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Zilch: A Framework for Deploying Transparent

Zero-Knowledge Proofs
Dimitris Mouris and Nektarios Georgios Tsoutsos

Abstract

As cloud computing becomes more popular, research has focused on usable solutions to the problem

of verifiable computation (VC), where a computationally weak device (Verifier) outsources a program

execution to a powerful server (Prover) and receives guarantees that the execution was performed

faithfully. A Prover can further demonstrate knowledge of a secret input that causes the Verifier’s program

to satisfy certain assertions, without ever revealing which input was used. State-of-the-art Zero-Knowledge

Proofs of Knowledge (ZKPK) methods encode a computation using arithmetic circuits and preserve the

privacy of Prover’s inputs while attesting the integrity of program execution. Nevertheless, developing,

debugging and optimizing programs as circuits remains a daunting task, as most users are unfamiliar

with this programming paradigm.

In this work we present Zilch, a framework that accelerates and simplifies the deployment of VC

and ZKPK for any application transparently, i.e., without the need of trusted setup. Zilch uses traditional

instruction sequences rather than static arithmetic circuits that would need to be regenerated for each

different computation. Towards that end we have implemented ZMIPS: a MIPS-like processor model

that allows verifying each instruction independently and compose a proof for the execution of the target

application. To foster usability, Zilch incorporates a novel cross-compiler from an object-oriented Java-

like language tailored to ZKPK and optimized our ZMIPS model, as well as a powerful API that enables

integration of ZKPK within existing C/C++ programs. In our experiments, we demonstrate the flexibility

of Zilch using two real-life applications, and evaluate Prover and Verifier performance on a variety of

benchmarks.

I. INTRODUCTION

Cloud computing offers on-demand computational power, emerging as an ideal solution for outsourcing

computation from relatively weak devices (phones, laptops, IoT). However, delegating computation to
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an untrusted third-party running unreliable software, and potentially untested – or malicious [1], [2]

– hardware, comes with many risks [3]. Data may even be corrupted while at rest [4], or in transit.

Moreover, cloud service providers may have monetary incentives to either skip computation steps (e.g.,

skip computing all decimal points on a big number) or completely counterfeit a result. How can we trust

the results computed by the cloud and be assured that the computation was carried out faithfully?

Verifiable Computation (VC) leverages mathematical and cryptographic primitives, such as probabilis-

tically checkable proofs (PCPs) [5], [6], interactive proofs [7]–[11] and commitment-based argument

schemes [12]–[17], to provide strong guarantees to a client on the correct evaluation a statement in NP.

In these schemes, one party P (the prover) generates and commits to a proof that the computation was

executed faithfully and another party V (the verifier) performs unpredictable tests to efficiently check the

integrity of the execution. Given an honest P , these tests can convince V . Conversely, a faulty execution

would be noticed by the verifier with very high probability. Intuitively, in such protocols the overhead for

the prover and the complexity of performing the tests for V should be less than the whole execution on

the computationally-weak device; i.e., the verifiable outsourcing is practical. Numerous systems [18]–[20]

strive to bring verifiable outsourcing one step closer to practicality.

A notable extension to verifiable computation is to enable the prover to apply the computation on

a set of secret inputs – also called witness – which are never revealed to V . This approach, known

as a zero-knowledge proof (ZKP), allows the prover to convince the verifier that she knows a secret

without actually disclosing it [21]–[24]. For instance, ZKPs can be leveraged to log-in to a website

without typing a password by simply sending a proof that you “know the valid password”. ZKP-based

authentication eliminates the need for maintaining server-side password databases, sending passwords via

unsafe channels, having to digitally sign challenge messages that could later be misused, or even having

to disclose an intellectual property for functional verification [25].

Although ZKPs and VC have numerous applications, many state-of-the-art solutions (e.g., [19], [21]–

[23], [26]) suffer from a severe limitation: they require a trusted authority to generate the public parameters

for the system and then eliminate any knowledge of the randomness used to generate them (referred to

as toxic waste). A malicious third-party that obtains access to that toxic waste can forge false proofs

and trick an honest verifier. Having a single point of failure in VC and ZKP systems that rely on

cryptographic primitives seems contradictory. As a result, systems that use public randomness and thus

have a transparent setup have been proposed [27]–[33]. Likewise, the works in [34], [35] provide

constructions leveraging updatable common reference strings (CRS).

Another observation about the computational model followed by most VC and ZKP systems is the need

to express computer programs as arithmetic circuits, or equivalently as a set of arithmetic constraints over
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a finite field F. Works such as [18], [21], [24] provide a compiler from a high-level language (typically a

subset of C) to arithmetic circuits, however, they require the circuit to be fixed offline during the trusted

setup phase. Notably, this conversion is laborious as it is hard to express arbitrary algorithms using

arithmetic circuits and even harder to edit, debug or optimize these VC circuits without deep knowledge

of cryptography and circuit design. Furthermore, these circuits are program-specific and cannot be reused

to verify other programs, which renders them non-universal. An alternative is to employ a Random Access

Machine model that provides a low-level language, such as TinyRAM [23], that can define a universal

circuit. However, program development using such esoteric machine models without high-level toolchain

support still requires significant effort from a programmer’s perspective.

Unfortunately, neither of these models of computation is natural for most non-crypto savvy program-

mers. Thus, an important objective in this work is to develop a methodology for verifiable computation

and zero-knowledge proofs of knowledge using a convenient programming model that does not rely on

any trusted third party. Our approach is to leverage a programming model that is based on a sequence of

instructions instead of a circuit netlist. At the same, an additional goal is to optimize performance while

ensuring programming convenience.

The main contribution of this work is the development of Zilch1, a specialized framework to facilitate

the development of interactive zero knowledge proofs for any application. Zilch enables the development

of algorithms used for VC and ZKPs using our high-level language called ZeroJava, which is compiled into

an intermediate representation (IR) that is ultimately transformed into a set of mathematical constraints.

ZeroJava is an intricately chosen subset of Java specifically tailored for deploying zero-knowledge

arguments, while the IR statements are evaluated in our custom abstract machine (called ZMIPS) that is

adopted from a MIPS processor. To generate and verify proofs, Zilch leverages the state of the art zk-

STARK library [29] that does not rely on any trusted third party setup (i.e., contrary to other libraries [22],

[23], [26]). Moreover, zk-STARK is resilient against attacks by large-scale quantum computers2 and its

security relies on collision-resistant hash functions [13] and the random oracle model [36]. In addition to

newly developed applications that can be developed in ZeroJava, our Zilch framework offers a powerful

API that is compatible with C/C++ programs to facilitate embedding VC and ZKPs into existing code.

In all cases, Zilch enable a prover to interact with a verifier automatically over a network.

Our contributions are summarized as follows:

1Zilch / zIltS / : zero; nothing. The search came up with zilch.

2We refer to a system’s property of being resilient to known attacks by large-scale quantum computers as plausible post-

quantum secure.
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• Design of ZMIPS, an abstract machine that is adopted from the MIPS processor with judiciously

selected instructions that create arithmetic circuits and enable zero-knowledge proofs for any target

application,

• Design and implementation of the ZeroJava high-level language, with a cross-compiler from ZeroJava

to ZMIPS and an assembly optimizer,

• Development of the Zilch framework & API to facilitate development of ZKPs for existing C/C++

applications.

