc Nguyen, Alvar Penning, Filipp Roos, Ahmad-
Reza Sadeghi, Michael Schwarz, and Christian Uhl. Mind the GAP: Security &
privacy risks of contact tracing apps. In TrustCom 2020, Security Track, pages
458-467, 2020.

Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In USENIX, pages 303-320, 2004.

Paul-Olivier Dehaye and Joel Reardon. Proximity tracing in an ecosystem of surveil-
lance capitalism. CoRR, abs/2009.06077, 2020.

Paul-Olivier Dehaye and Joel Reardon. Swisscovid: a critical analysis of risk assess-
ment by swiss authorities. CoRR, abs/2006.10719, 2020.

European Commission. Guidance on apps supporting the fight against COVID 19
pandemic in relation to data protection. Official Journal of the European Union,
2020.

Immuni Team. Immuni’s high-level description. https://github.com/
immuni-app/immuni-documentation) 2020. Accessed: 2020-08-23.

Vincenzo Iovino, Serge Vaudenay, and Martin Vuagnoux. On the effectiveness of
time travel to inject covid-19 alerts. In Proc. of CT-RSA, volume To appear, 2021.

Dough Leith and Stephen Farrell. Testing apps for COVID-19 tracing (TACT).
https://down.dsg.cs.tcd.ie/tact/, 2020. Accessed: 2020-08-23.

Douglas J. Leith and Stephen Farrell. Coronavirus contact tracing: evaluating
the potential of using bluetooth received signal strength for proximity detection.
Comput. Commun. Rev., 50(4):66-74, 2020.

Franck Legendre, Mathias Humbert, Alain Mermoud, and Vincent Lenders. Contact
tracing: An overview of technologies and cyber risks. CoRR, abs/2007.02806, 2020.

17

https://github.com/immuni-app/immuni-documentation
https://github.com/immuni-app/immuni-documentation
https://down.dsg.cs.tcd.ie/tact/

[LK17]

[MHM18]

[MMZ+20]

[NKW21]

[Pie20]

[RGK20]

[Sem20]

[Swi20]

[Tan20]

[The03]

[TJS16]

[Vau20a]
[Vau20b]

[VTL17]

[VV20]

[Wet]

Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transac-
tions. In Financial Cryptography, pages 264-279, 2017.

Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for
bribing miners. In Financial Cryptography, pages 3-18, 2018.

Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov,
Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller. Candid:
Can-do decentralized identity with legacy compatibility, sybil-resistance, and ac-
countability. TACR Cryptol. ePrint Arch., 2020:934, 2020.

Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. Timelocked bribing.
In Financial Cryptography, volume To appear, 2021.

Krzysztof Pietrzak. Delayed authentication: Preventing replay and relay attacks in
private contact tracing. In Proc. of INDOCRYPT, pages 3—15, 2020.

Adam Krellenstein Rosario Gennaro and James Krellenstein. Expo-
sure notification system may allow for large-scale voter suppression.
https://staticl.squarespace.com/static/5e937afbfd7a75746167b39c/t/
5f47a87e58d3de0db3da91b2/15698531714869/Exposure_Notification.pdf,
2020. Accessed: 2020-08-23.

Semaphore Team. Semaphore. https://semaphore.appliedzkp.org/, 2020. Ac-
cessed: 2020-09-15.

Swiss Federal Office of Public Health. New coronavirus: Swisscovid app and
contact tracing. https://www.bag.admin.ch/bag/en/home/krankheiten/
ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/
novel-cov/swisscovid-app-und-contact-tracing/
datenschutzerklaerung-nutzungsbedingungen.html#-11360452, 2020. Ac-
cessed: 2020-08-23.

Qiang Tang. Privacy-preserving contact tracing: current solutions and open ques-
tions. CoRR, abs/2004.06818, 2020.

The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. www.
openssl.org, 2003.

Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine their
own business. In Financial Cryptography, pages 499-514, 2016.

Serge Vaudenay. Analysis of DP3T. IACR Cryptol. ePrint Arch., 2020:399, 2020.

Serge Vaudenay. Centralized or decentralized? the contact tracing dilemma. TACR
Cryptol. ePrint Arch., 2020:531, 2020.

Yaron Velner, Jason Teutsch, and Loi Luu. Smart contracts make bitcoin mining
pools vulnerable. In Financial Cryptography, pages 298-316, 2017.

Serge Vaudenay and Martin Vuagnoux. Analysis of swisscovid. https://lasec.
epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf, 2020. Accessed:
2020-08-23.

Dirk Wetter. testssl.sh. https://testssl.sh/.

18

https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://semaphore.appliedzkp.org/
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
www.openssl.org
www.openssl.org
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://testssl.sh/

[Wil18] Zachary J. Williamson. Aztec. https://github.com/AztecProtocol/AZTEC/
blob/master/AZTEC.pdf, 2018. Accessed: 2020-09-15.

[Yan19] H. Yang. EC Cryptography Tutorials - Herong’s Tutorial Examples. Herong’s Tu-
torial Examples. Herong Yang, 2019.

