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Abstract. Substitution boxes (S-boxes) based on the inversion mapping
(S[x] = x−1) in even-characteristic finite fields are widely used compo-
nents in the design of cryptographic primitives such as block ciphers
(notably the AES cipher). This report focuses on the inversion mapping
in finite fields GF(pn) where p is a (small) odd prime and n is a (small)
integer. We compare the differential and linear profiles of S-boxes over
odd- and even-characteristic fields, which also motivates the design and
analysis of AES variants operating in fields of odd characteristic. Even for
GF(2n), the study of S-boxes which are APN permutations (odd-valued
n) already shows resistance to differential and linear cryptanalysis after
three rounds.
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1 Introduction

The multiplicative inverse (or simply the inversion) mapping is a widely used
component in the design of substitution boxes (S-boxes) which by itseld is a
pervasive component in cryptographic primitives such as block ciphers [2, 5, 17,
20], stream ciphers [4] and hash functions [8].

The majority of the cryptographic research so far has focused on inversion
mappings in even-characteristic finite fields [14].

Nonetheless, odd-characteristic finite fields are present both in public-key
cryptosystems such as Elliptic Curve Cryptography (ECC) [11] and in secret-
key cryptosystems [8, 15].

One fact that motivated our research is that the well-known paper [16] stud-
ied the inversion mapping in GF(2n) for arbitrary n, but not in odd-characteristic
finite fields. Other studies that motivated our research include [19, 9].

In this report we study the differential and linear profiles of S-boxes
based on the pure inversion mappings S[x] = x−1 (with the exception that
S[0] = 0) in odd-characteristic finite fields GF(pn), where p is a small prime and
n is a small integer.



It is well known that block ciphers such as the AES S-box have an affine
transformation layer applied after the inversion mapping to counter interpola-
tion and algebraic attacks and to eliminate fixed points. Since the differential
and linear profiles of AES are invariant [3] whether there is an affine transforma-
tion or not, we focus attention on the pure inversion mapping. The issue of an
appropriate affine transformation is left open for further research.

This paper is organized as follows: Sect.2 provides background on concepts
that will be discussed in the paper. Sect.3 describes our experiments with S-boxes
based on inversion in GF(3n) for small values of n. Sect. 4 lists our findings with
S-boxes based on inversion in GF(5n) for small integers n. Sect. 5 describes our
results with S-boxes based on inversion in GF(7n); Sect. 6 presents applications
of the results in Sect. 3 to AES variants over GF(3n); Sect. 7 presents applications
of the results in Sect. 4 to AES variants over GF(5n); Sect. 8 presents applications
of the results in Sect. 5 to AES variants over GF(7n); Sect. 9 summarizes our
conclusions.

We do not explore nor compare the software/hardware performance of the
AES variants operating on GF(pn).

2 Preliminaries

A substitution box (S-box) is a nonlinear mapping typically used to provide the
property of confusion [18] in a cryptographic design such as block ciphers, stream
ciphers and hash functions.

In this report, we are interested in bijective S-boxes, denoted S : GF(pn) →
GF(pn), where p is a small prime number and n is a small integer. More specif-
ically, we focus attention on the inversion mapping S[a] = a−1 = ap

n−2.
For instance, in the AES cipher, the finite field is GF(28) =GF(2)[x]/(m(x))

where m(x) = x8 + x4 + x3 + x+ 1 and S[a] = a−1 = a254 for all a ∈ GF(28).
In a differential cryptanalysis (DC) [1] setting, text blocks are analysed in

pairs (t, t∗) and the notion of difference ∆ between them usually depends on
the operator ⋆ used to mix (sub)keys into the cipher state. In our context,
the difference operator is related to the operator in a finite field GF(pn). For
instance, in GF(2n) the difference operator between two n-bit strings1 is bitwise
exclusive-or, denoted ∆ = t⊕ t∗. But, in GF(3n) the difference operator between
two n-trit strings is componentwise subtraction modulo 3.

Concerning differntial cryptanalysis (DC), relevant properties of an S-box
include its differential profile and its differential uniformity.

The differential profile is related to the distribution of differences (under an
appropriate difference operator ⋆) across its domain.

δS(a, b) = #{x ∈ GF(pn) : S[x ⋆ a] ⋆ S[x] = b} (1)

where a, b ∈GF(pn). The value a is the input difference, and b = S[x⋆a]⋆S[x] is
the output difference of the S-box S. The usual terminology is to denote that the

1 A trit is a ternary digit, the GF(3) equivalent of a bit in GF(2)).
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(input) difference a leads to the (output) difference b across S with probability
δS(a, b)/p

n.
The value

δmax = maxa 6=0,b 6=0δS(a, b)

is the differential uniformity of S and identifies the most probable nontrivial2

input/output difference pair(s) (a, b) that can propagate across S.
An extensive listing of δS(a, b) values across all 0 ≤ a, b < pn and for a given

difference operator ⋆ is called the Difference Distribution Table (DDT) of S.
An S-box S is called differentially δmax-uniform concerning the difference

operator ⋆, that is, all nontrivial entries in its DDT are less than or equal to
δmax. Consequently, the value δmax/p

n is the probability of the most probable
nontrivial difference propagating across a given S-box S.

Concerning linear cryptanalysis (LC) [13, 12], relevant properties for an S-box
include its linear profile and its linear uniformity.

The linear profile concerns the distribution of values that satisfy a given linear
relation. Let < a, x > denote the dot product of two strings a, x ∈ GF(pn). So,

< a, x >=< x, a >=
∑n−1

i=0 ai · xi, where a = (an−1, . . ., a1, a0), x = (xn−1, . . .,
x1, x0) and the sum and product are in GF(pn).

Let

γS(a, b) = #{x ∈ GF(pn) :< x, a >=< S[x], b >} − pn−1, (2)

where a, b ∈ GF(pn).
If γS(a, b) 6= 0, there is a nontrivial correlation between a linear combination

of input elemets given by the mask a and a linear combination of output elements
of S given by the mask b.

The value γmax = maxa 6=0,b 6=0‖γS(a, b)‖ indicates the most biased nontrivial
linear relation(s) across the S-box S, where ‖i‖ is the absolute value of i. Notice
that γS(a, b) can be negative. Since we are interested in the magnitude of the
bias, we take the absolute value,

The value γmax denotes the linear uniformity of S, and represents the linear
counterpart to the differential uniformity.

An extensive listing of γS(a, b) values for all possible 0 ≤ a, b < pn is called
the Linear Approximation Table (LAT) of S. The S-box S is therefore linearly
γmax-uniform, that is, all entries in its LAT are less than or equal to γmax.

Consequently, the value γmax/p
n represents the bias of the most probable

nontrivial linear relation propagating across a given S-box S.

3 Inversion in GF(3n)

The first S-boxes using the inversion mapping in odd-characteristic finite fields
for which we experimentally computed the differential and linear profiles were
over GF(3n) for small integers n.

