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Abstract. We suggest a small change to the Dilithium signature scheme [DKL+20],
that allows one to reuse computations between rejected nonces, for a speed-up in
signing time. The modification is based on the idea that, after rejecting on a too
large ∥r0∥∞, not all elements of the nonce y are spent. We swap the order of the
checks; and if this r0-check fails, we only need to resample y1. We provide a proof
that shows that the modification does not affect the security of the scheme. We
present measurements of the performance of the modified scheme on AVX2, Cortex
M4, and Cortex M3, which show a speed-up ranging from 11% for Dilithium2 on M3
to 22% for Dilithium3 on AVX2.
Keywords: Dilithium · Fiat-Shamir with aborts · lattice-based cryptography ·
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1 Introduction
The signature scheme CRYSTALS-Dilithium [DKL+18, DKL+20] is a finalist (round 3)
of the NIST post-quantum competition [NIS16]. At its core, it is not unlike the Schnorr
signature algorithm [Sch90], i.e., a zero-knowledge identification scheme which is made
non-interactive using the Fiat–Shamir heuristic [FS87]. Such constructions are widely
used, for instance in the Ed25519 signature scheme [BDL+11].

In Schnorr, signature generation starts by picking a nonce y at random. In Dilithium,
however, contrary to traditional Schnorr signatures, not every nonce y will result in a valid
signature. For correctness and security, the signature is subjected to several checks. When
any of these checks fail, a completely new y is sampled, and a new candidate signature
is generated and scrutinized in turn. Only when a signature passes all the checks, it is
output to the user. This construction, where candidate signatures are generated until one
of them passes the checks, is called Fiat–Shamir with Aborts [Lyu09].

In this paper we demonstrate that one does not have to resample y completely. Instead,
for one of the four checks, we only need to resample parts of y. This allows one to reuse
computations involving the nonce between attempts and leads to a speed-up in signing
time on the order of 11% – 22%. In Appendix A, we present a similar opportunity for
another one of the checks, which leads to an additional small, but significant, performance
boost.

Touching nonces in Schnorr signatures and ECDSA is considered to be a dangerous
affair. That is because many attacks have been published that have broken schemes or
implementations that reused nonces, or where nonce bias could be detected [bBmCP10,
AFG+14, BvdPSY14, Bre19, ANT+20]. We recognize this fact and carefully study the
security of our proposal: we show that the updated version of Dilithium is as secure as the
original.
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We start the paper by giving a brief introduction to Dilithium and the relevant checks
on the nonces in particular. Then we introduce our updated version of Dilithium, and
examine its security. We continue by looking at the performance impact of the new
construction, by first counting the basic operations and then benchmarking optimized
AVX2, Cortex M4, and Cortex M3 implementations. We finish with an outlook on further
work and applications.

2 Brief overview of Dilithium
We will give an overview of the Dilithium signature scheme [DKL+20] and will go into more
detail about those parts relevant to our optimization. The basic building block of Dilithium
are polynomials of degree < n = 256 with integer coefficients modulo q = 223 − 213 + 1
and the rule x256 = −1 when computing multiplication. Mathematically, these form the
ring R := Fq[x]/(xn+1).1

The ‘size’ of polynomials plays a crucial role in Dilithium, which is taken to be the size
of the largest coefficient, which is its absolute value, so both 1 and q−1 = −1 are considered
small. To be precise, for any x ∈ Fq, define x mod± q as the unique − q−1

2 ≤ x′ ≤ q−1
2

with x = x′ mod q. Then for any polynomial p ≡
∑

i pix
i ∈ R, define the norm ∥p∥∞ =

maxi |pi mod± q|. Similarly, for a vector v over R, define ∥v∥∞ = maxi ∥vi∥∞.
The core of the private key are two small vectors over R: s1 ∈ Rℓ and s2 ∈ Rk sampled

uniformly with ∥s1∥∞, ∥s2∥∞ ≤ η, where η, k and ℓ depend on the security level. (For NIST
level 2, we have η = 2, k = 4, ℓ = 4.) The core of the public key is a random k ×ℓ-matrix A
over R together with the vector t := As1 + s2. It is hard to recover s1 and s2 from t and
this is known as the Module Learning With Errors (MLWE) problem.

