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Abstract

As blockchains grow in size, validating new transactions becomes more and more
resource intensive. To deal with this, there is a need to discover compact encodings
of the (effective) state of a blockchain — an encoding that allows for efficient proofs of
membership and updates. In the case of account-based cryptocurrencies, the state can be
represented by a key-value map, where keys are the account addresses and values consist
of account balance, nonce, etc.

We propose a new commitment scheme for key-value maps whose size does not grow
with the number of keys, yet proofs of membership are of constant-size. In fact, both
the encoding and the proofs consist of just two and three group elements respectively
(in groups of unknown order like class groups). Verifying and updating proofs involves
just a few group exponentiations. Additive updates to key values enjoy the same level of
efficiency too.

Key-value commitments can be used to build dynamic accumulators and vector
commitments, which find applications in group signatures, anonymous credentials, veri-
fiable databases, interactive oracle proofs, etc. Using our new key-value commitment, we
provide the most efficient constructions of (sub)vector commitments to date.
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1 Introduction

Cryptocurrency space has grown quite rapidly since the introduction of Bitcoin [bit] about a
decade ago. The state of several leading cryptocurrencies like Ethereum [ethb], Ripple [Rip],
EOS [EOS] and Stellar [Maz15] can be represented by a key-value map M where keys are
the public addresses of users and values are the attributes associated with them (balance
amount, nonce, etc.). When Alice generates a transaction tx to transfer an amount x from
her public key pk to Bob, the map M is used to check if pk has a balance of at least x. On
confirmation of tx, balance of Alice and Bob (along with other bookkeeping information) is
updated in M.

In a cryptocurrency network, every node is expected to verify and store the state of the
system. As the number of users increase and new accounts are created, the size of the key-
value map grows, and the resource cost of running a node increases. This drives a large
proportion of users to rely on third parties to inform them of the state of the system, severely
limiting the amount of decentralization in the network [PT, Dry19, CPZ18]. To provide some
context, Ethereum has over 70 million accounts now [etha] even though its not very widely
used (5-10 transactions per second [ethc]). Upcoming currencies like Libra [lib] can have a
much higher throughput and are expected to have billions of accounts.

Key-value commitments. In this paper, we initiate a formal study of key-value commit-
ments (KVC). These commitments allow one to produce succinct encodings of key-value maps
that are amenable to both efficient membership proofs and additive updates.1 We propose a
new KVC KVaC (pronounced ‘quack’) in groups of unknown order, such as an RSA group or
a class group [BH01], with the following properties:

• Succinct encoding. Commitment value consists of just two group elements irrespective of
the number of items (key-value pairs) committed. If class groups of quadratic imaginary
order targeting 100-bit security are used, then the commitment size would be 4096 bits
or about half a kilobyte [HM00].

• Succinct proofs & fast verification. A proof to show that a certain item is in the
commitment consists of just three group elements and only five exponentiations are
required to verify a proof.

• Fast updates. Inserting new items to the map, updating values of existing items (ad-
ditive updates), and updating membership proofs when items are added/changed can
all be done quite efficiently — at most four exponentiations are required in any case.
Furthermore, to update the value of an item, its existing value is not needed.

• Trustless set-up. If class groups are used as the underlying group here, then the encoding
scheme could be bootstrapped in a trustless manner.

• Aggregation & batching. Multiple proofs can be aggregated to the size of a single proof
and verified in the same amount of time as a single proof.

We prove the security of our construction under the RSA assumption in the random oracle
model or the strong RSA assumption in the standard model.

1We do not intend key-value commitments to provide any sort of hiding for the keys or values committed,
similar to how vector commitments do not intend to hide the vector elements [CF13].
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Vector commitments & accumulators. KVCs can be used to construct and improve upon well-
studied cryptographic primitives like accumulators [Bd94, CL02, Ngu05, CHKO08, BCD+17]
and more recent ones like (sub)vector commitments (VC) [CF13, KSS+16, LRY16, CPZ18,
BBF19, LM19]. Accumulators are used in group signatures, anonymous credentials, compu-
tation on authenticated data, decentralized bulletin boards, etc., and VCs have applications
to verifiable databases with updates, interactive oracle proofs, etc.

VCs have been used to build accumulators [CF13] and vice versa [BBF19]. We show
how to build both of them from KVCs. In particular, we provide the first VC scheme where
both public parameters and proofs consist of a constant number of group elements, the public
parameters do not restrict the number of elements that could be committed to, and all the VC
algorithms require a constant number of group operations. Furthermore, the proofs can be
batched to produce constant-size subvector openings. We also show how to build a dynamic
accumulator from an (insert-only) KVC whose efficiency matches with the state-of-the-art.
Thus, KVCs can be seen as a more general and flexible primitive.

We discuss our work in connection to VCs and accumulators in more depth in the following
section.

1.1 Applications

Stateless validation of cryptocurrencies. Todd [PT] first proposed the idea of a “state-
less” blockchain where nodes participate in transaction validation without storing the entire
state of the ledger, but rather only a short commitment to the state. Using our new key-
value commitment scheme KVaC, one can build an account-based cryptocurrency where a
node needs to store only two group elements (the commitment) to validate transactions. In
the new currency, an account is represented by a key-value pair where key is a public key for
a signature scheme (or a hash of it) and value consists of the account balance and a counter.
(The counter helps to prevent replay attacks.) Suppose Alice has an account represented by
(pk, (v||ct)) and she wants to transfer an amount b to a public key pk?. She will generate a
transaction tx = (pk, σ, v, ct, b, pk?, π) where σ is a signature on (v, ct, b, pk?, π) under pk and
π is a proof of the membership of (pk, (v||ct)) in the commitment.

A validator node, holding a commitment C, checks if σ is a valid signature, π is a valid
proof w.r.t. C, and b is at most v. If all the checks pass, it updates the commitment using
the efficient update algorithm Update of KVaC. The validator first executes Update with
(pk,−b||1) and C to produce a new commitment C ′ that reflects the change to Alice’s account,
and then executes Update with (pk?, b||0) and C ′ to produce the final commitment C ′′ that
reflects the changes to both the accounts. Here, KVaC’s ability to update the value associated
with pk? without the knowledge of the original is very useful, otherwise senders would have
to keep track of receivers’ balances too.

Every time the commitment value changes, users need to update their proofs so that they
remain valid. This puts some additional burden on users as they have to sync up with the
blockchain frequently, which brings up a natural question: can the information required to
update proofs be sublinear in the number of updates made? Unfortunately, this does not
seem to be the case because the new and old values of commitment can be used to find out
what updates have been made. Specifically, the lower bound of Camacho and Hevia can be
extended to our setting as well [CH10].

Use of KVCs in blockchain also adds some extra overhead of generating and transmitting
proofs, but they can be batched together and only one proof needs to be stored with a block.
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Vector commitments. Vector commitments (VC) were introduced by Catalano and Fiore
[CF13]. VCs allow one to commit to an ordered sequence of values in such a way that one
can later open the commitment at specific positions. They also allow updates to individual
values and corresponding updates to proofs. The constructions of Catalano and Fiore, and
those of Chepurnoy et al. [CPZ18] proposed later, have public parameters that scale linearly
with the size of the vector. Though they suggest a way to cut down the parameters to a
constant, it makes the cost of VC algorithms linear in the size of the vector.

Boneh et al. [BBF19] take a different approach to build VCs. They provide a trans-
formation from their accumulator construction which supports both membership and non-
membership proofs. Though their construction does not put any restriction on the length of
the vector, the vector elements are accumulated bit by bit. So the number of group operations
required to insert new elements, generate membership proofs, etc. is linear in the bit-size of
vector elements. Updates to values are not explicitly discussed but one could infer that it
would have a similar cost. Lastly, their proofs contain seven group elements.

KVCs can be used to build a VC in a straightforward way, with keys playing the role of
indices. Our KVC leads to a VC where the public parameters are of constant size, there is
no restriction on the number of elements that could be committed, and proofs consist of just
three group elements. Further, all the VC algorithms require a constant number of group
operations. This improves upon all the known constructions.

Subvector commitments. Lai and Malavolta [LM19] recently proposed the notion of
subvector commitments (SVC). An SVC allows one to open a committed vector at a set of
positions, where the opening size is independent of length of the committed vector and the
number of positions to be opened. They show that the proofs (or openings) of Catalano and
Fiore [CF13] can be extended for multiple elements without losing the succinctness. However,
this also means that they inherit the limitations of Catalano and Fiore’s constructions.

Membership proofs of our KVC can be batched, resulting in an SVC with succinct sub-
vector openings — but without linear growth in public parameters.

Accumulators. Accumulators are a very well-studied cryptographic primitive with nu-
merous applications. They can be based on RSA groups [Bd94, CL02], Merkle hash trees
[CHKO08], or bilinear maps [Ngu05]. See Baldimtsi et al. [BCD+17] for a thorough discus-
sion of different types of accumulators and modular conversions between them. We show
how to build a dynamic positive accumulator from an (insert-only) KVC whose efficiency
matches with the state-of-the-art. (All accumulator algorithms need a constant number of
group operations.) A dynamic accumulator supports both additions and deletions, and a
positive one supports membership proofs.

1.2 More on Related Work

Comparison with Boneh et al. While Boneh et al.’s VC construction [BBF19] is novel
and efficient, their technique inherently works bit-by-bit. (They also discuss how to build
KVCs from VCs.) The exponent is always a subset product of elements corresponding to the
bits set to 1. It is not clear how to get rid of this restriction. This limitation also translates to
updates as one would have to know which bits would have to be flipped from 0 to 1 and 1 to
0. This cannot be done simply using the knowledge of update value. Our construction takes
a completely different approach by encoding the values directly as a linear function, which
allows us to get past the bit-by-bit issues as well as handle updates while being oblivious
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to prior value (very important for blockchain applications). Our KVC algorithms involve
constant number of group operations as opposed to linear in bit-length; the constants are
small (between three and five); and, our proof size is three as opposed to seven.