2 The trivial difference is the case a = b = 0.
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In GF(3), each individual element x ∈ {0, 1, 2} is called a trit which stands
for a single ternary digit.

We adopted polynomial bases [10] for representing GF(3n) for different values
of n. Table 1 lists the irreducible polynomials we used in our experiments. These
polynomials were obtained from the GP/PARI calculator version 2.9.4.

Table 1. Constructing GF(3n) =GF(3)[x]/(m(x)) for small values of n using polyno-
mial bases. n is the number of trits.

n irreducible polynomials m(x) Field size

2 x2 + 2x+ 2 9
3 x3 + 2x+ 1 27
4 x4 + 2x3 + x2 + x+ 2 81
5 x5 + 2x3 + 2x2 + x+ 1 243
6 x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2 729
7 x7 + 2x6 + 2x5 + x4 + x3 + 2x+ 1 2187
8 x8 + x7 + x6 + 2x5 + 2x4 + x2 + 2 6561

We could have tested GF(3n) for n > 8 but the storage cost of these S-boxes
increases exponentially. The third column of Table 1 shows the field size which
is also the size of each S-box.

Constructing S-boxes in GF(3n) (or more generally, in GF(pn)) from the
ground up can be done using several different techniques. For instance, using
Fermat’s Little Theorem [14], x−1 = xpn−2, and the S-box can be constructed
by repeated square and multiply operations modulo m(x) for each n. An efficient
approach to compute inversion is to decompose the exponent pn − 2 using the
Itoh-Tsujii algorithm [7]. This algorithm may be an alternative if the S-box is
too large to store.

Alternatively, exponentiation (gt) and logarithmic (logg t) tables can be com-
puted from a generator g of GF(3n) and nonzero t ∈ GF(3n)∗ [3]. These tables
allow straightforward computation of the multiplication and division of any two
nonzero elements a, b ∈ GF(pn)∗. There might be z, y ∈ GF(pn)∗ such that
a = gz and b = gy. So, z = logg a and y = logg b. Consequently, a · b = gz · gy =

gz+y = glogg
a+log

g
b. Likewise, a/b = gz/gy = gz−y = glogg

a−log
g
b. The inversion

operation is a special case of division: a−1 = 1/a = 1/gz = g−z = gp
n−1−log

g
a.

Table 2. An S-box based on inversion in GF(32) = GF(3)[x]/(x2 + 2x+ 2).

i 0 1 2 3 4 5 6 7 8

S[i] 0 1 2 5 8 3 7 6 4
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The difference operator for polynomials GF(3n) is componentwise subtrac-
tion modulo 3.

The first example of an S-box in GF(3n) is for n = 2 and is depicted in
Table 2.

The DDT of the S-box in Table 2 is depicted in Table 3.

Table 3. DDT of S-box in Table 2. Input difference (ID) in rows. Output difference
(OD) in columns. All values in decimal base.

OD
ID 0 1 2 3 4 5 6 7 8

0 9 0 0 0 0 0 0 0 0
1 0 3 2 2 0 0 0 2 0
2 0 2 3 0 0 2 2 0 0
3 0 2 0 0 2 3 0 2 0
4 0 0 0 2 2 2 0 0 3
5 0 0 2 3 2 0 2 0 0
6 0 0 2 0 0 2 0 3 2
7 0 2 0 2 0 0 3 0 2
8 0 0 0 0 3 0 2 2 2

The LAT of the S-box in Table 2 is depicted in Table 4.

Table 4. LAT of S-box in Table 2. Input mask (IM) in rows. Output mask (OM) in
columns. All values in decimal base.

OM
IM 0 1 2 3 4 5 6 7 8

0 6 0 0 0 0 0 0 0 0
1 0 0 0 -2 4 -2 2 2 2
2 0 0 0 2 2 2 -2 -2 4
3 0 -2 2 4 2 0 2 0 -2
4 0 4 2 2 0 -2 -2 2 0
5 0 -2 2 0 -2 2 0 4 2
6 0 2 -2 2 -2 0 4 0 2
7 0 2 -2 0 2 4 0 2 -2
8 0 2 4 -2 0 2 2 -2 0

The differential and linear uniformities of the S-boxes based on inversion in
GF(3n) are listed in Table 5.

Comparatively, for the AES S-box, we can scale its dimension down and
obtain the results in Table 6. Notice that for even n, the inversion mapping in
GF(2n) is differentially 4-uniform, while for odd n this mapping is differentially
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Table 5. Differential and linear uniformity of S-boxes based on the inversion mapping
in GF(3n) for small values of n.

n δmax (prob.) ‖γmax‖ (bias)

2 3 (3/32 = 3−1 ≈ 2−1.584) 4 (4/32 ≈ 2−1.169)
3 3 (3/33 = 3−2 ≈ 2−3.169) 6 (6/33 ≈ 2−2.169)
4 3 (3/34 = 3−3 ≈ 2−4.754) 12 (12/34 ≈ 2−2.754)
5 3 (3/35 = 3−4 ≈ 2−6.339) 20 (20/35 ≈ 2−3.602)
6 3 (3/36 = 3−5 ≈ 2−7.924) 36 (36/36 ≈ 2−4.339)
7 3 (3/37 = 3−6 ≈ 2−9.509) 62 (62/37 ≈ 2−5.140)
8 3 (3/38 = 3−7 ≈ 2−11.094) 108 (108/38 ≈ 2−5.924)

2-uniform that is, for odd n the inversion mappings in GF(2n) are Almost Perfect
Nonlinear (APN) mappings [16].

Table 6. Differential and linear uniformity of S-boxes based on the inversion mapping
in GF(2n) for small values of n.

n δmax (prob.) ‖γmax‖ (bias)

3 2 (2/23 = 2−2) 2 (2/23 = 2−2)
4 4 (4/24 = 2−2) 4 (4/24 = 2−2)
5 2 (2/25 = 2−4) 6 (6/25 ≈ 2−2.41)
6 4 (4/26 = 2−4) 8 (8/26 = 2−3)
7 2 (2/27 = 2−6) 10 (10/27 ≈ 2−3.67)
8 4 (4/28 = 2−6) 16 (16/28 = 2−4)

An interesting aspect in Table 5 is that the differential uniformity of all
the S-boxes in GF(3n) is 3, which stands in between the uniformity of the S-
boxes based on inversion in GF(2n) (2 and 4 depending on n). The differential
uniformities for S-boxes in GF(3n) are partially corroborated by [8] for n = 3.

Comparatively, the linear uniformities of the S-boxes in GF(3n) are strictly
less than the corresponding uniformities for the S-boxes in GF(2n) for 3 ≤ n ≤ 8.

4 Inversion in GF(5n)

In GF(5), each individual element x ∈ {0, 1, 2, 3, 4} is called a pit which stands
for a single penta-ary digit.