2.1 Underlying identification scheme
Dilithium is based [KLS18] on the following interactive identification scheme where a
prover having access to the private key, demonstrates this fact to a verifier that knows
the public key, without leaking any information.

Prover Verifier

commitment w1

challenge c

response z

Sample nonce y
w1 := HighBits(Ay) Sample c

z := y + cs1
r0 := LowBits(Ay − cs2)
Abort unless
∥r0∥∞ < γ2 − β and
∥z∥∞ < γ1 − β

w′1 := HighBits(Az − ct)
Accept if
∥z∥∞ < γ1 − β and
w′1 = w1

The prover generates a random2 secret nonce3 y ∈ Rℓ of norm ≤ γ1 (with γ1 = 217

for security level 2.) The prover sends the commitment w1 = HighBits(Ay) to the

1In fact, for this q, the polynomial xn + 1 splits and so R ∼= Fn
q by the generalized Chinese remainder

theorem. Because of the particular choice of q and n, this isomorphism can be computed very efficiently in
a Fast Fourier Transform (FFT) style and is referred to as the NTT. Using this, multiplications in R are
very cheap.

2Actually, for sampling efficiency, y is sampled from those polynomials of norm ≤ γ1 without coeffi-
cient −γ1 so that there are a power-of-two different possible coefficients.

3Nonce as in “number only used once” is misleading: y is neither a number nor is its single use the
only requirement it should satisfy.
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verifier, where HighBits and LowBits decompose a vector x in the following unique way
(with γ2 = q−1

88 for level 2.)

HighBits(x) · 2γ2 + LowBits(x) = x and ∥LowBits(x)∥∞ ≤ γ2

Note that the prover must only send the higher bits of w := Ay for otherwise they would
leak y as A is likely to be invertible. After receiving w1, the verifier returns a random
challenge c ∈ R with τ non-zero coefficients, all either 1 or −1, (with τ = 39 for security
level 2.) Now the prover computes the response z := y + cs1. Note that ∥cs1∥∞ is not
very large, it is at most β := ητ . Before sending the response, it performs the following
two checks on the sizes of z and r0 := LowBits(Ay − cs2), whose importance will become
clear later on.

∥r0∥∞ < γ2 − β, (r0-check)
∥z∥∞ < γ1 − β (z-check)

If any of these fail, the prover aborts and restarts from the beginning. When eventually
receiving a response (after typically around 3 restarts) the verifier accepts whenever w′1 :=
HighBits(Az − ct) = w1 and ∥z∥∞ < γ1 − β.

Without the checks, the scheme wouldn’t always work. Indeed, in general

w′1 ≡ HighBits(Az − ct) = HighBits(Ay − cs2) ̸= HighBits(Ay) ≡ w1

as even though cs2 has small coefficients (also ≤ β) they might still carry into the higher
bits and so the verifier won’t trust the prover. This problem is solved by making sure that y
doesn’t overflow, which is the purpose of the (r0-check) [DKL+20, Eq. 3]. A different issue
is that z might leak information on y and s1 if it has large coefficients — for instance,
if z1 = γ1 + β − 1, then we must have y1 = γ1 − 1 and (cs2)1 = β. The (z-check) prevents
this kind of leakage.

Indeed, this scheme is perfectly non-abort zero-knowledge: that means we can replicate
the distribution of (c, z) in successful sessions4 without having access to the secret key.
Not all (c, z) can occur, but if they do, they occur with equal probability. Now, to simulate
a session, pick random (c, z) with ∥z∥∞ < γ1 − β, ∥LowBits(Az − ct)∥∞ < γ2 − β, and c
as a verifier would sample it. Every pair (c, z) that occurs in a real session could be
generated as such: the first requirement is the (z-check) and the second the (r0-check)
because Az − ct = Ay − cs2. Conversely, given such a simulated pair, set y := z − cs1.
This y could have been picked as ∥y∥∞ < γ1 for ∥cs1∥ ≤ β. With this nonce, the prover
will pick the right response z. With the first two requirements we also made sure that
the prover will pass the (z-check) and (r0-check). And so in the same way as we prove
correctness in a regular run, we see that the verifier will accept. Thus we can indeed
simulate the sessions perfectly.