Recent work. Lately, vector commitments has been a very active area of research. Several
new constructions have been proposed. We discuss a few of them here.

Campanelli et al. [CFG+20] study aggregation for subvector commitments. They in-
troduce new incremental aggregation and disaggregation properties for SVCs. Incremental
aggregation allows one to merge different subvector openings into a single concise opening,
and to further aggregate merged openings (without knowing the entire committed vector).
Disaggregation allows one to ‘break down’ openings into openings of subvectors. Campanelli
et al. point out that though a form of aggregation is already present in the VC of Boneh et
al. [BBF19], it can be performed only once. They construct new VC schemes where openings
can be aggregated an unbounded number of times.

Campanelli et al. provide two constructions with constant-size public parameters, a CRS
in their case. However, the CRS needs to be ‘specialized’ for a length n before it can be used
for commitment. The first construction, based on Boneh et al. [BBF19], has a dependence
on the bit-length of elements. Verification in the second construction, based on Catalano and
Fiore [CF13], requires generation of n primes (unless they are already stored). Furthermore,
Campanelli et al. do not consider updates to vector elements. Our KVC construction, on
the other hand, can be used to build a VC that does not restrict the number of elements
in a commitment and allows them to be updated. However, like Boneh et al., we can only
support one-hop aggregation (we do not know how to further aggregate aggregated proofs).

Pointproofs [GRWZ20] study aggregatable VCs in the cross-commitment setting. Proofs
for subvectors of multiple commitments can be aggregated by any third party into a single
proof for the multiple subvectors. When applied to smart contracts storage, Pointproofs
reduces validators’ storage requirements considerably. While Pointproofs have very short
proofs, the public parameters are linear in the length of the vector. The scheme relies on
a q-type assumption in a bilinear group. Further, in order to prove security of aggregation,
they need to work in the algebraic group model.

Tomescu et al. [TAB+20] also study aggregatable subvector commitment and give an
efficient construction in prime-order groups from constant-sized polynomial commitments.
(They also provide a detailed and extensive overview of the literature.) Their public param-
eters also depend on the length of the vector though. They discuss how to build a stateless
cryptocurrency from their VC but the number of users n that need to be supported must be
known in advance.

1.3 Organization

We first provide a technical overview of our construction (Section 2). We discuss two inter-
mediate steps to building a KVC: an insert-only KVC that allows insertion of new items but
no updates to existing ones, and an increment-only KVC that allows incrementing the values
corresponding to keys but no inserts (it is assumed that all keys are initialized with value 0).

In Section 3, we describe the notation used in the paper, define key-value commitments
formally, and state the assumptions we need to prove security. In Sections 4 and 5, we build
an insert-only KVC and a full KVC, respectively. We show how the former can be used to
build accumulators and the latter naturally lends itself to vector commitments. Finally, in
Section 6, we show how to batch membership proofs together.

5



We provide a formal description of the increment-only KVC in Appendix B.

2 Overview

In this section, we provide a technical overview of our construction of key-value commitments.
Informally, a key-value commitment allows one to commit to a key-value map in such a way
that it is later possible to open the commitment with respect to any specific key. To motivate
our construction, we build up to it in three steps.

2.1 Insert-only

We begin by describing an insert-only key-value commitment construction. By insert-only,
we mean that we only insert key-value pairs into the commitment and do not the update
the value corresponding to a key. Our key-value commitment C to the key-value map M =
{(ki, vi)}i∈[q] ⊆ K × V takes the form

CM =
(
g
∑

i∈[q] vi
∏

j∈[q]\{i} zj , g
∏

i∈[q] zi
)
,

where zi are random strings2 corresponding to the keys ki. The crucial observation here is
that the exponent in the first element of the commitment, namely g

∑
i∈[q] vi

∏
j∈[q]\{i} zj , is a

linear function of the values vi. The proof corresponding to a key km ∈ KM would be

Λkm =
(
g
∑

i∈[q]\{m} vi
∏

j∈[q]\{i,m} zj , g
∏

i∈[q]\{m} zi
)

which is essentially the key-value commitment of all the other key-value pairs in M. Let
us assume that the strings zi can be publicly generated from the keys ki, say by some hash
function3. Then, the verification of the proof Λkm for a key-value pair (km, vm) would simply
be the following checks:

Λzmkm,1 · Λ
vm
km,2

=
(
g
∑

i∈[q]\{m} vi
∏

j∈[q]\{i,m} zj
)zm
·
(
g
∏

i∈[q]\{m} zi
)vm

= g
∑

i∈[q]\{m} vi
∏

j∈[q]\{i} zj · gvm
∏

i∈[q]\{m} zi

= g
∑

i∈[q] vi
∏

j∈[q]\{i} zj

= CM,1

and

Λzmkm,2 =
(
g
∏

i∈[q]\{m} zi
)zm

= g
∏

i∈[q] zi

= CM,2

Note that the above design also describes a procedure to insert a key-value pair into the
commitment. To insert a new pair (kq+1, vq+1) into M, we set

CM′ =
(
C
zq+1

M,1 · C
vq+1

M,2 , C
zq+1

M,2

)
2The precise requirement on {zi} will be described later.
3We will actually not require any private randomness in {zi}, just that there is some concise representation

of them. This will be clear from the fact that we publish the key for the hash function to enable its public
evaluation.
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where M′ = M∪ {(km+1, vm+1)}. Furthermore, the proof Λkq+1 corresponding to the key
kq+1 would be CM.

We also have a straightforward way to update proofs for the existing keys when a new
key-value pair is inserted. For instance, on inserting (kq+1, vq+1), we can update the proof
Λkm corresponding to the key km with the help of the update information (kq+1, vq+1) as
follows:

Λ′km =
(

Λ
zq+1

km,1
· Λvq+1

km,2
,Λ

zq+1

km,2

)
.

One can easily check that the modified proof would be successfully verified.
The final piece of the puzzle is key binding, i.e., it must be computationally infeasible for

an adversary to produce a proof corresponding to a key k that verifies for a key-value pair
(k, v) which is not in the key-value commitment. We analyze this as follows. Suppose an
adversary comes up with a key-value pair (k, v) and a proof Λk = (Λk,1,Λk,2) corresponding
to the key k. Let us assume that k ∈ KM (the other case is easier to handle). Let m denote
the index of the key k in the mapM, i.e., let k = km. Let zm be the string corresponding to
km. We will, for reasons that will be clear shortly, require that zm be an odd string. Let vm
be the value corresponding to the key km in the commitment and let Λkm = (Λkm,1,Λkm,2)
be the corresponding proof. We first check that

Λzmk,2 = CM,2.

Suppose that the check passes. Then, with overwhelming probability,

Λk,2 = g
∏

i∈[q]\{m} zi = Λkm,2.

This is because, otherwise,

α =
Λk,2

Λkm,2
6= ±1

is a non-trivial zmth root of unity. We know that such elements are hard to find without
knowing the order of the group. In particular, this means that we have computed the order
of the non-trivial element α.

We now proceed to the second and final check. We check that

Λzmk,1 · Λ
v
k,2 = CM,1.

Note that
Λzmkm,1 · Λ

vm
km,2

= CM,1.

and, with overwhelming probability, Λk,2 = Λkm,2. Hence(
Λk,1

Λkm,1

)zm
= Λvm−vkm,2

.

We only care about the case vm 6= v. Note that setting

β =
Λk,1

Λkm,1

and
γ = Λvm−vkm,2
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we have found β, a zmth root of a non-trivial element γ, which should be hard to find in
groups of unknown order.

Formally, we can show that if the RSA assumption holds, then computing β is indeed
hard. This can be seen as follows. The exponent of g in Λkm,2 contains numbers that are
coprime to zm. Furthermore, we will choose {zi} to be larger than the permitted value space,
which ensures that vm − v is also coprime to zm. Thus, if one can compute β, which is a
zmth root of γ, we can actually compute a zmth root of g through an application of Shamir’s
trick, which would break the RSA assumption.

2.2 Increment-only

We next describe an increment-only key-value commitment construction. By increment-only,
we mean that values corresponding to all keys are initialized to 0 and we can just update
them by some amount δ every time. We propose that our commitment C to a key-value map
M = {(ki, vi)}i∈[q] ⊆ K × V takes the form

CM = g
∏

i∈[q] z
vi
i ,

where zi are random primes corresponding to the keys ki. Let us assume that the strings zi
can be publicly generated from the keys ki, say by some hash function.

This construction is reminiscent of the RSA-based accumulator construction of Li et al.
[LLX07] and Boneh et al. [BBF19]. The proof corresponding to a key km ∈ KM would need
to consist of two parts, one to show that the exponent of zm is at least vm and one to show
that it is at most vm. The first part of the proof would be

Λkm,1 = g
∏

i∈[q]\{m} z
vi
i ,

which is essentially the key-value commitment of all the other key-value pairs in M. It can
be used to show that the exponent of zm is at least vm by verifying that

Λz
vm
m
km,1

= CM.

The second part of the proof uses the idea from Li et al. [LLX07] and Boneh et al.
[BBF19] that was used to build non-membership proofs. Basically, we would like to show
that zm is coprime to

∏
i∈[q]\{m} z

vi
i . This can be done by leveraging Bezout coefficients

a, b ∈ Z such that

a · zm + b ·
∏

i∈[q]\{m}

zvii = 1.

2.3 Putting it all together

We re-examine the insert-only key-value commitment, namely,

CM =
(
g
∑

i∈[q] vi
∏

j∈[q]\{i} zj , g
∏

i∈[q] zi
)

and
Λkm =

(
g
∑

i∈[q]\{m} vi
∏

j∈[q]\{i,m} zj , g
∏

i∈[q]\{m} zi
)
.