We adopt polynomial bases [10] for representing GF(5n) for different values
of n. Table 7 lists the irreducible polynomial we used for our experiments. These
polynomials were obtained from the GP/PARI calculator version 2.9.4.

The third column of Table 7 shows the field size which is also the size (number
of entries) of each S-box.
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Table 7. Constructing GF(5n) = GF(5)[x]/(m(x)) for small values of n using polyno-
mial bases.

n irreducible polynomials m(x) Field size

2 x2 + x+ 2 25
3 x3 + 3x2 + x+ 2 125
4 x4 + 4x3 + 2x+ 2 625
5 x5 + 2x3 + x2 + 2x+ 2 3125
6 x6 + x2 + 2x+ 2 15625

The difference operator ⋆ used for polynomials in GF(5n) is (componentwise)
subtraction modulo 5.

The first example of an S-box in GF(5n) is for n = 2 and is depicted in
Table 8. Entries are in decimal.

Table 8. An S-box based on inversion in GF(52) = GF(5)[x]/(x2 + x+ 2).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S[i] 0 1 3 2 4 12 10 9 19 7 6 22 5 16 17 24 13 14 20 8 18 23 11 21 15

The DDT of the S-box in Table 8 is depicted in Table 9.

The LAT of the S-box in Table 8 is depicted in Table 10.

The differential and linear uniformity of S-boxes based on inversion in GF(5n)
are listed in Table 11.

The alternation of 2 and 4 in δmax in GF(5n) for odd and even n respectively
in Table 11 is exactly the same as observed for inversion in GF(2n) in Table 6.
The S-boxes in GF(5n) are APN for odd n, just like for GF(2n).

5 Inversion in GF(7n)

In GF(7), each individual element x ∈ {0, 1, 2, 3, 4, 5, 6} is called a hit which
stands for a single hepta-ary digit.

We adopt polynomial bases [10] for representing GF(7n) for different values
of n. Table 12 lists the irreducible polynomial we used for our experiments. These
polynomials were obtained from the GP/PARI calculator version 2.9.4.

The third column of Table 12 shows the field size which is also the size of
each S-box.

The difference operator ⋆ used for polynomials in GF(7n) is (componentwise)
subtraction modulo 7.

The differential and linear uniformities of the S-boxes based on inversion in
GF(7n) are listed in Table 13.
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Table 9. DDT of S-box in Table 8. Input difference (ID) in rows. Output difference
(OD) in columns.

OD
ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 2 2 1 2 0 0 0 0 2 2 0 2 0 0 2 0 2 2 0 0 0 0 2
2 0 2 1 4 2 2 0 0 2 2 0 0 2 0 0 2 0 0 0 0 0 0 2 2 2
3 0 2 4 1 2 0 2 2 2 0 2 0 0 0 0 0 0 0 2 0 2 2 2 0 0
4 0 1 2 2 4 0 2 0 0 0 0 2 2 0 2 2 0 2 0 2 2 0 0 0 0
5 0 2 2 0 0 0 2 0 2 2 2 0 4 0 2 0 2 2 1 0 0 0 0 0 2
6 0 0 0 2 2 2 0 2 2 0 4 0 2 2 0 1 2 2 0 0 2 0 0 0 0
7 0 0 0 2 0 0 2 0 2 4 2 2 0 2 0 2 0 2 2 0 0 1 0 2 0
8 0 0 2 2 0 2 2 2 2 2 0 1 0 2 2 0 0 0 0 4 0 0 2 0 0
9 0 0 2 0 0 2 0 4 2 0 0 2 2 0 2 2 2 0 2 0 0 2 0 1 0
10 0 2 0 2 0 2 4 2 0 0 0 0 2 0 0 0 0 2 2 2 0 2 0 2 1
11 0 2 0 0 2 0 0 2 1 2 0 2 0 0 0 2 2 2 2 2 0 0 4 0 0
12 0 0 2 0 2 4 2 0 0 2 2 0 0 0 0 2 2 0 0 2 1 2 0 2 0
13 0 2 0 0 0 0 2 2 2 0 0 0 0 2 1 2 4 0 0 2 2 0 0 2 2
14 0 0 0 0 2 2 0 0 2 2 0 0 0 1 2 0 0 4 2 2 2 2 0 0 2
15 0 0 2 0 2 0 1 2 0 2 0 2 2 2 0 0 0 0 2 0 2 0 0 2 4
16 0 2 0 0 0 2 2 0 0 2 0 2 2 4 0 0 2 1 0 0 2 2 2 0 0
17 0 0 0 0 2 2 2 2 0 0 2 2 0 0 4 0 1 2 0 0 0 0 2 2 2
18 0 2 0 2 0 1 0 2 0 2 2 2 0 0 2 2 0 0 0 0 4 2 0 0 2
19 0 2 0 0 2 0 0 0 4 0 2 2 2 2 2 0 0 0 0 2 0 2 1 2 0
20 0 0 0 2 2 0 2 0 0 0 0 0 1 2 2 2 2 0 4 0 0 2 2 0 2
21 0 0 0 2 0 0 0 1 0 2 2 0 2 0 2 0 2 0 2 2 2 0 2 4 0
22 0 0 2 2 0 0 0 0 2 0 0 4 0 0 0 0 2 2 0 1 2 2 2 2 2
23 0 0 2 0 0 0 0 2 0 1 2 0 2 2 0 2 0 2 0 2 0 4 2 0 2
24 0 2 2 0 0 2 0 0 0 0 1 0 0 2 2 4 0 2 2 0 2 0 2 2 0

6 AES variants over GF(3n)

In this section we will describe our experiments in replacing the AES S-box
with each of the S-boxes described in Sect. 3 therefore creating AES variants
operating on GF(3n).

6.1 AES variants operating on GF(3n) and a 3 × 3 state

Let us consider AES variants with:

– word size of n trits
– 3× 3 square states that is, the block size is 9n trits
– internal operations on GF(3n) for different values of n
– the key size is at least 9n trits
– the same high-level round structure as the AES [3] consisting of SubBytes,

ShiftRows, MixColumns and AddRoundKey in this order, but:
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Table 10. LAT of S-box in Table 8. Input mask (IM) in rows. Output mask (OM) in
columns.