As with the Schnorr identification scheme, using the same nonce twice will leak the
private key. Indeed, given z = y + cs1 and z′ = y + c′s1, we have s1 = z−z′

c−c′ .5 As well
known, for Schnorr this fragility has the silver lining that it allows us to show that the
prover must indeed know the secret key, by imagining (rewinding) it would use the same
nonce twice (with a different computation.) For Dilithium a different argument, which we
will touch upon later, is used.

2.2 Dilithium
As well known, an identification scheme can be turned into a signature scheme, using the
Fiat–Shamir style transform [FS87]. A signature on a message M is given by a pair (c, z)

4The commitment w1 is not included as in a successful session it is fixed by the challenge and response.
5Any x ∈ R with ∥x∥∞ ≤

√
q/2 is invertible [LN17, Lemma 2.2].
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of a challenge c and a response z of a successful interaction of the identification scheme,
where the challenge is not picked randomly by a verifier, but rather H(M ∥ w1) for a
hash function H that ranges over the challenge space Bτ . After applying the Fiat–Shamir
transform, we get the the non-interactive signature generation algorithm as listed in
Algorithm 1.

To check a signature, a verifier (like in the identification scheme) first checks ∥z∥∞ <
γ1 − β and then computes w′1 := Az − ct, which should be the original commitment. The
verifier does not have access to the original commitment (as it was not included in the
signature), but can check whether it was correct by recomputing the challenge using the
supposed commitment and comparing it against the one included in the signature.

Algorithm 1 Simplified vanilla Dilithium
Signvanilla(sk = (A, t, s1, s2), M)

1: κ := 0
2: sign: loop
3: for i from 0 up to ℓ − 1 do
4: yi := ExpandMask(κ); κ := κ + 1
5: w1 := HighBits(Ay)
6: c := H(M ∥ w1)
7: z := y + cs1
8: if ∥z∥∞ ≥ γ1 − β then ▷ (z-check)
9: continue sign

10: if ∥LowBits(Ay − cs2, γ2)∥∞ ≥ γ2 − β then ▷ (r0-check)
11: continue sign
12: return (c, z)

The full Dilithium scheme is rather more complex, as it includes tricks to decrease
signature and key sizes (such as only publishing the higher bits of t) while increasing
performance (by sampling in the NTT domain.) These details, however, do not impact
the security of the scheme or our proposal and will direct the curious reader to the
specification [DKL+20].

3 Our proposal
To create a signature, we randomly sample a nonce y and then compute in sequence the
commitment w1, challenge c, and response z. Not every y will lead to a valid identification
session as the (r0-check) or (z-check) might fail. In that case, we completely start over
again with a new nonce y.

Heuristically, as (r0-check) only looks at the lower bits and A (being uniform) mixes
all components of y, resampling just y1 gives a new independent chance for (r0-check) to
pass. Thus our proposal is to resample only y1 when the (r0-check) fails and to perform
the (r0-check) before the (z-check).

Contrary to vanilla Dilithium, the order of the checks is important. If we were to
perform the (z-check) first, then it is likely that we will have picked a y whose tail has
passed the (z-check)s multiple times, with different challenges c. This will bias y to have
smaller values in its tail.

After swapping the checks and modifying Algorithm 1, such that only y1 is resampled
when (r0-check) fails, we get Algorithm 2.

Note that signatures are compatible between vanilla and modified Dilithium: a signature
generated by one will verify by the other. Indeed, we did not change the verification
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Algorithm 2 Simplified Dilithium modified as we propose
Signmod(sk = (A, t, s1, s2), M)

1: κ := 0; ξ := ℓ
2: sign: loop
3: for i from 0 up to ξ − 1 do ▷ Only (re)sample the first ξ elements of y
4: yi := ExpandMask(κ); κ := κ + 1
5: w1 := HighBits(Ay)
6: c := H(M ∥ w1)
7: z := y + cs1
8: if ∥LowBits(Ay − cs2, γ2)∥∞ ≥ γ2 − β then ▷ (r0-check)
9: ξ := 1

10: continue sign
11: if ∥z∥∞ ≥ γ1 − β then ▷ (z-check)
12: ξ := ℓ
13: continue sign
14: return (c, z)

routine. However, signing the same message using the same secret key will lead to two
different signatures on the same message.