[ZCCT16] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier:
An authenticated data feed for smart contracts. In ACM CCS, 2016.

[ZkD20] ZkDAI Team. Zkdai. https://github.com/atvanguard/ethsingapore-zk-dai,
2020. Accessed: 2020-09-15.

[ZMM*] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.
DECO: liberating web data using decentralized oracles for TLS. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, Proc. of CCS 20, pages
1919-1938. ACM.

[ZoK20] ZoKrates Team. Zokrates. https://zokrates.github.io/, 2020. Accessed: 2020-
09-15.

A Tools

A.1 MACs and Signature Schemes

A Message Authentication Code consists of a tuple of algorithms (Gen, Tag, Ver) such that
Gen(1*): Takes as input the security parameter and outputs a key k in the key space K.

Tag(m;k): Takes as input a message m in the message space M and a key k, and outputs a
tag 6.

Ver(m,0;k): Takes as input a message m and a key k, and outputs 1 iff 6 is a correct tag on
m under key k.

It must satisfy the following properties:

e Completeness: The probability that Ver((m,#); k) outputs 1 for an honestly generated
tag 0 < Tag(m; k) is 1.

e Unforgeability: The probability that an adversary, knowing only challenge message m*
and having access to an oracle giving back tags 6; on messages m; # m* (for all i € [n]
with n polynomially bounded in the security parameter), outputs a pair (m*,0*) such
that Ver(m*, 6*; k) = 1 is negligible.

A Signature Scheme consists of a set of algorithms (Gen, Sign, Ver), such that

Gen(1*): Takes as input the security parameter and outputs a pair (sk,vk) sampled from the
key space, where sk is the signing key and vk the verification key.

Sign(m;sk): Takes as input a message m in the message space M and a signing key sk, and
outputs a signature o,, on that message.

Ver(m,o;vk): Takes as input a pair (m, o) and the verification key vk, and outputs 1 if the
signature o correctly verifies under vk.

19

https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/atvanguard/ethsingapore-zk-dai
https://zokrates.github.io/

It must satisfy the following properties:

e Completeness: The probability that Ver((m,o);vk) outputs 1 for an honestly generated
signature o < Sign(m;sk) is 1.

e Unforgeability: The probability that an adversary, knowing only the challenge message
m* and having access to an oracle giving back signatures o; on messages m; # m* (for all
i € [n] with n polynomially bounded in the security parameter), outputs a pair (m*,o*)
such that Ver(m™*, o*;vk) = 1 is negligible.

A.2 Public-Key Encryption Schemes

A Public-Key Encryption Scheme is a tuple of algorithms (Gen, Enc, Dec) such that

Gen(1*): Takes as input the security parameter, outputs a couple (pk,sk) of keys sampled in
the key spaces.

Enc(m;pk): Takes as input a message m in the message space and a public key pk, and outputs
the ciphertext ¢ in the ciphertext space.

Dec(c;sk): Takes as input a ciphertext ¢ and a secret key, and output a message m/'.
A PKE scheme is CPA-Secure if the following properties are satisfied

e Completeness The probability that m = m’, where m’ <— Dec(c¢; sk) with ¢ <—s Enc(m; pk)
for an honestly generated pair (pk,sk) <—s Gen(1*) is 1.

e CPA-Security The probability that an attacker, after choosing two messages (mg, m1),
giving them to a challenger, and receiving back the encryption of one of the two (chosen by
the challenger flipping a coin), can distinguish which of the two messages were encrypted,
is negligible.

A.3 NIZK proofs

In a zero-knowledge proof system an entity P, called prover, can prove to another entity, called
verifier, that an NP-statement x is in some language L (i.e., there exists at least a witness w
such that the relation R, (z,w) for the language £ is satisfied) without revealing a single bit
of information on the used witness. Informally, the following properties must be satisfied by a
zero-knowledge proof system:

e Completeness: The probability that an honest prover P (i.e. computing the proof by
providing a valid (x,w) such that R, (x,w) = 1) convinces the verifier V about the validity
of the statement is 1.

e Soundness: The probability that a cheating prover convinces the verifier that a statement
x is not in the language L is negligible.

e Zero Knowledge: If the statement x is true, the verifier learns no more information
other than the fact that the statement is true. This concept is formalized by showing that
there exists an efficient simulator that, given only the statement, can produce a protocol
transcript that is indistinguishable from a real protocol execution.

20

A proof is said to be non-interactive when the interaction consists solely on a message sent by
the prover to the verifier. A zero-knowledge proof of knowledge is a zero-knowledge proof where
the prover shows that he actually knows a witness for the statement x and this is formalized
by showing an efficient extractor that gives a witness in output. When we refer to NIZK proofs
throughout the paper we usually intend NIZK proofs of knowledge.

In the random oracle model, both prover and verifier access to a cryptographic hash function
that in the security proof is modeled as a random oracle. The simulator for the zero-knowledge
property and the extractor for the proof of knowledge property have the power to program the
random oracle.