OM
IM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 -2 2 2 -2 0 0 -4 -2 6 0 2 0 4 4 0 4 4 0 2 0 6 -2 -4 0
2 0 2 -2 -2 2 0 0 4 2 4 0 -2 0 6 -4 0 -4 6 0 -2 0 4 2 4 0
3 0 2 -2 -2 2 0 0 4 2 4 0 -2 0 6 -4 0 -4 6 0 -2 0 4 2 4 0
4 0 -2 2 2 -2 0 0 -4 -2 6 0 2 0 4 4 0 4 4 0 2 0 6 -2 -4 0
5 0 0 0 0 0 4 -2 2 -4 0 6 4 2 0 -2 6 -2 0 2 4 4 0 -4 2 -2
6 0 0 0 0 0 -2 2 6 0 4 2 0 -2 -4 4 2 4 -4 -2 0 -2 4 0 6 2
7 0 -4 4 4 -4 2 6 2 0 0 -2 0 4 0 -2 -2 -2 0 4 0 2 0 0 2 6
8 0 -2 2 2 -2 -4 0 0 6 -2 4 4 0 2 0 4 0 2 0 4 -4 -2 6 0 0
9 0 6 4 4 6 0 4 0 -2 -2 0 2 -4 2 0 0 0 2 -4 2 0 -2 -2 0 4
10 0 0 0 0 0 6 2 -2 4 0 4 -4 -2 0 2 4 2 0 -2 -4 6 0 4 -2 2
11 0 2 -2 -2 2 4 0 0 4 2 -4 6 0 -2 0 -4 0 -2 0 6 4 2 4 0 0
12 0 0 0 0 0 2 -2 4 0 -4 -2 0 2 4 6 -2 6 4 2 0 2 -4 0 4 -2
13 0 4 6 6 4 0 -4 0 2 2 0 -2 4 -2 0 0 0 -2 4 -2 0 2 2 0 -4
14 0 4 -4 -4 4 -2 4 -2 0 0 2 0 6 0 2 2 2 0 6 0 -2 0 0 -2 4
15 0 0 0 0 0 6 2 -2 4 0 4 -4 -2 0 2 4 2 0 -2 -4 6 0 4 -2 2
16 0 4 -4 -4 4 -2 4 -2 0 0 2 0 6 0 2 2 2 0 6 0 -2 0 0 -2 4
17 0 4 6 6 4 0 -4 0 2 2 0 -2 4 -2 0 0 0 -2 4 -2 0 2 2 0 -4
18 0 0 0 0 0 2 -2 4 0 -4 -2 0 2 4 6 -2 6 4 2 0 2 -4 0 4 -2
19 0 2 -2 -2 2 4 0 0 4 2 -4 6 0 -2 0 -4 0 -2 0 6 4 2 4 0 0
20 0 0 0 0 0 4 -2 2 -4 0 6 4 2 0 -2 6 -2 0 2 4 4 0 -4 2 -2
21 0 6 4 4 6 0 4 0 -2 -2 0 2 -4 2 0 0 0 2 -4 2 0 -2 -2 0 4
22 0 -2 2 2 -2 -4 0 0 6 -2 4 4 0 2 0 4 0 2 0 4 -4 -2 6 0 0
23 0 -4 4 4 -4 2 6 2 0 0 -2 0 4 0 -2 -2 -2 0 4 0 2 0 0 2 6
24 0 0 0 0 0 -2 2 6 0 4 2 0 -2 -4 4 2 4 -4 -2 0 -2 4 0 6 2

• SubBytes uses an S-box in GF(3n) from Table 1

• ShiftRows operates on a 3 × 3 state of n-trit words, and the left-shift
amounts are by 0, 1 and 2 words from the top to the bottom row

• MixColumns uses a 3 × 3 MDS matrix with components over GF(3n).
We do not provide these matrices explicitly for each n, but we assume
they exist.

• AddRoundKey uses addition in GF(3n) instead of exclusive-or

With these assumptions, we expect to achieve full text diffusion after every two
rounds just like in AES.

The exact details of the key schedule algorithm for the AES variants are not
relevant for our analyses.

The choice of a 3× 3 state for a text block and a 3× 3 MDS matrix instead
of a 4 × 4 state and a 4 × 4 MDS matrix (as in the AES) was arbitrary but it
seems a natural generalization in view of the new finite field GF(3n).
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Table 11. Differential and linear uniformity of S-boxes based on the inversion mapping
in GF(5n) for small values of n.

n δmax (prob.) ‖γmax‖ (bias)

2 4 (4/52 ≈ 2−2.643) 6 (6/52 ≈ 2−2.058)
3 2 (2/53 ≈ 2−5.965) 14 (14/53 ≈ 2−3.158)
4 4 (4/54 ≈ 2−7.287) 36 (36/54 ≈ 2−4.117)
5 2 (2/55 ≈ 2−10.609) 80 (80/55 ≈ 2−5.287)
6 4 (4/56 ≈ 2−11.931) 198 (198/56 ≈ 2−6.302)

Table 12. Constructing GF(7n) =GF(7)[x]/(m(x)) for small values of n using poly-
nomial bases.

n irreducible polynomials m(x) Field size

2 x2 + 5x+ 5 49
3 x3 + 4x2 + 3x+ 2 343
4 x4 + x3 + 3x2 + 2x+ 3 2401
5 x5 + 2x4 + 4x3 + 2x2 + 4x+ 2 16807

With these assumptions and starting from a single non-zero difference word
in the plaintext, the number of active S-boxes across four consecutive rounds are
at least: 1, 3, 9 and 3, respectively. This is a similar pattern of active S-boxes in
AES (which uses a 4× 4 state) across four rounds: 1, 4, 16 and 4.

While in AES there are at least 25 active S-boxes after 4 full rounds, in the
AES variant there are at least 16 active S-boxes. These assumptions provide an
upperbound on the probability of any characteristic covering up to four rounds.

The number of text pairs that can be constructed for a differential attack
depends on the number of active words in the input (plaintext). If there is only
one active word difference (and 8 passive words) in the input, then the number
of pairs is (3n ∗ (3n − 1)/2) · 38n ≈ 310n/2 pairs. If the inverse of the probability
of the characteristic is larger than the number of available text pairs then the
attack is not feasible.

Under these assumptions, we can compare how many rounds of the AES
variants are needed for each variant to withstand a conventional differential
attack. Results are displayed in Table 14. The number of chosen plaintext pairs

Table 13. Differential and linear uniformity of S-boxes based on the inversion mapping
in GF(7n) for small values of n.

n δmax (prob.) ‖γmax‖ (bias)

2 4 (4/72 ≈ 2−3.614) 8 (8/72 ≈ 2−2.614)
3 4 (4/73 ≈ 2−6.422) 22 (22/73 ≈ 2−3.962)
4 4 (4/74 ≈ 2−9.229) 72 (72/74 ≈ 2−5.059)
5 4 (4/75 ≈ 2−12.036) 190 (190/75 ≈ 2−6.466)
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Table 14. DC resistance of AES variants operating on GF(3n) and a 3× 3 state.

n Codebook size #text pairs Probability (upperbound)
(39n) (310n/2) 2 rounds 3 rounds 4 rounds

2 318 320/2 3−4 3−13 3−16

3 327 330/2 3−8 3−2·13 = 3−26 3−2·16 = 3−32

4 336 340/2 3−12 3−3·13 = 3−39 3−3·16 = 3−48

5 345 350/2 3−16
3
−4·13 = 3−52 3−4·16 = 3−64

6 354 360/2 3−20
3
−5·13 = 3−65 3−5·16 = 3−80

7 363 370/2 3−24
3
−6·13 = 3−78 3−6·16 = 3−96

8 372 380/2 3−28
3
−7·13 = 3−91 3−7·16 = 3−112

for a successfull differential attack is estimated to be proportional to the inverse
of the probability of the characteristic whose number of active S-boxes is shown
in Table 14.