3.1 Compatibility with streaming implementations
Some implementations (eg. [GKS20, Strategy 3]), optimise for memory-constrained envi-
ronments. To use memory efficiently, they typically compute w = Ay one element at a
time where each component of A and y is generated on the fly.

With our modifications, we are not resampling exactly ℓ elements of y during each
loop iteration. Some polynomials yi might have been fixed some loop iterations ago,
using an old κ that could have been forgotten. To ensure compatibility with the other
implementation, the streaming implementation will have to keep track of the κ values that
were used to generate the elements of y that are still in use.

4 Security
The security claim of Dilithium is strong unforgeability under chosen message attacks
(SUF-CMA.) The complete security proof is given in [KLS18] and its references. We will
summarize it here.

Dilithium is based on what [AFLT12] calls a lossy identification scheme. Such a scheme
is interactive (and as usual made non-interactive with the Fiat-Shamir heuristic [FS87].)
The corresponding non-interactive scheme is UF-NMA (unforgeability under no-message
attack) secure, i.e., it is secure against an attacker that has no access to any signed
messages. As we are not changing key generation or verification, this proof applies to our
modified scheme as well.

From this UF-CMA (unforgeability under chosen-message attack) is proven using the
additional fact that the signature scheme is zero-knowledge and that the min-entropy6 of
the commitment is large.

Thus, as long as we can prove that our modified version of Dilithium is still zero-
knowledge and that the commitments have large min-entropy, we know it is UF-CMA as well.

6The min-entropy of a distribution is H∞ = − log2 pm, where pm is the probability of the most likely
outcome of the distribution.
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The strong unforgeability follows with the same argument as for vanilla Dilithium [DKL+20,
§6.2.2].

Zero-knowledgeness. Vanilla Dilithium is zero-knowledge — the argument that we gave
for the identification scheme can be modified in the usual way for the signature scheme by
programming H(M∥w1) := c, where we model the hash function as a random oracle. Our
modifications do not fit the identification scheme neatly, so we will prove zero-knowledge
directly for the modified signature scheme.

Before we start, note that our modification does not change which (z, c) can occur,
but does change the probability of each. Indeed, effectively y′ := (y2, . . . , yℓ) is picked
uniformly at random and then after that y1 is picked also uniformly at random such
that (y, c) passes the checks. The non-uniformity stems from the fact that the number of
values of y1 for a given y′ might vary.

We start the simulation in the same way as vanilla: we randomly pick (c, z) with ∥z∥∞ <
γ1 − β and c as usual. Then the simulator checks ∥LowBits(Az − ct)∥∞ < γ2 − β. As
noted before, this is equivalent to the (r0-check). If this check succeeds, then the simulator
programs H(M∥w1) := c and outputs (c, z). Restricting to success in just one ‘iteration’7
vanilla and original Dilithium have exactly the same distribution and both simulators
agree as well. If this check fails, then the vanilla simulator resamples z and performs all
checks again. Our simulator, instead, only resamples ∥z1∥|∞ < γ1 − β. This corresponds
to resampling y1 as modified Dilithium does.

If this check fails, the original simulator will resample z and perform the checks again.
Instead, this simulator will only resample z1 and check ∥LowBits(Az − ct)∥∞ < γ2 − β
for the new z. This corresponds to modified Dilithium resampling y1 when having
picked y := z − cs1. When the check succeeds it will again program H accordingly and
return (z, c). Up to two ‘iterations’, the simulator and simulated agree. And so on. This
shows the modified scheme is zero-knowledge as well, assuming that there aren’t too many
conflicts programming H.

Min-entropy of w1. Indeed, the distribution of y with Proposal 2 is different from
the distribution of y in vanilla Dilithium. Therefore, we have to demonstrate that the
min-entropy of w1 is still large enough as otherwise the same w1 might occur multiple
times programming H(M ∥ w1).

For vanilla Dilithium it is shown [KLS18, Lemma C.1] that, with overwhelming prob-
ability, the min-entropy of w1 is larger than 117 bits.8 We can adapt this proof to our
situation.

