
On the Power of an Honest Majority
in Three-Party Computation Without Broadcast

Bar Alon∗

alonbar08@gmail.com
Ran Cohen†

rancohen@ccs.neu.edu
Eran Omri∗

omrier@ariel.ac.il

Tom Suad∗
tomsuad7@gmail.com

October 9, 2020

Abstract

Fully secure multiparty computation (MPC) allows a set of parties to compute some function
of their inputs, while guaranteeing correctness, privacy, fairness, and output delivery. Under-
standing the necessary and sufficient assumptions that allow for fully secure MPC is an impor-
tant goal. Cleve (STOC’86) showed that full security cannot be obtained in general without an
honest majority. Conversely, by Rabin and Ben-Or (STOC’89), assuming a broadcast channel
and an honest majority enables a fully secure computation of any function.

Our goal is to characterize the set of functionalities that can be computed with full security,
assuming an honest majority, but no broadcast. This question was fully answered by Cohen
et al. (TCC’16) – for the restricted class of symmetric functionalities (where all parties receive
the same output). Instructively, their results crucially rely on agreement and do not carry
over to general asymmetric functionalities. In this work, we focus on the case of three-party
asymmetric functionalities, providing a variety of necessary and sufficient conditions to enable
fully secure computation.

An interesting use-case of our results is server-aided computation, where an untrusted server
helps two parties to carry out their computation. We show that without a broadcast assumption,
the resource of an external non-colluding server provides no additional power. Namely, a func-
tionality can be computed with the help of the server if and only if it can be computed without
it. For fair coin tossing, we further show that the optimal bias for three-party (server-aided)
r-round protocol remains Θ (1/r) (as in the two-party setting).

Keywords: broadcast; point-to-point communication; multiparty computation; coin
flipping; impossibility result; honest majority.

∗Department of Computer Science, Ariel University. Research supported by ISF grant 152/17, and by the Ariel
Cyber Innovation Center in conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.

†Northeastern University. Research supported by NSF grant 1646671.

Contents
1 Introduction 1

1.1 Split-Brain Simulatability . 2
1.2 Our Results . 3
1.3 Our Techniques . 6
1.4 Additional Related Work . 10

2 Preliminaries 11
2.1 Notations . 11
2.2 The Model of Computation . 12

3 Impossibility Results 14
3.1 The Four-Party Protocol . 15
3.2 Server-Aided Two-Party Computation . 19
3.3 Impossibility Based on Privacy . 22

4 A Class of Securely Two-Output Computable Functionalities 23
4.1 The Protocol . 25
4.2 Proof of Theorem 4.2 . 27

Bibliography 28

A Generalized Properties of Split-Brain Simulatable Functionalities 30
A.1 Split-Brain Simulatability as a System of Linear Equations 31

1 Introduction
In the setting of secure multiparty computation [38, 27, 8, 15, 37], a set of mutually distrustful
parties wish to compute a function f of their private inputs. The computation should preserve a
number of security properties even facing a subset of colluding cheating parties, such as: correctness
(cheating parties can only affect the output by choosing their inputs), privacy (nothing but the
specified output is learned), fairness (all parties receive an output or none do), and even guaranteed
output delivery (meaning that all honestly behaving parties always learn an output). Informally
speaking, a protocol π computes a functionality f with full security if it provides all of the above
security properties.1

In the late 1980’s, it was shown that every function can be computed with full security in the
presence of malicious adversaries corrupting a strict minority of the parties, assuming the existence
of a broadcast communication channel (such a channel allows any party to reliably send its message
to all other parties, guaranteeing that all parties receive the same message) and pairwise private
channels (that can be established over broadcast using standard cryptographic techniques) [8, 37].
On the other hand, a well-known lower bound by Cleve [16] shows that if an honest majority is
not assumed, then fairness cannot be guaranteed in general (even assuming a broadcast channel).
More specifically, Cleve’s result showed that given a two-party, r-round coin-tossing protocol, there
exists an (efficient) adversarial strategy that can bias the output bit by Ω(1/r).

Conversely, a second well-known lower bound from the 1980’s shows that in the plain model
(i.e., without setup/proof-of-work assumptions), no protocol for computing broadcast can tolerate
corruptions of one third of the parties [36, 33, 21].

This leads us to the main question studied in this paper:
What is the power of the honest-majority assumption

in a model where parties cannot broadcast?

Namely, we set to characterize the set of n-party functionalities that can be computed with full
security over point-to-point channels in the plain model (i.e., without broadcast), in the face of
malicious adversaries, corrupting up to t parties, where n/3 ≤ t < n/2.

Cohen et al. [18] answered the above question for symmetric functionalities, where all parties
obtain the same common output from the computation. They showed that, in the plain model
over point-to-point channels, a function f can be computed with full security if and only if f is
(n − 2t)-dominated, i.e., there exists a value y∗ such that any n − 2t of the inputs can determine
the output of f to be y∗ (for example, Boolean OR is 1-dominated since any input can be set to
1, forcing the output to be 1). They further showed that there is no n-party, dn/3e-secure, δ-bias
coin-tossing protocol, for any δ < 1/2.

The results in [18] leave open the setting of asymmetric functionalities, where each party com-
putes a different function over the same inputs. Such functionalities include symmetric computa-
tions as a special case, but they are more general since the output that each party receives may be
considered private and some parties may not even receive any output. Specifically, the lower bound
from [18] does not translate into the asymmetric setting, as it crucially relies on a consistency
requirement on the protocol, ensuring that all honest parties output the same value.

Asymmetric computations are very natural in the context of MPC in general, however, the
following two use-cases are of particular interest:

1The notion of full security is formally captured via the real vs. ideal paradigm, where the protocol is said to be
secure if it emulates some ideal setting, in which the capabilities of the adversary are very limited.

1

Server-aided computation: Augmenting a two-party computation with a (potentially untrusted)
server that provides no input and obtains no output has proven to be a very useful paradigm
in overcoming lower bounds, even when the server may collude with one of the parties as in
the case of optimistic fairness [5, 13]. In the broadcast model, considering a non-colluding
server is a real game changer, as it enables two parties to compute any function with full
security. In our setting, where broadcast is not available, we explore to what extent a non-
colluding server can boost the security of two-party computation. For the specific task of coin
tossing we ask: “can two parties use a non-colluding third party to help them toss a coin?”

Computation with solitary output: Halevi et al. [31] studied computations in which only a single
party obtains the output, e.g., a server that learns a function of the inputs of two clients.
The focus of [31] was on the broadcast model with a dishonest majority, and they showed
a variety of feasibility and infeasibility results. In this work we consider a model without
broadcast but with an honest majority, which reopens the feasibility question. Fitzi et al.
[24] showed that if the three-party solitary-output functionality convergecast2 can be securely
computed facing a single corruption, then so can the broadcast functionality; thus, proving
the impossibility of securely computing convergecast in our setting. In this work, we extend
the exploration of the set of securely computable solitary-output functionalities.

1.1 Split-Brain Simulatability

In this paper, we focus on general asymmetric three-party functionalities, where party A with
input x, party B with input y, and party C with input z, compute a functionality f = (f1, f2, f3).
The output of A is f1(x, y, z), the output of B is f2(x, y, z), and the output of C is f3(x, y, z). We
will also consider the special cases of two-output functionalities where only A and B receive output
(meaning that f3 is degenerate), and of solitary-output functionalities where only A receives output
(meaning that f2 and f3 are degenerate).

Our main technical contribution is adapting the so called split-brain argument, which was pre-
viously used in the context of Byzantine agreement [20, 11, 10] (where privacy is not required, but
agreement must be guaranteed) to the setting of MPC. Indeed, aiming at full security, we are able
to broaden the collection of infeasible functionalities. In particular, our results apply to the setting
where the parties do not necessarily agree on a common output.

In Section 1.3 we provide a more detailed overview of the split-brain attack, however, the core
idea can be explained as follows. Let f = (f1, f2, f3) be an asymmetric (possibly randomized)
three-party functionality and let π be a secure protocol computing f over point-to-point channels,
tolerating a single corruption. For the sake of simplicity of the presentation, in the remaining of
this introduction we only consider perfect security and functionalities with finite domain and range.
A formal treatment for general functionalities and computational security is given in Section 3.1.
Consider the following two scenarios:

• A corrupted (split-brain) party C playing two independent interactions: in the first interac-
tion, C interacts with A on input z1 acting as if it never received any incoming messages from
B, and in the second interaction, C interacts with B on input z2, acting as if it never received
any incoming messages from A.

2Convergecast [24] is a three-party functionality where two of the parties start with a non-Boolean input, and
the receiver learns exactly one of the input values. The receiver does not learn anything about the other input, and
none of the senders learns the receiver’s choice as well as the input of the other sender.

2

• A corrupted party A internally emulating a first interaction of the above split-brain C: A
interacts with B, ignoring all incoming messages from the honest C; instead, A emulates in
its head the above (first-interaction) C on input z1 (This part of the attack relies on the no-
trusted-setup assumption, and on the fact that emulating C requires no interaction with B).

Clearly, the view of party B is identically distributed in both of these scenarios; hence, its output
must be identically distributed as well. Note that by symmetry, an attacker B can be defined
analogously to the above A, causing the output of an honest A to distribute as when interacting
with the split-brain C.

By the assumed security of the protocol π, each of the three attacks described above can be
simulated in an ideal world where a trusted party computes f for the parties. Since the only power
the simulator has in the ideal world is to choose the input for the corrupted party, we can capture
the properties that the functionality f must satisfy to enable the existence of such simulators via
the following definition.

Definition 1.1 (CSB-simulatability, informal). A three-party functionality f = (f1, f2, f3) is C-
split-brain (CSB) simulatable if for every quadruple (x, y, z1, z2), there exist a distribution Px,z1

over the inputs of A, a distribution Qy,z2 over the inputs of B, and a distribution Rz1,z2 over the
inputs of C, such that

f1(x, y∗, z1) ≡ f1(x, y, z∗) and f2(x∗, y, z2) ≡ f2(x, y, z∗),

where x∗ ← Px,z1, y∗ ← Qy,z2, and z∗ ← Rz1,z2.

1.2 Our Results

Using the notion of split-brain simulatability, mentioned in Section 1.1, we present several nec-
essary conditions for an asymmetric three-party functionality to be securely computable without
broadcast while tolerating a single corruption. We also present a sufficient condition for two-output
functionalities (including solitary output functionalities as a special case); the latter result captures
and generalizes previously known feasibility results in this setting, including 1-dominated function-
alities [17, 18] and fair two-party functionalities [4]. Examples illustrating the implications of these
theorems for different functionalities is provided in Table 1.

Impossibility results. Our first impossibility result asserts that CSB simulatability is a neces-
sary condition for securely computing a three-party functionality in our setting.

Theorem 1.2 (necessity of split-brain simulatability, informal). A three-party functionality that
can be securely computed over point-to-point channels, tolerating a single corruption, must be CSB
simulatable.

We can define A-split-brain and B-split-brain simulatability analogously, thus providing additional
necessary conditions for secure computation. For a formal statement and proof we refer the reader
to Section 3.1.

To illustrate the usefulness of the theorem, consider the two-output functionality where f1 = f2
are defined as f1 (x, y, z) = (x ∧ y) ⊕ z. Note that since f3 is degenerate, this functionality is not
symmetric and therefore the lower bound from [18] does not rule it out. We next show that f is
not CSB simulatable, and hence, cannot be securely computed. Clearly, input 0 for A and C will

3

fix the output to be 0, whereas input 0 for B and input 1 for C will fix the output to be 1. The
CSB simulatability of f would require that there exists distributions for sampling x∗ and y∗ such
that

0 ≡ f1(0, y∗, 0) ≡ f1(x∗, 0, 1) ≡ 1.
This leads to a contradiction.

Our second result, is in the server-aided model, where only A and B provide input and receive
output. We show that in this model, a functionality can be computed with the help of C if and
only if it can be computed without C. In the theorem below we denote by λ the empty string.

Theorem 1.3 (server-aided computation is as strong as two-party computation, informal). Let
f be a three-party functionality where C has no input and no output. Then, f can be securely
computed over point-to-point channels tolerating a single corruption if and only if the induced two-
party functionality g(x, y) = f(x, y, λ) can be computed with full security.

An immediate corollary from Theorem 1.3 is that a non-colluding third party cannot help the
two parties to toss a fair coin. In fact, if C cannot attack the protocol (i.e., C cannot bias the
output coin), then the attack that is guaranteed by Cleve [16] (on the implied two-party protocol)
can be directly translated to an attack on the three-party protocol, corrupting either A or B. Stated
differently, either A or B can bias the output by Ω (1/r), where r is the number of rounds in the
protocol. However, the above argument does not deal with protocols that allow a corrupt C to
slightly bias the output. For example, one might try to construct a protocol where every party
(including C) can bias the output by at most 1/r2. We strengthen the result for coin tossing,
showing that this is in fact impossible.