From Table 14, two rounds are not enough to resist DC for any n. For n > 4,
three rounds are enough to counter conventional differential attacks. This is a slightly

better result than for the original AES cipher which requires at least four rounds.

It is intuitive to look at what happens after three rounds because starting
from a single active word, the maximum number of active words is reached
after three rounds3: 1, 3, 9. The same phenomenon happens in any AES variant
operating on square-shaped states be it 3× 3 or larger.

For LC in GF(3n), we consider the estimate in [6] for the number of known
plaintexts needed for a linear attack: N = (

∏
# active S-boxes γmax/3

n)−2.

Similar to the differential case and under the assumptions for the AES vari-
ant in GF(3n), the expected minimum number of active S-boxes across four
consecutive rounds is: 1, 3, 9 and 3, respectively.

The results of the linear analyses are summarized in Table 15. From Table 15,

Table 15. LC resistance of AES variants operating on GF(3n) and a 3× 3 state.

n Codebook #known plaintexts
size (39n) 2 rounds 3 rounds 4 rounds

2 318 (4/32)4∗(−2) ≈ 35.905 (4/32)−2∗13 ≈ 319.191 (4/32)−2∗16 ≈ 323.620

3 327 (6/33)4∗(−2) ≈ 310.952 (6/33)−2∗13 ≈ 335.595 (6/33)−2∗16 ≈ 343.810

4 336 (12/34)4∗(−2) ≈ 313.905 (12/34)−2∗13 ≈ 345.191 (12/34)−2∗16 ≈ 355.620

5 345 (20/35)4∗(−2) ≈ 318.185 (20/35)−2∗13 ≈ 359.102 (20/35)−2∗16 ≈ 372.741

6 354 (36/36)4∗(−2) ≈ 321.905 (36/36)−2∗13 ≈ 371.191 (36/36)−2∗16 ≈ 387.620

7 363 (62/37)4∗(−2) ≈ 325.946 (62/37)−2∗13 ≈ 384.326 (62/37)−2∗16 ≈ 3103.786

8 372 (108/38)4∗(−2) ≈ 329.905 (108/38)−2∗13 ≈ 397.191 (108/38)−2∗16 ≈ 3119.620

3 This fact is due to the round construction, a combination of ShiftRows and a n× n
MDS matrix.
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two rounds are not enough to protect any of the AES variants in GF(3n) against
LC. But, after three rounds, for n > 2, the number of known plaintexts needed
for a linear attack already exceeds the codebook size. This is a slightly better
result than for the original AES cipher which requires four rounds.

6.2 AES variants operating on GF(3n) and a 4 × 4 state

Now, for comparison purposes, let us consider the original framework of AES:
4× 4 state and 4× 4 MDS matrix.

In this setting, full text diffusion is still reached after every two rounds, and
the number of active S-boxes across four consecutive rounds follows the pattern:
1, 4, 16 and 4 respectively. So, after 2, 3 and 4 rounds the cummulative number
of active S-boxes (for DC and LC) is 5, 21 and 25, respectively. Based on these
assumptions, Table 16 shows the resistance to DC. Table 17 shows the resistance
to LC.

Table 16. DC resistance of AES variants operating on GF(3n) and a 4× 4 state.

n Codebook size #text pairs Probability (upperbound)
(316n) (317n/2) 2 rounds 3 rounds 4 rounds

2 332 334/2 3−5 3−1∗21 = 3−21 3−25

3 348 351/2 3−10 3−2∗21 = 3−42 3−2∗25 = 3−50

4 364 368/2 3−15 3−3∗21 = 3−36 3−3∗25 = 3−75

5 380 385/2 3−20 3−4∗21 = 3−84 3−4∗25 = 3−100

6 396 3102/2 3−30 3−5∗21 = 3−105 3−5∗25 = 3−125

7 3112 3119/2 3−35 3−6∗21 = 3−126 3−6∗25 = 3−150

8 3128 3136/2 3−40 3−7∗21 = 3−147 3−7∗25 = 3−175

From Table 16, two rounds are not enough to protect this AES variant against
conventional DC for any n. But, three rounds are enough for n ≥ 6. This is a slightly
better result than for AES which requires four rounds.

From Table 17, two rounds are not enough to protect this AES variant for
any n. For three rounds, protection against LC is achieved for n > 2. This is a
slightly better result than for AES for which four rounds are needed.

Therefore, the use of 3×3 or 4×4 states does not matter. Using an appropriate
word size n, it is possible to achieve resistance against DC and LC with three
rounds (compared to four rounds for the original AES cipher). Consequently,
the hypothesized AES variants can operate under a smaller number of rounds
than the original AES (or likewise, under a larger margin of security).

As a matter of fact, even for the original 4×4 state of AES, the APN S-boxes
for n ∈ {7, 9} in Table 6 already provided resistance to DC after three rounds.
See Table 18. For n = 8, that is for the original AES, three rounds are not
enough to protect it against DC.

12



Table 17. LC resistance of AES variants operating on GF(3n) and a 4× 4 state.

n Codebook #known plaintexts
size (316n) 2 rounds 3 rounds 4 rounds

2 332 (4/32)5∗(−2) ≈ 37.38 (4/32)−2∗21 ≈ 331.00 (4/32)−2∗25 ≈ 336.90

3 348 (6/33)5∗(−2) ≈ 313.69 (6/33)−2∗21 ≈ 357.50 (6/33)−2∗25 ≈ 368.45

4 364 (12/34)5∗(−2) ≈ 317.38 (12/34)−2∗21 ≈ 373.00 (12/34)−2∗25 ≈ 386.90

5 380 (20/35)5∗(−2) ≈ 322.73 (20/35)−2∗21 ≈ 395.47 (20/35)−2∗25 ≈ 3113.65

6 396 (36/36)5∗(−2) ≈ 327.38 (36/36)−2∗21 ≈ 3115.00 (36/36)−2∗25 ≈ 3136.90

7 3112 (62/37)5∗(−2) ≈ 332.43 (62/37)−2∗21 ≈ 3136.21 (62/37)−2∗25 ≈ 3162.16

8 3128 (108/38)5∗(−2) ≈ 337.38 (108/38)−2∗21 ≈ 3157.00 (108/38)−2∗25 ≈ 3186.90

Table 18. DC resistance of AES (variants) operating on a 4× 4 state over GF(2n).

n Codebook size #text pairs Probability (upperbound)
(216n) (217n/2) 2 rounds 3 rounds 4 rounds

3 248 251/2 2−2∗5 = 2−10 2−2∗21 = 2−42 2−2∗25 = 2−50

5 280 285/2 2−4∗5 = 2−20 2−4∗21 = 2−84 2−4∗25 = 2−100

7 2112 2119/2 2−6∗5 = 2−30
2
−6∗21 = 2−126

2
−6∗25 = 2−150

8 2128 2136/2 2−6∗5 = 2−30 2−6∗21 = 2−126
2
−6∗25 = 2−150

9 2144 2153/2 2−8∗5 = 2−40
2
−8∗21 = 2−168

2
−8∗25 = 2−200

Concerning LC, all APN S-boxes (for odd n) in Table 6 are resistant to
conventional LC after three rounds.