Recall w1 = HighBits(w) and w = Ay. For brevity, write w11 := (w1)1. Let W be the
set of those w with HighBits(w) = w11. By definition of HighBits, the size of W is at most
(2γ2 + 1)n. Note w1 =

∑
j Aj1yj . Assume for now that there is an invertible element Ai1

in the first column of A. Then

Y :=
{

y1 ;
∑

0≤j≤ℓ

Aj1yj = w1

}
= A−1

i1

(
W −

∑
j ̸=i

Aj1yj

)
. (1)

Hence Y has the same number of elements of W . Crucially in our modification of Dilithium,
the distribution of y1 is still uniform, and so the chance we get one that leads to w11 is

Pr
y1←S̃γ1

[y1 ∈ Y ] = #Y

#S̃γ1

≤
(

2γ2 + 1
2γ1

)n

. (2)

7There is some subtlety how to count iterations here. The simulator samples z such that it passes
the (z-check) and so iterations of the simulator never fail because of it. So we’re really counting
failed (r0-check)s in iterations that would’ve passed the (z-check).

8For the original version of Dilithium as published in [KLS18] the min-entropy is with a high probability
(≥ 1 − 2−179 for Dilithium2) at least 255 bits. With the updated parameters of Dilithium round 3, the
min-entropy is with an overwhelming probability (≥ 1 − 2−239 for Dilithium2) at least 117 bits.
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Thus, if there is an invertible element in the first column of A, then the min-entropy
of the resulting commitment w1 is at least −n log 2γ2+1

2γ1
≥ 117.

The probability that some uniformly sampled polynomial is invertible is (1− 1
q )n ≥ 1− n

q .
Thus the chance that none of the polynomials in the first column of A is invertible
is at most (n

q )k. This is highest for Dilithium2 where k = 4 and this probability is
approximately 2−60.

Thus, for almost all keypairs the UF-CMA security bound is not reduced. Moreover,
in [KLS18] it is noted that the cited 255 bits is probably far from the real min-entropy.
As the range of HighBits(A · ) is very large, upwards of 217960, and heuristically close
to uniform, it is very likely that the min-entropy is much larger. Additionally, there is
another result [KLS18, Lemma 4.7] which shows that for smaller γ1 and γ2 the min-entropy
(which heuristically should then be smaller) is upwards of a 1000 bits, without needing
an invertible element in A. Therefore, even if none of the elements in A are invertible,
it seems unlikely that the min-entropy of w1 is ever dangerously small in the modified
Dilithium.

5 Performance
5.1 Operations saved
By not resampling the complete vector y every time a check fails, we save computation
time, that was originally spent generating y and computing w := Ay.

To get a feel for the potential performance improvement, we have simulated the
rejection-sampling loop up until the second check, using a simple Sage script. Note that
this does not include the computation of A.9

Table 1: Average number of sampled y-components, calls to KeccakF1600_StatePermute,
NTT, and NTT-1 in the Dilithium rejection-sampling loop; using unmodified Dilithium
signing, and using the modification proposed in this paper. Averages were computed over
10 000 runs.

baseline updated

Dilithium2

y elems 17.37 (100%) 9.76 (56%)

KeccakF 95.53 (100%) 64.51 (68%)

NTT 21.71 (100%) 14.01 (65%)

NTT-1 52.11 (100%) 50.91 (98%)

Dilithium3

y elems 25.56 (100%) 11.59 (45%)

KeccakF 158.46 (100%) 88.73 (56%)

NTT 30.67 (100%) 16.72 (55%)

NTT-1 86.90 (100%) 87.14 (100%)

Dilithium5

y elems 27.22 (100%) 13.04 (48%)

KeccakF 182.77 (100%) 111.97 (61%)

NTT 31.11 (100%) 16.94 (54%)

NTT-1 89.44 (100%) 89.66 (100%)

The simulations count the amount of y components that have been sampled, and count
the amount of calls to KeccakF1600_StatePermute (the SHA3/SHAKE primitive) and

9To decrease the size of the public key, Dilithium does not store A in the public key, but rather a seed
from which A can be reconstructed.
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NTT. We also include calls to the inverse NTT (NTT-1), even though the number stays
almost constant. The results are listed in Table 1.

For every mode of Dilithium, we save a considerable amount of y-component generations:
up to 60% of the total amount of generated polynomials, in the case of Dilithium3. This
saving is reflected in the total amount of KeccakF1600_StatePermute calls (48% less)
and the number of computed NTTs (50% less.) There is—as expected—no change in the
amount of computed NTT-1s.