Theorem 1.4 (implication to coin tossing, informal). Consider a three-party, two-output, r-round
coin-tossing protocol. Then, there exists an adversary corrupting a single party that can bias the
output by Ω (1/r).

As a result, letting A and B run the protocol of Moran et al. [35] constitutes an optimally fair (up
to a constant) coin-tossing protocol.

We note that using a standard player-partitioning argument, the impossibility result extends
to n-party r-round coin-tossing protocols, where two parties receive the output. Specifically, there
exists an adversary corrupting dn/3e parties that can bias the output by Ω (1/r). Further, using
[18, Lem. 4.10] we rule out any non-trivial n-party coin-tossing where three parties receive the
output.

Another immediate corollary from Theorem 1.3 is that two-output functionalities that imply
coin-tossing are not securely computable, even if C has an input. For example, the XOR function
(x, y, z) 7→ x⊕y⊕z is not computable facing one corruption. For a formal treatment of server-aided
computation, see Section 3.2.

Our third impossibility result presents two functionalities that are not captured by Theorems 1.3
and 1.4. Interestingly, unlike the previous results, here we make use of the privacy requirement
on the protocol for obtaining the proof. We refer the reader to Section 1.3 below for an intuitive
explanation, and Section 3.3 for a formal proof.

Theorem 1.5 (Informal). Let f be a solitary-output three-party functionality where f1 (x, y, z) =
(x ∧ y) ⊕ z (equivalently, f1(x, y, z) = (x ⊕ y) ∧ z). Then, f cannot be securely computed over
point-to-point channels tolerating a single corruption.

4

Feasibility results. We proceed to state our sufficient condition. We present a class of two-
output functionalities f that can be computed with full security. Interestingly, our result shows that
if f is CSB simulatable, then under a simple condition that a related two-party functionality needs to
satisfy, the problem is reduced to the two-party case. In the related two-party functionality, the first
party holds x and z1, while the second party holds y and z2, and is defined as f ′((x, z1), (y, z2)) =
f (x, y, z∗), where z∗ ← Rz1,z2 is sampled as in the requirement of CSB simulatability.

Roughly, we require that there exist two distributions, for z1 and z2 respectively, such that the
input z1 can be sampled in a way that fixes the distribution of the output of f ′ to be independent
of z2, and similarly, that the input z2 can be sampled in a way that fixes the distribution of the
output of f ′ to be independent of z1. Specifically, we prove the following.

Theorem 1.6 (Informal). Let f = (f1, f2) be a CSB simulatable three-party, two-output function-
ality. Define the two-party functionality f ′ as f ′ ((x, z1), (y, z2)) = f(x, y, z∗), where z∗ ← Rz1,z2.

Assume that there exists a randomized two-party functionality g = (g1, g2) and two distri-
butions R1 and R2 over C’s inputs such that for every x, y, z ∈ {0, 1}∗ it holds that g(x, y) ≡
f ′((x, z1), (y, z)) ≡ f ′((x, z), (y, z2)), where z1 ← R1 and z2 ← R2.

If g can be securely computed with full security then f can be securely computed with full security
over point-to-point channels tolerating a single corruption.

The idea behind the protocol is as follows. First, by the honest-majority assumption, the
parties can compute f with guaranteed output delivery assuming a broadcast channel [37]. By [17]
it follows that they can compute f with fairness without using broadcast. If the parties receive an
output, they can terminate; otherwise, A and B compute g using their inputs, ignoring C in the
process (even if it is honest).

Intuitively, the existence of R1 and R2 allows the simulators of a corrupt A or a corrupt B, to
“force” a computation of g in the ideal world of f ; that is, the output will be independent of the
input of C. To see this, consider a corrupt A and let z1 ← R1. Then, by the CSB simulatability
assumption, sending x∗ ← Px,z1 to the trusted party results in the output being

f (x∗, y, z) ≡ f (x, y, z∗) ≡ f ′((x, z1), (y, z)) ≡ g(x, y),

where z∗ ← Rz1,z.
In Section 1.3 below we give a more detailed overview of the proof. In Section 4 we present the

formal statement and proof of the theorem.
We briefly describe a few classes of functions that are captured by Theorem 1.6. First, observe

that the class of functionalities satisfying the above conditions contains the class of 1-dominated
functionalities [18]. To see this, notice that x∗, y∗, and z∗ can be sampled in a way that always
fixes the output of f to be some value w∗. Then, any choice of R1 and R2 will do. Furthermore,
observe that the resulting two-party functionality g will always be the constant function, with the
output being w∗.

Another class of functions captured by the theorem is the class of fair two-party functionalities.
For such functionalities the distributions Rz1,z2 , R1, and R2 can be degenerate, as z∗, z1, and z2 play
no role in the computation of f and f ′. Additionally, taking x∗ = x and y∗ = y with probability 1
will satisfy the CSB simulatability constraint.

Next, we show that the class of functionalities satisfying the conditions of Theorem 1.6 in-
cludes functionalities that are not 1-dominated. Consider as an example the solitary XOR function
f(x, y, z) = x⊕y⊕z. Note that for solitary-output functionalities the two-party functionality g can

5

always be securely computed assuming oblivious transfer [32]. Furthermore, f is CSB simulatable
since we can sample y∗ and z∗ uniformly at random. In addition, taking R1 and R2 to output a
uniform random bit as well will satisfy the conditions of Theorem 1.6.

Finally, there are even two-output functionalities that are not 1-dominated, yet are still captured
by Theorem 1.6. For example, consider the following three-party variant of the GHKL function
[28], denoted 3P-GHKL: let f = (f1, f2), where f1, f2 : {0, 1, 2} × {0, 1} × {0, 1} 7→ {0, 1}. The
functionality is defined by the following two matrices

M0 =

0 1
1 0
1 1

 M1 =

1 0
0 1
1 1

where f1(x, y, z) = f2(x, y, z) = Mz (x, y). That is, A’s input determines a row, B’s input determines
a column, and C’s input determines the matrix. For the above functionality, sampling y∗ and z∗
uniformly at random, and taking x∗ = x if x = 2 and a uniform bit otherwise, will always generate
an output that is equal to 1 if x = 2 and a uniform bit otherwise. See Section 4.1 for more details.

functionality A outputs A,B output A,B,C output

x ∧ y ∧ z 3 [17] 3 [17] 3 [17]

(x⊕ y) ∧ z
(x ∧ y)⊕ z

7 Thm 1.5 7 Thm 1.2 (also 1.5) 7 [18] (also Thm 1.2, 1.5)

x⊕ (y ∧ z)
x ∧ (y ⊕ z)
x⊕ y ⊕ z

3 Thm 1.6 7 Thm 1.3 7 [18] (also Thm 1.3)

3P-GHKL 3 Thm 1.6 3 Thm 1.6 7 [18]

coin tossing
δ-bias

3 δ = 0 (trivial)
7

3

δ = o(1/r), Thm 1.4
δ = Θ(1/r) [35]

7 δ < 1/2 [18]

Table 1: Summarizing the feasibility of interesting three-party functionalities tolerating one cor-
ruption. The second column considers the solitary case where only A receives the output, the third
the two-output case where both A and B receive the same output, and the last column the case
where all parties receive the same output.

1.3 Our Techniques

We now turn to describe our techniques, starting with our impossibility results. The core argument
in all of our proofs, is the use of an adaptation of the split-brain argument [20, 11, 10] to the MPC
setting.

The C-split-brain argument. In the following, let f be a three-party functionality and let π be
a protocol computing f with full security over point-to-point channels, tolerating a single corrupted
party. Consider the following three attack-scenarios with inputs x, y, z1, z2 depicted in Figure 1.

6

(a) Scenario 1

(b) Scenario 2 (c) Scenario 3

Figure 1: Three adversaries of the C-split-brain attack. The shaded yellow areas in each scenario
correspond to the (virtual) parties the adversary controls.

Scenario 1: Parties A and B both play honestly on inputs x and y respectively. The adversary
corrupts C and applies the split-brain attack, that is, it emulates in its head two virtual copies
of C, denoted CA and CB. CA interacts with A as an honest C would on input z1 as if it never
received messages from B, and CB interacts with B as an honest C would on input z2 as if it
never received messages from A.
By the assumed security of π, there exists a simulator for the corrupted C. This simulator
defines a distribution over the input it sends to the trusted party. Thus, the outputs of A
and B in this case must equal to f1(x, y, z∗) and f2(x, y, z∗), respectively, where z∗ is sampled
according to some distribution that depends only on z1 and z2.

Scenario 2: Party A plays honestly on input x and party C plays honestly on input z1. The
adversary corrupts party B, ignoring all incoming messages from C and not sending it any
messages. Instead, the adversary emulates in its head the virtual party CB as in Scenario 1,
that plays honestly on input z2 as if it never received any message from A. Additionally, the
adversary instructs B to play honestly in this setting.
As in Scenario 1, by the assumed security of π, the output of A in this case must equal
f1(x, y∗, z1), where y∗ is sampled according to some distribution that depends only on y
and z2.

Scenario 3: This is analogous to Scenario 2. Party B plays honestly on input y and party C plays
honestly on input z2. The adversary corrupts party A, ignoring all incoming messages from C
and not sending it any messages. Similarly to Scenario 2, the adversary emulates in its head
the virtual CA, that plays honestly on input z1 as if it never received any message from B,
and instructs A to plays honestly in this setting.
As in the previous two scenarios, the output of B must equal f2(x∗, y, z2), where x∗ is sampled
according to some distribution that depends only on x and z1.

Observe that the view of the honest A in Scenario 1 is identically distributed as its view in
Scenario 2; hence the same holds with respect to its output, i.e., f1(x, y∗, z1) ≡ f1(x, y, z∗). Sim-
ilarly, the view of the honest B in Scenario 1 is identically distributed as its view Scenario 3;
hence, f2(x∗, y, z2) ≡ f2(x, y, z∗). This proves the necessity of C-split-brain simulatability (i.e.,
Theorem 1.2).

7

The four-party protocol. A nice way to formalize the above argument is by constructing a
four-party protocol π′ from the three-party protocol π, where two different parties play the role of
C (see Figure 2). In more detail, define the four-party protocol π′, with parties A′, B′, C′A, and C′B,
as follows. Party A′ follows the code of A, party B′ follows the code of B, and parties C′A and C′B
follow the code of C.

The parties are connected on a path where (1) C′A is the leftmost node, and is connected only to
A′, (2) C′B is the rightmost node, and is connected only to B′, and (3) A′ and B′ are also connected
to each other. The second communication line of party C′A is “disconnected” in the sense that C′A
is sending the messages as instructed by the protocol, but the messages arrive at a “sink” that
does not send any messages back. Stated differently, the view of C′A corresponds to the view of an
honest C in π that never received any message from B. Similarly, the second communication line
of party C′B is “disconnected,” and its view corresponds to the view of an honest C in π that never
receives any message from A.

Figure 2: The induced four-party protocol

Server-aided computation. We now make use of the four-party protocol to sketch the proof
of Theorem 1.3. Recall that here we consider the server-aided model, where C (the server) has no
input and obtains no output. Observe that under the assumption that π securely computes f , it
follows that the four-party protocol π′ correctly computes the two-output four-party functionality
f ′ (x, y, λ, λ) ..= f(x, y, λ), where λ is the empty string, as otherwise C could emulate C′A and C′B in
its head and force A and B to output an incorrect value.

Next, consider the following two-party protocol π̂ where each of two pairs {A′,C′A} and {B′,C′B},
is emulated by a single entity, Â and B̂ respectively, as depicted in Figure 3. Observe that the
protocol computes the two-party functionality g(x, y) ..= f ′ (x, y, λ, λ) = f(x, y, λ). Furthermore,
it computes g securely, since any adversary for the two-party protocol directly translates to an
adversary for the three-party protocol corrupting either A or B. Moreover, since C does not have
an input, the simulators of those adversaries in π can be directly translated to simulators for the
adversaries in π̂. Thus, f can be computed with the help of C if and only if it can be computed
without C.

Figure 3: The induced two-party protocol

The proof of Theorem 1.4, i.e., that the optimal bias for the server-aided coin-tossing protocol

8

is Θ (1/r), extends the above analysis. We show that for any r-round server-aided coin-tossing
protocol π there exists a constant c and an adversary that can bias the output by at least 1/cr.
Roughly, assuming that party C cannot bias the output of π by more than 1/cr, the output of A′
and B′ in the four-party protocol is a common bit that is (1/cr)-close to being uniform. Therefore,
the same holds with respect to the outputs of Â and B̂ in the two-party protocol. Now, we can
apply the result of Agrawal and Prabhakaran [1], which generalizes Cleve’s [16] result to a general
two-party sampling functionality. Their result provides an adversary for the two-party functionality
that can bias by 1/dr for some constant d. Finally, we can emulate their adversary in the three
party protocol as depicted in Scenarios 2 and 3. For sufficiently large c (specifically, c > 2d), the
bias resulting from emulating the adversaries for the two-party protocol will be at least 1/cr.