Roadmap: The rest of the paper is organized as follows: In Section II we discuss background notions,

while in Section III we elaborate on our ZeroJava language and cross-compiler, as well as the ZMIPS

instruction set architecture (ISA) and the C/C++ API. We demonstrate our framework’s capabilities using

two real-world applications and evaluate its performance on a variety of benchmarks in Sections IV and

V. In Section VI we discuss related works, while our concluding remarks are summarized in Section

VII.

II. PRELIMINARIES

A. Models of Computation

There exist many different models of computation, some less powerful yet simpler, while others more

sophisticated. In the context of this article, we delve into two models that enable execution of arbitrary

computer programs: Turing machines (TMs) and arithmetic circuits (ACs).

A Turing Machine is a model of computation that consists of an infinite tape, a tape head and a finite

table of rules. At each step, the tape head reads a symbol from the tape and determines which action to

perform from the finite table and then either moves one cell to the left or right, or halts the computation.

This abstract machine, despite its simplicity, is capable of executing any algorithm given as a set of rules

for an input provided in the tape [37]. A universal Turing machine (UTM) is a TM whose algorithm

(table of rules) implements a simulator for any arbitrary TM with arbitrary input tape. A fundamental

difference between a TM and a UTM is that the former is programmed with a rules table to evaluate

a specific problem, while the latter works with the description of any TM and thus can evaluate any

program.

An Arithmetic Circuit over a field F consists of input and output gates that are connected with

intermediate gates through wires. The input values proceed through a sequence of gates performing

either addition (+) or multiplication (×); a simple example is illustrated in Fig. 1. Transforming certain

classes of programs into ACs can be straightforward, if they only involve addition and multiplication of

elements of the finite field. Notably, this approach is equivalent to the evaluation of polynomials over a
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Fig. 1: Example of a computation using arithmetic circuits. The output can be expressed using a

polynomial expression.

field F, so the outputs of the arithmetic circuit can be expressed as a set of polynomials over the input

variables.

Turing machines and ACs are equivalent models of computation, i.e., given a program and an input,

both models can compute the same output. In fact, any Turing machine can be unrolled into a circuit

somewhat larger than the number of steps in the computation [38]. Our abstract machine in Zilch offers

a more flexible model of computation, since it is the equivalent of a UTM: its input is a program defined

as a sequence of instructions that can consume any given input.

B. Principles of ZKPs and VC

Verifiable Computation: The typical scenario in VC is that the verifier (V) sends a program description

Ψ and an input x for that program to the prover (P). Then, P computes and returns the output y = Ψ(x)

of the execution of that program on input x to V along with a short proof which can be efficiently verified

by V . In this case, both parties express the computation Ψ as a set of constraints involving x and y. Those

constraints are essentially equations over a finite field F modulo a large prime. Consecutively, P solves

the constraints (i.e., finds a satisfying assignment), where a solution exists if and only if y = Ψ(x).

These constraints are equivalent to ACs [21], [23], where the gates are operations in F and the wires are

elements in F.

Zero-Knowledge Proofs: To also make the aforementioned short proofs privacy-preserving, P can

provide her own private input w to the computation, referred to a witness. Thus, Ψ now becomes a

function of two inputs such as y = Ψ(x,w). If V can be convinced that the statement y = Ψ(x,w) is

True without learning anything about w, then the scheme is a ZKP protocol; such protocols become

more powerful when the witness is a solution to an NP-hard problem. Most existing works leverage ACs

where the algorithm is transformed to constraints and the proof convinces V that there exists a witness
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satisfying these constraints. Nevertheless, an important limitation of earlier works (e.g., [18]) is the need

to know the target NP-hard algorithm beforehand, rendering them non-universal.

C. Properties of Proof Systems

Every proof system should satisfy two basic properties:

• Completeness: If the statement y = Ψ(x) is True, an honest P should be able to convince an honest

V . In other words, given the same set of inputs, V should yield the same result y through the protocol

as P .

• Soundness: If the statement y = Ψ(x) is False, a malicious P cannot convince an honest V that it

is True (except with negligible probability).

If the proof system also preserves the privacy of the prover’s inputs, then it would satisfy the zero-

knowledge property:

• Privacy: If the statement y = Ψ(x,w) is true, P can convince V without leaking any information

about w.

In ZKP systems, we have two additional desired properties:

• Transparency: The proof system does not require any trusted setup (e.g., [28]–[30], [32]); any

randomness used by transparent frameworks is public coins.

• Scalability: The proof system can gracefully handle programs and inputs of larger sizes, which makes

it more practical. This property is applicable to both the prover and the verifier: The scalability of P

corresponds to the overhead of generating the proof and convincing V , and it should be somewhat

similar to the time it would take to re-execute the target program. Likewise, the scalability of

V entails that verification times are exponentially smaller than the cost of re-executing the target

program (scalable verifiers are referred to as succinct).

A proof system that satisfies all the above properties is a Zero-Knowledge Scalable Transparent ARgument

of Knowledge (zk-STARK) [28], [29].

D. A Primer on zk-STARKs

Overview: Typically, a ZKPK involves (1) a witness input w (i.e. the piece of data we want to prove

knowledge for), and (2) verifiable execution of a public algorithm that tests an assertion about w. For

example, the latter can be an algorithm A that “multiples two integers and compares the result with a

composite N ,” whereas the witness can be a set of primes p, q. In ZKPK, we can prove knowledge

of correct p and q if we can prove that A was executed faithfully on the witness input. Likewise, A

can be a modular Fibonacci loop instantiated with integers a0, a1 so that each loop computes ai =
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ai−1 +ai−2 mod p, where p is a large prime that defines a finite field. In this case, if a0 = 1 and a1 = w

is our witness, we can prove knowledge of a suitable a1 the returns the anticipated output y′ after a large

number of loops (i.e., aT = y′ at step T ).

The zk-STARK methodology enables proving the integrity of the computation of algorithm A after

T steps on input w that yields an output y; this is possible using arithmetization and low-degree

testing operations on polynomials over finite fields [29]. Specifically, arithmetization is the reduction

of a computational problem (i.e., verifying a computation) into an algebraic problem, such as checking

that a certain polynomial is of low degree. In zk-STARKs, arithmetization comprises three steps: (a)

generating the execution trace of algorithm A for T steps, (b) generating a set of polynomials that express

constraints for each execution step (e.g., if two values are multiplied, the result equals their product),

and (c) combining the execution trace and polynomial constraints into a single polynomial Q. Finally, the

zk-STARK approach shows that it is possible to generate a ZKPK by employing error-correction methods

(specifically Reed-Solomon proximity testing [29]) and show that the generated polynomial Q is actually

low-degree. In this case, V is convinced that a polynomial is of low-degree (and thus the integrity of the

computation of A) with only a small number of queries to P [29].

Low-Degree Extension and Commitment: In the first step in a zk-STARK proof, P encodes the

execution trace of algorithm A into a sequence of states. In our earlier modular Fibonacci loop example,

this would be the set {a0, a1, a2, . . . , aT } (note, P knows the correct witness a1). P then generates a

sequence {b0, b1, . . . } and pairs each state in the trace with the corresponding bi (e.g., create (bi, ai)

pairs). These pairs are interpreted as (x, y) points and are used to efficiently compute the interpolating

trace polynomial F (B) across them with the Lagrange interpolation method. Knowing the coefficients

of the trace polynomial, P fixes an R so that R� T computes its low-degree extension (LDE), i.e., the

values of F (B) for B = {bT+1, bT+2, . . . , bR}. Finally, P computes a Merkle-tree over the sequence

{F (b0), F (b1), . . . , F (bR)} and commits to the tree root.