Although these theoretical counts are useful, as performance of these primitives (and
their subtle interaction) varies per platform, we continue with measurements on actual
implementations on various platforms.

5.2 Optimized implementation

We have implementated both proposals in state-of-the-art optimized Dilithium imple-
mentations for x64 with AVX2, Cortex M4, and Cortex M3, and benchmarked their
performance.

AVX2. For AVX2, we base our modified implementation on the round-3 code package
from the CRYSTALS team [DKL+18]10. Because of the relative abundance of RAM on
x64 platforms, we can easily cache all of the accumulated values in w. That is, we cache
the values Aijyj for i = 1, . . . k and j = 1, . . . , ℓ.

Cortex M{4,3}. For the Cortex M4 platform, we use the STM23F407 DISCOVERY
board, which is based on the STM32F407VG microcontroller; for Cortex M3, we use
the Arduino Due, which features an ATSAM3X8E microcontroller. We have ported the
reference implementation to each platform, and then applied the optimizations described
in [GKS20, Sec. 4].

In the context of post-quantum signature schemes, both of these boards have a relatively
low amount of SRAM. This makes it impossible to cache all components of w, for which
we would need another k × ℓ KiB of SRAM. Instead, on the Cortex M platforms, we cache
only the value

w′ = A(0, y2, y3, . . .).

Storing this extra w′-vector only needs an extra k KiB of SRAM space.

Benchmarking setup. We benchmark the AVX2 implementation of Dilithium using
the benchmarking tool provided in the NIST submission code package. For the AVX2
implementation, 100 000 iterations were run on an Intel Core i7-4770 (Haswell) processor
and its average recorded. On the x64 processor, all measurements were done with Turbo
Boost disabled, all Hyper-Threading cores shut down, and with the CPU clocked at
the maximum nominal frequency. The ARM Cortex M4 and M3 implementations were
benchmarked on an STM32F407VG and an ATSAM3X8E respectively. The STM32F407
chip was clocked at 24 MHz and the flash wait states were set to zero; the algorithm
latencies were measured using the SysTick counter. The ATSAM3X8E was clocked at 16
MHz and its wait states were also set to zero; the measurements used the internal CYCCNT
cycle counter. On Cortex-M4, the measurements were averaged over 10 000 samples; on
Cortex M3, the measurements were averaged over 1 000 samples.

10Available for download at
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
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Table 2: Average latencies of Dilithium signature generation on AVX2, Cortex M4, and
Cortex M3. Cycle counts are listed in kilocycles and include the computation of A. Note
that these results cannot be compared with [GKS20], because the parameters of Dilithium
have been updated for round 3 of the NIST competition (and so our baseline is an update
of [GKS20, Strategy 2].)

baseline updated

Dilithium2
AVX2 352.5 316.5
Cortex M4 4 386 3 785
Cortex M3 7 547 6 794

Dilithium3
AVX2 542.5 437.2
Cortex M4 7 191 5 755
Cortex M3 12 681 10 397

Dilithium5
AVX2 649.3 553.6
Cortex M4 9 317 7 930
Cortex M3 – a – a

a Not enough SRAM available to store
Dilithium5 state.

Results. The results of the benchmarks of our improved version of Dilithium are listed in
Table 2. We see performance speedups ranging from 11% for Dilithium2 on Cortex M3,
up to 22% for Dilithium3 on AVX2.

It should be stressed that these measurements include the setup stage of Dilithium.
This is the conventional method of measuring Dilithium’s performance. That is, the
measurements include the expansion of the matrix A and the initial NTTs of s1, s2 and t0.
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Figure 1: Probability of Dilithium3 signature generation on AVX2 to complete after a
latency of x cycles. The setup stage is illustated by the red box that runs from 0 to 131 kcc.
The average latency is marked with a dot.

However, it has been recently argued by [RGCB19] and [GKS20] that this setup stage
often does not need to be computed during signature generation, but that is can be
considered as part of the key generation instead. Moreover, because of the rejection
sampling, it is difficult to completely imagine the extent of this speedup. Therefore,
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to provide you with an intuition, we have plotted the portion of Dilithium3 signature
generations that finishes after x cycles in Figure 1.