The exponent of the first component of CM is linear in the values that are being committed.
Thus, in order to change the value corresponding to key km by δ, it is enough to perform the
following operation:

CM′,1 = CM,1 · gδ·
∏

i∈[q]\{m} zi .
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This means that one only needs to know the index m4 and δ in order to perform an update
on the value corresponding to the key km in the commitment. Let

β = g
∏

i∈[q]\{m} zi .

Firstly, note that β can be generated publicly. However, one would have to generate all
the zi for i ∈ [q] \ {m} (or retrieve it from some persistent storage) and then perform q − 1
exponentiations, making it a computationally intensive task. However, notice that

Λkm,2 = β.

Thus, if we assume that the party involved in the update of the mth element has access to
Λkm , we can assume that we have access to β and we do not have to recompute it every time
an update is issued. However, we would like to overcome this limitation. For instance, in the
case of a blockchain, a sender who wants to send another user some funds will not be able to
update the key-value commitment to reflect the changes in the recipient’s account efficiently
unless they have access to the proof of the recipient.

Let us turn to the proofs. Note that if we perform an update at index m, the proof corre-
sponding to the key km does not change. For n 6= m, we can update the proof corresponding
to the key kn by performing the following operation:

Λkn,1 = Λkn,1 · g
δ·
∏

j∈[q]\{m,n} zj .

Let
γ = g

∏
j∈[q]\{m,n} zj .

Again, note that γ can be generated publicly but it would be a computationally intensive
task. The situation is even worse here because γ cannot be computed efficiently from any
other information that is available as that would amount to taking zmth roots of elements.

The construction we propose now circumvents all of these issues. It gets rid of indices and
allows for efficient updates of the key-value commitment and proofs. Moreover, we can do so
without involving the party (their proof) whose value is being modified. Our commitment C
to the key-value map M = {(ki, vi)}i∈[q] ⊆ K × V takes the form

CM =

(
g(

∑
i∈[q] vi

∏
j∈[q]\{i} zj)·

∏
i∈[q] z

ui
i , g

∏
i∈[q] z

ui+1
i

)
,

where ui denotes the number of updates made to the value corresponding to the key ki.
With this form, insertion can be carried out in exactly the same way as in the case of the
insert-only construction.

More interestingly, if CM′ denotes the new commitment value after changing the value
corresponding to key km by δ, then

CM′,1 = CzmM,1 · g
δ·zu

′
m

m
∏

i∈[q]\{m} z
ui+1
i

= CzmM,1 · g
δ·zum+1

m
∏

i∈[q]\{m} z
ui+1
i

= CzmM,1 · g
δ·
∏

i∈[q] z
ui+1
i

= CzmM,1 · C
δ
M,2,

4While this is already pretty good, we ideally would like to get rid of the notion of an index and carry out
an update just knowing the key km. We do achieve this in our construction.
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where u′m = um + 1 denotes the (new) total number of updates for key km. Note how using
the number of updates {ui} in the exponents of the {zi} lets us perform an update without
having to compute values akin to β (and γ while updating proofs) which have to miss some
{zi} in the exponent, rendering their computation inefficient.

In fact, it is now easy to see that

CM′ =
(
CzmM,1 · C

δ
M,2, C

zm
M,2

)
.

Thus, an update works exactly how an insert would and this is an important property our
constructions enjoys that we will come back to later in seeing how this primitive fits into
the blockchain setting. It can also be easily deduced now that this design has a very similar
consequence on enabling update to proofs efficiently. In particular, recall that updating the
values corresponding to keys and inserting a new key have similar effect. Since we know how
to update proofs following an insert, we can update them in exactly the same way on an
update to some value.

To prove key-binding, it will be crucial for a verifier to know precisely the number of
updates that have been performed on the value corresponding to the key for which a proof is
provided. If verifier is not aware of this, it is possible for an attacker to generate a “fake” proof
and break key-binding. Indeed, the number of updates made to the values corresponding to
each key is public in the blockchain setting, but we would not want parties to store this
information as it grows linearly with the number of key-value pairs that are inserted into the
commitment.

For this purpose, we can include in the commitment CM an increment-only key-value
commitment that stores the number of updates performed on each key. During verification,
proofs would now have to contain a proof for the right number of updates that have been
performed in addition to the proof for the value itself. In this way, the verifying party need not
store the number of updates that have been made to the values corresponding to each of the
keys. The final step is to observe that the second component of the key-value commitment,
CM,2, essentially acts as an increment-only key-value commitment for the number of updates.
Thus, we do not need to add anything else to CM.

3 Preliminaries

3.1 Notation

For n ∈ N, let [n] = {1, 2, . . . , n}. Let λ ∈ N denote the security parameter. Let |b| denote
the bit-length of b ∈ N. Let Primes denote the set of integer primes and Primes(λ) denote
the set of integer primes less than 2λ. Symbols in boldface such as a denote vectors. By ai
we denote the i-th element of the vector a. For a vector a of length n ∈ N and an index
set I ⊆ [n], we denote by a|I the sub-vector of elements ai for i ∈ I induced by I. By
poly(·), we denote any function which is bounded by a polynomial in its argument. An
algorithm T is said to be PPT if it is modeled as a probabilistic Turing machine that runs in
time polynomial in λ. Informally, we say that a function is negligible, denoted by negl, if it
vanishes faster than the inverse of any polynomial. If S is a set, then x ←$ S indicates the
process of selecting x uniformly at random from S (which in particular assumes that S can
be sampled efficiently). Similarly, x←$ A(·) denotes the random variable that is the output
of a randomized algorithm A.
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3.2 Key-Value Commitments

Informally, a key-value commitment allows one to commit to a key-value map in such a way
that it is later possible to open the commitment with respect to any specific key. We require
a key-value commitment to be concise in the sense that the size of the commitment string C
is independent of the size of the map. Furthermore, it must be possible to update the map,
by either adding new key-value pairs or updating the value corresponding to an existing key.

We set up the following notation for a key-value map: A key-value map M ⊆ K × V
is a collection of key-value pairs (k, v) ∈ K × V. Let KM ⊆ K denote the set of keys for
which values have been stored in the map M. We define a key-value commitment KVC as a
non-interactive primitive that can be formally described via the following algorithms:

• (pp, C) ←$ KeyGen(1λ): On input the security parameter λ, the key generation algo-
rithm outputs some public parameters pp (which implicitly define the key space K and
value space V) and the initial commitment C to the empty key-value map. All other
algorithms have access to the public parameters.

• (C,Λk, upd)← Insert(C, (k, v)): On input a commitment string C and a key-value pair
(k, v) ∈ K × V, the insertion algorithm outputs a new commitment string C, a proof
Λk (that v is the value corresponding to k), and update information upd.

• (C, upd) ← Update(C, (k, δ)): On input a commitment string C, a key k ∈ K and
an update value δ5, the update algorithm outputs an updated string C and update
information upd. Note that this algorithm does not need the value corresponding to
the key k.

• Λk ← ProofUpdate(k,Λk, upd): On input a key k ∈ K, a proof Λk for some value
corresponding to the key k and update information upd, the proof update algorithm
outputs an updated proof Λk.

• 1/0 ← Ver(C, (k, v),Λk): On input a commitment string C, a key-value pair (k, v) ∈
K× V and a proof Λk, the verification algorithm either outputs 1 (denoting accept) or
0 (denoting reject).

For correctness, we require that for all λ ∈ N, for all honestly generated public parameters
pp ←$ KeyGen(1λ), if C is a commitment to a key-value map M, obtained by running a
sequence of calls to Insert and Update, Λk is a proof corresponding to key k for any k ∈ KM,
generated during the call to Insert and updated by appropriate calls to ProofUpdate, then
Ver(C, (k, v),Λk) outputs 1 with probability 1 if (k, v) ∈M.

To present the requirement formally, we define a correctness game. We have an adversary
in this game to capture the arbitrary order in which inserts and updates can be applied to a
commitment. We do not provide it any capability to do something beyond that.

5We assume updates are additive, i.e., updating a value v by δ amounts to changing v to v + δ.
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Definition 1. For a key-value commitment KVC and an adversary A, we define a random
variable Gcorrect

KVC,λ,A through a game between a challenger CH and A as follows:

Gcorrect
KVC,λ,A :

1. CH samples (pp, C) ←$ KeyGen(1λ) and sends them to A. CH also maintains its own
state comprising a key-value map M⊆ K×V initialized to the empty map, a key-proof
map P initialized to the empty map, and the initial commitment value C.

2. A issues queries of one of the following forms:

• (Insert, (k, v)): CH checks if M contains a tuple of the form (k, ·). If so, CH re-
sponds with ⊥. If not, CH updatesM toM∪{(k, v)} and executes Insert(C, (k, v))
to obtain a new commitment C, along with Λk and upd. CH then updates P to
P ∪ {(k,Λk)}.
• (Update, (k, δ)): CH checks if M contains a tuple of the form (k, v). If not, CH

responds with ⊥. If so, CH updatesM to (M∪{(k, v+δ)})\{(k, v)} and executes
Update(C, (k, δ)) to obtain a new commitment C, along with update value upd.

Any time A issues a query, CH deals with the query as above and then performs the
following updates and checks:

• Let upd be the update information obtained by CH while processing A’s most recent
query. For each tuple (k,Λk) ∈ P, CH updates Λk by executing ProofUpdate(k,
Λk, upd).

• For each tuple (k, v) ∈ M with the corresponding tuple (k,Λk) ∈ P, CH obtains
bk ← Ver(C, (k, v),Λk). If for any k, bk = 0, then CH outputs failure and termi-
nates.

3. CH outputs success.

The value of the random variable Gcorrect
KVC,λ,A is defined to be the output of CH, namely, failure

or success.