Arithmetization: zk-STARK employs a formal algebraic intermediate representation (AIR) of the target

algorithm A as a set of low-degree polynomials {P1, . . . , PK} that encode K constraints about the

execution trace of the computation [29]. In this case, the transition from step T to step T + 1 in the

computation is valid if and only if all constraints are satisfied (i.e., P1 = · · · = PK = 0). In our Fibonacci

example (with interpolated trace polynomial F ), our constraints are F (x+ 2)−F (x+ 1)−F (x) = 0 for

x ∈ {b0, b1, . . . , bT−2}, F (x) − 1 = 0 for x = b0, and F (x) − y′ = 0 for x = bT , where all operations

are mod p.

By the polynomial remainder theorem, if b is a root of a polynomial Q(x), then Q(x) = (x− b)P (x),

i.e., P (x) = Q(x)/(x − b) is a polynomial. Therefore, we can can compute the AIR polynomials by
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factorizing the constraints of the computation. In our Fibonacci example we have P1(x) = (F (x) −

1)/(x− b0), P2(x) = (F (x)−1)/(x− bT ), and P3(x) = (F (x+ 2)−F (x+ 1)−F (x))/[
∏T−2
i=0 (x− bi)].

Moreover, zk-STARK computes the Composition Polynomial (CP) as the linear combination of all Pis

and applies a LDE up to R points.

Low-degree testing: The goal of this step is to convince V that the distance between the computed CP

and a low degree polynomial is relatively small, where distance between any function and a polynomial

of degree d is defined as the number of x inputs where their values are different. In zk-STARK, this

is possible using the FRI operation (Fast Reed-Solomon Interactive Oracle Proofs of Proximity), which

that reduces the problem of proving that a function of domain size R is close to polynomial of degree

bounded by d into a new smaller problem where the function domain size is R/2 and the polynomial

degree is d/2 [29]. FRI is applied iteratively to CP (treated as a function of domain size R after LDE)

until d = 1; each iteration replaces every polynomial power xi with xbi/2c and the coefficients of same

powers are added. Also, after each FRI iteration, P computes a Merkle-tree of the values of CP over

the its entire domain and the tree root is committed.

Decommitment Step: In this step V is convinced that the original execution trace for algorithm A was

computed faithfully by sending queries to P . Specifically, the verifier selects a small set of bi values

for i ∈ {0, 1, . . . , R} and for each one the prover reveals the Merkle-tree path for her commitments for

each FRI step and the LDE of the trace polynomial F . V uses the values of F and reconstructs the

corresponding CP values (for each FRI step). If all commitments are correct, V is convinced the proof

is sound with very high probability [29].

E. Our Threat Model

Cheating Prover: To mitigate the risks applicable to our approach for computational integrity, our threat

model assumes an adversary given access to the prover’s capabilities. The adversary succeeds if she

produces a false statement that will convince V to accept it. In the VC scenario, the cheating P has

incentives to skip some steps or completely forge the result, while in the ZKPK case the adversary

tries to convince V that she knows the witness without actually knowing it. Zilch features a configurable

security parameter λ, which determines the probability (≤ 2−λ) that an adversary can successfully deceive

an honest verifier in the above experiments. Thus, λ defines the soundness property of the proof system.

Cheating Verifier: On the other hand, a malicious verifier is assumed to behave without restrictions and

not necessarily follow the protocol specification in order to extract any information about the secret input

w. If P follows the protocol correctly and the statement is true, V will never learn any (private) witness

data from the interaction with the prover except the fact that the statement is true, (i.e., zero-knowledge
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Fig. 2: Zilch Framework Overview: Using our ZeroJava compiler (or developing in ZMIPS assembly

directly), P provides assembly code to Zilch along with the steps bound (T ) and the private and public

inputs. Zilch computes the result (y), generates a succinct proof and sends it to V . Finally, V checks the

proof and either accepts it (convinced) or rejects it.

property). Moreover, we don’t consider trivial cases where V completely withdraws from the protocol of

the two parties.

Post-quantum resilience: Many different VC and ZKP frameworks rely on elliptic curves and pair-

ings [15], [21]–[23], [26], [39]–[42], as well as the discrete logarithm problem [30], [43]; this makes them

susceptible to attacks using quantum computers [44]–[47]. Similar to zk-STARK [28], [29], ZKBoo [48]

and Ligero [27], Zilch remains resilient to known quantum attacks since it relies on collision-resistant

hash functions.

Transparency: Previous VC and ZKP solutions (e.g., [18], [21]–[23], [26], [41]) require a third party

to set-up the system with non-public randomness. If that party is not trustworthy, this secret randomness

could be misused to generate false proofs and compromise the system’s security. Zilch, like other state-

of-the-art PCP-based systems (e.g., [27], [29], [32]) is transparent as it relies only on public randomness

and does not need any trusted third party during its set-up phase.

III. THE ZILCH FRAMEWORK

A. Key Observations in our Methodology

Zilch aims to facilitate proving computational integrity statements; in particular, our goal is to convince

a verifier that a computer program implemented as a sequence of well-defined instructions returns an

expected output for a set of inputs. For our methodology, we observe that in order to verify the execution

integrity of an algorithm, it is sufficient to divide it into two parts, verify both individually and finally

verify a correct transition from the first part to the second. This observation can be applied in a divide-

and-conquer manner to recursively decompose any algorithm into sub-algorithms until each becomes

simple enough to be verified individually. Each individual proof is then combined into a composable

proof for the execution of the original algorithm.
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A second important observation about computational integrity in our case is that it is sufficient to

decompose the target algorithm up to the granularity of individual assembly instructions and prove

the integrity of each instruction directly using its corresponding arithmetic circuit (AC). This offers great

flexibility, as a predetermined set of assembly instructions (each mapped to a small AC) can be combined

to define any arbitrary algorithm. Conversely, trying to verify any large program directly using a large

static AC would require generating a unique AC for each different program, which is exactly the daunting

task that we are trying to avoid in the first place. Notably, our proposed method of verifying programs at

the granularity of an assembly instruction is beneficial, as it is relatively easy to translate any program

written in a high-level language into a set of assembly instructions using a compiler. To prove the integrity

of execution, we first verify the AC of each individual assembly instruction and finally verify each state

transition between consecutive instructions.

B. Overview of our Framework

To instantiate our methodology, we have developed Zilch: a transparent and post-quantum resilient

programming framework for creating ZKPK for any application. Zilch is universal since it takes as input

a description of a Turing Machine (TM) (i.e., a computer program) and two input tapes, one private and

one public. More formally, Zilch implements a time-bounded Universal TM and can be used for any

arbitrary computation that is expressed as a sequence of instructions. Internally, Zilch adopts a MIPS-like

processor model (i.e., an abstract machine with memory, program counter, registers and fetch-decode-

execution pipeline stages) called ZMIPS; our machine supports a judiciously selected instruction set that

can implement and verify any computation in zero-knowledge.

Zilch consists of a front-end and a back-end. The front-end defines our customized subset of Java

specifically tailored to zero-knowledge arguments, called ZeroJava, and includes our compiler for trans-

lating the ZeroJava high-level code into ZMIPS assembly instructions. From a programmer’s perspective,

ZeroJava is object-oriented and strongly-typed like Java, while excluding Java features that complicate

the run-time system, such as exceptions and multi-threading. Our compiler comprises four phases: (a)

transforming the high-level code into an intermediate representation (IR), (b) performing static analysis

on the IR to optimize it, (c) performing register allocation to minimize the number of required registers,

and (d) generating the ZMIPS assembly. We elaborate more on the design choices of the Zilch front-end

(i.e., the ZeroJava language and the compiler) in Section III-C.