Impossibility based on privacy. We next sketch the proof of Theorem 1.5. That is, the
solitary-output functionalities f1(x, y, z) = (x ∧ y) ⊕ z and f1 (x, y, z) = (x ⊕ y) ∧ z cannot be
computed in our setting. We prove it only for the case where the output of A is defined to be
f1 (x, y, z) = (x ∧ y)⊕ z. The other case is proved using a similar analysis. The proof starts from
the C-split-brain argument used in the proof of Theorem 1.2. Assume for the sake of contradiction
that π computes f with perfect security. First, let us consider the following two scenarios.

• C is corrupted as in Scenario 1, i.e., it applies the split-brain attack with inputs z1 and z2.
By the security of π, the output of A in this case is (x ∧ y)⊕ z∗, for some z∗ that is sampled
according some distribution that depends on z1 and z2.

• B is corrupted as in Scenario 2, i.e., it imagines that it interacts with CB with input z2 that
does not receive any message from A. In this case, the output of A is (x ∧ y∗)⊕ z1, where z1
is the input of the real C, and y∗ is sampled according some distribution that depends on y
and z2.

By Theorem 1.2 these two distributions are identically distributed for all x ∈ {0, 1}. Notice
that setting x = 0 yields z∗ = z1 and that setting x = 1 yields y∗ ⊕ z1 = y ⊕ z∗, hence y∗ = y.
Therefore, the output of A in both scenarios is (x ∧ y)⊕ z1.

Finally, consider an execution of π over random inputs y for B and z for C, where A is corrupted
as in Scenario 2, and it emulates C′A on input z1. Since its view is exactly the same as in the other
two scenarios, it can compute (x∧y)⊕z1. However, in this scenario A can choose x = 1 and z1 = 0
and thus learn y. In the ideal world, however, A cannot guess y with probability better than 1/2,
as the output it sees is (x ∧ y) ⊕ z for random y and z. Hence, we have a contradiction to the
security of π.

A protocol for computing certain two-output functionalities. Finally, We describe the
idea behind the proof of Theorem 1.6. First, by the honest-majority assumption, the protocol of
Rabin and Ben-Or [37] computes f assuming a broadcast channel; by [17] it follows that f can be
computed with fairness over a point-to-point network. We now describe the protocol. The parties
start by computing f with fairness. If they receive outputs, then they can terminate, and output
what they received. If the protocol aborts, then A and B compute g with their original inputs using
a protocol that guarantees output delivery (such a protocol exists by assumption), and output
whatever outcome is computed. Clearly, a corrupt C cannot attack the protocol. Indeed, it does
not gain any information in the fair computation of f ; hence, if it aborts in this phase then the

9

output of A on input x and B on input y will be g(x, y) = f ′((x, z1), (y, z)) = f(x, y, z∗), where
z1 ← R1 and z∗ ← Rz1,z.

We next consider a corrupt A (the case of a corrupt B is analogous). The idea is to take the
distribution over the inputs used by the two-party simulator, and translate it into an appropriate
distribution for the three-party simulator. That is, regardless of the input of C, the output of
the honest party will be distributed exactly the same as in the ideal world for the two-party
computation. To see how this can be done, consider a sample z1 ← R1 and let x′ be the input
sent by the two-party simulator to its trusted party. The three-party simulator will send to the
trusted party the sample x∗ ← Px′,z1 . Then, by the CSB simulatability constraint, it follows that
the output will be f (x∗, y, z) ≡ f (x′, y, z∗), where z∗ ← Rz1,z. However, by requirement from the
two-party functionality g, it follows that g(x′, y) ≡ f (x′, y, z∗); hence, the output in the three-party
ideal-world of f , is identically distributed as in the two-party ideal-world of g.

1.4 Additional Related Work

The split-brain argument has been used in the context of Byzantine agreement (BA) to rule out
three-party protocols tolerating one corruption in various settings: over asynchronous networks [11]
and partially synchronous networks [20], even with trusted setup assumptions such a public-key
infrastructure (PKI), as well as over synchronous networks with weak forms of PKI [10]. The
argument was mainly used by considering three parties (A,B,C) where party A starts with 0, party
B starts with 1, and party C plays towards A with 0 and towards B with 1. By the validity property of
BA it is shown that A must output 0 and B must output 1, which contradicts the agreement property.
Our usage of the split-brain argument is different as it considers (1) asymmetric computations where
parties do not agree on the output (and so we do not rely on violating agreement) and (2) privacy-
aware computations that do not reveal anything beyond the prescribed output (as opposed to BA
which is a privacy-free computation).

For the case of symmetric functionalities Cohen et al. [18] showed that f(x, y, z) can be se-
curely computed with guaranteed output delivery over point-to-point channels if and only if f is
1-dominated. Their lower bound followed the classical Hexagon argument of Fischer et al. [21] that
was used for various consensus problems. Starting with a secure protocol π for f tolerating one
corruption, they constructed a sufficiently large ring system where all nodes are guaranteed to out-
put the same value (by reducing to the agreement property of f). Since the ring is sufficiently large
(larger than the number of rounds in π), information from one side could not reach the other side.
Combining these two properties yields an attacker that can fix some output value on one side of
the ring, and force all nodes to output this value — in particular, when attacking π, the two honest
parties participate in the ring (without knowing it) and so their output is fixed by the attacker.
We note that this argument completely breaks when considering asymmetric functionalities, since
it no longer holds that the nodes on the ring output the same value.

Cohen and Lindell [17] showed that any functionality that can be computed with guaranteed
output delivery in the broadcast model can also be computed with fairness over point-to-point
channels (using detectable broadcast protocols [22, 23]); as a special case, any functionality can be
computed with fairness assuming an honest majority. Indeed, our lower bounds do not hold when
the parties are allowed to abort upon detecting cheats, and rely on robustness of the protocol.

Recently, Garay et al. [25] showed how to compute every function in the honest-majority setting
without broadcast or PKI, by restricting the power of the adversary in a proof-of-work fashion. This
result falls outside our model as we consider the standard model without posing any restrictions

10

on the resources of the adversary.
The possibility of obtaining fully secure protocols for non-trivial functions in the two-party

setting (i.e., with no honest majority) was first investigated by Gordon et al. [28]. The showed
that, surprisingly, such protocols do exist, even for functionalities with an embedded XOR. The
feasibility and infeasibility results of [28] were substantially generalized in the works [3, 34]. The
set of Boolean functionalities that are computable with full security was characterized in [4].

The breakthrough result of Moran et al. [35], who gave an optimally fair two-party coin-tossing
protocol, paved the way to a long line of research on optimally fair coin-tossing. Positive results
for the multiparty setting (with no honest majority) where given [6, 29, 2, 12, 19] alongside some
new lower-bounds [7, 30].

Organization

In Section 2 we present the required preliminaries and formally define the model we consider. Then,
in Section 3 we present our impossibility results. Finally, in Section 4 we prove our positive results.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and distributions, lower-
case for values, and we use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . n}. For
a set S we write s← S to indicate that s is selected uniformly at random from S. Given a random
variable (or a distribution) X, we write x ← X to indicate that x is selected according to X. A
ppt is probabilistic polynomial time, and a pptm is a ppt (interactive) Turing machine. We let λ
be the empty string.

A function µ : N → [0, 1] is called negligible, if for every positive polynomial p(·) and all suf-
ficiently large n, it holds that µ(n) < 1/p(n). For a randomized function (or an algorithm) f we
write f(x) to denote the random variable induced by the function on input x, and write f(x; r) to
denote the value when the randomness of f is fixed to r. For a 2-ary function f and an input x,
we denote by f(x, ·) the function fx(y) ..= f(x, y). Similarly, for an input y we let f(·, y) be the
function fy(x) ..= f(x, y). We extend the notations for n-ary functions in a straightforward way.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables indexed
by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. The statistical distance
between two finite distributions is defined as follows.
Definition 2.1. The statistical distance between two finite random variables X and Y is

SD (X,Y) = 1
2
∑
a

|Pr [X = a]− Pr [Y = a]| .

For a function ε : N 7→ [0, 1], the two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are
said to be ε-close, if for all large enough n and a ∈ Dn, it holds that

SD (Xa,n, Ya,n) ≤ ε(n),

and are said to be ε-far otherwise. X and Y are said to be statistically close, denoted X S≡ Y , if
they are ε-close for some negligible function ε. If X and Y are 0-close then they are said to be
equivalent, denoted X ≡ Y .

11

Computational indistinguishability is defined as follows.

Definition 2.2. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that
X and Y are computationally indistinguishable, denoted X

C≡ Y , if for every non-uniform ppt
distinguisher D, there exists a negligible function µ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).

2.2 The Model of Computation

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm, for further details see [26]. Intuitively, a protocol is considered secure if whatever an
adversary can do in the real execution of protocol, can be done also in an ideal computation,
in which an uncorrupted trusted party assists the computation. For concreteness, we present the
model and the security definition for three-party computation with an adversary corrupting a single
party, as this is the main focus of this work. We refer to [26] for the general definition.

The Real Model

A three-party protocol π is defined by a set of three ppt interactive Turing machines A, B, and
C. Each Turing machine (party) holds at the beginning of the execution the common security
parameter 1κ, a private input, and random coins. The adversary Adv is a non-uniform ppt inter-
active Turing machine, receiving an auxiliary information aux ∈ {0, 1}∗, describing the behavior of
a corrupted party P ∈ {A,B,C}. It starts the execution with input that contains the identity of
the corrupted party, its input, and an additional auxiliary input aux.

The parties execute the protocol over a synchronous network. That is, the execution proceeds
in rounds: each round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties). The adversary is
assumed to be rushing, which means that it can see the messages the honest parties send in a
round before determining the messages that the corrupted parties send in that round.

We consider a fully connected point-to-point network, where every pair of parties is connected
by a communication line. We will consider the secure-channels model, where the communication
lines are assumed to be ideally private (and thus the adversary cannot read or modify messages
sent between two honest parties). We assume the parties do not have access to a broadcast channel,
and no preprocessing phase (such as a public-key infrastructure that can be used to construct a
broadcast protocol) is available. We note that our upper bounds (protocols) can also be stated
in the authenticated-channels model, where the communication lines are assumed to be ideally
authenticated but not private (and thus the adversary cannot modify messages sent between two
honest parties but can read them) via standard techniques, assuming public-key encryption. On
the other hand, stating our lower bounds assuming secure channels will provide stronger results.

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted party receive its instructions from the adversary. The
adversary is considered to be malicious, meaning that it can instruct the corrupted party to deviate
from the protocol in any arbitrary way. Additionally, the adversary has full-access to the view of the
corrupted party, which consists of its input, its random coins, and the messages it sees throughout
this execution. At the conclusion of the execution, the honest parties output their prescribed output
from the protocol, the corrupted party outputs nothing, and the adversary outputs a function of its

12

view (containing the views of the corrupted party). In some of our proofs we consider semi-honest
adversaries that always instruct the corrupted parties to honestly execute the protocol, but may
try to learn more information than they should.

We denote by REALπ,Adv(aux) (κ, (x, y, z)) the joint output of the adversary Adv (that may corrupt
one of the parties) and of the honest parties in a random execution of π on security parameter κ ∈ N,
inputs x, y, z ∈ {0, 1}∗, and an auxiliary input aux ∈ {0, 1}∗.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party performs the computation on behalf of the parties, and the ideal-world
adversary cannot abort the computation. An ideal computation of a three-party functionality
f = (f1, f2, f3), with f1, f2, f3 : ({0, 1}∗)3 → {0, 1}∗, on inputs x, y, z ∈ {0, 1}∗ and security
parameter κ, with an ideal-world adversary Adv running with an auxiliary input aux and corrupting
a single party P proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. The adversary Adv sends a value v from its domain as the input for the corrupted
party. Let (x′, y′, z′) denote the inputs received by the trusted party.

The trusted party performs computation: The trusted party selects a random string r, com-
putes (w1, w2, w3) = f (x′, y′, z′; r), and sends w1 to A, sends w2 to B, and sends w3 to C.

Outputs: Each honest party outputs whatever output it received from the trusted party and the
corrupted party outputs nothing. The adversary Adv outputs some function of its view (i.e.,
the input and output of the corrupted party).

