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Abstract

Biometric databases collect entire countries worth of citizens’ sensitive information with few crypto-
graphic protections. The critical required functionality is proximity search, the ability to search for all
records close to a queried value, that is within a bounded distance. Biometrics usually operate in high
dimensional space where an exponential number (in the dimension) of values are close.

This work builds searchable encryption that supports proximity queries for the Hamming metric. The
Hamming metric is frequently used for the iris biometric. Searchable encryption schemes have leakage,
which is information revealed to the database server such as identifiers of records returned which is known
as access pattern leakage.

Prior work on proximity searchable encryption falls into two classes: 1) Li et al. (INFOCOM 2010)
and Boldyreva and Chenette (FSE 2014) support only a polynomial number of close values, 2) Kim et
al. (SCN 2018) leak the distance between the query and all stored records. The first class is not feasible
due to the exponential number of close values. The second class allows the server to compute geometry
of the space, enabling attacks akin to those on nearest neighbor schemes (Kornaropoulos et al. IEEE
S&P 2019, 2020).

We build proximity search out of a new variant of inner product encryption called multi-point inner
product encryption (MPIPE). MPIPE is built from function-hiding, secret-key, inner product predicate
encryption (Shen, Shi, and Waters, TCC 2009). Our construction leaks access pattern and when two
database records are the same distance from the queried point.

In most applications of searchable encryption the data distribution is not known a priori, making it
prudent to consider leakage in a variety of settings. However, biometrics’ statistics are well studied and
static. Frequently in biometric search at most one record is returned. In this setting, access pattern
leakage and the additional leakage of distance equality is unlikely to be harmful.

We also introduce a technique for reducing key size of a class of inner product encryption schemes
based on dual pairing vector spaces. Our technique splits these vector spaces into multiple, smaller
components, yielding keys that are a linear number of group elements instead of quadratic. We instantiate
this technique on the scheme of Okamoto and Takashima (Eurocrypt, 2012) and show security under the
same assumption (decisional linear).

Keywords: Searchable encryption, biometrics, proximity search, inner product encryption.

1 Introduction

The Aadhaar system in India links a citizen’s biometrics with a unique 12 digit number with over 1 billion
numbers issued [Dau14]. Argentina and Kenya also hold biometric databases of their population [Fou]. The
Tribune newspaper purchased full access to Aardhar database for $13 [Kha18]. Access to these databases
can prove to be extremely damaging to citizens. Biometrics, by their very definition, cannot be updated if
an adversary learns them. As we can see access is not tightly controlled for many existing databases. These
databases need cryptographic protections targeted at supporting searching over biometric data. We focus
on constructing a specific searchable encryption scheme for biometric databases.
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In searchable encryption, a client C wishes to outsource data to a semi-honest server S. S is provided
with an index I (and encrypted records). The goal of searchable encryption is for S to be able to return
the appropriate records while minimizing S’s knowledge, called leakage, about the stored data or queries.
Searchable encryption techniques exist for keyword equality [SWP00], set operations over keyword equal-
ity [CJJ+13, PKV+14], and selection, projection and cross product [KM18]. See Bösch et al. [BHJP14] and
Fuller et al. [FVY+17] for reviews of the area.

There are two primary general approaches to searchable encryption. Property preserving encryption
retains compatibility with existing database indexing mechanisms by retaining a property of data, such as
equality [BFOR08], but destroying other structure. The second is called structured encryption which creates
a new indexing mechanism that requires server side changes. Searchable encryption has a complicated history
with constructions and attacks based on the leakage starting with the work of Cash et al. [CGPR15]. Property
preserving encryption is subject to much stronger attacks, in the case of order preserving encryption, Grubbs
et al. fully reconstructed databases up to a symmetry [GSB+17]. We focus on structured encryption.

For biometric databases, we wish to support searches for values that are close to a queried value. Suppose
that each record ri consists of only some biometric value. The goal is to be able to create an index I and
tokens tkr∗ such that the server S given (I, tkr∗) can compute the set Wr∗ = {ri|D(ri, r

∗) ≤ t} where D
is a distance metric and t is some defined distance parameter.1 We call this proximity search and focus on
building searchable encryption for proximity search.