The Zilch back-end defines the ZMIPS abstract machine that consumes ZMIPS instructions to transition

from one state to another; each state comprises the program counter, K registers and memory. A

computation is expressed as a sequence of instructions or equivalently as a sequence of abstract machine
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states. Furthermore, each assembly instruction generates individual constraints that must hold between

each two consecutive abstract machine states, and having a finite set of instructions renders verification

feasible. The sequence of states {S1, S2, ..., ST } forms an execution trace of a program (also called a

transcript) that is T steps long; in each step, an instruction is fetched, decoded and executed by our

abstract machine. The transcript can be represented as a two dimensional table with T rows and K

columns (Fig. 2), where each row represents a single execution step and each column tracks one ZMIPS

register through time. Two states Si and Si+1 are valid if the machine in state Si can transition with some

instruction to state Si+1 in the next step. Depending on the instruction that operates on Si, the new Si+1

state is different, since each instruction performs a unique transition from Si to Si+1. Given a time bound

T , an execution trace tr of a specific program Ψ is valid if there exist public and private inputs x, w,

such that the generated trace of Ψ on inputs x and w is tr. Likewise, the integrity of the memory state is

ensured using a memory trace as will be discussed in Section III-D. For each ZMIPS instruction, our Zilch

back-end invokes the corresponding AIR constraints employing the zk-STARK library [29] (described in

Section II-D); using this library, Zilch consumes the transcript and the constraints, generates a low-degree

polynomial and then P is able to convince V that all polynomial constraints are satisfied in the execution

trace for a secret witness w.

Benefits of Zilch: Expressing a computation as a transcript of state transitions enables our abstract

machine to generate universal ACs that do not require a different set up each time a new program is

executed, since each instruction implements its own AC. The only requirement is to provide an upper

bound for the time steps of the target program in order to generate an AC that simulates the entire

execution. Zilch can automatically determine the minimum number of execution time steps required for

a specific program Ψ to generate a result by first simulating the computation quickly (without generating

any constraints or proofs), and then checking if the output matches the expected result y. If not, Zilch

doubles the time steps bound T and repeats the same check with the new bound. If the computation

returns y using the new time steps bound, Zilch generates the AIR constraints for the identified bound

T and interacts with the verifier.

The zk-STARK library enables development of interactive proofs where the prover and the verifier

communicate so that the latter is convinced of the correctness of a proof. An important benefit of Zilch

is its ability to verify proofs over-the-network by serializing all the communication between P and V .

Moreover, as Zilch leverages zk-STARK for verification, the corresponding cost is poly-logarithmic in

the time steps required for executing Ψ, rendering our framework succinct.3

3Succinctness denotes short proofs and scalable verification time.
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An overview of the Zilch framework is presented in Fig. 2, where a simple ZeroJava program for

addition is translated into ZMIPS assembly instructions using our compiler. Zilch then produces an

execution trace that is ultimately transformed into AIR constraints for the zk-STARK library, and P can

interact with V . For an honest prover, the verifier is convinced (i.e., accepts the proof) that the program

was executed faithfully and that y = Ψ(x,w) after at most T steps. Conversely, if the prover is malicious,

the verifier will reject the proof with very high probability.

C. Zilch Front-End Design

1) ZeroJava Language: To facilitate the development of ZKPK for any application, we introduce a

self-contained high-level language called ZeroJava, which enables implementing arbitrary NP statements

and is specifically tailored to VC and ZKPK. Contrary to previous approaches on high-level languages for

verifiable computation (e.g., [18], [21], [24]), ZeroJava supports dynamic loop conditions without need

for unrolling (i.e., mutable state and iteration, dynamic termination and infinite loops are supported).

Moreover, ZeroJava supports ZKP-specific built-in functions that invoke specific ZMIPS assembly in-

structions (we elaborate on these methods in Section III-D that discusses the ZMIPS ISA). The following

paragraphs present our design choices for ZeroJava.

ZeroJava is object-oriented and strongly-typed, like Java. The basic types of ZeroJava are int for W -

bit integers, boolean for logical values, and int[] for arrays of integers. Classes contain attributes

and methods with arguments and return type of basic or class types. ZeroJava supports single inheritance

without interfaces and function overloading (i.e., each method name must be unique). In addition, all

methods are inherently polymorphic so that a method can be defined in a subclass if it has the same

return type and arguments as in the parent. Fields in the base and derived class are allowed to have

the same names, and are essentially different fields. All ZeroJava methods are public and all fields are

protected so that a class method cannot access fields of another class, with the exception of its parent;

a class’s own methods can be called via this. Local variables can be defined at the beginning of a

method and can shadow the fields of the surrounding class with the same name.

In ZeroJava, the new operator calls a default void constructor. In addition, there are no inner classes

and there are no static methods or fields. A ZeroJava program begins with a special main class that does not

have fields and methods and contains the main method (i.e., public static void main(String[]

args)). After main class, other classes may be defined that can have fields and methods. In Table I we

summarize all the ZeroJava supported operators.

Tapes: ZeroJava supports both public and private inputs via two read-only input files called tapes. Each

tape can be read sequentially using the READ built-in method (the next word is consumed), or with the
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TABLE I: ZeroJava Language Operators

Assignment
Increment

& Decrement

Arithmetic

& Bitwise

Logical

& Relational

a = b a++ a + b !a

a += b a-- a - b a && b

a -= b Arrays a * b a || b

a *= b a[b] a / b a == b

a /= b a.length a % b a != b

a %= b new int[a] a ˆ b a < b

a ˆ= b Ternary a & b a > b

a &= b (a) ? b : c a | b a <= b

a |= b ∼a a >= b

a <<= b a << b

a >>= b a >> b

random access SEEK function (the word at a given offset is read). These built-in methods have one-to-

one correspondence with ZMIPS instructions. In case of ZKPK, the secret input (witness w) should be

provided in the private tape; for VC, only the public tape is required.

2) ZeroJava Compiler: Using our ZeroJava compiler, programmers can translate NP statements ex-

pressed in ZeroJava high-level code into optimized ZMIPS machine code. Since ZeroJava is a strongly-

typed language, the first step performed by our compiler is to statically analyze the program and verify its

type safety, i.e., ensure that the types of expressions are consistent. For instance, a variable declared as an

integer cannot be assigned with a different data or class type on the same scope. Our compiler also throws

an error if an answer function is missing, as this is required to halt the abstract machine. Consecutively,

the ZeroJava compiler parses the high-level code, generates an IR that is in turn consumed by the code

optimizer. In particular, our code optimizer reduces the IR code based on the results of static analysis,

employing data-flow analyses and optimization techniques including live-range, dead-code, constant- and

copy-propagation [49]. Finally, our compiler performs register allocation on the IR to further reduce the

number of registers and generates ZMIPS assembly. Our optimizations based on IR static-analysis can

be summarized as follows:

• Live range analysis: The liveness analysis determines which variables hold a value that may be

needed in the future (i.e., are live) for each instruction. This is used for the dead code elimination

optimization (discussed next).
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• Dead code analysis: An assignment to a non-live variable is dead code; such assignments can be

removed, reducing the total size of the program.

• Constant propagation: For each program instruction, this analysis determines which variables hold

a constant value. In this case, the constant value is forwarded to all subsequent uses of the variable.

• Copy propagation: Likewise, this analysis determines which program variables are guaranteed

to hold identical values. Both constant and copy propagation analyses enable further dead code

elimination optimizations.