Definition 2 (Correctness). A key-value commitment KVC is correct if for every adversary
A, the following probability is identically zero:

Advcorrect
KVC,A(λ) = Pr

[
failure←$ Gcorrect

KVC,λ,A
]

The security requirement for key-value commitments is that of key binding. Informally,
this says that it should be infeasible for any polynomially bounded adversary (with knowledge
of pp) to come up with an honestly generated commitment and two proofs that certify to
different values for the same key, or a single proof that certifies to a value for a key that has
not been inserted. The adversary is, however, disallowed from executing Insert more than
once with respect to any k. We present the requirement formally below. We first define a
key-binding game.

12



Definition 3. For a key-value commitment KVC and an adversary A, we define a random
variable Gbind

KVC,λ,A through a game between a challenger CH and A as follows:

Gbind
KVC,λ,A :

1. CH samples (pp, C) ←$ KeyGen(1λ) and sends them to A. CH also maintains its own
state comprising a key-value map M ⊆ K × V initialized to the empty map and the
initial commitment value C.

2. A issues queries of one of the following forms:

• (Insert, (k, v)): CH checks if M contains a tuple of the form (k, ·). If so, CH re-
sponds with ⊥. If not, CH updatesM toM∪{(k, v)} and executes Insert(C, (k, v))
to obtain a new commitment C.

• (Update, (k, δ)): CH checks if M contains a tuple of the form (k, v). If not, CH
responds with ⊥. If so, CH updatesM to (M∪{(k, v+δ)})\{(k, v)} and executes
Update(C, (k, δ)) to obtain a new commitment C.

3. A sends a final output to CH of one of the following forms:

• Type 1: a key k such that M does not contain a tuple of the form (k, ·), a value
v, and a proof Λk.

• Type 2: a key k such that M contains a tuple of the form (k, ·), a pair of values
(v, v′) where v 6= v′, and a pair of proofs (Λk,Λ

′
k).

4. CH performs the following checks corresponding to A’s output:

• Type 1: if Ver(C, (k, v),Λk) = 1, then CH outputs failure. Otherwise, CH outputs
success.

• Type 2: if Ver(C, (k, v),Λk) = Ver(C, (k, v′),Λ′k) = 1, then CH outputs failure.
Otherwise, CH outputs success.

The value of the random variable Gbind
KVC,λ,A is defined to be the output of CH, namely, failure

or success.

Definition 4 (Key-binding). A key-value commitment KVC is key-binding if for every PPT
adversary A, the following probability is negligible in λ:

Advbind
KVC,A(λ) = Pr

[
failure←$ Gbind

KVC,λ,A

]
.

Notice that in the definition of Gbind
KVC,λ,A, the commitment C is honestly generated by the

challenger CH based on the queries issued by the adversary A. Also note that the definition
only uses the Insert and Update routines of the key-value commitment, as these are the
only two that impact the value of the commitment. Indeed, the adversary can perform all
operations by itself given the public parameters. However, the purpose of the game is to
define the honestly generated commitment with respect to which the adversary will attempt
to produce “fake” proofs. Definition 4 states that no PPT adversary will be able to do so.

We note that key-value commitments are not required to satisfy any sort of hiding prop-
erty, although one can also define key-value commitments that are hiding. Informally, a
key-value commitment is hiding if an adversary cannot distinguish whether a commitment
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was created to a key-value map M or to another key-value map M′ even after learning the
values corresponding to keys that have the same value in both maps.

KVC for account-based cryptocurrency. In Section 1.1, we briefly discussed how a
key-value commitment can be used to build an account-based cryptocurrency with stateless
validation. When a validator receives a transaction tx = (pk, σ, v, ct, b, pk?, π) to transfer
an amount b from Alice’s public key pk to Bob’s public key pk?, it checks if σ is a valid
signature on (v, ct, b, pk?, π), π is a valid proof of the membership of (pk, (v||ct)) w.r.t. to the
commitment state C, and b is at most v.

The validator can then execute Update with C and (pk,−b||1) to produce a new commit-
ment C ′ that reflects the change to Alice’s account, but what should it do for Bob? Perhaps
it should insert pk? into C ′ if this is the first time that pk? is being used in a transaction, or
update it otherwise. However, there is no way for the validator to know this unless it keeps
a copy of the blockchain. Fortunately, in our construction KVaC, insert and update work in
the exact same way (see Figure 2), so the validator could always just do an update. (The
only difference between these operations is that the former outputs a proof whereas the latter
doesn’t.)

Let us look at the situation from Alice and Bob’s perspective. While Alice has a proof π
for her key pk that she can update, Bob may not have any proof for pk? if this is the first
time someone is sending money to him. We could help Bob generate a proof by including the
latest state of the commitment value in every block. If the transaction tx is accepted into a
block `, Bob could use the commitment C ′ from block ` − 1 to quickly generate a proof for
pk? by applying all the updates in block ` to C ′ except his own.

3.3 Assumptions

We describe in this section the various hardness assumptions that we will use in this work.

Groups of Unknown Order. We assume the existence of a randomized polynomial time
algorithm GGen(λ) that takes as input the security parameter λ and outputs two integers a, b
along with the description of a group G of unknown order in the range [a, b] such that a, b
and a−b are all integers exponential in λ (similar to Boneh et al. [BBF19]). We will suppress
a, b when they are understood or not required.

RSA Assumption. Informally, the RSA assumption states that an adversary cannot com-
pute a random root of a random group element. In the game, the challenger runs the gen-
eration algorithm GGen(λ) to obtain integers a, b such that a, b and a− b are exponential in
λ and the description of a group G of unknown order in the interval [a, b]. It also samples a
random group element w and a random λ-bit prime `, and outputs w and ` to the adversary.
The adversary is then supposed to return an `th root u of w.

Definition 5 (RSA). The RSA assumption holds for the algorithm GGen if for any PPT
adversary A, the following probability is negligible in λ:

AdvRSA
A (λ) = Pr

u` = w :

(a, b,G)←$ GGen(λ)
w ←$ G

`←$ Primes(λ)
u←$ A(a, b,G, w, `)

 .

14



We would like to generalize the RSA assumption. For the assumption to make sense,
we must maintain that ` is invertible modulo Q with overwhelming probability, where Q is
the order of the group. If ` is a prime larger than Q, ` is certainly coprime to Q and hence
invertible modulo Q. This also means that every element has an `th root. In particular, for
any w, u = w`

−1
is well-defined. Intuitively, the problem of finding an `th root should still

be hard. This leads us to a generalized form of RSA.

Definition 6 (Generalized RSA). The Generalized RSA assumption holds for the algorithm
GGen if for any PPT adversary A, the following probability is negligible in λ:

AdvGRSA
A (λ) = Pr

u` = w :

(a, b,G)←$ GGen(λ), |b| = ζ
w ←$ G

`←$ Primes(ζ + 1) \ [b]
u←$ A(a, b,G, w, `)

 .
Strong RSA Assumption. Informally, the strong RSA assumption states that an ad-
versary cannot compute any non-trivial root of a random group element. In the game, the
challenger runs the generation algorithm GGen(λ) to obtain the description of a group G of
unknown order. It also samples a random group element w and gives it to the adversary. The
adversary is then supposed to return an `th root u of w for any odd prime ` of its choice. In
particular, in the strong RSA assumption, the adversary gets to pick `, while in the (regular)
RSA assumption, the adversary is given a randomly chosen `.

Definition 7 (Strong RSA). The Strong RSA assumption holds for the algorithm GGen if
for any PPT adversary A, the following probability is negligible in λ:

AdvSRSA
A (λ) = Pr

 u` = w
` ∈ Primes \ {2} :

(a, b,G)←$ GGen(λ)
w ←$ G

(u, `)←$ A(a, b,G, w)

 .
4 An Insert-only Key-Value Commitment

We begin by describing an insert-only key-value commitment KVC-Ins. By insert-only, we
mean that we only insert key-value pairs into the commitment but do not the update the value
corresponding to a key. We also note that we are only concerned with the case of inserting
values corresponding to distinct keys, i.e., we assume that the insert algorithm is not invoked
with the same key more than once. The construction KVC-Ins is formally described in Fig. 1.

Completeness and Efficiency. The correctness of the scheme follows directly from in-
spection. Also note that all operations involve (at most) one hash computation, three ex-
ponentiations and one multiplication. The size of the key-value commitment is constant,
namely, two group elements. This is also true of the proofs corresponding to keys.

4.1 Key Binding

If we model the hash function H in the construction as a random oracle, we can prove the key
binding of KVC-Ins based on the generalized RSA assumption. We note that while applying
the Definitions 3 and 4 for key binding to KVC-Ins, the adversary will not be allowed to issue
any update queries (KVC-Ins is an insert-only commitment scheme).
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� KeyGen(1λ): Sample the description of a group (a, b,G)←$ GGen(λ) of unknown order
in the range [a, b] where a, b and a − b are exponential in λ, and a random element
g ←$ Ga. Set V = [0, a) and K = {0, 1}∗. Let ζ denote the bit-length of b, i.e., ζ = |b|.
Sample the description of a hash function H that maps arbitrary strings to unique
primes from the set Primes(ζ + 1) \ [b]b. Output (pp, C) = ((a, b,G, g,H), (1, g)).

� Insert(C, (k, v)): Parse the input C as (C1, C2). Let z = H(k). Set

Λk = C, C = (Cz1 · Cv2 , Cz2 ) , upd = (k, v).

Output (C,Λk, upd).

� ProofUpdate(k,Λk, upd): Parse Λk as (Λk,1,Λk,2) and upd as (upd1, upd2). Let z =
H(upd1). Set

Λk =
(

(Λk,1)z · (Λk,2)upd2 , (Λk,2)z
)
.

Output Λk.

� Ver(C, (k, v),Λk): Parse the input C as (C1, C2) and Λk as (Λk,1,Λk,2). Let z = H(k).
Check whether:

– v ∈ V and k ∈ K,

– (Λk,2)z = C2,

– (Λk,1)z · (Λk,2)v = C1.