Prior approaches to proximity search Li et al. [LWW+10], Wang et al. [WMT+13] and Boldyreva and
Chenette [BC14] reduced proximity search to keyword equality search. These works propose two complimen-
tary approaches. The first when adding a record ri to a database, also inserts all close values as keywords,
that is {rj |D(ri, rj) ≤ t} are added as keywords associated to ri. The second approach requires a searchable
encryption scheme that supports disjunctive search. It inserts just ri, but when searching for r∗ searches for
the disjunction ∨rj |D(rj ,r∗)≤t rj . Either approach can be instantiated using a searchable encryption scheme
that supports disjunction over keyword equality (inheriting any leakage). However, for biometrics, the num-
ber of keywords ∨ri|D(ri,r∗)≤t{ri} usually grows exponentially in t. In existing disjunctive schemes, the size
of the query grows with the size of the disjunction [FVY+17], making this approach only viable for con-
stant values of t. Looking ahead, our approach can be viewed as a disjunction of distances, the size of this
disjunction at most n.

Kim et al. [KLM+18] use function hiding inner product encryption (IPE) [BJK15] to store records on
the server. Inner product encryption creates a system of ciphertexts and tokens that when combined allow
computation of an inner product. More precisely, one encrypts values ri into cri which are stored on the
server, then for a value r∗ one creates a token tkr∗ . Given a ciphertext cri and token tkr∗ , the server can
compute 〈ri, r∗〉. Function hiding means that it is hard for the server to learn the value r∗.

Kim et al. observe for binary vectors with the Hamming metric (the number of positions that differ) that
if records are encoded as vectors in {−1, 1} then D(ri, r

∗) = (n − 〈ri, r∗〉)/2 for |ri| = n. Thus, revealing
inner product allows computation of distance. By design, the server can infer the distance of every record
with respect to the query. This allows the server to establish the geometry of the space by correlating
distances across queries. Recent work has shown how to attack nearest neighbor systems using similar
information [KPT19, MT19, KPT20].

Kuzu et al.’s [KIK12] solution relies on locality sensitive hashes [IM98]. A locality sensitive hash ensures
that close values have a higher probability to produce collisions than values that are far apart. For some
value ri, the client samples k locality sensitive hashes and computes h1(ri), · · · , hk(ri). The client then
inserts h1(ri), · · · , hk(ri) as keywords for the record ri in the database. When querying for value r∗ the
client computes the hashes of r∗, h1(r∗), · · · , hk(r∗). The server then returns every record for which at least
one hash matches. Thus, a scheme can be built from any scheme supporting disjunctive keyword equality,
inheriting any leakage. Since S learns the number of matching locality sensitive hashes for each record (which
is expected to be more than 0), the number of matching locality sensitive hashes is a proxy for the distance
between the query value and the records. More matching locality sensitive hashes implies smaller distance.
With some error, this allows the server to establish the distance between each record and the query, again
enabling the server to establish geometry.

1Only points within the distance t are returned, not the closest point or k-closest points as in nearest neighbor sys-
tems [RKV95].
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The existence of leakage means that to understand a searchable encryption scheme requires understanding
the cryptographic guarantees, attacker posture, and data. This whole system perspective is at odds with
the goal of building general purpose database systems. However, the statistical properties of biometric data
are well understood and stable over time. Thus, they represent a prime target for developing searchable
encryption using this whole system approach.

As we discuss in Section 3, passive leakage abuse attacks rely on correlating records that are jointly
returned by some tkr over a sequence of queries. In good biometric systems the goal is to return at most
1 record. Thus, we establish the goal of building a proximity searchable encryption system that leaks no
information under the condition that at most one record is returned with each query. As discussed in
Section 3, this is feasible for the iris biometric.

Our Contribution The primary contributions of this work are introducing:

1. A proximity searchable encryption scheme built on function-hiding, secret-key, inner-product predicate
encryption (first constructed by Shen et al. [SSW09]), that we call MPIPE for multi-point inner product
encryption.2 As there are many variants of inner product encryption or IPE, we use IPEfh,sk,pred to
denote the function-hiding, secret-key, predicate variant (similarly MPIPEfh,sk,pred).

3 For a biometric
of dimension n, our ciphertexts are a single IPE ciphertext on dimension n + 1, our tokens consist of
(t+ 1) IPE tokens on dimension n+ 1.

Our scheme has access pattern leakage. In addition, our scheme leaks if two records are the same
distance from the queried record. Since biometric data is usually far apart, a system can be tuned to
rarely return multiple records, establishing a tradeoff between true accept rate and leakage. Section 3
discusses this tradeoff when 1) queries are assumed to have the same distribution as the biometric and
2) when queries are assumed to be arbitrarily distributed.

2. A transform to reduce key sizes of inner product encryption schemes based on dual pairing vector
spaces while retaining the same functionality. This transformation allows for a reduction of key sizes
in IPE from quadratic in the dimension to linear without effecting the asymptotic size of ciphertexts
or tokens. Our transform builds on recent work in multi-input IPE [AGRW17, DOT18] but is from
IPE to IPE, only borrowing ideas. A similar technique can also be used to build an unbounded IPE
scheme [TT20].