These optimizations are executed until a fixed-point is reached (i.e., a steady state where two consecu-

tive iterations result to the same code sequence); then, no further optimizations can be detected by static

analyses. In this work, we employ the Datalog declarative logic programming language from within the

IRIS framework [50]. Since Datalog naturally supports recursive relations, it is suitable for fixed-point

algorithms [51]. In our case, after the ZeroJava compiler has generated the IR, our code optimizer parses

the code and generates relation tables (e.g., simple-instruction, jump-instruction, next-instruction, etc.)

that are used for static analysis in Datalog.

Naturally, the object oriented paradigm comes with a performance trade-off when it is applied to zero-

knowledge statements, since instantiating new objects requires creating virtual tables and accessing the

memory. Therefore, our ZeroJava compiler minimizes any unnecessary memory operations when objects

are not used and the only statements are in the main class. Furthermore, the combination of the static

analysis optimizations and register allocation techniques of the ZeroJava compiler are crucial since they

minimize the number of registers that are spilled (i.e., having to move their values to and from memory).

Moreover, as the number of instructions affects the time steps bound, minimizing the total number of

ZMIPS instructions results in faster proving time.

D. Zilch Back-End Description

Instruction Execution: Each instruction can modify one or more registers, the program counter and

the memory, populating a new row in the transcript, while its corresponding AC defines constraints and

assertions for these transitions (both the prover and the verifier agree on these in advance). To ensure

correct instruction execution (i.e., code-consistency), for each step i the transition between consecutive

machine states (Si, Si+1) is verified by the AC corresponding to instruction i based on the following

assertion: Executing instruction i on state Si results to a new Si+1 state, where the destination register in

instruction i as well as the program counter are updated according the instruction operation code and all

the values on the other registers are propagated to the next state. Each instruction increments the program
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counter by one after it is executed, except for jump instructions that modify the program counter based

on the branch target.

Considering pairs of adjacent states in a time-sorted transcript, code consistency can be checked by

inspecting one pair at a time. For instance, after a move dst, src instruction is executed, the value in

the destination register (dst) should be equal to the value of source register (src) before executing the

instruction, and all other registers should remain the same. Such constraints should be satisfied between

two consecutive states at the execution trace for each move instruction. In a jump instruction, the

consistency of the program counter is asserted while all other registers should remain the same. In a

similar manner we handle the constraints for all instructions that do not involve memory. Initially, the

program counter (PC) is set to 0 and the first instruction is fetched; subsequently, each instruction i that

is fetched is always pointed by the PC.

Memory Accesses: The back-end of Zilch employs the zk-STARK library to transform the execution

trace and the polynomial constraints into a single low-degree polynomial and convince the verifier of their

satisfiability over the specific execution trace, which guarantees computational integrity. Similar to code

consistency, memory consistency is ensured using constraints on pairs of adjacent states; these states are

encoded in a memory transcript sorted by ascending memory locations and then by time. If i is a load

instruction at a specific address, the value read by i should equal the last value written to that address

by the most recent store instruction.

By analyzing both the code and memory transcripts, it is possible to verify the consistency of all

instructions and memory locations respectively during execution. Specifically, zk-STARK enables P to

convince V that both transcripts correspond to the same program execution (i.e., they encode the same

computation) using a permutation between the two traces [23], [52]. This permutation is unknown to

V , and is verified by zk-STARK via a back-to-back De Bruijn graph, as discussed in [53]. In general,

if a program does not use memory-type instructions, the proof comprises fewer constraints, and its

execution overhead can be reduced. Conversely, if the program accesses memory, additional constraints

are necessary to verify memory integrity, which can impact performance; in fact, as the time bound T

increases, the execution time of a program with memory accesses is dominated by the cost of verifying

the aforementioned permutation constraints. If all constraints hold during execution and the program

finishes within T steps, V would accept the proof.

1) ZMIPS Assembly Language: In this work, our goal is to define an instruction set architecture

(ISA) for the abstract machine of Zilch that is specifically tailored to VC and ZKPK. This means that

our candidate instruction set should (a) be sufficiently simple so that the arithmetic circuit corresponding

to each instruction would be easy to evaluate, and (b) have a reduced number of instructions so that the
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TABLE II: zMIPS instructions: RD denotes the destination register, RS and RT denote the source

registers, A can be either a source register or an immediate value, while L can be either an instruction

number or a label.

Arithmetic Operations

ADD RD , RS , A RD = RS +A

SUB RD , RS , A RD = RS −A

MULT RD , RS , A RD = RS ×A

DIV RD , RS , A RD = RS ÷A

MOD RD , RS , A RD = RS mod A

MOVE RD , A RD = A

LA RD , L RD = L

Bitwise Operations

AND RD , RS , A RD = RS &A

OR RD , RS , A RD = RS |A

XOR RD , RS , A RD = RS ⊕A

NOT RD , RS , A RD = ∼A

SLL RD , RS , A RD = RS<<A

SRL RD , RS , A RD = RS>>A

Jumps, Branches and Comparisons

BEQ RS , RT , L if RS = RT then goto L

BNE RS , RT , L if RS 6= RT then goto L

BLT RS , RT , L if RS < RT then goto L

BLE RS , RT , L if RS ≤ RT then goto L

SEQ RD , RS , A RD ←True if RS = A

SNE RD , RS , A RD ←True if RS 6= A

SLT RD , RS , A RD ←True if RS < A

SLE RD , RS , A RD ←True if RS ≤ A

J L goto instruction L

JR RS goto instruction denoted by RS

Load and Store Operations

LW RD , A(RS) RD = MEM [RS +A]

SW RS , A(RD) MEM [RD +A] = RS

I/O Operations

PUBREAD RD RD fetch next word from public tape

SECREAD RD RD fetch next word from private tape

PUBSEEK RD , A RD fetch word from public tape[A]

SECSEEK RD , A RD fetch word from private tape[A]

PRINT RS print RS

ANSWER RS return RS and halt



17

number of unique ACs is also minimized. Some modern instruction set architectures, however, such as

the x86, implement a large number of instructions that define low-level or compounded operations (e.g.,

load a value from memory, then multiply it by 2 and finally store it back to memory), or even operate

at multiple elements at once. Such complex ISAs are not suitable candidates for our abstract machine;

instead, our goal is to define a reduced instruction set computer (RISC) architecture that is compatible

with ACs in VC and ZKPK.

For our ZMIPS ISA, a natural candidate would be to adopt the MIPS ISA that is sufficiently simple

yet very expressive, open-source and widely used [54]. Moreover, since data memory accesses entail

evaluation of additional constraints (as discussed in the previous paragraphs), our ideal ISA should be

register-to-register and follow the Harvard paradigm with independent memory spaces for instructions and

data. Towards that end, we have developed a MIPS-like ISA that includes support for arithmetic, bitwise,

comparison, conditional, memory and I/O operations. In particular, the ZMIPS architecture extends the

traditional MIPS ISA with a set of custom I/O instructions for reading public as well as private (witness)

data from the input tapes (both sequentially and with random access), as well as instructions to print

results and halt.

TABLE III: ZeroJava Built-in Functions

Built-in function zMIPS instruction

Prover.answer(int) ANSWER RS

System.out.println(int) PRINT RS

int PublicTape.read() PUBREAD RD

int PrivateTape.read() SECREAD RD

int PublicTape.seek(int) PUBSEEK RD , A

int PrivateTape.seek(int) SECSEEK RD , A

Instructions: In Table II we present a subset of the assembly instructions supported by ZMIPS. In our

notation, register RD denotes the destination register, while RS and RT denote the source registers.