We denote by IDEALf,Adv(aux) (κ, (x, y, z)) the joint output of the adversary Adv (that may corrupt
one of the parties) and the honest parties in a random execution of the ideal-world computation of
f on security parameter κ ∈ N, inputs x, y, z ∈ {0, 1}∗, and an auxiliary input aux ∈ {0, 1}∗.

Ideal computation with fairness. Although all our results are stated with respect to guaran-
teed output delivery, in our proofs in Section 4 we will consider a weaker security variant, where
the adversary may cause the computation to prematurely abort, but only before it learns any new
information from the protocol. Formally, an ideal computation with fairness is defined as above,
with the difference that during the Parties send inputs to the trusted party step, the adversary can
send a special abort symbol. In this case, the trusted party sets the output w1 = w2 = w3 = ⊥
instead of computing the function.

The Security Definition

Having defined the real and ideal models, we can now define security of protocols according to the
real/ideal paradigm.

Definition 2.3 (security). Let f be a three-party functionality and let π be a three-party protocol.
We say that π computes f with 1-security, if for every non-uniform ppt adversary Adv, controlling

13

at most one party in the real world, there exists a non-uniform ppt adversary Sim, controlling the
same party (if there is any) in the ideal world such that{

IDEALf,Sim(aux) (κ, (x, y, z))
}
κ∈N,x,y,z,aux∈{0,1}∗

C≡
{

REALπ,Adv(aux) (κ, (x, y, z))
}
κ∈N,x,y,z,aux∈{0,1}∗

.

We define statistical 1-security and perfect 1-security similarly, replacing computational indistin-
guishability with statistical distance and equivalence, respectively.

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides ideal
computation for specific functionalities. The parties communicate with this trusted party in exactly
the same way as in the ideal models described above.

Let f be a functionality. Then, an execution of a protocol π computing a functionality g in the
f -hybrid model involves the parties sending normal messages to each other (as in the real model)
and in addition, having access to a trusted party computing f . It is essential that the invocations
of f are done sequentially, meaning that before an invocation of f begins, the preceding invocation
of f must finish. In particular, there is at most a single call to f per round, and no other messages
are sent during any round in which f is called.

Let type ∈ {g.o.d., fair}. Let Adv be a non-uniform ppt machine with auxiliary input aux
controlling a single party P ∈ {A,B,C}. We denote by HYBRIDf,type

π,Adv(aux)(κ, (x, y, z)) the random
variable consisting of the output of the adversary and the output of the honest parties, following
an execution of π with ideal calls to a trusted party computing f according to the ideal model
“type”, on input vector (x, y, z), auxiliary input aux given to Adv, and security parameter κ. We
call this the (f, type)-hybrid model. Similarly to Definition 2.3, we say that π computes g with 1-
security in the (f, type)-hybrid model if for any adversary Adv there exists a simulator Sim such that
HYBRIDf,type

π,Adv(aux)(κ, (x, y, z)) and IDEALg,Sim(aux)(κ, (x, y, z)) are computationally indistinguishable.
The sequential composition theorem of Canetti [14] states the following. Let ρ be a protocol

that securely computes f in the ideal model “type”. Then, if a protocol π computes g in the
(f, type)-hybrid model, then the protocol πρ, that is obtained from π by replacing all ideal calls to
the trusted party computing f with the protocol ρ, securely computes g in the real model.
Theorem 2.4 ([14]). Let f be a three-party functionality, let type1, type2 ∈ {g.o.d., fair}, let ρ be
a protocol that 1-securely computes f with type1, and let π be a protocol that 1-securely computes
g with type2 in the (f, type1)-hybrid model. Then, protocol πρ 1-securely computes g with type2 in
the real model.

3 Impossibility Results
In the following section, we present our impossibility results. The main ingredient used in the
proofs of these results, is the analysis of a four-party protocol that is derived from the three-party
protocol assumed to exist. In Section 3.1 we present the four-party protocol alongside some of its
useful properties. Most notably, we show that if a functionality f can be computed with 1-security,
then f must satisfy a requirement that we refer to as split-brain simulatability. Then, in Section 3.2
we show our second impossibility result, where we characterize the class of securely computable
functionalities where one of the parties has no input. Finally, in Section 3.3 we present a class of
functionalities where the impossibility of computing them follows from privacy.

14

3.1 The Four-Party Protocol

We start by presenting our first impossibility result that provides necessary conditions for secure
computation with respect to the outputs of each pair of parties. Therefore, without loss of generality
we will state and prove the results with respect to the outputs of A and B.

Fix a three-party protocol π = (A,B,C) that is defined over secure point-to-point channels in
the plain model (without a broadcast channel or trusted setup assumptions). Consider the split-
brain attacker controlling C that interacts with A on input z1 as if never receiving messages from B
and interacts with B on input z2 as if never receiving messages from A. The impact of this attacker
can be emulated towards B by a corrupt A and towards A by a corrupt B. A nice way to formalize
this argument is by considering a four-party protocol, where two different parties play the role of
C. The first interacts only with A, and the second interacts only with B. The four-party protocol
is illustrated in Figure 2 in the Introduction.
Definition 3.1 (the four-party protocol). Given a three-party protocol π = (A,B,C) we denote by
π′ = (A′,B′,C′A,C′B) the following four-party protocol. Party A′ is set with the code of A, Party B′
with the code of B, and parties C′A and C′B with the code of C.

The communication network of π′ is a path. Party A′ is connected to C′A and to B′, and party B′
is connected to A′ and to C′B. In addition to its edge to A′, party C′A has a second edge that leads to
a sink that only receives messages and does not send any message (this corresponds to the channel
to B in the code of C′A). Similarly, in addition to its edge to B′, party C′B has a second edge that
leads to a sink.

We now formalize the above intuition, showing that an honest execution in π′ can be emulated
in π by any corrupted party. In fact, we can strengthen the above observation. Any adversary in
π′ corrupting A′ and C′A, can be emulated by an adversary in π corrupting A. Similarly, we can
emulate any adversary corrupting B′ and C′B by an adversary in π corrupting B, and any adversary
corrupting C′A and C′B by an adversary in π corrupting C.
Lemma 3.2 (mapping attackers for π′ to attackers for π). Let π = (A,B,C) and π′ =
(A′,B′,C′A,C′B) be as in Definition 3.1. Then
1. For every non-uniform ppt adversary Adv′1 corrupting {A′,C′A} in π′, there exists a non-uniform

ppt adversary Adv1 corrupting A in π, receiving the input z1 for C′A as auxiliary information,
that perfectly emulates Adv′1, namely{

REALπ,Adv1(z1,aux) (κ, (x, y, z2))
}
κ,x,y,z1,z2,aux

≡
{

REALπ′,Adv′1(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

2. For every non-uniform ppt adversary Adv′2 corrupting {B′,C′B} in π′, there exists a non-uniform
ppt adversary Adv2 corrupting B in π, receiving the input z2 for C′B as auxiliary information,
that perfectly emulates Adv′2, namely{

REALπ,Adv2(z2,aux) (κ, (x, y, z1))
}
κ,x,y,z1,z2,aux

≡
{

REALπ′,Adv′2(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

3. For every non-uniform ppt adversary Adv′3 corrupting {C′A,C′B} in π′, there exists a non-uniform
ppt adversary Adv3 corrupting C in π, receiving the input z2 for C′B as auxiliary information,3
that perfectly emulates Adv′3, namely{

REALπ,Adv3(z2,aux) (κ, (x, y, z1))
}
κ,x,y,z1,z2,aux

≡
{

REALπ′,Adv′3(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

3The choice of giving Adv3 the input z2 as auxiliary is arbitrary.

15

Proof. We first prove Item 1. The proof of Item 2 is done using an analogous argument and is
therefore omitted. Fix an adversary Adv′1 corrupting {A′,C′A}. Consider the following adversary
Adv1 for π that corrupts A. First, it initializes Adv′1 with input x for A′, input z1 for C′A and
auxiliary information aux. In each round, it ignores the messages sent by C, passes the messages
it received from B to Adv′1 (recall that Adv′1 internally runs A′ and C′A), and replies to B as Adv′1
replied. Finally, Adv1 outputs whatever Adv′1 outputs.

By the definition of Adv1, in each round, the message it receives from B is identically distributed
as the message received from B′ in π′. Since it ignores the messages sent from the real C and
answers as Adv′1 does, it follows that the messages it will send to B are identically distributed as
well. Furthermore, since Adv1 does not send any message to C, the view of C will be identically
distributed as well to that of C′B in π′. In particular, the joint outputs of B and C in π are identically
distributed as the joint outputs of B′ and C′B in π′, conditioned on the messages received from Adv1
and Adv′1 respectively, hence{

REALπ,Adv1(z1,aux) (κ, (x, y, z2))
}
κ,x,y,z1,z2,aux

≡
{

REALπ′,Adv′1(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

We next prove Item 3. Fix an adversary Adv′3 corrupting {C′A,C′B}. The adversary Adv3 corrupts
C, initializes Adv′3 with inputs z1 and z2 for C′A and C′B respectively, and auxiliary information aux.
Then, in each round it passes the messages received from A and B to Adv′3 and answers accordingly.
Finally, it outputs whatever Adv′3 outputs. Clearly, the transcript of π when interacting with Adv3
is identically distributed as the transcript of π′. The claim follows. �

As a corollary, it follows that if π securely computes some functionality f , then any adversary
for π′ corrupting {A′,C′A}, or {B′,C′B}, or {C′A,C′B} can be simulated in the ideal-world of f .

Corollary 3.3. Let π = (A,B,C) be a three-party protocol that computes a functionality f :
({0, 1}∗)3 7→ ({0, 1}∗)3 with 1-security and let π′ = (A′,B′,C′A,C′B) be as in Definition 3.1. Then

1. For every adversary Adv′1 for π′ corrupting {A′,C′A} there exists a simulator Sim1 in the ideal
world of f corrupting A, such that{

IDEALf,Sim1(z1,aux) (κ, (x, y, z2))
}
κ,x,y,z1,z2,aux

C≡
{

REALπ′,Adv′1(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

2. For every adversary Adv′2 for π′ corrupting {B′,C′B} there exists a simulator Sim2 in the ideal
world of f corrupting B, such that{

IDEALf,Sim2(z2,aux) (κ, (x, y, z1))
}
κ,x,y,z1,z2,aux

C≡
{

REALπ′,Adv′2(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

3. For every adversary Adv′3 for π′ corrupting {C′A,C′B} there exists a simulator Sim3 in the ideal
world of f corrupting C, such that{

IDEALf,Sim3(z2,aux) (κ, (x, y, z1))
}
κ,x,y,z1,z2,aux

C≡
{

REALπ′,Adv′3(aux) (κ, (x, y, z1, z2))
}
κ,x,y,z1,z2,aux

.

One important use-case of Corollary 3.3 is when the three adversaries for π′ are semi-honest.
This is due to the fact that the views of the honest parties are identically distributed in all three
cases, hence the same holds with respect to their outputs. Next, we consider the distributions over

16

the outputs of A and B in the ideal world of f with respect to each such simulators. Recall that
these simulators are for the malicious setting, hence they can send arbitrary inputs to the trusted
party. Thus, the distributions over the outputs depend on the distribution over the input sent
by each simulator to the trusted party. Notice that when considering semi-honest adversaries for
π′ that have no auxiliary input, these distributions would depend only on the security parameter
and the inputs given to the semi-honest adversary. For example, in the case where {A′,C′A} are
corrupted, the simulator samples an input x∗ according to some distribution P that depends only
on the security parameter κ, the input x, and the input z1, given to the semi-honest adversary
corrupting A′ and C′A. We next give a notation for semi-honest adversaries, their corresponding
simulators, and the distributions used by the simulators to sample an input value.

Definition 3.4. Let π = (A,B,C) be a three-party protocol that computes a three-party functionality
f : ({0, 1}∗)3 7→ ({0, 1}∗)3 with 1-security. We let Advsh

1 be the semi-honest adversary for π′,
corrupting {A′,C′A}. Similarly, we let Advsh

2 and Advsh
3 be the semi-honest adversaries corrupting

{B′,C′B} and {C′A,C′B}, respectively. Let Sim1, Sim2, and Sim3 be the three simulators for the
malicious ideal world of f , that simulate Advsh

1 , Advsh
2 , and Advsh

3 , respectively, guaranteed to exist
by Corollary 3.3.