B Adding Seller’s Privacy

As discussed in Section using publicly posted TEKs is dangerous for the seller due to
possible risks of incrimination. This could disincentivize the seller to utilize such smart contract
mechanism. To guarantee seller’s privacy, in all of our attacks we can enrich our playground by
assuming the existence of a CPA-Secure PKE encryption scheme (Gen,Enc,Dec) and a NIZK
proof system. The proposed protocols can be modified as follows:

e When the buyer creates the smart contract, he waits that a seller P is elected before
providing his TEKs. When P is elected, B posts his TEKs encrypted with P’s public
key pkp, by triggering an algorithm SendBuyerTeks(Cp) where Cp = (c1,...,¢,), with
¢; s Enc(t;) for each t; € Tg. TEKSs are pairs t; = (tek;, date;).

e When the signed TEKSs list is available, the seller triggers SendTeks(T, op, 11, ’i‘), where
T = (f1,...,tn) are the published TEKs, o7 the corresponding signature, and Il =
(m1,...,my) is a sequence of proofs in which 7; is a NIZK proof that the prover knows
t; + Dec(c;; skp) and that at least one element #; in a subset T C T such that |T| > |Tg|
is equal to t;. The smart contract checks all the proofs, and if all of them verify, transfer
the prize to the seller.

Now the only information that an external observer can deduce by looking at the proofs is that
all the encrypted buyer’s TEKs are indeed inside the list (or in a subset of them). Depending
on how the date field is handled it may be also necessary to encrypt it and to prove a slightly
more complicated statement. To be sure that an observer cannot pinpoint the buyer’s TEKSs
precisely, it is sufficient that the proofs use as a statement a subset of the published TEKs that
contains at least one more TEK w.r.t the buyer’s TEKs (proving on a subset and not on the
entire list can be beneficial in terms of proof size and efficiency). The only harmful case is when
the number of published keys matches with the number of the buyer’s keys. We can argue
that this condition happens quite rarely, considering that one external more key is sufficient to
guarantee buyer’s safety, and if GAEN recommendations are followed, a decent amount of keys
should be present in the list.

C GAEN Export Files

An example of an export.bin file for Immuni, the Italian contact tracing app is reported
below. The meaning of the main fields is commented on the side. The start_timestamp and
end_timestamp are expressed in UTC seconds,

rolling start_interval number is expressed in 10 minutes increments from UNIX epoch.
The export.sig contains the digital signature of the export.bin file, along with the field

21

signature_infos.
The content description of the export.bin file follows.

start_timestamp: 1591254000 //start of the time window of included keys
end_timestamp: 1591268399 //end of the time window of included keys.
region: "222" batch_num: 1 batch_size: 1

signature_infos {

verification_key_version: "v1" //version of used verification key
verification_key_id: "222"

signature_algorithm: "1.2.840.10045.4.3.2"

1: "it.ministerodellasalute.immuni"}

keys {

key_data: ".." //base64 encoded TEK

transmission_risk_level: 8

rolling_start_interval_number: 2651616 //date of usage of TEK
rolling_period: 144%}...

D Implementation Improvements

As noted in Section 2] our smart contract implementation of Take-TEK can handle export files
large as the maximum transaction size at most. This limitation can be overcome by making
the smart contract accepting the file split in multiple chunks (a transaction for each chunk),
and then extracting the keys and verifying the signature by hashing the concatenation of all
the stored chunks. A trivial solution to this problem can be to store n — 1 chunks in the
smart contract, and when the seller sends the n-th chunk, the smart contract performs the
concatenation, extracts the keys, and verifies the signature. Unfortunately, storing data in a
smart contract is the most expensive operation in terms of gas cost, and storing such a big
piece of data in a smart contract state may be too expensive. However, exploiting the Merkle-
Damgard construction used by SHA to hash multiple blocks, way less amount of data needs to
be stored. Let us define Hash as the hashing algorithm and H; as the hash of the i-th chunk
C;. TEKs extraction and signature verification in the chunk-based mechanism can be done in
the following way:

e The seller divides the export file in different chunks in such a way that, when each chunk
is hashed, the hash climbs up to the same level of the Merkle tree of the other hashed
chunks.

e When the seller sends a new chunk to the smart contract, the latter extracts all the TEKs
contained in the chunk, checks which of the buyer’s TEK are present in the chunk and
stores this information?} After that, it hashes the chunk and stores the hashed value H;.

e When the last chunk is sent to the smart contract by the seller (together with the signature
of the entire export file), the smart contract extracts the last pieces of information, checks if
the TEKSs contained in the last chunk cover the not yet appeared buyer’s TEKs, computes
its hash H,, hashes its concatenation with the previously stored hashed chunks (i.e. it
calculates Hoy = Hash(Hy,...,Hp,)) and triggers the signature verification procedure
giving the value Hyyt and the signature file as input.

32During the chunk splitting, some TEKs may be cut in half. The smart contract should take care of the first
and the last bits of each chunk and reconstruct the missing information.