Like in the MIPS architecture, our instructions are divided into three broad categories: R-type that

involves instructions with up to three registers, I-type for instructions involving up to two registers

and an immediate value, and J-type for instructions involving up to two registers and a jump target. In

ZMIPS, we simplified the MIPS ISA by merging the I and R types, however, we still support the I-type

instructions (not shown in Table II) for backwards compatibility with MIPS programs. Most instructions

operate on parameter A, which can be either a source register or an immediate value; in this case, Zilch

can distinguish R-type from I-type automatically. In J-type instructions, L denotes either an instruction
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number or a label (as discussed in Section III-D2). Overall, ZMIPS supports arithmetic (i.e., +, -, *,

/, mod), bitwise (&, |, ˆ, ∼, <<, >>), logical (!, &&, ||), relational (=, 6=, >, <, ≥, ≤), branch/jump,

memory transfer and I/O instructions. Additionally, the 1-to-1 mapping between the ZeroJava built-in

methods and ZMIPS instructions is summarized in Table III.

Registers: Inspired by the MIPS ISA, ZMIPS supports general-purpose ({$s0, $s1, . . . } and tem-

poraries {$t0, $t1, . . . }) and special-purpose registers (SPRs) such as: the $zero (or $0) register

that is hardwired to zero, the $ra register that holds return addresses, the stack $sp and frame $fp

pointer registers that are used to enable the call stack of our abstract machine, $a0 – $a3 that store call

arguments, and $v0 – $v1 that store return values. We further introduce the heap pointer $hp SPR that

is used to store the next free memory address; we utilize $hp to perform dynamic memory allocation in

our abstract machine instead of the MIPS system calls.4 Since ZMIPS is an abstract machine, we can

increase its total number of registers to more than the 32 used in MIPS. Thus, the abstract machine state

comprises a W -bit program counter and up to K registers of size W bits (all initialized to zero); both

the word size W and the total number of registers K can be parameterized.

2) ZMIPS Assembler: To enhance the expressiveness of ZMIPS, we further introduce the ability to

define custom Macros, which are new user-defined instructions that are not part of the original ISA. In

this case, the ZMIPS assembler treats a Macro as a sequence of existing instructions. The latter can

improve usability and avoid repetition of instructions since functions and more complex constructions

can now be defined as Macros.

Likewise, another assembler enhancement is support for custom labels in the code. Specifically, even

though the abstract machine assembly instructions use instruction numbers as branch targets, the use

of labels enables a convenient programming paradigm for users. At the assembler level, our labels are

alphanumeric tags that begin and end by a double underscore (e.g., a label ), while inside Zilch

these labels are converted to instruction numbers.

Finally, in our effort to make ZMIPS as compatible as possible with the MIPS ISA, we offer support for

several assembler expressions, such as the text section (.text), and the data section (.data). Although

these are not used by the Zilch abstract machine, their support renders the ZMIPS code backwards

compatible with MIPS simulators, save for the custom I/O instructions and absence of system calls.

4MIPS invokes syscall 9 to allocate heap memory. The number of bytes to allocate is passed to the $a0 register, while

$v0 contains the address of the allocated memory.
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E. Application Programming Interface (API) for Zilch

ZeroJava and ZMIPS assembly are powerful tools for developing new VC and ZKPK applications;

however, additional attention is necessary for existing applications that rely on various system calls

and standard library functions. Since our objective is to improve the usability of VC and ZKPK in a

broad range of scenarios, Zilch further offers a convenient API that allows embedding computational

integrity functionality into the code-base of existing C/C++ programs. Using our API, a programmer can

independently invoke the prover and verifier of Zilch via C/C++ functions, where each invocation can

support arbitrary functionality by passing a ZMIPS code snippet to the parent function. In effect, it is not

necessary to convert an existing C/C++ application into ZeroJava/ZMIPS, except for the specific parts

that require computational integrity. The next Section elaborates on our Zilch API, demonstrating two

real-life case-studies.

IV. REAL APPLICATIONS IN ZILCH

A. Vickrey Auction using Zilch API

To demonstrate the programming interface of Zilch, we implemented a Vickrey auction protocol (also

known as sealed-bid, second-price auction [55]), in which bidders submit their private bids without

knowing the bids of others. As in a traditional auction, the highest bidder wins, but the price paid equals

the second-highest bid instead. In the Vickrey protocol, the auctioneer collects a bid and its cryptographic

commitment from each bidder, and all commitments must satisfy two basic properties:

• Binding: For all non-uniform probabilistic polynomial time algorithms, the probability of two

messages m1 and m2 (where m1 6= m2) will generate the same commitment c is negligible.

Essentially, no bidder can find two different bids with the same commitment.

• Hiding: For all non-uniform probabilistic polynomial time algorithms, the probability of extracting

any information about the bid from its commitment is negligible. Hiding ensures that a bidder does

not learn anything about the bids of others based on their commitments.

The binding and hiding requirements can be satisfied using a one-way collision-resistant hash function so

that recovering a pre-image from the hash output or finding two pre-images with the same output would

be intractable.

In our case study, we use the Davies-Meyer (D-M) one-way compression function and implement a

single-block Merkle-Damgård hash construction [56] based on a block cipher Ek; specifically, we employ

the SPECK cipher with 128 bits block-size and 128 bits key-size [57]. To construct a commitment C,

each bid value (up to 64 bits, zero extended) is concatenated with the bidder’s commitment key (64 bits)
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and used as SPECK’s key input; the bidder’s 128-bit random ID (rID) is used as the cipher input to be

encrypted and also XORed with the resulting ciphertext, following the D-M construction [56]:

C = rID ⊕ Ekey||bid(rID) (1)

For correct execution of the Vickrey scheme, although participants do not have knowledge about the

bids of others, at the end of the auction each participant should be able to verify the correctness of the

winning bid, even if the auctioneer is not entirely trusted (e.g., the auctioneer may be colluding with a

bidder to increase the second-highest bid). Thus, a commitment scheme alone would not be sufficient

and computational integrity is necessary to verify correctness of the protocol.

We implement the auctioneer as a C++ application that collects the individual bids and hash commit-

ments (Eq. 1) from all participants, before executing the Vickrey protocol to determine the winner and

second-highest bid (Fig. 3). The C++ program employs our Zilch API to prove to each participant that

the auctioneer function: (a) sorts all bids correctly to find the rID of the highest bidder, and (b) the

highest bidder pays the second-highest bid. The latter requires proving computational integrity when the

auctioneer opens the committed bids of the highest and second-highest bidders (i.e., verify Eq. 1 using

key||bid as the witness) and compares these bids with the announced second highest bid; the highest

bidder should be convinced that the announced price was actually committed by someone, while the

second-highest bidder should be convinced the there is someone that committed a higher bid. During this

final step, the highest and second-highest bidder would send their commitment keys to the auctioneer.

Overall, the auctioneer’s code execution is verified and all bids remain private, except for the second-

highest corresponding to the final price.

B. Zero-Knowledge Range Proofs with ZeroJava

Determining interest rates (e.g., when applying for a mortgage) may require disclosing the credit score

of the applicant. Thus, another real-world application with Zilch would be to determine interest rates or

loan eligibility while maintaining the privacy of credit scores. Likewise, Zilch can help proving that an

account has enough available balance for a transaction, or that an individual is older than 18 years and

younger than 65 years without disclosing the exact age. These examples belong to the broader class of

zero-knowledge range proofs [58], where Zilch can verify that a secret number is within known bounds

without actually disclosing it.