The figure shows that when the setup stage is precomputed, the relative speedup is
much better than 22%. That is, without the setup stage the average Dilithium3-on-AVX2
speedup is 34%.

If we do not precompute the setup stage, the effect of an improved performance in the
rejection-sampling loop is still better for the worse-case runs of the signature-generation
algorithm, because the latency of the setup stage is amortized. Indeed, if we look at the
90% percentile, the speedup of our improved algorithm is 47%; at the 99% percentile, the
speedup is 52%.

6 Conclusion
We have seen that we can improve the performance of the Dilithium signature scheme by
reusing some of the nonce material that is sampled during signature generation. Although
this paper focuses entirely on Dilithium, we would like to mention that these proposals
could apply elsewhere, such as larger lattice-based zero-knowledge proofs. Other schemes
that use rejection-sampling from Gaussian distributions in particular stand to benefit as
sampling from those is expensive.

The main proposal can be incorporated into the next version of Dilithium without
any worry: there are no extra costs imposed; the security is not affected and the result
is a significant (up to 22%) speedup depending on the instance. The other proposal
(from appendix A) boost performance even more, but without a security proof we do not
recommend to adopt it.
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A Another nonce-reusal trick
In this appendix, we describe an additional modification of the Dilithium scheme, which
adds another small speedup to the Dilithium signing algorithm. It is not included in the
main body of this paper, because at the time of writing, we have not been able to prove
that this modification does not impact the security.

A.1 Resample only the prefix of y after failed (z-check)
Note that by the definition of the norm, the (z-check) involves the following ℓ subchecks,
one for each component of y: ∥yi + c(s1)i∥∞ < γ1 − β. If the first subcheck fails (without
having performed the other checks or subchecks), then instead of aborting completely
and resampling all elements of y, we propose to resample y1 but keep y2, . . . , yℓ. This
allows one to reuse the computations of Aijyj for j ̸= 1, which were required to compute c
via Ay. As Ay changes, the commitment w1 changes with high probability (cf. [KLS18,
Lemma C.1]) and the challenge c will be different after this partial abort.

If (z-check) fails at y2 (after y1 passed) then we cannot reuse y1, because it will have to
pass the check for at least one other challenge c. This will introduce a bias in y1, although
it is unclear to us whether this bias could lead to a practical attack. Instead we propose to
resample only y1, . . . , yi if the first check fails at yi (and only having checked y1, . . . , yi.)

After resampling this new y is computationally indistinguishable from a freshly gen-
erated one — indeed, its only bias is that yi+1, . . . , yℓ has been used to compute the
previous challenge c, but that happens via a hash function.

In Algorithm 3, the first modified version of the Dilithium signing procedure is listed.
The variable ξ is introduced to keep track of how many y-elements are resampled af-
ter (z-check) has failed.

A.2 Security
Heuristically, we can see that this new modification is very likely to be secure. Whenever
in the (z-check) we abort on some element zi, the next iteration will have all polynomials
y0, . . . , yi freshly generated. Intuitively, the check introduces no bias in the other elements
of y.

The reason why we struggle to produce a proof, is because the other elements of y
might still be biased through c. In the Diltihium security argument, c is produced by a
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Algorithm 3 Additional trick to speed up Dilithium.
Signmod2(sk = (A, t, s1, s2), M)

1: κ := 0; ξ := ℓ
2: sign: loop
3: for i from 0 up to ξ − 1 do ▷ Only (re)sample the first ξ elements of y
4: yi := ExpandMask(κ); κ := κ + 1
5: w1 := HighBits(Ay)
6: c ∈ Bτ := H(M ∥ w1)
7: z := y + cs1
8: if ∥LowBits(Ay − cs2, γ2)∥∞ ≥ γ2 − β then ▷ (r0-check)
9: ξ := 1

10: continue sign
11: for i from 0 up to ℓ − 1 do
12: if ∥zi∥∞ ≥ γ1 − β then ▷ (z-check)
13: ξ := i + 1
14: continue sign
15: return (c, z)

random oracle. Therefore it seems very unlikely that any non-negligible bias exists in the
reused nonces. However, we have not been able to prove this.

As such, we advise against using this trick in implementations. Intuitive security
arguments can be unreliable, and we have seen schemes break because of these in the past
(e.g. [NR06, DN12]).
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