For n = 8, that is for the original AES, three rounds are enough to protect
it against LC.

The results in Tables 18 and 19 show that a reduction by a single factor of
two in the differential and linear uniformities (the case of APN permutations in
GF(2n) for odd n.) already have an impact in decreasing the minimum number
of rounds needed to protect these AES variants against DC and LC.

7 AES variants over GF(5n)

In this section we will describe our experiments in replacing the AES S-box
with each of the S-boxes described in Sect. 4 therefore creating AES variants
operating on GF(5n).

7.1 AES variants operating on GF(5n) and a 5 × 5 state

Let us consider AES variants with:

– word size of n pits (Sect. 4)
– 5× 5 square states that is the block size is 25n pits
– internal operations on GF(5n) for different values of n

13



Table 19. LC resistance of AES variants operating on a 4× 4 state over GF(2n).

n Codebook #known plaintexts
size (216n) 2 rounds 3 rounds 4 rounds

3 248 (2/23)−2∗5 = 220 (2/23)−2∗21 = 284 (2/23)−2∗25 = 2100

5 280 (6/25)−2∗5 ≈ 224.15 (6/25)−2∗21 ≈ 2101.43 (6/25)−2∗25 ≈ 2120.75

7 2112 (10/27)−2∗5 ≈ 236.78 (10/27)−2∗21 ≈ 2154.47 (10/27)−2∗25 ≈ 2183.90

8 2128 (2−4)−10 = 240 (2−4)−42 = 2168 (2−4)−50 = 2200

9 2144 (22/29)−10 = 245.4 (22/29)−42 = 2190.68 (22/29)−50 = 2227.00

– the key size is at least 25n trits
– the same high-level round structure as the AES [3] consisting of SubBytes,

ShiftRows, MixColumns and AddRoundKey in this order, but:

• SubBytes uses an S-box in GF(5n) from Table 7
• ShiftRows operates on a 5 × 5 state of n-pit words, and the left-shift
amounts are by 0, 1, 2, 3 and 4 words from the top to the bottom row

• MixColumns uses a 5 × 5 MDS matrix with components over GF(5n).
We do not provide these matrices explicitly for each n, but we assume
they exist.

• AddRoundKey uses addition in GF(5n) instead of exclusive-or

With these assumptions, we expect to achieve full text diffusion after every two
rounds just like in AES.

The exact details of the key schedule algorithm for the AES variants are not
relevant for our analyses.

The choice of a 5× 5 state for a text block and a 5× 5 MDS matrix instead
of a 4 × 4 state and a 4 × 4 MDS matrix (as in the AES) was arbitrary but it
seems a natural generalization in view of the larger finite field GF(5n)

With these assumptions and starting from a single non-zero difference word
in the plaintext, the number of active S-boxes across four consecutive rounds are
at least: 1, 5, 25 and 5, respectively. This is a similar pattern as the number of
active S-boxes in the original AES across four rounds: 1, 4, 16 and 4.

Cummulatively, in AES there are at least 1, 5, 21 and 25 active S-boxes after
1, 2, 3 and 4 full rounds, respectively, both in a DC and a LC setting. In the
new AES variants there are at least 1, 6, 31 and 36 active S-boxes, respectively.

The number of text pairs that can be constructed for a differential attack
depends on the number of active words in the input (plaintext). If there is only
one active word difference (and all other words are passive) in the input, then
the number of pairs is (5n ∗ (5n − 1)/2) · 524n ≈ 526n/2 pairs. If the inverse of
the probability of the characteristic is larger than the number of available text
pairs then the attack is not feasible.

Under these assumptions, we can compare how many rounds of the AES
variants are needed for each variant to withstand a conventional differential
attack. Results are displayed in Table 20. the number of chosen plaintext pairs
for a successfull differential attack is estimated to be proportional to the inverse

14



Table 20. DC resistance of AES variants operating on GF(5n) and a 5× 5 state.

n #text pairs Probability (upperbound)
(526n/2) 2 rounds 3 rounds 4 rounds

2 552/2 (4/52)6 ≈ 5−6.831 (4/52)31 ≈ 5−35.298 (4/52)36 ≈ 5−40.991

3 578/2 (2/53)6 ≈ 5−15.415 (2/53)31 ≈ 5−79.649 (2/53)36 ≈ 5−92.495

4 5104/2 (4/54)6 ≈ 5−18.831 (4/54)31 ≈ 5−97.298 (4/54)36 ≈ 5−112.991

5 5130/2 (2/55)6 ≈ 5−27.415 (2/55)31 ≈ 5−141.649 (2/55)36 ≈ 5−164.495

6 5156/2 (4/56)6 ≈ 5−30.831 (4/56)31 ≈ 5−159.298 (4/56)36 ≈ 5−184.991

of the probability of the characteristic whose number of active S-boxes is shown
in Table 20.

From Table 20, two rounds is not enough to resist DC for any n. For n ∈
{3, 5, 6}, three rounds are enough to counter conventional differential attacks. This

is a slightly better result than for the original AES cipher which requires at least four

rounds.

For LC in GF(5n), we consider the estimate in [6] for the number of known
plaintexts needed for a linear attack: N = (

∏
# active S-boxes γmax/5

n)−2.

Similar to the differential case and under the assumptions for the AES vari-
ant in GF(5n), the expected minimum number of active S-boxes across four
consecutive rounds is: 1, 6, 31 and 36, respectively.

The results of the linear analyses are summarized in Table 21.

Table 21. LC resistance of AES variants operating on GF(5n) and a 5× 5 state.

n Codebook #known plaintexts
size (525n) 2 rounds 3 rounds 4 rounds

2 550 (6/52)−2∗6 ≈ 510.640 (6/52)−2∗31 ≈ 554.976 (6/52)−2∗36 ≈ 563.842

3 575 (14/53)−2∗6 ≈ 516.322 (14/53)−2∗31 ≈ 584.336 (14/53)−2∗36 ≈ 597.938

4 5100 (36/54)−2∗6 ≈ 521.280 (36/54)−2∗31 ≈ 5109.952 (36/54)−2∗36 ≈ 5127.686

5 5125 (80/55)−2∗6 ≈ 527.326 (80/55)−2∗31 ≈ 5141.192 (80/55)−2∗36 ≈ 5163.964

6 5150 (198/56)−2∗6 ≈ 532.570 (198/56)−2∗31 ≈ 5168.280 (198/56)−2∗36 ≈ 5195.422

From Table 21, two rounds are not enough to protect any of the AES variants
in GF(5n) against LC. But, three rounds are enough to counter a conventional
differential attack for any n.