If all the checks pass, output 1; else, output 0.

aA random element of G would be a generator of G with overwhelming probability and, at the very least,
would not be of low order.

bUsing existing techniques, we can sample hash functions that satisfy this property with high probability.
For details, please refer to Appendix A.

Figure 1: KVC-Ins: Insert-only KVC construction

Lemma 1. Suppose there exists a PPT adversary A in the random oracle model that satisfies

Advbind
KVC-Ins,A(λ) = ε,

where KVC-Ins is the key-value commitment scheme defined in Figure 1. Then, there exists
a PPT adversary B such that

AdvGRSA
B (λ) ≥ ε

T 2
λ

− negl(λ),

where Tλ denotes the running time of A parameterized by λ.

Proof. Assume the existence of an adversary A as stated in the lemma above. We now
design the adversary B. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ, w ←$ G and
` ←$ Primes(ζ + 1) \ [b] from the challenger CH, B first guesses the number, q, of keys that
A would issue hash queries for or insert into the commitment, and the index, m, of the key
km which A would provide the “fake” proof for at the end of its execution. Note that each
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of these choices are limited in number by Tλ and hence B makes the correct guesses with
probability greater than or equal to T−2

λ .
B chooses q−1 unique primes {zi}i∈[q]\{m} at random from the set Primes(ζ+ 1)\ [b] that

it will assign, under the map H, to the set of keys other than the one that A would provide
the “fake” proof for. It computes

π = w
∏

i∈[q]\{m} zi .

With all but negligible probability in λ, ` 6= zi for any i ∈ [q]\{m}. B sets g = w and zm = `.
B sends ((a, b,G, g), (1, g)) to A.
B maintains a key-value map M ⊆ K × V initialized to the empty map and the initial

commitment value C = (1, g). Any time A issues the ith query, ki, for the computation of
H, B returns zi and assigns H(ki) = zi. Any time A issues queries as in Definition 3, note
that B has all the values it needs to make updates to C andM as defined in Definition 3 and
Figure 1. If A aborts at any point in time, B aborts as well. Assuming no aborts, finally, A
responds with a tuple of the form

1. (km, v,Λ) where km wasn’t inserted by A, or

2. (km, v, v
′,Λ,Λ′) where km was inserted by A and v 6= v′.

Case 1: Let C = (C1, C2) and Λ = (Λ1,Λ2). Since Ver(C, (km, v),Λ) = 1,

Λ`2 = C2.

Without loss of generality, we can assume that A inserted all keys that it queried the hash
function for into the commitment (other than km).6 Let M = {(ki, vi)}i∈[q]\{m} be the
key-value map committed to in C. We have

C2 = g
∏

i∈[q]\{m}H(ki).

Therefore,
Λ`2 = w

∏
i∈[q]\{m} zi .

Since ` 6= zi for any i ∈ [q] \ {m}, ` is coprime to
∏
i∈[q]\{m} zi. B then computes integers

θ1, θ2 such that

θ1 · `+ θ2 ·
∏

i∈[q]\{m}

zi = 1.

Finally, B computes
u = wθ1Λθ22 .

Note that

u` = wθ1`Λθ2`2

= wθ1`(Λ`2)θ2

= wθ1`(w
∏

i∈[q]\{m} zi)θ2

= wθ1·`+θ2·
∏

i∈[q]\{m} zi

= w.

B forwards u to CH.
6If this is not the case, B can insert (arbitrary) values for the remaining keys after the fact to complete the

reduction.
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Case 2: Let Λ′ = (Λ′1,Λ
′
2). We claim that

Λ2 = Λ′2.

Since Ver(C, (km, v),Λ) = Ver(C, (km, v
′),Λ′) = 1,

Λ`2 = C2 = Λ′`2 .

Let

α =
Λ2

Λ′2
.

We have that α` = 1. Since ` is prime, if α 6= 1, ` must be the order of α in G. But ` is
larger than the order of G, which is not possible. Hence α = 1.

Without loss of generality, we can assume that A inserted all keys that it queried the hash
function for into the commitment. Let M = {(ki, vi)}i∈[q] be the key-value map committed
to in C. Consider the proof Λkm corresponding to the key km defined by

Λkm = (Λkm,1,Λkm,2) ,

where
Λkm,1 = g

∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m}H(kj)

and
Λkm,2 = g

∏
i∈[q]\{m}H(ki).

Clearly, Ver(C, (km, vm),Λkm) = 1. In particular,

Λ`km,2 = C2.

Extending our previous argument, we have that

Λ2 = Λ′2 = Λkm,2 = g
∏

i∈[q]\{m}H(ki).

Since Ver(C, (km, v),Λ) = Ver(C, (km, v
′),Λ′) = 1, we have

(Λ1)` · (Λ2)v = C1 =
(
Λ′1
)` · (Λ′2)v′ .

This implies that (
Λ1

Λ′1

)`
=
(
g
∏

i∈[q]\{m}H(ki)
)v′−v

.

Let

β =
Λ1

Λ′1

and
v′ − v = δ.

Note that β` = πδ. This implies that

β` = wδ
∏

i∈[q]\{m} zi .
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Since V = [0, a), |δ| < a < b < `, and since ` is prime, ` is coprime to δ. Also, since ` 6= zi
for any i ∈ [q] \ {m}, ` is coprime to

∏
i∈[q]\{m} zi. Hence, ` is coprime to δ

∏
i∈[q]\{m} zi. B

then computes integers θ1, θ2 such that

θ1 · `+ θ2 · δ
∏

i∈[q]\{m}

zi = 1.

Finally, B computes
u = wθ1βθ2 .

Note that

u` = wθ1`βθ2`

= wθ1`(β`)θ2

= wθ1`(wδ
∏

i∈[q]\{m} zi)θ2

= wθ1·`+θ2·δ
∏

i∈[q]\{m} zi

= w.

B forwards u to CH. This completes the proof.

Removing the random oracle assumption. Intuitively, we need H to be a random
oracle only because we are programming the challenge prime ` from the RSA assumption
as one of the z’s output by H. We can however get over this difficulty by letting H output
arbitrary primes and letting the adversary choose ` as in the game for the strong RSA
assumption.

Lemma 2. Suppose there exists a PPT adversary A in the standard model that satisfies

Advbind
KVC-Ins,A(λ) = ε,

where KVC-Ins is the key-value commitment scheme defined in Figure 1. Then, there exists
a PPT adversary B such that

AdvSRSA
B (λ) ≥ ε− negl(λ).

Proof. Assume the existence of an adversary A as stated in the lemma above. We now
design the adversary B. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ and w ←$ G from
the challenger CH, B sets g = w and samples the description of a hash function H that maps
arbitrary strings to unique primes from the set Primes(ζ+1)\[b]. B sends ((a, b,G, g,H), (1, g))
to A. B maintains a key-value map M⊆ K×V initialized to the empty map and the initial
commitment value C = (1, g). Any time A issues queries as in Definition 3, note that B has
all the values it needs to make updates to C and M as defined in Definition 3 and Figure 1.
If A aborts at any point in time, B aborts as well. Assuming no aborts, finally, A responds
with a tuple of the form

1. (k, v,Λ) where k wasn’t inserted by A, or

2. (km, v, v
′,Λ,Λ′) where km was inserted by A and v 6= v′.
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Case 1: Let ` = H(k), C = (C1, C2) and Λ = (Λ1,Λ2). Let M = {(ki, vi)}i∈[q] be the
key-value map committed to in C. As in the proof of Lemma 1,

Λ`2 = w
∏

i∈[q]H(ki).

As before, ` is coprime to
∏
i∈[q]H(ki). B then computes integers θ1, θ2 such that

θ1 · `+ θ2 ·
∏
i∈[q]

H(ki) = 1

and
u = wθ1Λθ22 ,

which satisfies
u` = w.

B forwards (u, `) to CH.

Case 2: Let ` = H(km) and Λ′ = (Λ′1,Λ
′
2). As in the proof of Lemma 1,

Λ2 = Λ′2.

Consider the proof Λkm corresponding to the key km as defined in the proof of Lemma 1. We
have that

Λ2 = Λ′2 = Λkm,2 = g
∏

i∈[q]\{m}H(ki).

Finally, as in the proof of Lemma 1, let

β =
Λ1

Λ′1

and
v′ − v = δ,

which satisfy
β` = wδ

∏
i∈[q]\{m}H(ki).

As before, ` is coprime to δ
∏
i∈[q]\{m}H(ki). B then computes integers θ1, θ2 such that

θ1 · `+ θ2 · δ
∏

i∈[q]\{m}

H(ki) = 1

and
u = wθ1βθ2 ,

which satisfies
u` = w.

B forwards (u, `) to CH. This completes the proof.
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4.2 Accumulators

Observe that an insert-only key-value commitment directly gives us an accumulator that
supports insertions and membership proofs (just use arbitrary keys). Our construction of an
insert-only key-value commitment also provides for deletions because the proof corresponding
to a key is the commitment of the remainder of the key-value map, which would be the new
commitment. Existing proofs can be updated using the techniques of aggregation in Section
6. The idea is that given key-value commitments to the mapsM\{(k, v)} andM\{(k′, v′)},
it is possible to create a commitment to the mapM\{(k, v), (k′, v′)}. Thus, KVC-Ins can be
used to build optimal dynamic positive accumulators [BCD+17].

5 A Complete Key-Value Commitment

In this section, we provide our main construction of a key-value commitment. The construc-
tion KVaC is formally described in Figure 2.

Completeness and Efficiency. The correctness of the scheme follows directly from in-
spection. Also note that all operations involve (at most) two hash computations, five ex-
ponentiations and two multiplications. The size of the key-value commitment is constant,
namely, two group elements. This is also true of the proofs corresponding to keys.