22

As can be noticed, the application of the hashing algorithm to the concatenation of the H;s
makes the hashing algorithm climbing up to the root of the Merkle tree, thus giving the expected
hash of the entire file as output. Now the amount of bits needed to be stored is around
|H|-n = 512 -n, vs |Cj| - n (usually the maximum transaction size, and so C; in our case, is
around 44 Kbytes in Ethereum).

E Other Subtleties: Details

E.1 Extracting Public Keys from Signatures

Take-TEK (cfr., Section requires that the server’s public key is known to both the involved
parties. This guarantees that the buyer is sure the reward is paid only to sellers who actu-
ally upload data to the contact tracing system, and that honest sellers are sure they will be
able to satisfy the conditions to be paid, namely obtaining a valid digital signature for re-
ward redemption. A Github issue asking for the public key of the Italian contact tracing app
was opened on the Tth of June 2020 and it has still not been addressed at the time of writ-
ing. SwissCovid Android app contains a configuration file specifying the production version of
the bucket public key (the value BUCKET_PUBLIC_KEY can be found in https://github.com/
DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle) that is used to per-
form signature verification outside GAEN. Anyway, as we can notice with Immuni, this is not a
requirement. One might think that keeping the verification keys secret may prevent attacks as
the one of Section 2.1} However, it turns out that it is actually not the case. In fact, since GAEN
uses ECDSA, starting from a signature and the related message we can recover two candidate
public keys, one of which will match the actual one with overwhelming probability. A practical
example showing this procedure can be found in [Yan19]. Such message/signature pairs are
generally made publicly available and are easily accessible by appropriately querying the server
of the specific contact tracing system. Multiple pairs per day may be released. A comprehen-
sive description on how to get this data has been provided by the Testing Apps for COVID-19
Tracing (TACT) project, along with scripts to automate the downloading process |[LF20a]. We
also practically performed the extraction procedure, successfully extracting the keys for both
SwissCovid and Immuni.

E.2 Updates of Public Keys

There is a subtle technical problem with the attack described in Section The digital
signature keys that the server uses may change over time. In fact, as shown in App [C] the
export.bin file includes a field indicating a version for the verification key. This field follows a
progressive numeration, that is the first version is termed v1, the second one v2 and so on. This
means that the server may change the verification key it uses, perhaps within a set of keys that
have been pre-shared with Google and Apple. Therefore, it might happen that, after the seller
makes the deposit and accepts to upload the buyer’s TEK, the server, by coincidence, decides
to use a new key which was never used before, thus producing a signature that is not verifiable
under the public key posted on the smart contract.

However, by making a slight modification to the smart contract, it is possible to handle
also this unfortunate event. Having realized that she would be unable to redeem the reward,
the seller might activate a special recovery condition. After this, the buyer will be able to
collect both deposits if and only if he manages to provide a pair of export files which have an
end timestamp (cfr., App. subsequent to the time of the recovery request and verify under
the public key originally posted on the smart contract; otherwise the deposits are returned to

23

https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle

the original owners. Obviously, enough time should be given to the buyer to provide the export
files, similarly to what happens to the seller after her deposit.

This event is certainly very annoying for the seller and might play as disincentive to join the
trade, but taking a look at real-world data one realizes that this is a relatively rare event. We
considered several countries which are currently using a digital contact tracing system, namely:
Italy, Switzerland, Austria, Germany, Ireland, Northern Ireland, Denmark, Latvia, Canada and
US Virginia. Until January 13th 2021 (last time we checked), only US Virginia and Italy have
switched to the second version of the verification key. In particular, the change to the Italian
system dates back to the 15th of June 202@ and no modifications have been made since then.
Notably, some countries’ systems, like Switzerland and Germany’s ones, are active from several
months now and the verification key has not changed at all. To the best of our knowledge, the
criteria by which the verification key should change is not documented anywhere.

F Further Notes on Our Smart Contract Oracle

F.1 CBC-HMAC vs AES-GCM

Differently from CBC-HMAC, AES-GCM relies on the same key for both encryption and MACs.
The impact of AES-GCM is twofold: 1) more computation is needed to perform the required
2PC to calculate messages from/to the server, due to the AES algorithm itself, 2) the prover
does not learn the encryption key after 3SPHS, meaning that both encryption and decryption
must be done via 2PC as well. On the smart contract side, this difference boils down to a lack
of fairness. After V and P have calculated together the upload message and sent it then to S, V
could decide not to help the prover to decrypt the server’s response. Now, P has no witness in
her hands to give to the smart contract in order to prove that she has correctly performed the
TEKSs upload. As a result, she cannot redeem the prize. The problem can be easily solved by
giving to the smart contract the burden of decrypting the server’s ciphertext. In our approach,
Y must commit to his key and open it later. When this happens, the server reconstructs the
MAC /encryption key, decrypts the ciphertext, does the necessary checks, and pay the prize
to P. The CBC-HMAC version of DECO is way faster then the AES-GCM one. However,
looking at practical evaluations made by the authors [ZMMT™| MMZ™20] it is reasonable to
think that all their solutions may fit in the time window given by contact tracing servers (e.g.,
2 hours in Immuni and SwissCovid) for the TLS connection (see App. [G), even when hiding
VY through Tor hidden services. What is less likely is that, in the case of Immuni which uses
AES-GCM and requires the upload to be completed within two minutes, the upload request
message (me, 0.) is computed and sent to the server in time; especially when the prover and the
verifier communicate via Tor.