We define the distribution P sh
κ,x,z1 to be the distribution over the inputs sent by Sim1 to the

trusted party, given the inputs x, z1 and security parameter κ. Similarly, we define the distributions
Qsh
κ,y,z2 and Rsh

κ,z1,z2 to be the distributions over the inputs sent by Sim2 and Sim3, respectively, to
the trusted party. Additionally, we let Psh = {P sh

κ,x,z1}κ∈N,x,z1∈{0,1}∗, Qsh = {Qsh
κ,y,z2}κ∈N,y,z2∈{0,1}∗,

and Rsh = {Rsh
κ,z1,z2}κ∈N,z1,z2∈{0,1}∗ be the corresponding distribution ensembles.

Now, as the simulators simulate the semi-honest adversaries for π′, it follows that all the outputs
of the honest parties in {A,B} in the executions of the ideal-world computations are the same.
This results in a necessary condition that the functionality f must satisfy for it to be securely
computable. We call this condition C-split-brain simulatability. Similarly, we can define A-split-
brain and B-split-brain simulatability to get additional necessary conditions. We next formally
define the class of functionalities that are C-split-brain simulatable. We then show that it is indeed
a necessary condition.

Definition 3.5 (C-split-brain simulatability). Let f = (f1, f2, f3) be a three-party functionality and
let P = {Pκ,x,z1}κ∈N,x,z1∈{0,1}∗, Q = {Qκ,y,z2}κ∈N,y,z2∈{0,1}∗, and R = {Rκ,z1,z2}κ∈N,z1,z2∈{0,1}∗ be
three ensembles of efficiently samplable distributions over {0, 1}∗. We say that f is computationally
(P,Q,R)-C-split-brain (CSB) simulatable if{

f1(x, y∗, z1)
}
κ∈N,x,y,z1,z2∈{0,1}∗

C≡
{
f1(x, y, z∗)

}
κ∈N,x,y,z1,z2∈{0,1}∗

, and{
f2(x∗, y, z2)

}
κ∈N,x,y,z1,z2∈{0,1}∗

C≡
{
f2(x, y, z∗)

}
κ∈N,x,y,z1,z2∈{0,1}∗

,

where x∗ ← Pκ,x,z1, y∗ ← Qκ,y,z2, and z∗ ← Rκ,z1,z2. We say that f is computationally CSB
simulatable, if there exist three ensembles P, Q, and R such that f is (P,Q,R)-CSB simulatable.

We define statistically and perfectly CSB simulatable functionalities in a similar way, replac-
ing computational indistinguishability with statistical closeness and equivalence, respectively. In
Section 3.1.1 we give several simple examples and properties of CSB simulatable functionalities.
Generalizations of these properties appear in Appendix A, as well as a way to write CSB simulata-
bility from a linear-algebraic perspective.

17

We next prove the main result of this section, asserting that if a functionality is computable
with 1-security, then it must be CSB simulatable. We stress that CSB simulatability is not a suffi-
cient condition for secure computation. Indeed, the coin-tossing functionality is CSB simulatable,
however, as we show in Section 3.2 below, it cannot be computed securely.

Theorem 3.6 (CSB simulatability – a necessary condition). If a three-party functionality f =
(f1, f2, f3) is computable with 1-security over secure point-to-point channels, then f is computa-
tionally CSB simulatable.

Proof. Let π = (A,B,C) be a protocol that securely realizes f tolerating one malicious corruption.
Consider the four-party protocol π′ = (A′,B′,C′A,C′B) from Definition 3.1, and let Advsh

1 , Advsh
2 , and

Advsh
3 , be three semi-honest adversaries corrupting {A′,C′A}, {B′,C′B}, and {C′A,C′B}, respectively,

with no auxiliary information. We will show that f is (Psh,Qsh,Rsh)-C-split-brain simulatable,
where Psh, Qsh, and Rsh are as defined in Definition 3.4.

We next analyze the output of the honest party B′, once when interacting with Advsh
1 and once

when interacting with Advsh
3 . The claim would then follow since the view of B′, and in particular

its output, is identically distributed in both cases. The analysis of the output of an honest A′ is
similar and therefore is omitted. Let us first focus on the output of B′ when interacting with Advsh

1 .
By Corollary 3.3 there exists a simulator Sim1 for Advsh

1 in the ideal world of f , that is,{
IDEALf,Sim1(z1) (κ, (x, y, z2))

}
κ,x,y,z1,z2

C≡
{

REALπ′,Advsh
1

(κ, (x, y, z1, z2))
}
κ,x,y,z1,z2

.

In particular, the equivalence holds with respect to the output of the honest party B on the left-hand
side, and the output of B′ on the right-hand side. Recall that P sh

κ,x,z1 is the probability distribution
over the inputs sent by Sim1 to the trusted party. Thus, letting x∗ ← P sh

κ,x,z1 , it follows that the
output of B in the ideal world is identically distributed to f2 (x∗, y, z2); hence, the output of B′
in the four-party protocol is computationally indistinguishable from f2 (x∗, y, z2). By a similar
argument, the output of B′ when interacting with Advsh

3 is computationally indistinguishable from
f2(x, y, z∗), where z∗ ← Rsh

κ,z1,z2 , and the claim follows. �

3.1.1 Properties of Split-Brain Simulatable Functionalities

Having defined C-split-brain simulatability, we proceed to provide several examples and prop-
erties of CSB simulatable functionalities. To simplify the presentation, we consider deterministic
two-output functionalities f = (f1, f2) over a finite domain with f1 = f2. We denote it as a single
functionality f : X × Y × Z 7→ W. Furthermore, we only discuss perfect CSB simulatability, and
where the corresponding ensembles are independent of κ. In Appendix A we provide generalizations
of these properties.

In the Introduction (Section 1.2) we showed that the two-output three-party functionality f :
{0, 1}3 7→ {0, 1} defined by f (x, y, z) = (x ∧ y) ⊕ z is not CSB simulatable. We next state a
generalization of this example.

Proposition 3.7. Let f : X × Y × Z 7→ W be a perfectly CSB simulatable two-output three-party
functionality. Assume there exist inputs x ∈ X , y ∈ Y, and z1, z2 ∈ Z, and two outputs w1, w2 ∈ W,
such that f(x, ·, z1) = w1 and f(·, y, z2) = w2. Then, w1 = w2.

18

We next show that for C-split-brain simulatable functionalities, if a pair of parties P and C,
where P ∈ {A,B}, can fix the output to be some w, then P can do it by itself. In particular, if C can
fix the output to be w, then A and B can do it as well, which implies that f must be 1-dominated.

Proposition 3.8. Let f : X × Y × Z 7→ W be a perfectly (P,Q,R)-CSB simulatable two-output
three-party functionality. Assume there exist x ∈ X , z ∈ Z, and w ∈ W such that f(x, ·, z) = w.
Then, there exists an input x∗ ∈ X such that f(x∗, ·, ·) = w. Similarly, assuming there exist y ∈ Y
and z ∈ Z such that f(·, y, z) = w, then there exists an input y∗ ∈ Y such that f(·, y∗, ·) = w.

Proof. We prove the first part of the claim. The second part follows by an analogous argument.
Fix inputs x ∈ X , and z1 ∈ Z such that f(x, y, z1) = w for all y ∈ Y. Since f is perfectly CSB
simulatable, it follows that for every y ∈ Y and z2 ∈ Z

f(x∗, y, z2) ≡ f(x, y∗, z1) ≡ w,

where x∗ ← Px,z1 and y∗ ← Qy,z2 . Since x∗ is sampled independently of y and z2, it follows that
f(x∗, y, z2) = w for any x∗ ∈ Supp (Px,z1) and any y ∈ Y and z2 ∈ Z, concluding the proof. �

3.2 Server-Aided Two-Party Computation

In this section, we consider the server-aided model where two parties – A and B – use the help of an
additional untrusted yet non-colluding server C that has no input in order to securely compute a
functionality. The main result of this section is showing that the additional server does not provide
any advantage in the secure point-to-point channels model.

Theorem 3.9. Let f = (f1, f2, f3) with f1, f2, f3 : {0, 1} × {0, 1} × ∅ 7→ {0, 1} be a three-party
functionality computable with 1-security over secure point-to-point channels. Then, the two-party
functionality

g(x, y) ..=
((
f1(x, y, λ), f3(x, y, λ)

)
,
(
f2(x, y, λ), f3(x, y, λ)

))
is computable with 1-security.

As a corollary of Theorem 3.9, a two-output server-aided functionality can be computed with C
if and only if it can be computed without it. Formally, we have the following.

Corollary 3.10. Let f = (f1, f2) with f1, f2 : {0, 1}×{0, 1}×∅ 7→ {0, 1} be a two-output three-party
functionality and let g(x, y) = (f1(x, y, λ), f2(x, y, λ)) be its induced two-party variant. Then, f can
be computed with 1-security if and only if g can be computed with 1-security.

Observe that Theorem 3.9 only provides a necessary condition for secure computation, while
Corollary 3.10 asserts that for two-output functionalities, the necessary condition is also sufficient.
In other words, even when the induced two-party functionality g can be securely computed, if f3 is
non-degenerate, then f might not be computable with 1-security. Indeed, consider the functionality
(x, λ, λ) 7→ (x, x, λ). Clearly, it is computable in our setting, however, the functionality where C
also receive x is the broadcast functionality, hence it cannot be computed securely.

Towards the proof of the theorem, we show how to construct a secure two-party protocol
computing g.

19

Definition 3.11 (the two-party protocol). Fix a protocol π = (A,B,C) and let π′ = (A′,B′,C′A,C′B)
be the related four-party protocol from Definition 3.1. We define the two-party protocol π̂ = (Â, B̂)
as follows. On input x ∈ {0, 1}∗, party Â will simulate A′ holding x and C′A in its head. Similarly,
on input y ∈ {0, 1}∗, party B̂ will simulate B′ holding y and C′B. The messages exchanged between
Â and B̂ will be the same as the messages exchanged between A′ and B′ in π′, according to their
simulated random coins, inputs, and the communication transcript so far. Finally, Â will output
whatever A′ and C′A output, and similarly, B̂ will output whatever B′ and C′B output.

Similarly to the four-party protocol, we can emulate any malicious adversary attacking π̂ using
the appropriate adversary for the three-party protocol π.
Lemma 3.12 (mapping attackers for π̂ to attackers for π). For any non-uniform ppt adversary
Âdv1 corrupting Â in π̂, there exists a non-uniform ppt adversary Adv1 corrupting A in π that
perfectly emulates Âdv1. That is, the following two random variables are identically distributed:{

REALπ,Adv1(aux) (κ, (x, y))
}
κ,x,y,aux

≡
{

REAL
π̂,Âdv1(aux) (κ, (x, y))

}
κ,x,y,aux

. (1)

Similarly, for any non-uniform ppt adversary Âdv2 corrupting B̂ in π̂, there exists a non-uniform
ppt adversary Adv2 corrupting B in π, that perfectly emulates Âdv1, namely{

REALπ,Adv2(aux) (κ, (x, y))
}
κ,x,y,aux

≡
{

REAL
π̂,Âdv2(aux) (κ, (x, y))

}
κ,x,y,aux

. (2)

We now prove Theorem 3.9.

Proof of Theorem 3.9. We first show that π̂ is correct. Clearly, the joint outputs of Â and B̂ in π̂ are
identically distributed to the joint output of C′A, A′, B′, and C′B in π′.4 Therefore, it suffices to show
that the joint output of the four parties in π′ is statistically close to g. Consider the semi-honest
adversary Advsh

3 corrupting {C′A,C′B}. By Corollary 3.3, it can be simulated in the ideal-world of f
by Sim3 as defined in Definition 3.4. That is{

IDEALf,Sim3 (κ, (x, y))
}
κ,x,y

C≡
{

REALπ′,Advsh
3

(κ, (x, y))
}
κ,x,y

.

In particular, this holds with respect to the honest parties’ output; hence, π′ computes g correctly.
Next, we show that π̂ is 1-secure. We prove security against an adversary Âdv1 corrupting

Â, holding auxiliary input aux ∈ {0, 1}∗. The case of a corrupted B̂ follows from an analogous
argument. Combining Lemma 3.12 with Corollary 3.3, it follows that Âdv1 can be emulated in π′
and hence can be simulated in the ideal world of f , that is, there exists a simulator Sim1 such that{

IDEALf,Sim1(aux) (κ, (x, y))
}
κ,x,y,aux

C≡
{

REAL
π̂,Âdv1(aux) (κ, (x, y))

}
κ,x,y,aux

.

Thus, to construct a simulator Ŝim1 for Âdv1 it suffices to emulate Sim1 in the ideal world of g.
This can be easily done by running Sim1, sending x∗ to the trusted party (where x∗ is the same as
what Sim1 sent) and output whatever Sim1 outputs. By the definition of g, it follows that{

IDEAL
g,Ŝim1(aux) (κ, (x, y))

}
κ,x,y,aux

≡
{

IDEALf,Sim1(aux) (κ, (x, y))
}
κ,x,y,aux

.