5.1 Key Binding

If we model the hash function H in the construction as a random oracle, we can prove the
key binding of KVaC based on the generalized RSA assumption.

Lemma 3. Suppose there exists a PPT adversary A in the random oracle model that satisfies

Advbind
KVaC,A(λ) = ε,

where KVaC is the key-value commitment scheme defined in Figure 2. Then, there exists a
PPT adversary B such that

AdvGRSA
B (λ) ≥ ε

T 3
λ

− negl(λ),

where Tλ denotes the running time of A parameterized by λ.

Proof. Assume the existence of an adversary A as stated in the lemma above. We now
design the adversary B. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ, w ←$ G and
` ←$ Primes(ζ + 1) \ [b] from the challenger CH, B first guesses the number, q, of keys that
A would issue hash queries for or insert into the commitment, the index, m, of the key km
which A would provide the “fake” proof for at the end of its execution, and u, the maximum
number of updates performed on the value corresponding to any of the keys inserted by A.
Note that each of these choices are limited in number by Tλ and hence B makes the correct
guesses with probability greater than or equal to T−3

λ . We assume without loss of generality
that A makes the same number of updates, u, to the values corresponding to each of the keys
inserted into the commitment.
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� KeyGen(1λ): Sample the description of a group (a, b,G)←$ GGen(λ) of unknown order
in the range [a, b] where a, b and a − b are exponential in λ and a random element
g ←$ G. Set V = [0, a). Let the bit-length of b, |b| = ζ. Set K = {0, 1}∗. Sample the
description of a hash function H that maps arbitrary strings to unique primes from the
set Primes(ζ + 1) \ [b]. Output (pp, C) = ((a, b,G, g,H), (1, g)).

� Insert(C, (k, v)): Parse the input C as (C1, C2). Let z = H(k). Set

Λk = ((C1, C2), (g, 1, 1), 0) a, C = (Cz1 · Cv2 , Cz2 ) , upd = (insert, (k, v)).

Output (C,Λk, upd).

� Update(C, (k, δ)): Parse the input C as (C1, C2). Let z = H(k). Set

C =
(
Cz1 · Cδ2 , Cz2

)
, upd = (update, (k, δ)).

Output (C, upd).

� ProofUpdate(k,Λk, upd): Parse the inputs Λk as ((Λk,1,Λk,2), (Λk,3,Λk,4,Λk,5), uk) and
upd as (upd1, (upd2, upd3)). Let z = H(k). If upd2 = k, set

Λk = ((Λk,1, (Λk,2)z), (Λk,3,Λk,4,Λk,5), uk + 1) .

Otherwise, let ẑ = H(upd2). We assume that z 6= ẑ. Compute α, β ∈ Z such that

α · z + β · ẑ = 1.

Compute
γ = β · Λk,5 mod z.

Compute η ∈ Z such that
γ · ẑ + η · z = Λk,5.

Set
Λk =

((
(Λk,1)ẑ · (Λk,2)upd3 , (Λk,2)ẑ

)
,
(

(Λk,3)ẑ ,Λk,4 · Ληk,3, γ
)
, uk

)
.

Output Λk.

� Ver(C, (k, v),Λk): Parse the inputs C as (C1, C2) and Λk as ((Λk,1,Λk,2),
(Λk,3,Λk,4,Λk,5), uk). Let z = H(k). Check whether:

– v ∈ V, k ∈ K, uk ∈ Z≥0,

– (Λk,2)z = C2,

– (Λk,1)z
uk+1

· (Λk,2)v = C1,

– (Λk,3)z
uk+1

= C2,

– (Λk,4)z · (Λk,3)Λk,5 = g.

If all the checks pass, output 1; else, output 0.

aIt is possible to do away with one of these elements, but we keep them all here for ease of presentation.

Figure 2: KVaC: Full KVC construction
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B chooses q−1 unique primes {zi}i∈[q]\{m} at random from the set Primes(ζ+ 1)\ [b] that
it will assign, under the map H, to the set of keys other than the one that A would provide
the “fake” proof for. It computes

π = w
∏

i∈[q]\{m} z
u+1
i .

With all but negligible probability in λ, ` 6= zi for any i ∈ [q]\{m}. B sets g = w and zm = `.
B sends ((a, b,G, g), (1, g)) to A.
B maintains a key-value map M ⊆ K × V initialized to the empty map and the initial

commitment value C = (1, g). Any time A issues the ith query, ki, for the computation of
H, B returns zi and assigns H(ki) = zi. Any time A issues queries as in Definition 3, note
that B has all the values it needs to make updates to C and M as defined in Definition 3
and Figure 2. If A made more than u updates to any key, B aborts. If A aborts at any point
in time, B aborts as well. Assuming no aborts, finally, A responds with a tuple of the form

1. (km, v,Λ) where km wasn’t inserted by A, or

2. (km, v, v
′,Λ,Λ′) where km was inserted by A and v 6= v′.

Case 1: Let C = (C1, C2) and Λ = ((Λ1,Λ2), (·, ·, ·), uk). Since it is the case that Ver(C,
(km, v),Λ) = 1,

Λ`2 = C2.

Without loss of generality, we can assume that A inserted all keys that it queried the hash
function for into the commitment (other than km). Let M = {(ki, vi)}i∈[q]\{m} be the map
committed to in C. We have

C2 = g
∏

i∈[q]\{m}H(ki)
u+1

.

Therefore
Λ`2 = w

∏
i∈[q]\{m} z

u+1
i .

Since ` 6= zi for any i ∈ [q] \ {m}, ` is coprime to
∏
i∈[q]\{m} z

u+1
i . B then computes integers

θ1, θ2 such that

θ1 · `+ θ2 ·
∏

i∈[q]\{m}

zu+1
i = 1.

Finally, B computes
u = wθ1Λθ22 .

Note that

u` = wθ1`Λθ2`2

= wθ1`(Λ`2)θ2

= wθ1`(w
∏

i∈[q]\{m} z
u+1
i )θ2

= wθ1·`+θ2·
∏

i∈[q]\{m} z
u+1
i

= w.

B forwards u to CH.
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Case 2: Let Λ′ = (Λ′1,Λ
′
2, (·, ·, ·), u′k). Following the proof of Lemma 5, we have that with

overwhelming probability,
u = uk = u′k.

As in the proof of Lemma 1,
Λ2 = Λ′2.

Without loss of generality, we can assume that A inserted all keys that it queried the hash
function for into the commitment. Let M = {(ki, vi)}i∈[q] be the key-value map committed
to in C. Consider the proof Λkm corresponding to the key km defined by

Λkm = (Λkm,1,Λkm,2) ,

where
Λkm,1 = g(

∑
i∈[q]\{m} vi

∏
j∈[q]\{i,m}H(kj))·

∏
i∈[q]\{m}H(kj)u

and
Λkm,2 = g`

u·
∏

i∈[q]\{m}H(ki)
u+1

.

Clearly, Ver(C, (km, vm),Λkm) = 1. In particular,

Λ`km,2 = C2.

Extending our previous argument, we have that

Λ2 = Λ′2 = Λkm,2 = g`
u·
∏

i∈[q]\{m}H(ki)
u+1

.

Since Ver(C, (km, v),Λ) = Ver(C, (km, v
′),Λ′) = 1, we have

(Λ1)`
u+1

· (Λ2)v = C1 =
(
Λ′1
)`u+1

·
(
Λ′2
)v′

.

This implies that (
Λ1

Λ′1

)`u+1

=
(
g`

u·
∏

i∈[q]\{m}H(ki)
u+1
)v′−v

.

Let

ξ =

(
Λ1
Λ′1

)`
g(v′−v)·

∏
i∈[q]\{m}H(ki)u+1 =

(
Λ1
Λ′1

)`
πv′−v

.

We have that ξ`
u

= 1. Since ` is prime, the order of ξ in G must be a power of `. But ` is
larger than the order of G, which is not possible. Hence ξ = 1, that is,(

Λ1

Λ′1

)`
= πv

′−v.

Let

β =
Λ1

Λ′1

and
v′ − v = δ.

Note that β` = πδ. This implies that

β` = wδ
∏

i∈[q]\{m} z
u+1
i .
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Since V = [0, a), |δ| < a < b < `, and since ` is prime, ` is coprime to δ. Also, since ` 6= zi for
any i ∈ [q] \ {m}, ` is coprime to

∏
i∈[q]\{m} z

u+1
i . Hence, ` is coprime to δ

∏
i∈[q]\{m} z

u+1
i . B

then computes integers θ1, θ2 such that

θ1 · `+ θ2 · δ
∏

i∈[q]\{m}

zu+1
i = 1.

Finally, B computes
u = wθ1βθ2 .

Note that

u` = wθ1`βθ2`

= wθ1`(β`)θ2

= wθ1`(wδ
∏

i∈[q]\{m} z
u+1
i )θ2

= wθ1·`+θ2·δ
∏

i∈[q]\{m} z
u+1
i

= w.

B forwards u to CH. This completes the proof.

Removing the random oracle assumption. As before, we can get rid of the need for a
random oracle by leveraging the stronger form of RSA.

Lemma 4. Suppose there exists a PPT adversary A in the standard model that satisfies

Advbind
KVaC,A(λ) = ε,

where KVaC is the key-value commitment scheme defined in Figure 2. Then, there exists a
PPT adversary B such that

AdvSRSA
B (λ) ≥ ε− negl(λ).

Proof. Assume the existence of an adversary A as stated in the lemma above. We now
design the adversary B. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ and w ←$ G from
the challenger CH, B sets g = w and samples the description of a hash function H that maps
arbitrary strings to unique primes from the set Primes(ζ+1)\[b]. B sends ((a, b,G, g,H), (1, g))
to A. B maintains a key-value map M⊆ K×V initialized to the empty map and the initial
commitment value C = (1, g). Any time A issues queries as in Definition 3, note that B has
all the values it needs to make updates to C and M as defined in Definition 3 and Figure 2.
If A aborts at any point in time, B aborts as well. Assuming no aborts, finally, A responds
with a tuple of the form

1. (k, v,Λ) where k wasn’t inserted by A, or

2. (km, v, v
′,Λ,Λ′) where km was inserted by A and v 6= v′.