G TLS Connections with Immuni and SwissCovid

In this section we show useful information about TLS sessions established running on the client
side the tools openssl [The03|, and testssl [Wet| in order to connect to the TEKs upload
servers of Immuni and SwissCovid.

Immuni. Using testssl to connect to upload.immuni.gov.it one can see that the server ac-
cepts TLS 1.2 connections only and the preferred ciphersuite is ECDOHE-RSA-AES256-GCM-SHA384,
256 bit ECDH (P-256). Moreover, one can also use ECDHE-RSA-AES128-GCM-SHA256.

33This change occurred in the 4th export file.

24

Using openssl to connect to upload.immuni.gov.it one can see all the parameters of the
established TLS session, including in particular a timeout of 7200 seconds (i.e., 2 hours) that
is very large and thus beneficial for our attacks. For completeness we show here the content of
the standard output (we replace some potentially identifying data by “...”).

openssl s_client -connect upload.immuni.gov.it:443 -cipher ECDHE-RSA-AES256-GCM-SHA384

CONNECTED (00000003)

depth=2 C = IT, L = Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root
CA

verify error:num=19:self signed certificate in certificate chain

verify return:1

depth=2 C = IT, L = Milan, 0 = Actalis S.p.A./03358520967, CN = Actalis Authentication Root
CA

verify return:1

depth=1 C = IT, ST = Bergamo, L = Ponte San Pietro, 0 = Actalis S.p.A./03358520967, CN
Actalis Organization Validated Server CA G2

verify return:1

depth=0 C = IT, ST = ROMA, L = ROMA, 0 = Sogei S.p.A., 0U = Server Sicuri, CN =
upload.immuni.gov.it

verify return:1

Certificate chain
0 s:C = IT, ST = ROMA, L = ROMA, O = Sogei S.p.A., OU = Server Sicuri, CN =
upload.immuni.gov.it
i:C = IT, ST = Bergamo, L = Ponte San Pietro, 0 = Actalis S.p.A./03358520967, CN
Actalis Organization Validated Server CA G2
1 s:C = IT, ST = Bergamo, L = Ponte San Pietro, 0 = Actalis S.p.A./03358520967, CN
Actalis Organization Validated Server CA G2
i:C = IT, L = Milan, 0 = Actalis S.p.A./03358520967, CN Actalis Authentication Root CA
2 s:C=1IT, L = Milan, O Actalis S.p.A./03358520967, CN Actalis Authentication Root CA
i:C = IT, L Milan, O = Actalis S.p.A./03358520967, CN = Actalis Authentication Root CA

Server certificate

MIIGYzCCBUugAwIBAgIQRnoupUMoTHxpWMpARKEf0TANBgkghkiGOwOBAQsFADCB
1TELMAkGA1UEBhMCSVQxEDAOBgNVBAgMB0J1cmdhbW8xGTAXBgNVBACMEFBvbnR1
IFNhbiBQaWVOcm8xIzAhBgNVBAOMGKF jdGFsaXMgUy5wLkEuLzAzMzU4NTIw0TY3
MTQwMgYDVQQDDCtBY3RhbG1zIE9yZ2FuaXphdGlvbiBWYWxpZGFO0ZWQgU2VydmVy
IENBIEcyMB4XDTIwMDUxMzA3MTcyN1oXDTIxMDUxMzA3MTcyN1oweTELMAKGA1UE
BhMCSVQxDTALBgNVBAgMBF JPTUEXDTALBgNVBACMBF JPTUEXFTATBgNVBAOMDFNv
Z2VpIFMucC5BLjEWMBQGA1UECwwNU2VydmVyIFNpY3VyaTEdMBsGA1UEAwwUdXBs
b2FkLmltbXVuaS5nb3YuaXQuwggEiMAOGCSqGSIb3DOEBAQUAA4IBDwAwWggEKAOIB
AQC/2cqmDJieHI8dMOzT/d1PpLGCAfWukniW5eFdNexZK3qxpESrrBm270T611Lv
Oui/laR1qOHwg+2xycf1+aIGFiT08dKuVyoCdJxCiQqCNF9dtMpgA69DgfYv/406
GwXvyxOPjQ/eF5+wJbj01hIGYDm83JOWNbmHhqASNzHrqP5Q554aNYrLnzXDVpdN
3I3Gdo/K1UkuH5RUut YhbVZand8uf 069MFROzL1xifdHLVQCwYrNRkyc6BqyCVoV
c2f1TEQZ9T90Qx1i j XkMdXXwNkUXKS60/SVtGUiUm2KgQ098Xq0zEs6U/0aWVyFPt
YMSSh8hpT3bR3eal jI2yMX/5AgMBAAGjggLIMIICxDAMBgNVHRMBALSEA jAAMBSG
A1UdIwQYMBaAFGL+uyeKZETtaJZaWHmh21omrf+7MH4GCCsGAQUFBWEBBHIwCDA7
BggrBgEFBQcwAoYvaHROcDovL2NhY2VydC5hY3RhbG1zLml10L2N1cnRzL2F jdGFs
aXMtYXV0aG92ZzIwMQYIKwYBBQUHMAGGJIJWhOdHA6LYy9vY3NwMDkuYWNOYWxpcy5p
dCOWQS9BVVRIT1YtRzIwHwYDVRORBBgwFoIUdXBsb2FkLmltbXVuaS5nb3YuaXQw
UQYDVROgBEowSDA8BgYrgR8BFAEwWM jAwBggrBgEFBQcCARYkaHROCHM6Ly93d3cu
YWNOYWxpcy5pdCOhcmVhLWRvd25sb2FkMAgGBmeBDAECA jAdBgNVHSUEF jAUBggr
BgEFBQcDAgYIKwYBBQUHAWEwSAYDVROfBEEwPzA90Dug0YY3aHROcDovL2NybDAS
LmFjdGFsaXMuaXQvUmVwb3NpdGOyeSOBVVRIT1YtRzIvZ2VOTGFzdENSTDAdBgNV