In Fig. 4 we illustrate the range query code implemented in ZeroJava, while Fig. 5 shows the compiled

and optimized ZMIPS assembly. Line 1 of the assembly reads the private value val (e.g., the age of an

individual), while lines 2 and 3 read the lower (min) and the upper bound (max) from the public tape
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Fig. 3: Vickrey Auction Overview

1 class RangeQuery {

2 public static void main(String[] args) {

3 int min, max, val;

4 val = PrivateTape.read();

5 min = PublicTape.read();

6 max = PublicTape.read();

7 if ((min <= val) && (val <= max)) {

8 Prover.answer(true);

9 }

10 Prover.answer(false);

11 }

12 }

Fig. 4: ZK range query implemented in ZeroJava.

(e.g., ages 18 and 65 respectively). Consecutively, the program checks that val is within the given range

(i.e., min ≤ x ≤ max) and returns either 0 or 1.

V. EXPERIMENTAL EVALUATION

Experimental Setup: We implemented the ZeroJava compiler and optimizer in Java, while the rest of

the Zilch framework is implemented in C++.5 We measured the runtime performance of Zilch using a

variety of benchmarks described below. All experiments are obtained on a t3.2xlarge AWS EC2

instance running with eight virtual processors up to 2.5 GHz and 32 GB RAM on Ubuntu 20.04.

5Our Zilch framework and ZeroJava compiler will be open-source and released under the MIT license.
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1 secread $t0 # read private input (val)

2 pubread $t1 # read min

3 pubread $t2 # read max

4 move $v0, 0 # result = false

5 bgt $t1, $t0, __end__ # if min > val

6 blt $t2, $t0, __end__ # if val < max

7 move $v0, 1 # result = true

8 __end__:

9 answer $v0 # return result

Fig. 5: ZK range query implemented in ZMIPS.

(a) Prover time (b) Verifier time (c) Communication complexity size

Fig. 6: P , V timings (seconds) and communication complexity size (KB) for a variety of benchmarks

for different input sizes and 60-bit security parameter. The communication overhead corresponds to the

interactive protocol between P and V .

Multithreaded Prover: The back-end of Zilch framework is highly parallelizable using OpenMP. It can

take advantage of all available threads on the host, and we observe a 2x–4x speedup when using eight

virtual cores on AWS.

A. Our Benchmarks

For our measurements, we adopt the TERMinator suite [59], which comprises scientific benchmarks

designed for abstract machines like ZMIPS. In particular, the TERMinator benchmarks are beneficial

as they do not rely on OS features (such system calls), while covering a broad range of applications

from kernel benchmarks to complex bit manipulations. For our analysis, we implemented the SPECK and

SIMON lightweight block ciphers [57], where the former is oriented towards software implementations and

the latter for circuit-based implementations: SPECK is based on the Add-Rotate-XOR (ARX) paradigm,

while SIMON is a balanced Feistel cipher, and both support variable key and block sizes. Being symmetric

encryption algorithms, SPECK and SIMON are very demanding in bitwise operations. Our evaluations also

include the Factorial, Fibonacci and Collatz sequences, as well as the matrix multiplication benchmark,
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Fig. 7: P’s measured execution time for the SPECK & SIMON cipher benchmarks using different security

parameter sizes on the 32-bit and the 64-bit block sizes with 64-bit and 128-bit keys respectively.

Fig. 8: P’s measured execution time for the Fibonacci benchmark using different word-sizes (8, 16, 32)

and different security parameter sizes for a variety of inputs (22 − 26).

all of which are addition and multiplication intensive. Moreover, a private information retrieval (PIR)

program complements our set of benchmarks.

B. Experimental Results

In our evaluation, we assess the performance of Zilch on a variety of register word sizes (i.e., W =

8, 16, 32), as well as different soundness parameters (i.e., λ = 60, 80, 100, 120). For a soundness parameter

λ, the probability that an untrusted prover would violate computational integrity and remain undetected

is at most 2−λ. As expected and also confirmed in our benchmarks, larger values for W and λ increase

the execution overhead for both P and V .

In Fig. 6 we present the prover and verifier timings as well as the communication complexity sizes for

the TERMinator benchmarks and how they scale with an increasing number of instructions (note, while

ZMIPS is an abstract machine, its instructions are judiciously chosen to map to the MIPS ISA). For each

benchmark, we vary the input size accordingly so that the total number of executed instructions matches

a power of 2 and show how the prover and verifier timings depend on the number of instructions in the

program. Fig. 6a shows quasi-linear prover overheads to the number of instructions (T · polylog(T )),
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while SPECK and SIMON incur higher costs because bitwise operations require more complex constraints.

Similarly, these two ciphers require poly-logarithmic (polylog(T )) verification time to the number of

instructions, while the other benchmarks show constant overheads (Fig. 6b). Moreover, communication

overheads increase linearly to the number of instructions (Fig. 6c).

Fig. 7 shows the prover’s performance on SPECK and SIMON for key sizes 64-128 bits and varying

security parameters. As expected, SPECK is faster than SIMON since the former has less instructions

and is optimized for software. As λ grows larger, the proving time incurs higher overheads, yet, after

2−80 the impact is minimized: using SPECK32/64 as an example, an increase of λ from 60 to 80 adds

0.7 seconds to the proving time, whereas increasing λ from 80 to 120 adds only 0.1 seconds. Similar

behavior is observed for both ciphers across all configuration sizes.

An overview of the runtime performance of our Fibonacci benchmark for different sizes of W and

λ is presented in Fig. 8. The bars for λ = 60 are shown in front of those for λ = 120, and the exact

values for the latter are reported. Our experiments show how performance overheads increase with both

the input size N (as more instructions are required) and the wordsize W (as more complex constraints

are required).

C. Comparison with Previous Works

We compare Zilch with 80-bit security with two state-of-the-art transparent zero-knowledge systems:

Hyrax [32] and Bulletproofs [30]. Both are based on elliptic curve cryptography and thus their security

parameter is not directly comparable with Zilch’s. We instantiated them using the M191 elliptic curve [60]

over a base field modulo 2191 − 19 giving approximately 90-bit security.6

For our analysis, we instantiated the standard SHA-256 hash algorithm and compare Zilch with Hyrax

for an input block of 512 bits. Our results show that Zilch can prove the correct computation of one

SHA-256 block in 73.86 seconds, while Hyrax requires 35.63 seconds; the V execution time was 1.55

and 1.19 seconds for Zilch and Hyrax respectively. Moreover, in Figs. 9a and 9b we report the P and

V timings respectively using the matrix multiplication benchmark and matrix sizes varying from 4x4 to

12x12; as a baseline, Fig 9a also shows the native Java matrix multiplication cost (without any proof).

Our results show that Hyrax has the fastest performance among the three systems, with Bulletproofs

reporting similar timings; in comparison, the P and V cost of Zilch is almost one order of magnitude

higher than Bulletproofs in matrix multiplication. Likewise, our comparison to the native Java execution,

shows the performance cost for proving computational integrity across the three systems.

6An implementation of both Hyrax and Bulletproofs is available on GitHub at https://github.com/hyraxZK/hyraxZK.

https://github.com/hyraxZK/hyraxZK
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(a) Prover time (b) Verifier time

Fig. 9: Comparison between Zilch, Hyrax and Bulletproofs P and V timings (seconds) for the matrix

multiplication benchmark, as well as the native JVM baseline execution (i.e., without generating a proof).