Case 1: Let ` = H(k), C = (C1, C2) and Λ = ((Λ1,Λ2), (·, ·, ·), uk). Also, let M =
{(ki, vi)}i∈[q] be the key-value map committed to in C. As in the proof of Lemma 3,

Λ`2 = w
∏

i∈[q]H(ki)
ui+1

.
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As before, ` is coprime to
∏
i∈[q]H(ki)

ui+1. B then computes integers θ1, θ2 such that

θ1 · `+ θ2 ·
∏
i∈[q]

H(ki)
ui+1 = 1

and
u = wθ1Λθ22 ,

which satisfies
u` = w.

B forwards (u, `) to CH.

Case 2: Let ` = H(km) and Λ′ = (Λ′1,Λ
′
2, (·, ·, ·), u′k). Following the proof of Lemma 5, we

have that with overwhelming probability,

u = uk = u′k.

As in the proof of Lemma 1,
Λ2 = Λ′2.

Consider the proof Λkm corresponding to the key km as defined in the proof of Lemma 3. We
have that

Λ2 = Λ′2 = Λkm,2 = g`
u·
∏

i∈[q]\{m}H(ki)
u+1

.

Finally, as in the proof of Lemma 3, let

β =
Λ1

Λ′1

and
v′ − v = δ,

which satisfy

β` = wδ
∏

i∈[q]\{m} z
u+1
i .

As before, ` is coprime to δ
∏
i∈[q]\{m} z

u+1
i . B then computes integers θ1, θ2 such that

θ1 · `+ θ2 · δ
∏

i∈[q]\{m}

zu+1
i = 1

and
u = wθ1βθ2 ,

which satisfies
u` = w.

B forwards (u, `) to CH. This completes the proof.

Theorem 1. The construction KVaC in Figure 2 is a key-value commitment scheme for
arbitrary keys and an exponentially large value space where the commitment is of constant
size, the proof corresponding to any key is of constant size, and each operation requires only a
constant number of hash computations, exponentiations or multiplications. The construction
is key-binding (Def. 4) based on (i) the generalized RSA assumption in the random oracle
model (Lemma 3), or (ii) the strong RSA assumption in the standard model (Lemma 4).
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5.2 Performing “Double” Exponentiations

In the verification procedure, one must compute zuk+1. While this is only a polynomial
time computation (as uk can only be polynomially large), we might want to avoid “double”

exponentiations such as computing (Λk,1)z
uk+1

. This can be done by accumulating these
values as they are computed per each update using standard accumulators such as those in the
work of Boneh et al. [BBF19] or the insert-only key-value commitment scheme construction
in Figure 1. This would only add one more group element to the commitment and a constant
number (at most three) of hash computations, group exponentiations or multiplications to
the operations.

5.3 Vector Commitments

A key-value commitment directly gives us a vector commitment. We can use the keys as
indices. Using our construction for key-value commitments, the newly constructed vector
commitment enjoys several benefits in comparison to prior constructions. For instance, addi-
tive updates on values can be performed by any party and corresponding updates to proofs
can be made extremely efficiently. The commitment and the proofs are constant-sized and
verification only involves a constant number of operations. An added benefit of constructing
a vector commitment in this way is that the length of the vector being committed need not
be known ahead of time, or, in fact, at any point in time. If one, however, did wish for a
vector commitment with restrictions on the length of the vector that can be committed, or
one which only allowed for appending elements, it can be trivially achieved through minor
(black-box) modifications to our construction.

6 Aggregating Proofs

In this section, we describe how proofs corresponding to multiple keys can be combined, or
“aggregated”, into a single proof and “batch” verified in one shot. The first observation is
that the proofs corresponding to keys in the increment-only construction described in Figure
3 can be combined in a straightforward manner using the Shamir Trick described in the work
of Boneh et al. [BBF19], although this would only yield one-hop aggregation. We will discuss
here how to combine proofs corresponding to multiple keys in the insert-only construction
described in Figure 1. In fact, the insert-only construction supports unbounded aggregation
and disaggregation in the sense of Campanelli et al. [CFG+20]. Putting these techniques
together, one can combine proofs corresponding to multiple keys for the full construction
described in Figure 2, but combined proofs cannot be combined further.

Suppose we had two proofs Λ = (Λ1,Λ2) and Λ′ = (Λ′1,Λ
′
2) corresponding to two keys k

and k′ with values v and v′ (with respect to the insert-only construction described in Figure
1), and let the current state of the key-value commitment be C = (C1, C2). Suppose z = H(k)
and z′ = H(k′). Recall that if Λ and Λ′ are valid proofs, it must be the case that

Λz2 = Λ′z
′

2 = C2

and
Λz1 · Λv2 = Λ′z

′
1 · Λ′v

′
2 = C1.
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In order to combine these two proofs, we would have to come up an “aggregated” proof
Λ′′ = (Λ′′1,Λ

′′
2) whose “batch” verification would look like

Λ′′zz
′

2 = C2

and
Λ′′zz

′
1 · Λ′′vz′+v′z2 = C1.

In other words, Λ′′ represents a key-value commitment to the key-value pairs in C other
than (k, v) and (k′, v′) which is realized by the fact that inserting (k, v) and (k′, v′) into Λ′′

generates C.
We combine Λ and Λ′ as follows. Since z and z′ are distinct primes, compute α, β ∈ Z

such that
α · z + β · z′ = 1.

Set
Λ′′2 = Λβ2 · Λ

′α
2

and

Λ′′1 =
Λβ1 · Λ′α1
Λ′′vα+v′β

2

.

Observe that
Λ′′zz

′
2 = Λβzz

′

2 · Λ′αzz′2 = Cαz+βz
′

2 = C2

and

Λ′′zz
′

1 · Λ′′vz′+v′z2 =
Λβzz

′

1 · Λ′αzz′1

Λ′′vαzz
′+v′βzz′

2

· Λβ(vz′+v′z)
2 · Λ′α(vz′+v′z)

2

=
(Λz1 · Λv2)βz

′
·
(

Λ′z
′

1 · Λ′v
′

2

)αz
· (Λz2)βv

′
·
(

Λ′z
′

2

)αv
Cvα+v′β

2

= Cαz+βz
′

1

= C1.

Notice that the aggregation procedure involves only two hash computations, five expo-
nentiations and three multiplications. The size of the combined proof is the same as the sizes
of each of the separate proofs and, by construction, the combined proof can be verified in one
shot. Key-binding for the combined proof can be shown in exactly the same as was done for
each of the separate proofs.

We can easily extend this procedure to combine more than two proofs. In particular,
an aggregated proof can be combined with a regular proof or two aggregated proofs can be
combined with each other.
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A Hashing to Primes

In this section, we discuss canonical methods of mapping numbers to unique primes. Suppose
H is a collision resistant hash function, then one of the methods to map any number σ to
a prime in Primes(λ) is to find the smallest i such that the first λ bits of H(σ, i) is prime.
This method, described as Hprime in the work of Boneh et al. [BBF19], works by iteratively
hashing an n-bit message and a counter, increasing the counter until the output is prime.
Modeling H as a random function, the expected running time of this method is then O(λ).

Hohenberger and Waters [HW09] provide a technique that uses pseudorandom functions,
which is also used in the work of Catalano and Fiore [CF13]. Choose a random seed K for
a pseudorandom function F (which we have based on the factoring assumption) that maps
strings of arbitrary (or, large enough) length to strings of length ` (which in our case will be
λ) and a random string c←$ {0, 1}`. This establishes the hash function H as follows:

HK,c(z) = FK(i, z)⊕ c,

where i, called the resolving index for x with respect to F,K, c, is the smallest i ≥ 1 such
that FK(i, z)⊕ c is an odd prime. Again, one of the main costs is searching for the resolving
index which takes, in expectation, ` attempts. Hashing numbers this way would require a
trusted set-up for the pseudorandom function as opposed to the previous method, Hprime.

Other techniques exist in the literature as well [CS99, FT14]. There is a constant ongoing
search for more efficient ways to hash numbers to primes.
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� KeyGen(1λ): Sample the description of a group (a, b,G)←$ GGen(λ) of unknown order
in the range [a, b] where a, b and a − b are exponential in λ, and a random element
g ←$ G. Set V = [2λ] and K = {0, 1}∗. Sample the description of a hash function H
that maps arbitrary strings to unique primes from the set Primes(ζ + 1) \ [b]. Output
(pp, C) = ((a, b,G, g,H), g).

� Update(C, k): Let z = H(k). Set

C = Cz, upd = k.

Output (C, upd).

� ProofUpdate(k,Λk, upd)a: Parse the input Λk as (Λk,1,Λk,2,Λk,3). If upd = k, then Λk
need not be updated. We thus assume that upd 6= k. Let z = H(k) and ẑ = H(upd).
We have that z 6= ẑ. Since z and ẑ are distinct primes, compute α, β ∈ Z such that

α · z + β · ẑ = 1.

This implies that
α · Λk,3 · z + β · Λk,3 · ẑ = Λk,3.

Compute
γ = β · Λk,3 mod z.

Note that
γ · ẑ mod z = Λk,3 mod z.

Compute η ∈ Z such that
γ · ẑ + η · z = Λk,3.

Notice that this way of generating γ, η such that γ · ẑ + η · z = Λk,3 ensures that γ < z
is short. Set

Λk =
(

(Λk,1)ẑ ,Λk,2 · Ληk,1, γ
)
.

Output Λk.