25

HQ4EFgQUFCzbrEIZXwf4JgUy4YCgmpuPKJcwDgYDVROPAQH/BAQDAgWgMIIBBQYK
KwYBBAHWeQIEAgSB9gSB8wDxAHYARJR1LrDuzq/EQAfYqP4owNrmgr7YyzG1P9Mz
1rW2gagAAAFyDO5cFgAABAMARZBFAiBc/J60ayZGC43Uoec55432UxCy/AmXaX2P
OgDXEUjJxwIhAKr6mS90XWxe/wa599GmXLDOFYG7QFYYt3Hw2ef/7hk6AHCA91yU
L9F3MCIUVBgIMJRWjuNNExkzvO8MLyALZzE7xZOMAAAFyDO5cVQAABAMASDBGAIEA
sdib2FsWyErV+T3IgJgnlwOquecJ8nlerqxHSi+jX+MCIQDySdDQ5ssmiu3pWOMY
60td+s/U0b60IekdqZKCYTv1aDANBgkghkiGOwOBAQsFAAOCAQEADODHgxyVPgl+
I0wR16huo0iaFseBfR6dBHTyPa/axCCZxwtZNUSrkPPWfHp36e4iSbOHWEMM jAEr
h91WR7860hUerN9EUd98Xais/RgJOuN1TZEQM7 2nmgwOhYciyOMyUmULUSbbPSDs
JL5zs3pn2E70CoagdNS14kpp/LDGo8iwitTK7XYtdOu/SAvikOWELjY3tR+hNALJ
ROFTxyRYNFDOaWlwMgDISAdS3WHU8yJ6QntFTpLA3vEHVTgswe+pTFzz2Yx13CFk
DOAbbJ7AcBWDbAr+9H6GDF8uQ70om5SVmOCIUqQdQR1G6RMetdz+36QPWuNiCV4c40
gP7cycp+/Q==

subject=C = IT, ST = ROMA, L = ROMA, O = Sogei S.p.A., OU = Server Sicuri, CN =
upload.immuni.gov.it

issuer=C = IT, ST = Bergamo, L = Ponte San Pietro, 0 = Actalis S.p.A./03358520967, CN =
Actalis Organization Validated Server CA G2

No client certificate CA names sent
Peer signing digest: SHA256
Peer signature type: RSA
Server Temp Key: ECDH, P-256, 256 bits
SSL handshake has read ... bytes and written ... bytes
Verification error: self signed certificate in certificate chain
New, TLSv1.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
Protocol : TLSv1.2
Cipher : ECDHE-RSA-AES256-GCM-SHA384
Session-ID:
Session-ID-ctx:
Master-Key:
PSK identity: None
PSK identity hint: None
SRP username: None
Start Time:
Timeout 1 7200 (sec)
Verify return code: 19 (self signed certificate in certificate chain)
Extended master secret: no

SwissCovid. Using testssl to connect to www.ptl.bfs.admin.ch one can see that the server
accepts TLS 1.2 connections only and accepts, interestingly, also the CBC-HMAC ciphersuite,
therefore allowing a more efficient attack using DECO. We report here a text extracted from
the standard output.