This concludes the proof of Theorem 3.9. �
4Formally, the output in the two-party protocol π̂ is of the form ((f1(x, y, λ), f3(x, y, λ)), (f2(x, y, λ), f3(x, y, λ))),

while in the four-party protocol π′ the output is of the form (f1(x, y, λ), f2(x, y, λ), f3(x, y, λ), f3(x, y, λ)). For the
sake of simplicity we ignore such technicalities.

20

3.2.1 Coin-Tossing Protocols

Coin-tossing protocols [9] allow a set of parties to agree on uniform common random bit, such
that even if some of the parties are malicious, the honest parties output a common bit close to
being uniform. The seminal result of Cleve [16] states that unless an honest majority is assumed,
for any r-round protocol computing coin-tossing there is always an adversary that can bias the
outcome by at least Ω (1/r) (even assuming a broadcast channel). In the honest-majority case
without broadcast, the result of [18] rules out non-trivial n-party coin-tossing protocols (with any
bias δ < 1/2) that tolerate dn/3e corruptions, as long as all parties receive the output.

In this section, we consider three-party two-output coin tossing that tolerates one corruption;
the results of [16, 18] do not apply in this case since we assume an honest majority but not all
parties learn the output. A direct implication of Corollary 3.10 together with [16] shows that this
variation of coin tossing cannot be computed with negligible bias. Looking further into the proof,
it follows that if we are given a protocol that is secure against a malicious C (i.e., C cannot bias the
output coin), then Cleve’s attackers (on the implied two-party protocol) can be directly translated
to attackers for the three-party protocol, corrupting either A or B. Thus, either A or B can bias the
output by Ω (1/r), where r is the number of rounds in the protocol. However, the above argument
does not deal with protocols that allow a corrupt C to slightly bias the output. For example, one
might try to construct a protocol where no party (including C) can bias the output by more than
1/r2.

We next prove a stronger result, showing that this is impossible. In particular, letting A and B
execute the protocol of Moran, Naor, and Segev [35] results with an optimally fair protocol (up to
a constant factor). We first formalize the security notion of the task at hand.

Definition 3.13 (coin-tossing protocol). Let γ, δ : N 7→ N be such that γ (r) ≤ δ (r) for all r ∈ N,
and let t, `, n ∈ N be such that t, ` ≤ n. A polynomial-time n-party protocol π = (P1, . . . ,Pn) is a
(γ, δ, t, `)-bias coin-tossing protocol, if the following holds.

1. In an honest execution, parties P1, . . . ,P` output a common bit that is γ-close to a uniform
random bit. The rest of the parties do not output any value.

2. For any ppt adversary corrupting at most t parties, the honest parties in {P1, . . . ,P`} output
a common bit that is δ-close to a uniform bit.

We next state that in the three-party case, for every protocol there exists an adversary corrupt-
ing a single party that can bias the output by Ω(1/r).

Lemma 3.14. There exists c ∈ R+, for which there is no r-round three-party (0, 1/cr, 1, 2)-bias
coin-tossing protocol.

The proof follows the same lines as in Theorem 3.9. The difference is that the two-party
protocol does not necessarily compute coin tossing in an honest execution, but rather the parties
output a bit that is (1/cr)-close to a uniform bit, for some c ∈ R+. Here, we apply the result
of Agrawal and Prabhakaran [1], which generalizes the result of Cleve [16] to general two-party
sampling functionalities. Specifically, for the case described above, they showed that if c is large
enough, then there is an attacker biasing the output by at least 1/dr, where d < c.

Theorem 3.15 ([1, Theorem 3]). For all sufficiently large c > 0 there exists d < c, for which there
is no r-round two-party (1/cr, 1/dr, 1, 2)-bias coin-tossing protocol.

21

We next provide a sketch of the proof of Lemma 3.14.

Proof sketch of Lemma 3.14. Assume towards contradiction that π = (A,B,C) is an r-round
(0, 1/cr, 1, 2)-bias coin-tossing protocol, where c > 0 is sufficiently large as required from Theo-
rem 3.15. Consider the two-party protocol π̂ = (Â, B̂) constructed in Definition 3.11. First, observe
that in an honest execution Â and B̂ output a common bit that is (1/cr)-close to a uniform random
bit. Indeed, if this were not the case, then there exists an adversary Adv3, corrupting C in π, that
can bias the output of A and B by strictly more than 1/cr, contradicting the security of π. Next, by
Theorem 3.15 it follows that there exists d < c, for which π̂ cannot be an r-round (1/cr, 1/dr, 1, 2)-
bias coin-tossing protocol. Thus, there exists an adversary corrupting one of the two parties that
forces the output of the honest party to be (1/dr)-far from uniform. By Lemma 3.12, any adversary
for π̂ directly translates to an adversary for π corrupting either A or B, and has the same affect on
the outputs of honest parties. Hence, this results in an attacker that can bias the output in π by
at least 1/dr > 1/cr, yielding a contradiction. �

Using a standard player-partitioning argument, we can extend the impossibility of coin-tossing
to the n-party case, assuming at least two parties receive the output. Specifically, we show that
there exists an adversary biasing the output by Ω(1/r) if at least two parties receive the output,
and there exists an adversary biasing the output by 1/2 − 2−κ if at least three parties receive the
output.

Corollary 3.16. Fix n ∈ N. Then, there is no r-round n-party (0, 1/cr, dn/3e , 2)-bias coin-tossing
protocol, where c ∈ R+ is as in Lemma 3.14. Moreover, there is no n-party (0, 1/2−2−κ, dn/3e , 3)-
bias coin-tossing protocol.

Proof. Assume towards contradiction that the n-party protocol πn = (P1, . . . ,Pn) is an r-round
(0, 1/cr, dn/3e , 2)-bias coin-tossing protocol, where P1 and P2 receive the output. Partition the
parties into three sets A, B, and C each of size at most dn/3e such that P1 ∈ A and P2 ∈ B.

Next, consider the following three-party, two-output coin-tossing protocol π3 = (Q1,Q2,Q3).
In an honest execution the parties emulate the execution of πn, where Q1 emulates the parties in
A, party Q2 emulates the parties in B, and party Q3 emulates the parties in C. Party Q1 outputs
whatever P1 outputs and, similarly, party Q2 outputs whatever P2 outputs. Clearly, in an honest
execution Q1 and Q2 agree on common uniform random bit.

Any adversary Adv corrupting Q1, Q2, or Q3 in π3 directly translates to an adversary Adv′
corrupting either the set A, the set B, or the set C, respectively, in πn. That is, the view and
actions of Adv can be emulated in πn. Thus, π3 is an r-round three-party (0, 1/cr, 1, 2)-bias coin-
tossing protocol, contradicting Lemma 3.14.

For the “moreover” part, assume that P3 also receives the output in πn, and partition the parties
such that P3 ∈ C. Define π3 such that Q3 outputs whatever P3 outputs, then it follows that in
an honest execution of π3 all three parties agree on a random coin. By [18, Lem. 4.10] any single
corrupted party can force a bias of 1/2− 2−κ on the resulting coin. �

3.3 Impossibility Based on Privacy

In this section we present examples of functionalities that are C-split-brain simulatable yet are not
securely computable tolerating one corruption.

Claim 3.17. Let f = (f1, f2, f3) with f1, f2, f3 : {0, 1}3 7→ {0, 1} be a functionality where A’s
output is defined as f1(x, y, z) = (x ∧ y)⊕ z. Then f cannot be computed with 1-security.

22

Proof. Assume towards contradiction that π = (A,B,C) computes f with 1-security. By Theo-
rem 3.6 it must be computationally CSB simulatable. Since f has finite domain and range it
follows that it must be statistically CSB simulatable. That is, there exists distribution ensembles
Q = {Qκ,y,z2}κ∈{0,1}∗,y,z2∈{0,1} and R = {Rκ,z1,z2}κ∈{0,1}∗,z1,z2∈{0,1} such that{

(x ∧ y∗)⊕ z1
}
κ,x,y,z1,z2

S≡
{

(x ∧ y)⊕ z∗
}
κ,x,y,z1,z2

(3)

for every x ∈ {0, 1}, where y∗ ← Qκ,y,z2 and z∗ ← Rκ,z1,z2 . First observe that z∗ = z1 and y∗ = y

with overwhelming probability for all y, z1, z2 ∈ {0, 1}. Indeed, setting x = 0 yields z1
S≡ z∗, and

setting x = 1 yields y∗ ⊕ z1
S≡ y ⊕ z∗. Next, recall that the expression in Equation (3) corresponds

the output of A′ in the four-party protocol π′. Therefore the output of A′ will be (x ∧ y)⊕ z1 with
overwhelming probability, for every x, y, z1.

Now, consider an execution of π′ with x = 1, z1 = 0, and random y, z2 ← {0, 1}. Let Advsh
1 be

the semi-honest adversary for the four-party protocol π′ corrupting {A′,C′A}. We next show that
it is impossible to simulate it in the ideal world of f , contradicting Corollary 3.3. Since Advsh

1 is
semi-honest it can compute the output of A′, i.e., (x ∧ y)⊕ z1 = y with overwhelming probability.
However, in the ideal world of f , the simulator will either receive z2 or y ⊕ z2 from the trusted
party. Since y and z2 are uniformly random bits, the simulator can guess y with probability at
most 1/2. This contradicts Corollary 3.3. �

Using a similar argument, if we take f1(x, y, z) = (x⊕ y) ∧ z then f cannot be computed with
1-security.

Claim 3.18. Let f = (f1, f2, f3) with f1, f2, f3 : {0, 1}3 7→ {0, 1} be a functionality where A’s
output is defined as f1(x, y, z) = (x⊕ y) ∧ z. Then f cannot be computed with 1-security.

Proof sketch. Assuming otherwise, it follows that{
(x⊕ y∗) ∧ z1

}
κ,x,y,z1,z2

S≡
{

(x⊕ y) ∧ z∗
}
κ,x,y,z1,z2

for every x ∈ {0, 1}, where y∗ ← Qκ,y,z2 and z∗ ← Rκ,z1,z2 . Similarly to the proof of Claim 3.17,
we can show that y∗ = y and z∗ = z with overwhelming probability. This is done by separating
into cases based on the values of y and z1, and using the fact that y∗ is independent of z1, and z∗
is independent of y. �

4 A Class of Securely Two-Output Computable Functionalities
In this section, we present a class of two-output functionalities that can be securely computed
over point-to-point channels tolerating a single corruption. This class generalizes previously known
feasibility results in this setting, namely, 1-dominated functionalities [17, 18] and fair two-party
functionalities [4].

Our result shows that if f is a two-output (P,Q,R)-CSB simulatable functionality, then under
a simple condition that a related two-party functionality needs to satisfy, the problem is reduced to
the two-party case. Given a two-output three-party functionality f we define the following related
two-party functionality. Roughly, in addition to x and y, each of the two parties holds a possible
input for C, denoted z1 and z2. The real input of C is then chosen according to some predetermined
distribution that depends on z1 and z2, and output will be whatever is computed by f .

23

Definition 4.1. Let f : ({0, 1}∗)3 7→ ({0, 1}∗)2 be a two-output three-party functionality and let R =
{Rκ,z1,z2}z1,z2∈{0,1}∗ be an ensemble of efficiently samplable distributions over {0, 1}∗. Define the
two-party functionality hR : ({0, 1}∗ × {0, 1}∗)2 7→ ({0, 1}∗)2 as hR((x, z1), (y, z2)) = f (x, y, z∗),
where z∗ ← Rκ,z1,z2.

We now present a sufficient condition for f to be computable with 1-security. Roughly, we
require that there exist two distributions, for z1 and z2 respectively, such that the input z1 can
be sampled in a way that fixes the distribution of the output of hR to be independent of z2, and
furthermore, the same holds with respect to z2. Specifically, we prove the following.

Theorem 4.2. Let f : ({0, 1}∗)3 7→ ({0, 1}∗)2 be a computationally (P,Q,R)-CSB simulatable
two-output three-party functionality, and let hR : ({0, 1}∗ × {0, 1}∗)2 7→ ({0, 1}∗)2 be the two-party
functionality from Definition 4.1.

Assume there exist a (randomized) two-party functionality g : ({0, 1}∗)2 7→ ({0, 1}∗)2 and two
ensembles of efficiently samplable distributions R1 = {R1,κ}κ∈N and R2 = {R2,κ}κ∈N over {0, 1}∗,
such that for every x, y, z ∈ {0, 1}∗, and sufficiently large κ ∈ N, it holds that

g (x, y) ≡ hR ((x, z1), (y, z)) ≡ hR ((x, z), (y, z2)) ,

where z1 ← R1,κ and z2 ← R2,κ. Then, f can be computed with 1-security over secure point-to-point
channels in the (g, g.o.d.)-hybrid model.