� Ver(C, (k, v),Λk): Parse Λk as (Λk,1,Λk,2,Λk,3). Let z = H(k). Check whether:

– v ∈ V and k ∈ K,

– (Λk,1)z
v

= C,

– (Λk,2)z · (Λk,1)Λk,3 = g.

If all the checks pass, output 1; else, output 0.

aBefore any updates are carried out, for all keys k ∈ K, Λk = (g, 1, 1).

Figure 3: KVC-Inc: Increment-only KVC construction
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B An Increment-only Key-Value Commitment

In this section, we describe an increment-only key-value commitment KVC-Inc. By increment-
only, we mean that values corresponding to all keys are initialized to 0 and we can just update
them by 1 every time7. The construction KVC-Inc is formally described in Figure 3.

Completeness and Efficiency. The correctness of the scheme follows directly from in-
spection. To see that updated proofs indeed verify, note that(

Λk,2 · Ληk,1
)z
·
(

(Λk,1)ẑ
)γ

= (Λk,2)z · (Λk,1)Λk,3 = g

Also note that all operations involve (at most) two hash computations, four exponentiations8

and one multiplication (aside from some modular arithmetic). The size of the key-value
commitment is constant, namely, a single group element. This is also true of the proofs
corresponding to keys, namely, two group elements and a λ-bit number.

B.1 Key Binding

If we model the hash function H in the construction as a random oracle, we can prove the key
binding of KVC-Inc based on the generalized RSA assumption. We note that while applying
the Definitions 3 and 4 for key binding to KVC-Ins, the adversary will not be allowed to
issue any insert queries (KVC-Inc is an increment-only commitment scheme). Furthermore,
all update queries by default have the update value set to δ = 1.

Another important thing to note about Definitions 3 and 4 in the context of KVC-Inc
is that the commitment essentially begins with all keys already inserted. Thus, in the key
binding game in Definition 3, a Type 1 “fake” proof would not count as a valid attack.
Indeed, one can always produce a proof (specifically, start with the proof (g, 1, 1) and update
it honestly) to show that the value corresponding to a key which has seen no updates is 0.
Thus, we require the adversary to launch a Type 2 attack. Also note that Type 2 attacks
subsume the case of a Type 1 attack where the adversary produces a proof to show that the
value corresponding to a key which has seen no updates is not 0.

Lemma 5. Suppose there exists a PPT adversary A in the random oracle model that satisfies

Advbind
KVC-Inc,A(λ) = ε,

where KVC-Inc is the key-value commitment scheme defined in Figure 3. Then, there exists
a PPT adversary B such that

AdvGRSA
B (λ) ≥ ε

T 2
λ

− negl(λ),

where Tλ denotes the running time of A parameterized by λ.

7We note that our construction can be generalized in a straight-forward manner to allow updating the
values corresponding to keys by any polynomially large value.

8One thing to note is that in the verification procedure, one must compute (Λk,1)z
v

. While this is only
a polynomial time computation (as v can only be polynomially large), we might want to avoid this kind of
“double” exponentiation. See Section 5.2 for a way to achieve this.
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Proof. Assume the existence of an adversary A as stated in the lemma above. We now design
the adversary B as follows. On obtaining (a, b,G) ←$ GGen(λ) with |b| = ζ, w ←$ G and
` ←$ Primes(ζ + 1) \ [b] from the challenger CH, B first guesses the number, q, of keys that
A would issue hash queries for or increment in the commitment. It then guesses which one
of those keys A would provide the “fake” proof for at the end of its execution. That is, it
guesses the index, m, of the key km which A would provide the “fake” proof for. Note that
each of these choices are limited in number by Tλ and hence B makes the correct guesses with
probability greater than or equal to T−2

λ .
B chooses q−1 unique primes {zi}i∈[q]\{m} at random from the set Primes(ζ+ 1)\ [b] that

it will assign, under the map H, to the set of keys other than the one that A would provide
the “fake” proof for. With all but negligible probability in λ, ` 6= zi for any i ∈ [q] \ {m}. B
sets g = w and zm = `. B sends ((a, b,G, g), g) to A.
B maintains a key-value map M ⊆ K × V initialized to the empty map and the initial

commitment value C = g. Any time A issues the ith query, ki, for the computation of H,
B returns zi and assigns H(ki) = zi. Any time A issues queries as in Definition 3, note that
B has all the values it needs to make updates to C and M as defined in Definition 3 and
Figure 3. If A aborts at any point in time, B aborts as well. Assuming no aborts, finally, A
responds with (km, v, v

′,Λ,Λ′). Let Λ = (Λ1,Λ2,Λ3) and Λ′ = (Λ′1,Λ
′
2,Λ

′
3). Since it is the

case that Ver(C, (km, v),Λ) = Ver(C, (km, v
′),Λ′) = 1,

Λ`
v

1 = C = Λ′`
v′

1 .

Let us assume without loss of generality that v > v′. Let

ξ =
Λ`

v−v′

1

Λ′1
.

We have that ξ`
v′

= 1. Since ` is prime, the order of ξ in G must be a power of `. But ` is
larger than the order of G, which is not possible. Hence, ξ = 1, i.e.,

Λ`
v−v′

1 = Λ′1.

Without loss of generality, we can assume that A increments all keys that it queried the
hash function for. LetM = {(ki, vi)}i∈[q] be the key-value map committed to in C. Consider
the proof Λkm corresponding to key km defined by

Λkm = (Λkm,1,Λkm,2,Λkm,3) ,

where
Λkm,1 = g

∏
i∈[q]\{m}H(ki)

vi

and Λkm,2, Λkm,3 satisfy

(Λkm,2)` · (Λkm,1)Λkm,3 = g.

That is, Λkm is the honest proof corresponding to the key km. Without loss of generality, we
assume that Λ = Λkm and v = vm. In particular, this implies that

Λ1 = g
∏

i∈[q]\{m}H(ki)
vi
.

Let
δ =

(
`v−v

′ · Λ′3 − Λ3

)
·
∏

i∈[q]\{m}

H(ki)
vi .
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Note that each vi for i ∈ [q] (including v = vm) is at most Tλ which is also polynomial in λ.
Furthermore, note that v − v′ ≤ v ≤ Tλ which is also polynomial in λ. Since it is the case
that Ver(C, (km, v),Λ) = Ver(C, (km, v

′),Λ′) = 1, we have

(Λ2)` · (Λ1)Λ3 = g =
(
Λ′2
)` · (Λ′1)Λ′3 .

This implies that (
Λ2

Λ′2

)`
= Λ

`v−v′ ·Λ′3−Λ3

1 .

Let

β =
Λ2

Λ′2
.

Note that β` = wδ.
The final part of the proof is to observe that gcd(`, δ) = 1. We now prove this. Firstly, `

is a prime distinct from H(ki) for each i ∈ [q] \ {m}. Therefore,

` 6 |
∏

i∈[q]\{m}

H(ki)
vi .

Next, note that v − v′ ≥ 1. Thus
` | `v−v′ · Λ′3.

To complete the argument, we prove that 0 < Λ3 < `. We observe this inductively. To begin,
Λ3 = 1 which satisfies 0 < Λ3 < `. We see what happens to Λ3 on an increment. Recall
from the construction that on an increment, Λ3 is updated to γ = βΛ3 mod `. Thus we have
inductively the claim that Λ3 < `. It remains to be shown that Λ3 6= 0. This is certainly
true in the beginning. To show that it remains true on increments, it suffices to show that
gcd(β, `) = 1. This is however true just by the fact that there exist integers α, ẑ such that

α · `+ β · ẑ = 1.

This completes the proof that gcd(`, δ) = 1.
B then computes integers θ1, θ2 such that

θ1 · `+ θ2 · δ = 1.

Finally, B computes
u = wθ1βθ2 .

Note that

u` = wθ1`βθ2`

= wθ1`(β`)θ2

= wθ1`(wδ)θ2

= wθ1·`+θ2·δ

= w.

B forwards u to CH. This completes the proof.
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Removing the random oracle assumption. As before, we can get rid of the need for a
random oracle by leveraging the strong RSA assumption.

Lemma 6. Suppose there exists a PPT adversary A in the standard oracle model that satisfies

Advbind
KVC-Inc,A(λ) = ε,

where KVC-Inc is the key-value commitment scheme defined in Figure 3. Then, there exists
a PPT adversary B such that

AdvSRSA
B (λ) ≥ ε− negl(λ).

Proof. Assume the existence of an adversary A as stated in the lemma above. We now design
the adversary B as follows. On obtaining (a, b,G)←$ GGen(λ) with |b| = ζ and w ←$ G from
the challenger CH, B sets g = w and samples the description of a hash function H that maps
arbitrary strings to unique primes from the set Primes(ζ + 1) \ [b]. B sends ((a, b,G, g,H), g)
to A. B maintains a key-value map M⊆ K×V initialized to the empty map and the initial
commitment value C = g. Any time A issues queries as in Definition 3, note that B has all
the values it needs to make updates to C and M as defined in Definition 3 and Figure 3. If
A aborts at any point in time, B aborts as well. Assuming no aborts, finally, A responds
with (km, v, v

′,Λ,Λ′). Let ` = H(km), Λ = (Λ1,Λ2,Λ3) and Λ′ = (Λ′1,Λ
′
2,Λ

′
3).

As in the proof of Lemma 5,

Λ`
v−v′

1 = Λ′1

and
Λ1 = g

∏
i∈[q]\{m}H(ki)

vi
.

Let
δ =

(
`v−v

′ · Λ′3 − Λ3

)
·
∏

i∈[q]\{m}

H(ki)
vi

and

β =
Λ2

Λ′2
.

Further, β` = wδ and gcd(`, δ) = 1. B then computes integers θ1, θ2 such that

θ1 · `+ θ2 · δ = 1

and
u = wθ1βθ2 ,

which satisfies
u` = w.

B forwards (u, `) to CH. This completes the proof.
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