26

ECDHE-RSA-AES128-GCM-SHA256 ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES256-SHA384
ECDHE-RSA-AES128-SHA

Cipher Suite Name (OpenSSL) KeyExch. Encryption Bits Cipher Suite Name (IANA/RFC)

ECDHE-RSA-AES256-GCM-SHA384 ECDH 384 AESGCM 256 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

ECDHE-RSA-AES256-SHA384 ECDH 384 AES 256 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
ECDHE-RSA-AES128-GCM-SHA256 ECDH 384 AESGCM 128 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
ECDHE-RSA-AES128-SHA256 ECDH 384 AES 128 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
ECDHE-RSA-AES128-SHA ECDH 384 AES 128 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

Using openssl to connect to www.ptl.bfs.admin.ch with the CBC-HMAC ciphersuite,
one can see all the parameters of the established TLS session, including in particular a timeout
of 7200 seconds (i.e., 2 hours), that is very large and thus beneficial for our attacks. For
completeness we show here the standard output (we replace some potentially identifying data

by ©..7).

openssl s_client -connect www.ptl.bfs.admin.ch:443 -cipher ECDHE-RSA-AES128-SHA

CONNECTED (00000003)

depth=2 C = BM, 0 = QuoVadis Limited, CN = QuoVadis Root CA 2 G3
verify error:num=19:self signed certificate in certificate chain
verify return:1

depth=2 C = BM, 0 = QuoVadis Limited, CN = QuoVadis Root CA 2 G3
verify return:1

depth=1 C = BM, 0 = QuoVadis Limited, CN
verify return:1

depth=0 C = CH, ST = Bern, L = Bern, 0 = Bundesamt fuer Informatik und Telekommunikation
(BIT), OU = Swiss Government PKI, CN = www.ptl.bfs.admin.ch

verify return:1

QuoVadis Global SSL ICA G3

Certificate chain
0 s:C = CH, ST = Bern, L = Bern, 0 = Bundesamt fuer Informatik und Telekommunikation
(BIT), OU = Swiss Government PKI, CN = www.ptl.bfs.admin.ch

i:C = BM, 0 = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

1 s:C = BM, 0 = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3
i:C = BM, 0 = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

2 s:C = BM, 0 = QuoVadis Limited, CN = QuoVadis Root CA 2 G3
i:C = BM, 0 = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

Server certificate

MIIHrDCCBZSgAwIBAgIUfE2HPqjnQrTf9FnR+q9p21Vpz3cwDQYJKoZIhvcNAQEL
BQAwWTTELMAkGA1UEBhMCQkOxGTAXBgNVBAOTEFF1b1ZhZG1zIExpbW10ZWQxIzAh
BgNVBAMTG1F1b1ZhZG1zIEdsb2JhbCBTUOwgSUNBIEczMB4XDTIwMDQyMTEwWNDMw
0VoXDTIyMDQyMTEwNTMwMFowgakxCzAJBgNVBAYTAKNIMQOwCwYDVQQIDARCZXJu
MQOwCwYDVQQHDARCZX JuMT4wPAYDVQQKDDVCAW5kZXNhbXQgZnV1ciBJbmZvemih
dGlrIHVuZCBUZWx1a29tbXVuaWthdGlvbiAoQklUKTEdMBsGA1UECwwUU3dpc3Mg
R292ZXJubWVudCBQSOkxHTAbBgNVBAMMFHd3dy5wdDEuYmZzLmFkbWluLmNoMIIB
IjANBgkqhkiGOwOBAQEFAAOCAQS8AMIIBCgKCAQEA35huk0exPmA6JIyWxvxIJWWVG
cB4AkeLloyKTfOnFr5NA4QxThX8YmksDLL+HfkY+4Kf58PuWT001100KpF4h9b4E
q5s0LFTJEKCmwLoZuP5E7dKFs0tXLfR/mH/5CqQAdLW8Tnhn2ZJ5YFvSDzjS0YuX
irRr5N3Y/FKrHa7ggYJKSdjvT25BI jtkimgEORAzqEWrgxgFgJ7rRQVVZ9G8I5q7