Stated differently, if the two-party functionality g can be computed with 1-security then the
three-party f can be computed with 1-security as well.

A few notes are in place. First, the theorem can be stated in the information-theoretic setting.
Specifically, if f is assumed to be statistically (resp., perfectly) CSB simulatable, then the security
that is achieved is statistical (resp., perfect).

Second, even if all conditions in the theorem are met, it is not always the case that the two-party
functionality g can be securely computed. Indeed, the coin-tossing functionality satisfies all the
constraints; however, the functionality g turns out to be coin tossing as well, and hence cannot be
computed [16].

Third, observe that the class of functionalities satisfying the above conditions, contains the class
of 1-dominated functionalities [18]. Recall that a functionality is called 1-dominated if there exists
w∗ such that every party has an input that fixes the output to be w∗, e.g., for Boolean AND every
party can force the output to be 0 by using input 0. To see why Theorem 4.2 captures 1-dominated
functionalities as well, notice that if we take the ensembles P, Q, and R so that they will always
output the value that fixes the output of f , then any choice of R1 and R2 will do. Furthermore,
observe that the resulting two-party functionality g will always be the constant function, with the
output being w∗.

Another class of functions captured by the theorem is the class of fair two-party functionalities.
For such functionalities the distributions R, R1, and R2 can be degenerate, as z, z1, and z2 play
no role in the computation of f and hR. Additionally, taking Pκ,x,z1 and Qκ,y,z2 to sample x and
y with probability 1 will satisfy the CSB simulatability constraint.

Finally, the class of functionalities satisfying the conditions of Theorem 4.2 includes function-
alities that are not 1-dominated. An example of such functionalities are solitary-output function-
alities [31] (where only A receives the output). Observe that for such functionalities, the two-party
functionality g can always be securely computed assuming oblivious transfer exists [32]. For exam-
ple, the XOR function (x, y, z) 7→ x⊕ y ⊕ z is CSB simulatable since we can take the ensembles Q

24

and R to always output a uniform random bit. In addition, taking R1 and R2 to output a uniform
random bit as well will satisfy the conditions of Theorem 4.2.

Another example is the equality function Eq : ∅ × [m] × [m] 7→ {0, 1}, for some m, defined
as Eq (λ, y, z) = 1 if and only if y = z. Similarly to the XOR function, observe that Eq is CSB
simulatable since we can take Q and R to output a uniform random value from [m]. Additionally,
taking R1 and R2 to output a uniform random value from [m] as well will satisfy the conditions of
Theorem 4.2.

In Section 4.1 below, we give another example of a non-solitary functionality where both A and
B receive the same output, that can be securely computed.

The rest of the section is organized as follows: First, in Section 4.1 we provide a general con-
struction alongside the necessary and sufficient conditions for security to hold. Then, in Section 4.2
we prove the theorem.

4.1 The Protocol

We proceed to describe a simple generic protocol πR∗ for computing an arbitrary two-output
three-party functionality f . The protocol is parametrized by an ensemble of efficiently samplable
distributions R∗ = {R∗κ}κ∈N. Lemma 4.4 below describes the properties that f and R∗ must satisfy
in order for the protocol to be 1-secure.

To illustrate the main ideas behind the protocol and its proof of security, we first give a simple
example. Consider the two-output functionality f = (f1, f2), where f1, f2 : {0, 1, 2} × {0, 1} ×
{0, 1} 7→ {0, 1}2 given by the following two matrices

MA
0 = MB

0 =

0 1
1 0
1 1

 MA
1 = MB

1 =

1 0
0 1
1 1

Stated differently, we let f1 ≡ f2 and let MA

z (x, y) = f1(x, y, z), where A’s input determines a row,
B’s input determines a column, and C’s input determines the matrix. The protocol follows similar
lines to that of [18]. First, the parties compute f with fairness (this can be done over point-to-point
channels by the honest-majority assumption [17]). If the computation fails, then A and B compute
the following symmetric randomized two-party functionality

1/2 1/2
1/2 1/2
1 1

That is, if A’s input is 2 the output is 1; otherwise, the output is a uniform bit. Note that this
two-party functionality can be computed with guaranteed output delivery [4]. Clearly, as B and
C have no affect over the distribution of the output of the two-party functionality, any adversary
corrupting either party can be simulated by sending a uniformly random bit to the trusted party.
The output of the honest parties will be 1 if A inputs 2 and a uniform bit otherwise, regardless of
the other honest party’s input – the same distribution is induced by the simulator for the two-party
functionality. To simulate a corrupt A in the three-party protocol, the simulator will send input
2 with the same probability p that the two-party simulator sends input 2 to the trusted party;

25

otherwise, the simulator will send a uniform random bit. Observe that regardless of the input of
C, the output of B will be 1 with probability 1

2(1 + p). Similarly to the previous cases, this is the
same distribution as the one induced by the simulator for the two-party functionality.

We now generalize the above ideas. We next present the protocol in the {(f, fair), (fR∗ , g.o.d.)}-
hybrid model.
. .
Protocol 4.3 (πR∗).

Private input: party A holds x ∈ {0, 1}∗, party B holds y ∈ {0, 1}∗, and party C holds z ∈ {0, 1}∗.

Common input: the parties hold the security parameter 1κ.

1. Each party invokes (f, fair) with its input. Let w1 be the output of A and w2 the output of B.

2. If w1, w2 6= ⊥ then A outputs w1 and B outputs w2.

3. Otherwise, A and B invoke (fR∗ , g.o.d.) on their inputs x and y, respectively, and output the
result.

. .

We next intuitively explain the properties that f andR∗ must satisfy for πR∗ to be secure. Since
there are no messages exchanged between the parties, constructing a simulator amounts to defining
an appropriate distribution over the inputs of the corrupted parties. In particular, simulating a
corrupt C can be easily simulated by either sending the input it used when calling (f, fair), or
sampling according to R∗κ. Next, consider a corrupted A or B. Similarly to the above example, we
first take the distribution given by the simulator for the two-party functionality fR∗ , and construct
a distribution for the three-party functionality f , so that the outputs of the honest party in both
ideal-worlds are identically distributed, regardless of C’s inputs. That is, A and B can each sample
an input for the three-party functionality f in such a way that the distribution over the output is
the same as if C sampled its input according to R∗κ.

Lemma 4.4. Let f : ({0, 1}∗)3 7→ ({0, 1}∗)2 be a two-output three-party functionality, and let R∗
be an ensemble of efficiently samplable distributions over {0, 1}∗. Assume that the following holds.

1. There exists an ensemble of efficiently samplable distributions P∗ = {P ∗κ,x}κ∈N,x∈{0,1}∗ over
{0, 1}∗ such that {

fR∗,2 (x, y)
}
κ,x,y,z

C≡
{
f2 (x∗, y, z)

}
κ,x,y,z

,

where x∗ ← P ∗κ,x.

2. There exists an ensemble of efficiently samplable distributions Q∗ = {Q∗κ,y}κ∈N,y∈{0,1}∗ over
{0, 1}∗ such that {

fR∗,1 (x, y)
}
κ,x,y,z

C≡
{
f1 (x, y∗, z)

}
κ,x,y,z

,

where y∗ ← Q∗κ,y.

Then, πR∗ computes f with 1-security in the {(f, fair), (fR∗ , g.o.d.)}-hybrid model.

26

Proof. Clearly, πR∗ is correct. Next, observe that C only sends its input to (f, fair) but does not
receive any output from the functionalities and does not send/receive any messages to other parties.
Thus, the protocol is secure against any malicious adversary corrupting C.

We next show how to simulate any malicious adversary Adv1 corrupting A. The case of an
adversary corrupting B follows from an analogous argument. The simulator Sim1 will first query
Adv1 to receive its input x′ to (f, fair).

• If x′ 6= abort, then Sim1 sends x′ to the trusted party.

• Otherwise, Adv1 chooses an input x′′ ∈ {0, 1}∗ to send to fR∗ .5 The simulator samples x∗
according to the distribution P ∗κ,x′′ , that is guaranteed to exist by Item 1 of the lemma (recall
that this distribution efficiently samplable) and sends it to the trusted party.

In both cases, Sim1 forwards the output w1 received from the trusted party to Adv1, outputs
whatever Adv1 outputs, and halts.

We now prove that the simulator Sim1 correctly simulates Adv1, that is{
IDEALf,Sim1(aux) (κ, (x, y, z))

}
κ,x,y,z,aux

C≡
{

REALπ,Adv1(aux) (κ, (x, y, z))
}
κ,x,y,z,aux

.

Since the view of the adversary includes only the outputs received from (f, fair) and (fR∗ , g.o.d.),
it suffices to show that the output of the honest party B in the ideal computation of f with Sim1 is
identically distributed as in the real computation of πR∗ with Adv1. Clearly, if the adversary sent
x′ 6= abort to (f, fair) then the outputs in both worlds are identically distributed. Now, conditioned
on x′ = abort it holds that in an execution of π with Adv1 the output of B is fR∗,2 (x′′, y), whereas in
the ideal computation of f with Sim1 the output of B is f2 (x∗, y, z) with x∗ ← P ∗κ,x′′ ; computational
indistinguishability follows from Item 1. �

4.2 Proof of Theorem 4.2

The protocol of Rabin and Ben-Or [37] can compute every functionality with information-theoretic
security over secure point-to-point channels and an additional broadcast channel, assuming an hon-
est majority. Combining with [22, 23, 17], it follows that (f, fair) can be computed with information-
theoretic security over secure point-to-point channels, tolerating one corruption. Thus, to prove
Theorem 4.2 it suffices to show that there exists a distribution ensemble R∗, for which πR∗ satisfies
Items 1 and 2 of Lemma 4.4. The proof follows from the following observation. If we sample
x∗ ← Pκ,x,z1 and z∗ ← Rκ,z1,z then by CSB simulatability f(x∗, y, z) is indistinguishable from
f(x, y, z∗). Furthermore, if z1 ← R1,κ, then by the assumption over R1,κ it follows that f(x, y, z∗)
is equivalent to fR∗ (x, y). Therefore taking R∗κ ≡ Rκ,z1,z (for some arbitrary z ∈ {0, 1}∗) and
P ∗κ,x ≡ Pκ,x,z1 will satisfy Item 1.

Proof of Theorem 4.2. In the following proof, we let Z1 be a random variable distributed accord-
ing to R1,κ. We choose the distribution ensemble R∗ such that fR∗ and g are equivalent, i.e.,
fR∗ (x, y) ≡ g(x, y), for every κ ∈ N and x, y ∈ {0, 1}∗. Recall that g(x, y) = hR ((x, Z1), (y, z)).
Therefore, taking R∗κ ≡ Rκ,Z1,z for some arbitrary z ∈ {0, 1}∗ implies that for every x, y ∈ {0, 1}∗
it holds that

fR∗ (x, y) ≡ f(x, y, z∗) ≡ hR ((x, Z1), (y, z)) ≡ g(x, y),
5If Adv1 sends an invalid value or doesn’t send any value, the simulator sets x′′ to be the default value used by

the ideal functionality of fR∗ .

27

where z∗ ← R∗κ. Thus g is equivalent to fR∗ , hence πR∗ computes g.
To prove security, we next show that Item 1 holds. Item 2 follows from an analogous argument.

We show that there exists an ensemble of efficiently samplable distributions P∗ = {P ∗κ,x}κ∈N,x∈{0,1}∗
such that {

fR∗,2 (x, y)
}
κ,x,y,z

C≡
{
f2 (x∗, y, z)

}
κ,x,y,z

,

where x∗ ← P ∗κ,x. For every x ∈ {0, 1}∗ we define P ∗κ,x ≡ Pκ,x,Z1 . Since f is computationally
(P,Q,R)-C-split-brain simulatable, letting x∗ ← P ∗κ,x and z∗ ← Rκ,Z1,z, implies that{

f2 (x∗, y, z)
}
κ,x,y,z

C≡
{
f2 (x, y, z∗)

}
κ,x,y,z

.

Since we let R∗κ ≡ Rκ,Z1,z, it follows that{
f2 (x, y, z∗)

}
κ,x,y,z

≡
{
fR∗,2 (x, y)

}
κ,x,y,z

,

concluding the proof of the theorem. �

Bibliography
[1] S. Agrawal and M. Prabhakaran. On fair exchange, fair coins and fair sampling. In 32nd Annual

International Cryptology Conference (CRYPTO), part I, pages 259–276, 2013.

[2] B. Alon and E. Omri. Almost-optimally fair multiparty coin-tossing with nearly three-quarters ma-
licious. In Proceedings of the 14th Theory of Cryptography Conference(TCC 2016-B), part I, pages
307–335, 2016.