7.2 AES variants operating on GF(5n) and a 4 × 4 state

Now, for comparison purposes, let us consider the original framework of AES:
a 4 × 4 state and 4 × 4 MDS matrix. We assume that such MDS matrices over
GF(5n) exist.
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In this setting, full text diffusion is still reached after every two rounds, and
the number of active S-boxes across four consecutive rounds follows the pattern:
1, 4, 16 and 4, respectively. So, after 2, 3 and 4 rounds the cummulative number
of active S-boxes (for DC and LC) is 5, 21 and 25, respectively. Based on these
assumptions, Table 22 shows the resistance to DC. Table 23 shows the resistance
to LC.

Table 22. DC resistance of AES variants operating on GF(5n) and a 4× 4 state.

n Codebook size #text pairs Probability (upperbound)
(516n) (517n/2) 2 rounds 3 rounds 4 rounds

2 532 534/2 (4/52)5 ≈ 5−5.693 (4/52)21 ≈ 5−23.911 (4/52)25 ≈ 5−28.466

3 548 551/2 (2/53)5 ≈ 5−12.846 (2/53)21 ≈ 5−53.955 (2/53)25 ≈ 5−64.233

4 564 568/2 (4/54)5 ≈ 5−15.693 (4/54)21 ≈ 5−65.911 (4/54)25 ≈ 5−78.466

5 580 585/2 (2/55)5 ≈ 5−22.846 (2/55)21 ≈ 5−95.955 (2/55)25 ≈ 5−114.233

6 596 5102/2 (4/56)5 ≈ 5−25.693 (4/56)21 ≈ 5−107.911 (4/56)25 ≈ 5−128.466

From Table 22, two rounds are not enough to protect this AES variant against
conventional DC for any n. But, three rounds are enough for n ∈ {3, 5, 6}. This is
a slightly better result than for AES which requires four rounds.

Table 23. LC resistance of AES variants operating on GF(5n) and a 4× 4 state.

n Codebook #known plaintexts
size (516n) 2 rounds 3 rounds 4 rounds

2 532 (6/52)−2∗5 ≈ 58.867 (6/52)−2∗21 ≈ 537.242 (6/52)−2∗25 ≈ 544.33

3 548 (14/53)−2∗5 ≈ 513.602 (14/53)−2∗21 ≈ 557.130 (14/53)−2∗25 ≈ 568.01

4 564 (36/54)−2∗5 ≈ 517.734 (36/54)−2∗21 ≈ 574.484 (36/54)−2∗25 ≈ 588.67

5 580 (80/55)−2∗5 ≈ 522.772 (80/55)−2∗21 ≈ 595.646 (80/55)−2∗25 ≈ 5113.86

6 596 (198/56)−2∗5 ≈ 527.142 (198/56)−2∗21 ≈ 5113.997 (198/56)−2∗25 ≈ 5135.71

From Table 23, two rounds are not enough to protect this AES variant against
LC for any n. For three rounds, protection against LC is achieved for all 2 ≤
n ≤ 6. This is a slightly better result than for AES for which four rounds are
needed.

Therefore, the use of a 5 or a 4×4 state does not matter. Using an appropriate
word size n it is possible to achieve resistance against DC and LC with three
rounds (compared to four rounds for the original AES cipher over GF(28)).
Consequently, the new AES variants can potentially operate under a smaller
number of rounds than the original AES (or likewise, under a larger margin of
security).
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8 AES variants over GF(7n)

In this section we will describe our experiments in replacing the AES S-box
with each of the S-boxes described in Sect. 5 therefore creating AES variants
operating on GF(7n).

8.1 AES variants operating on GF(7n) and a 7 × 7 state

Let us consider AES variants with:

– word size of n pits (Sect. 5)
– 7× 7 square states that is the block size is 49n pits
– internal operations on GF(7n) for different values of n
– the key size is at least 49n trits
– the same high-level round structure as the AES [3] consisting of SubBytes,

ShiftRows, MixColumns and AddRoundKey in this order, but:
• SubBytes uses an S-box in GF(7n) from Table 12
• ShiftRows operates on a 7 × 7 state of n-pit words, and the i-th row is

left-shifted by i words 0 ≤ i ≤ 6, from the top to the bottom row
• MixColumns uses a 7 × 7 MDS matrix with components over GF(7n).

We do not provide these matrices explicitly for each n, but we assume
they exist.

• AddRoundKey uses addition in GF(7n) instead of exclusive-or

With these assumptions, we expect to achieve full text diffusion after every two
rounds just like in AES.

The exact details of the key schedule algorithm for the AES variants are not
relevant for our analyses.

The choice of a 7× 7 state for a text block and a 7× 7 MDS matrix instead
of a 4 × 4 state and a 4 × 4 MDS matrix (as in the AES) was arbitrary but it
seems a natural generalization in view of the larger finite field GF(7n)

With these assumptions and starting from a single non-zero difference word
in the plaintext, the number of active S-boxes across four consecutive rounds are
at least: 1, 7, 49 and 7, respectively. This is a similar pattern as the number of
active S-boxes in the original AES across four rounds: 1, 4, 16 and 4.

Cummulatively, in AES there are at least 1, 5, 21 and 25 active S-boxes after
1, 2, 3 and 4 full rounds, respectively, both in a DC and a LC setting. In the
new AES variants there are at least 1, 8, 57 and 64 active S-boxes, respectively.

The number of text pairs that can be constructed for a differential attack
depends on the number of active words in the input (plaintext). If there is only
one active word difference (and 48 passive words) in the input, then the number
of pairs is (7n ∗ (7n− 1)/2) · 748n ≈ 750n/2 pairs. If the inverse of the probability
of the characteristic is larger than the number of available text pairs then the
attack is not feasible.

Under these assumptions, we can compare how many rounds of the AES
variants are needed for each variant to withstand a conventional differential
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Table 24. DC resistance of AES variants operating on GF(7n) and a 7× 7 state.

n #text pairs Probability (upperbound)
(750n/2) 2 rounds 3 rounds 4 rounds

2 7100/2 (4/72)8 ≈ 7−10.30 (4/72)57 ≈ 7−73.39 (4/72)64 ≈ 7−82.40

3 7150/2 (4/73)8 ≈ 7−18.30 (4/73)57 ≈ 7−130.39 (4/73)64 ≈ 7−146.40

4 7200/2 (4/74)8 ≈ 7−26.30 (4/74)57 ≈ 7−187.39 (4/74)64 ≈ 7−210.40

5 7250/2 (4/75)8 ≈ 7−34.30 (4/75)57 ≈ 7−244.39 (4/75)64 ≈ 7−274.40

attack. Results are displayed in Table 20. the number of chosen plaintext pairs
for a successfull differential attack is estimated to be proportional to the inverse
of the probability of the characteristic whose number of active S-boxes is shown
in Table 24.