27

y3RIwYmJ4Qf/aF3R1iyYUxbcMQvk8G1sS/JEJ+MBALwgWXVNhswQSiOPcVt1SpNk
TGNB73SBbrzGEdozZqYQnoS378wOwuliepY+K/hZx1D/eule7CCxBG7XGKs+nQID
AQABo4IDJTCCAYEwCQYDVROTBAIwADAfBgNVHSMEGDAWgBSzEom1qUs1vBUASIDp
2HiH8RN8djBzBggrBgEFBQcBAQRNMGUwNwYIKwYBBQUHMAKGK2hOdHA6Ly90cnVz
dC5xdW92YWRpc2dsb2JhbC5jb20vcXZzc2xnMy5 jcnQwKgY IKwYBBQUHMAGGHmMhO
dHA6Ly9vY3NwLnF1b3ZhZG1zZ2xvYmFsLmNvbTAfBgNVHREEGDAWghR3d3cucHQx
LmJmcy5hZG1pbibjaDBRBgNVHSAES jBIMEYGDCsGAQQBv1gAAmQBATA2MDQGCCsG
AQUFBwIBFihodHRw0i8vd3d3LnF1b3ZhZG1zZ2xvYmFsLmNvbS9yZXBvc210b3J5
MBOGA1UdJQQWMBQGCCsGAQUFBwWMCBggrBgEFBQcDATA6BgNVHRSEMzAXMC+gLaAr
hilodHRw0i8vY3JsLnF1b3ZhZG1zZ2xvYmFsLmNvbS9xdnNzbGczLmNybDAdBgNV
HQ4EFgQU2F1pjrbfsqvpeWohTrbIn/4jRRQwDgYDVROPAQH/BAQDAgWgMIIBE gYK
KwYBBAHWeQIEAgSCAW4EggFqAWgAdwCkuQmQtBhYFIe7E6LMZ3AKPDWYBPkb37 j j
d800yA3cEAAAAXGcXs1uAAAEAWBIMEYCIQDJ1sbMecVS6415SAqAI6ZgmROLIqOM
U1dWJb/8fKJ2+gThAJSksFLfhwuihMum/cONGOBw1SnPODhBNLW1zAGeQnggAHUA
VhQGmi/XwuzT9eGIRLI+x0Z2ubyZEVzA75SYVdaJONOAAAFxnF7 JcgAABAMAR jBE
AiBNZUPkn8ArJVVnyR1thxUILagDylovYL393EbkQKXimwIgfdrGHf5n6Sjla2CC
P96wGdb0T1s19hDM1YZK3W+eIQcAdgBvU3asMfAxGdiZAKRRFf93FRwWR2QLBACKG
jbIImjfZEwAAAXGcXsncAAAEAWBHMEUCIGgZ4z5MgpIlcLvBkge/BEqJ/7sYT3ze
IXMrVizfwj2TAiEAyJYfJE6D9AYxRyvDcTwnWiHXers3SNbi7sOPuX51kWsMwDQYJ
KoZThvcNAQELBQADggIBAC303iZDQYcKZ+DyAx4HSzwLpIabyMiungbkmQuN7RYO
40pPIiADc/V/P/x+cDSuttJa8eoUq9zXEAQVW+ETFOWszf5WE31+MjasmTqDyjqV
tNyr jAGACPhbH3J9ydGQX3SqdrGNwFiBRwTvxPqukFu3+JIoRpYMzwXfbRniglfW
R+creYRgloizGYu/M4gqV8LBWE/k7plrwTwsA8BhijhcRbasC+htRSB2SaS+teNO
skibEJ4ajcv78vkN9y+BFKMcq3Cb5;CjoCleUoMm/BVoQNsOZAcLImQ3VHVeeY/S
drI90z0DQ8dSyCZKm5KDMBS2in01 jLyPinbtk7JZWLODetbW1Bs jaC98BNeriYQ1
02avGrOTPFrCONWAB5ze3342L.sTPZwiIEeGhB4AGsVT030YRi3yc52r22W40mdcH
f+fRgCrqddoKdPgGGp8+p9+IsWConF jzEQpN5iJRJI1zorCw8nvvuKkG2I+mjOhMK
WA3/r5m0C+/ZUw+rYLpLstbCoHDBymAFFOb6P66tM13JSvb5/Rjnhrhmtccq7o5k
Qfmr2tGrNs+8cdrVN9efn4es30£f1jVGP98YNtVHz7rC/nicXUSseLxHSHna4i0wlU
wpuX5D0rnF35Y0YP6eJsJS/p7y+k3L3N/iavL0jOLVIILS1TJz0ZgDSbK4tG6PNk

subject=C = CH, ST = Bern, L = Bern, 0 = Bundesamt fuer Informatik und Telekommunikation
(BIT), OU = Swiss Government PKI, CN = www.ptl.bfs.admin.ch

issuer=C = BM, 0 = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

No client certificate CA names sent
Peer signing digest: SHA256
Peer signature type: RSA
Server Temp Key: ECDH, P-256, 256 bits
SSL handshake has read ... bytes and written ... bytes
Verification error: self signed certificate in certificate chain
New, TLSv1.0, Cipher is ECDHE-RSA-AES128-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
Protocol : TLSv1.2
Cipher : ECDHE-RSA-AES128-SHA
Session-ID:
Session-ID-ctx:
Master-Key:
PSK identity: None
PSK identity hint: None

28

SRP username: None

Start Time:

Timeout : 7200 (sec)

Verify return code: 19 (self signed certificate in certificate chain)
Extended master secret: no

29

	Introduction
	Our Contribution
	Related Work

	Trading TEKs in GAEN Systems
	 Take-TEK Smart Contract: Buying/Selling TEKs Uploads
	On the Practicality of Take-TEK Attack
	Subtleties in the Wild

	Connecting Smart Contracts to TLS Sessions
	Decentralized Oracles
	A Smart Contract Oracle

	Conclusion
	Acknowledgments
	Tools
	MACs and Signature Schemes
	Public-Key Encryption Schemes
	NIZK proofs

	Adding Seller's Privacy
	GAEN Export Files
	Implementation Improvements
	Other Subtleties: Details
	Extracting Public Keys from Signatures
	Updates of Public Keys

	Further Notes on Our Smart Contract Oracle
	CBC-HMAC vs AES-GCM

	TLS Connections with Immuni and SwissCovid