Discussion: The main reason of the observed performance differences is that both Hyrax and Bulletproofs

operate directly on arithmetic circuits, and they are not universal (i.e., a unique, large AC must be

compiled for each different application). This offers a trade-off between programming convenience and

performance. Notably, the authors’ experience working with Hyrax and Bulletproofs showed that it is

significantly hard, even for experienced programmers, to develop, debug and analyze any non-trivial

program expressed using large ACs. This limitation is why our comparisons with these related works

focus on the two pre-compiled examples already provided by these frameworks. Conversely, Zilch can

easily be applied to any application expressed in our high-level ZeroJava language.

Another important observation is that Zilch inherits from zk-STARK the property of plausible post-

quantum security, which cannot be argued for either Hyrax and Bulletproofs. From a security perspective,

since Zilch does not require any trusted setup and offers a broader threat model, it is not directly

comparable with SNARK-based systems (e.g., [19], [21]–[23], [26]) that need a trusted setup; in fact,

the total cost of having an offline trusted setup is not directly measurable, as it often includes expensive

steps to eliminate the toxic waste (e.g., by physically destroying hard drives [61]). In Zilch, our goal is

to move to a universal argument system that does not rely on trusted third parties and offers a usable

programming model.

D. Zilch Experiments using our Real-life Case Studies

In this Section we evaluate the performance and programming complexity for the two real-life appli-

cations discussed in Section IV with security parameter λ = 80 and varying register sizes W .

Vickrey Auction: This application was developed in C++ and linked to Zilch using our C++ API;

SPECK128/128 was developed in ZeroJava and compiled to ZMIPS instructions using the ZeroJava

compiler. The word size used for SPECK128/128 is W = 64 bits, so both the 128-bit key and the
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128-bit input block can fit in two registers each. Since this application is interactive across multiple

participants, it entails multiple invocations of Zilch using our API (Fig. 3): The first invocation iterates

on every bid stored in the private tape and performs comparisons to find the winner (highest bid) as well

as the amount of the second-highest bid, while additional invocations are required to convince the first

and second highest bidders. In Table IV we show how the P and V times depend on the total number of

auction participants; the former is linear to the number of auction participants, while the latter is almost

constant. In this case, since we rely on SPECK128/128 for computing each commitment C using in the

D-M construction (Eq. 1), P performs a new evaluation of SPECK’s key scheduling for each different

key||bid value of each participant. Each key scheduling requires about the same number of instruction

as the SPECK core.

Zero-Knowledge Range Proofs: In our experiments, the high-level ZeroJava code for range-checking

(Fig. 4) is compiled into ZMIPS instructions (Fig. 5) using our compiler. This example demonstrates how

our programming paradigm in Zilch abstracts all low-level complications and programming complexity

for ZKPs, enabling the programmer to express her intent using logical statements very similar to Java.

With respect to performance, in this range-checking example we measured less than 0.1 seconds of prover

overhead and negligible verification time, using 16 and 32 bit register sizes.

TABLE IV: Vickrey auction: P and V times for increasing number of participants with security parameter

λ = 80.

Participants Execution Steps P Time (sec.) V Time (sec.)

8 71 0.37 0.025

16 151 1.96 0.026

32 311 4.15 0.026

64 631 8.67 0.027

VI. RELATED WORK

In the past few years the interest of the academic community in VC and ZKPs was renewed, leveraging

sophisticated cryptography, interactive and probabilistic checkable proofs. In this section, we discuss

several recent works in the area.

Trusted setup per computation: Gennaro et al. introduced in [17] quadratic arithmetic programs (QAP)

which inspired many recent works such as Pinocchio [21] and other Succinct Non-Interactive Arguments

of Knowledge (SNARKs) [18], [19], [24], [38], [41], [42], [62]–[64]. These protocols, in turn, formed the

background for real-world systems as ZeroCash [65]. The proof size is in these constructions is succinct
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and verification depends on the size of the argument being proven. However, contrary to Zilch, SNARKs

require a trusted and expensive setup phase for every different statement. In many cases, real-world

applications that require computational integrity cannot be founded on trusted third parties.

Universal trusted setup: Recent interactive proof based techniques utilize universal and updatable trusted

setups that are based on common – or structured – reference strings. Their advantage compared to the

previous category is that they do not require a trusted pre-processing for each circuit, but only a single

setup for all circuits. Such constructions include Sonic [35] that composes constant size proofs, as well

as PLONK and Marlin [66], [67], which improve upon Sonic by constructing a different polynomial

interactive oracle proof (IOP). Furthermore, Halo [68] enables recursive proof composition without a

trusted setup and uses the discrete logarithm security assumption. Although these systems minimize the

number of trusted setups to one, the random elements (toxic waste) that are used during this trusted phase

may still be used by a malicious prover to forge proofs and break soundness.

Transparent setup: To address the previous limitations, various constructions emerged that are based on

different cryptographic assumptions and do not require a trusted setup phase. The works in [43] and [30]

are based on the discrete logarithm problem, while other works such as Ligero [27], zk-STARKs [29],

Aurora [28], and Vigro [33] leverage the IOP construction, which can offer additional resilience against

known attacks from quantum computers. Likewise, the work in [69] provides a construction that is secure

in the quantum random oracle model. Other works such as [11] and [32] are based on interactive proofs.

Finally, SuperSonic [34] proposes a new polynomial IOP that relies on groups of unknown orders and

does not require a trusted setup. However, a notable limitation of the aforementioned systems is the lack

of a practical programming model, which renders the development of ZKPs for arbitrary applications a

daunting task.

Random Access Machines: The authors of [22] introduced a random-access machine targeting SNARKs

called TinyRAM, which is based on a Harvard architecture. The work in [23] further introduced vnTinyRAM,

which is a von Neumann alternative of the original TinyRAM. These TinyRAM variants, as well as

vRAM [70], required a trusted pre-processing phase to generate parameters for verifying different argu-

ments. Conversely, Zilch supports transparent setups where any required randomness is always public, and

can verify arbitrary programs for any given bound on the number of execution steps, leveraging the state-

of-the-art zk-STARK library in its back-end. Notably, our ZMIPS ISA offers direct compatibility with

existing MIPS programs, and enables non crypto-savvy programmers to easily develop high-level object-

oriented applications for the ZMIPS abstract machine using our ZeroJava compiler and API, whereas

this cannot be argued for other random access machines that build their own esoteric models. Lastly,

ZMIPS supports special-purpose registers, labels, and user-defined Macros, rendering it a comprehensive
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ISA to ensure computational integrity in general-purpose computation.

VII. CONCLUDING REMARKS

In this paper, we present Zilch, a framework to facilitate the the deployment of verifiable computation

and zero-knowledge proofs of knowledge for any application. Zilch is transparent (it does not rely on

any trusted third party setup), post-quantum resilient, and using its easy-to-use programming model

allows automated generation of universal circuits that can verify any arbitrary computation for a given

time bound. In Zilch, we reduce the problem of proving arguments of knowledge to the granularity of

an assembly instruction, so that we can verify instructions independently along with valid transitions

between consecutive abstract machine states.

We have designed and implemented the ZMIPS abstract machine, a MIPS-like processor model in

which each instruction is intricately chosen and translated to a small arithmetic circuit. We complement

our framework with a high-level language called ZeroJava and a compiler for translating ZeroJava code

into optimized ZMIPS assembly instructions. To further improve usability, we have defined a convenient

programming API that allows integrating Zilch’s prover and verifier into any existing C/C++ program. In

our experiments, we demonstrate the performance of Zilch for a variety of benchmarks, as well as two

real-life case studies.
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