From Table 24, two or three rounds are not enough to resist DC for any n.
For n ∈ {4, 5}, four rounds is needed to counter conventional differential attacks.

This is the same result as for the original AES cipher.

For LC in GF(7n), we consider the estimate in [6] for the number of known
plaintexts needed for a linear attack: N = (

∏
# active S-boxes γmax/7

n)−2.

Similar to the differential case and under the assumptions for the AES vari-
ant in GF(7n), the expected minimum number of active S-boxes across four
consecutive rounds is: 1, 8, 57 and 64, respectively.

The results of the linear analyses are summarized in Table 25.

Table 25. LC resistance of AES variants operating on GF(7n) and a 7× 7 state.

n Codebook #known plaintexts
size (750n) 2 rounds 3 rounds 4 rounds

2 7100 (8/72)−2∗8 ≈ 714.90 (8/72)−2∗57 ≈ 7106.17 (8/72)−2∗64 ≈ 7119.21

3 7150 (22/73)−2∗8 ≈ 722.58 (22/73)−2∗57 ≈ 7160.91 (22/73)−2∗64 ≈ 7180.67

4 7200 (72/74)−2∗8 ≈ 728.83 (72/74)−2∗57 ≈ 7205.45 (72/74)−2∗64 ≈ 7230.68

5 7250 (190/75)−2∗8 ≈ 736.85 (190/75)−2∗57 ≈ 7262.60 (190/75)−2∗64 ≈ 7294.85

From Table 25, two rounds are not enough to protect any of the AES variants
in GF(7n) against LC. But, three rounds are enough to counter a conventional
differential attack for any n, 2 ≤ n ≤ 5.

8.2 AES variants operating on GF(7n) and a 4 × 4 state

Now, for comparison purposes, let us consider the original framework of AES:
a 4 × 4 state and 4 × 4 MDS matrix. We assume that such MDS matrices over
GF(7n) exist.

In this setting, full text diffusion is still reached after every two rounds, and
the number of active S-boxes across four consecutive rounds follows the pattern:
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1, 4, 16 and 4, respectively. So, after 2, 3 and 4 rounds the cummulative number
of active S-boxes (for DC and LC) is 5, 21 and 25, respectively. Based on these
assumptions, Table 26 shows the resistance to DC. Table 27 shows the resistance
to LC.

Table 26. DC resistance of AES variants operating on GF(7n) and a 4× 4 state.

n Codebook size #text pairs Probability (upperbound)
(716n) (717n/2) 2 rounds 3 rounds 4 rounds

2 732 734/2 (4/72)5 ≈ 7−6.43 (4/72)21 ≈ 7−27.03 (4/72)25 ≈ 7−32.18

3 748 751/2 (4/73)5 ≈ 7−11.43 (4/73)21 ≈ 7−48.03 (4/73)25 ≈ 7−57.18

4 764 768/2 (4/74)5 ≈ 7−16.43 (4/74)21 ≈ 7−69.03 (4/74)25 ≈ 7−82.18

5 780 785/2 (4/75)5 ≈ 7−21.43 (4/75)21 ≈ 7−90.03 (4/75)25 ≈ 7−107.18

From Table 26, two rounds are not enough to protect this AES variant against
conventional DC for any n. But, three rounds are enough for n ∈ {4, 5}. This is a
slightly better result than for AES which requires four rounds.

Table 27. LC resistance of AES variants operating on GF(7n) and a 4× 4 state.

n Codebook #known plaintexts
size (716n) 2 rounds 3 rounds 4 rounds

2 732 (8/72)−2∗5 ≈ 79.31 (8/72)−2∗21 ≈ 739.11 (8/72)−2∗25 ≈ 746.56

3 748 (22/73)−2∗5 ≈ 714.11 (22/73)−2∗21 ≈ 759.28 (22/73)−2∗25 ≈ 770.57

4 764 (72/74)−2∗5 ≈ 718.02 (72/74)−2∗21 ≈ 775.69 (72/74)−2∗25 ≈ 790.11

5 780 (190/75)−2∗5 ≈ 723.03 (190/75)−2∗21 ≈ 796.74 (190/75)−2∗25 ≈ 7115.17

From Table 27, two rounds are not enough to protect this AES variant against
LC for any n. For three rounds, protection against LC is achieved for all 2 ≤
n ≤ 5. This is a slightly better result than for AES for which four rounds are
needed.

9 Conclusions

In this paper, we study the differential and linear profiles of S-boxes based on
the inversion mapping in odd-characteristic finite fields GF(pn) for small prime
p and small integer n.

A previous experimental result [8] described a hash function called Troika
operating on GF(33). Troika used a 3× 3-trit S-box, but they did not provide a
theoretical justification for the differential and linear profiles of their S-box.

Nonetheless, this setting may indicate a potential application of the S-boxes
we studied to cryptocurrencies which operate on ternary fields such as IOTA.
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Our results listed in Tables 5, 11 and 13 show differential and linear uni-
formity (obtained experimentally) of S-boxes in GF(3n), GF(5n) and GF(7n),
respectively.

These findings led us to study new AES variants operating in odd-characteristic
fields. As an example, new AES variants operating on 3× 3 states composed of
n-trit words showed resistance to DC and LC after three rounds, according to
the results in Tables 14 and 15. This result is slightly better than for the AES
which requires four rounds.

Table 18 and 19 show the differential and linear uniformity for S-boxes based
on inversion in GF(2n) for odd-valued n, and the number of rounds needed to
resist DC and LC.

A summary of our results concerning DC of AES variants is in Table 28. A
summary of our results concerning LC of AES variants is in Table 29.

Table 28. Summary of DC of AES variants operating on GF(pn), p prime and n
integer.

State Size Finite Field
GF(2n) GF(3n) GF(5n) GF(7n)

3× 3 — 3 rounds, n > 4 —

4× 4 4 rounds, n = 8 3 rounds, n > 6 3 rounds, n ∈ {3, 5, 6} 3 rounds, n ∈ {4, 5}
3 rounds, n ∈ {7, 9}

5× 5 — — 3 rounds, n ∈ {3, 5, 6} —

7× 7 — — — 4 rounds, n ∈ {4, 5}

Table 29. Summary of LC of AES variants operating on GF(pn), p prime and n
integer.

State Size Finite Field
GF(2n) GF(3n) GF(5n) GF(7n)

3× 3 — 3 rounds, n > 2 —

4× 4 4 rounds, n = 8 3 rounds, n > 2 3 rounds, 2 ≤ n ≤ 6 3 rounds, 2 ≤ n ≤ 5
3 rounds, n ∈ {7, 9}

5× 5 — — 3 rounds, 2 ≤ n ≤ 6 —

7× 7 — — — 3 rounds, 2 ≤ n ≤ 5
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