[3] G. Asharov. Towards characterizing complete fairness in secure two-party computation. In Proceedings
of the 11th Theory of Cryptography Conference(TCC), pages 291–316, 2014.

[4] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete characterization of fairness in se-
cure two-party computation of Boolean functions. In Proceedings of the 12th Theory of Cryptography
Conference(TCC), part I, pages 199–228, 2015.

[5] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures (extended ab-
stract). In 17th International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 591–606, 1998.

[6] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with a dishonest majority. Journal
of Cryptology, 28(3):551–600, 2015.

[7] A. Beimel, I. Haitner, N. Makriyannis, and E. Omri. Tighter bounds on multi-party coin flipping via
augmented weak martingales and differentially private sampling. In Proceedings of the 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 838–849, 2018.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 1–10, 1988.

[9] M. Blum. Coin flipping by telephone. In 1st Annual International Cryptology Conference (CRYPTO),
pages 11–15, 1981.

28

[10] M. Borderding. Levels of authentication in distributed agreement. In 10th International Workshop on
Distributed Algorithms WDAG, pages 40–55, 1996.

[11] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of the ACM, 32
(4):824–840, 1985.

[12] N. Buchbinder, I. Haitner, N. Levi, and E. Tsfadia. Fair coin flipping: Tighter analysis and the many-
party case. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2580–2600, 2017.

[13] C. Cachin and J. Camenisch. Optimistic fair secure computation. In 19th Annual International Cryp-
tology Conference (CRYPTO), pages 93–111, 2000.

[14] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13
(1):143–202, 2000.

[15] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended ab-
stract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
11–19, 1988.

[16] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract).
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369,
1986.

[17] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure multiparty computation.
Journal of Cryptology, 30(4):1157–1186, 2017.

[18] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Characterization of secure multiparty computation
without broadcast. Journal of Cryptology, 31(2):587–609, 2018.

[19] R. Cohen, I. Haitner, E. Omri, and L. Rotem. From fairness to full security in multiparty computation.
In Proceedings of the 11th Conference on Security and Cryptography for Networks (SCN), pages 216–234,
2018.

[20] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288–323, 1988.

[21] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus prob-
lems. Distributed Computing, 1(1):26–39, 1986.

[22] M. Fitzi, N. Gisin, U. M. Maurer, and O. von Rotz. Unconditional byzantine agreement and multi-party
computation secure against dishonest minorities from scratch. In 21st International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages 482–501, 2002.

[23] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. D. Smith. Detectable byzantine agreement
secure against faulty majorities. In Proceedings of the 21th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 118–126, 2002.

[24] M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete primitives for secure multi-
party computation. Journal of Cryptology, 18(1):37–61, 2005.

[25] J. A. Garay, A. Kiayias, R. M. Ostrovsky, G. Panagiotakos, and V. Zikas. Resource-restricted cryp-
tography: Revisiting MPC bounds in the proof-of-work era. In 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), part II, pages 129–158,
2020.

29

[26] O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applications. Cambridge University
Press, 2004.

[27] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC), pages 218–229, 1987.

[28] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party computation.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 413–422,
2008.

[29] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping protocol. SIAM Journal
on Computing, 46(2):479–542, 2017.

[30] I. Haitner, N. Makriyannis, and E. Omri. On the complexity of fair coin flipping. In Proceedings of the
16th Theory of Cryptography Conference(TCC), part I, pages 539–562, 2018.

[31] S. Halevi, Y. Ishai, E. Kushilevitz, N. Makriyannis, and T. Rabin. On fully secure MPC with solitary
output. In Proceedings of the 17th Theory of Cryptography Conference(TCC), part I, pages 312–340,
2019.

[32] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (STOC), pages 20–31, 1988.

[33] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[34] N. Makriyannis. On the classification of finite Boolean functions up to fairness. In Proceedings of the
9th Conference on Security and Cryptography for Networks (SCN), pages 135–154, 2014.

[35] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. Journal of Cryptology, 29(3):491–513,
2016.

[36] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, 1980.

[37] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), pages 73–85, 1989.

[38] A. C. Yao. Protocols for secure computations (extended abstract). In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 160–164, 1982.

A Generalized Properties of Split-Brain Simulatable Functionali-
ties

In this section, we provide generalizations of the properties of C-split-brain functionalities from
Section 3.1.1.

Proposition A.1 (Generalization of Proposition 3.7). Let f = (f1, f2, f3) where f1, f2, f3 :
({0, 1}∗)3 7→ ({0, 1}∗)3, be a computationally CSB simulatable three-party functionality such that
f1 = f2. Assume there exist inputs x, y, z1, z2 ∈ {0, 1}∗, and two distribution ensembles W1 =

30

{W1,κ}κ∈N, W2 = {W2,κ}κ∈N over {0, 1}∗, such that f1(x, ·, z1) ≡ W1,κ and f1(·, y, z2) ≡ W2,κ, for
all sufficiently large κ ∈ N. Then W1

C≡ W2.

Proof. Let P, Q, and R, be the three ensembles guaranteed from the CSB simulatability of f .
Then

{f1(x, y∗, z1)}κ∈N,x,y,z1,z2∈{0,1}∗
C≡ {f1(x∗, y, z2)}κ∈N,x,y,z1,z2∈{0,1}∗ ,

where x∗ ← Pκ,y,z2 and y∗ ← Qκ,x,z1 . The claim follows from the assumption f1(x, ·, z1) ≡ W1,κ
and f1(·, y, z2) ≡W2,κ for large enough κ ∈ N. �

Proposition A.2 (Generalization of Proposition 3.8). Let f : ({0, 1}∗)3 7→ ({0, 1}∗)3 be a com-
putationally (P,Q,R)-CSB simulatable 2-output 3-party functionality. Assume there exist inputs
x, z ∈ {0, 1}∗ and a distribution ensemble W = {Wκ}κ∈N over {0, 1}∗ such that f(x, ·, z) ≡Wκ for
all κ ∈ N. Then there exists a sequence of inputs {x∗κ}κ∈N such that f(x∗κ, ·, ·) ≡Wκ for all κ ∈ N.
Similarly, assuming there exist inputs y, z ∈ {0, 1}∗ such that f(·, y, z) ≡ Wκ for all κ ∈ N, then
there exists a sequence of inputs {y∗κ}κ∈N such that f(·, y∗κ, ·) ≡ Wκ for all κ ∈ N. Moreover, if f
and W are independent of κ then the sequences are constant.

Proof. We prove the first part of the claim. The second part is done using an analogous argument.
Fix inputs x, z1 ∈ {0, 1}∗ such that f(x, y, z1) = Wκ for all κ ∈ N and y ∈ {0, 1}∗. Since f is
perfectly CSB simulatable, it follows that for every κ ∈ N and y, z2 ∈ {0, 1}∗

f(x∗, y, z2) ≡ f(x, y∗, z1) ≡Wκ,

where x∗ ← Pκ,x,z1 and y∗ ← Qκ,y,z2 . Since x∗ is sampled independently of y and z2, it follows
that f(x∗, y, z2) ≡Wκ, for any x∗ ∈ Supp (Pκ,x,z1) and any y, z2 ∈ {0, 1}∗ concluding the proof. To
see the “moreover” part, observe that if f is independent of κ, it follows that we can pick P to be
independent of κ and hence we can choose the same x∗. �

A.1 Split-Brain Simulatability as a System of Linear Equations

We next present a different way to view C-split-brain simulatability. Specifically, we write the
condition for CSB simulatability in terms of a system of linear equations. We start with some
notations.

Notations. For a vector v, we use either vi or v(i) for its ith coordinate. A vector p ∈ Rn is called
a probability vector, if all of its entries are non-negative and∑n

i=1 pi = 1. For a distribution P over
a domain D ∈ N of size n, we write p for the probability vector associated with P , that is pi =
PrS←P [S = i] for all i ∈ D. The distribution ensemble P, Q, andR will be replaced with a collection
of probability vectors {px,z1 ∈ R|X |}x∈X ,z1∈Z , {qy,z2 ∈ R|Y|}y∈Y,z2∈Z , and {rz1,z2 ∈ R|Z|}z1,z2∈Z ,
respectively, representing those distributions. We next describe a way to view the functionality
f and CSB simulatability in linear algebraic terms. For simplicity, we assume that f has a finite
domain and range, and is perfectly CSB simulatable, where the ensembles are independent of κ.

31

Symmetric Boolean functionalities. Let us start with Boolean functionalities f = (f1, f2, f3),
where f1, f2, f3 : X ×Y×Z 7→ {0, 1} and f1 ≡ f2. We denote it as a single function f . We associate
with f a collection of |Z| matrices {Mz ∈ R|X |×|Y|}z∈Z defined as Mz(x, y) = Pr [f(x, y, z) = 1].
That is, we can think of the functionality as if C chooses a matrix, A chooses a row, and B chooses a
column, and the entries represent the probability that the output is 1. Perfectly CSB simulatability
asserts that for all x ∈ X , y ∈ Y, and z1, z2 ∈ Z, it holds that

Prx∗←Px,z1
[f(x∗, y, z2) = 1] = Pry∗←Qy,z2

[f(x, y∗, z1) = 1] = Prz∗←Rz1,z2
[f(x, y, z∗) = 1]. (4)

Observe that the left term can be written as pTx,z1 ·Mz2 (·, y), the middle term asMz1 (x, ·) ·qy,z2 ,
and the right term as ∑z∗∈Z rz1,z2(z∗) · Mz∗ (x, y). Next, define the square |X | × |X | matrix
Pz1 (x, x∗) ..= px,z1(x∗) and the square |Y| × |Y| matrix Qz2 (y, y∗) ..= qy,z2(y∗). Additionally,
we define the |X | × |Y| matrix M̃z1,z2(x, y) ..= ∑

z∗∈Z rz1,z2(z∗) ·Mz∗ (x, y). Then, Equation (4) can
be written as

Pz1Mz2 = Mz1Qz2 = M̃z1,z2 ,

for all z1, z2 ∈ Z.

Asymmetric non-Boolean functionalities. We next generalize the above discussion to a
broader class of functionalities, namely, asymmetric non-Boolean functionalities. This time, we
associate two collection of matrices, one will represent the output of A and the other the output
of B (recall that we ignore the output of C). Furthermore, the matrices will be indexed with a
possible output w, to represent the probability that w is the output. Formally, we associate the
2 · |Z| · |W| matrices {MP

z,w ∈ R|X |×|Y|}z∈Z,w∈W,P∈{A,B}, where each is defined as

MA
z,w(x, y) = Pr [f1(x, y, z) = w] and MB

z,w(x, y) = Pr [f2(x, y, z) = w] .

Perfectly CSB simulatability asserts that for all x ∈ X , y ∈ Y, z1, z2 ∈ Z, and w1, w2 ∈ W, it holds
that

Pry∗←Qy,z2
[f1(x, y∗, z1) = w1] = Prz∗←Rz1,z2

[f1(x, y, z∗) = w1]. (5)

and that

Prx∗←Px,z1
[f2(x∗, y, z2) = w2] = Prz∗←Rz1,z2

[f2(x, y, z∗) = w2]. (6)

Observe that the left-hand side of Equation (5) is equal to

MA
z1,w1(x, ·) · qy,z2 ,

and left-hand side of Equation (6) is equal to

pTx,z1 ·M
B
z2,w2 (·, y) .

As for the right-hand side, notice that in Equation (5) it equals to∑
z∗∈Z

rz1,z2 (z∗) ·MA
z∗,w1 (x, y) ,

32

and in Equation (6) it equals to ∑
z∗∈Z

rz1,z2 (z∗) ·MB
z∗,w2 (x, y) .

We define the matrices Pz1 and Qz2 as before, and for every P ∈ {A,B} define the |X | × |Y| matrix
M̃P
z1,z2,w (x, y) := ∑

z∗∈Z rz1,z2 (z∗) ·MP
z∗,w1 (x, y). Then Equation (5) can be written as

MA
z1,w1Qz2 = M̃A

z1,z2,w1 ,

and Equation (6) can be written as

Pz1M
B
z2,w2 = M̃B

z1,z2,w2 ,

for all z1, z2 ∈ Z and w1, w2 ∈ W.

33

	Introduction
	Split-Brain Simulatability
	Our Results
	Our Techniques
	Additional Related Work

	Preliminaries
	Notations
	The Model of Computation

	Impossibility Results
	The Four-Party Protocol
	Server-Aided Two-Party Computation
	Impossibility Based on Privacy

	A Class of Securely Two-Output Computable Functionalities
	The Protocol
	Proof of Theorem 4.1

	Bibliography
	Generalized Properties of Split-Brain Simulatable Functionalities
	Split-Brain Simulatability as a System of Linear Equations