Proximity Searchable Encryption Scheme from IPE In Section 4, we introduce Multi-point inner
product encryption (MPIPE) that allows for testing if the Hamming distance is in a set without leaking the
distance. This scheme yields a searchable encryption scheme that supports proximity testing (within distance
t). We first define MPIPEfh,sk,pred and show it can be built from IPEfh,sk,pred. We then show that MPIPEfh,sk,pred

suffices to construct a proximity searchable encryption scheme. Before describing our MPIPE primitive we
introduce notation for IPEfh,sk,pred. IPEfh,sk,pred allows one to generate ciphertexts c~x for a plaintext value ~x
and tokens tk~y for a value ~y. An evaluator can compute Decrypt(c~x, tk~y) which outputs 1 if 〈c~x, tk~y〉 = 0
and 0 otherwise. The evaluator should learn nothing about values ~x and ~y other than whether their inner
product is 0. We build MPIPEfh,sk,pred in two steps:

1. IPEfh,sk,pred implies the ability to test if the inner product is equal to some other value (without revealing
this value). This can be achieved by adding the value as the n + 1th element to the first vector and
adding a -1 element to the second vector. That is,

〈~x || -1, ~y || d〉 = 0⇔ 〈~x, ~y〉 = d.

2. We then build MPIPEfh,sk,pred by testing multiple points by creating t different tokens. Our method
minimizes ciphertext size, generating just a single ciphertext with a -1 appended. It then generates t
tokens corresponding to distances d1, ..., dt:

tk′y,{d1,...,dt} = π
(
tky||d1 , tky||d2 , ...., tky||dt

)
.

2We use public key and secret key and token in place of master public key, master secret key, and function key respectively.
3The predicate property restricts information learned by the server, only allowing them to learn when the inner product is

0, rather than learning the inner product.
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In the above π is a random permutation that hides which distance matched. This permutation is
freshly sampled with the creation of each tk′. Decryption proceeds by calling the IPE decryption for
all t tokens returning 1 if and only if exactly one IPE decryption returns 1. In this construction the
adversary can learn if two values, x1 and x2, match the same point in the set {d1, ..., dt} That is, the

adversary learns the predicate D(x1, y)
?
= D(x2, y), otherwise called distance equality leakage. One can

switch the role of ciphertexts and tokens if one expects the volume of queries to be much larger than
the volume of the database.

This leads us to our first informal theorem (formally Theorem 1).

Theorem (IPE to MPIPE). Given a secure construction of IPEfh,sk,pred there is a secure construction of
MPIPEfh,sk,pred subject to leaking the equality pattern of matched distances.

Using Kim et al.’s observation [KLM+18] on the equivalence between inner product and binary Hamming
distance implies that MPIPEfh,sk,pred yields a proximity searchable encryption (see Theorem 3):

Theorem (IPE yields proximity searchable encryption). Given a secure construction of IPEfh,sk,pred there
is a proximity searchable encryption scheme that leaks only 1) number of returned records and identifiers
(access pattern) and 2) whether two records are the same distance from queried value.

MPIPE Variant While MPIPE hides the value of the distance matched, it still leaks when two ciphertexts
match the same distance for a token. We mention a variant of MPIPEfh,sk,pred which eliminates leakage when
distances match on a single token and is directly built from IPEfh,sk,pred. We believe it is not trivial to extend
it beyond a single token and leave it open for future work.

This variant is less efficient than the above, it further extends the dimension required of the underlying
IPE. Let π~x, π~y be random permutations. This variant concatenates the values of the range to the first vector
generating an IPE token for ~y′ = (~y||π~y(d1||d2||...||dt)). It then generates multiple IPE ciphertexts as follows:

ct~x′ = π~x
(
ct~x||−1||0||....||0, ct~x||0||−1||....||0, ...., ct~x||0||0||...||−1

)
.

Similarly to the previous construction, during decryption, MPIPE calls the IPE decryption algorithm on
the token and each ciphertext and returns 1 only when some IPE decryption returns 1. For biometrics of
dimension n, calls are made to a dimension (n+ t+ 1) IPEfh,sk,pred scheme with MPIPE ciphertext consisting
of (t+ 1) IPE ciphertexts.

Reducing Key Size in IPE Our second contribution is a technique for reducing key size in IPE variants.
To introduce the idea, we first need to introduce an object used in many IPE systems called dual pairing vector
space (DPVS). DPVSs are used in bilinear groups to build IPE. A bilinear group is a pair of groups (G,GT )
equipped with a group operation and an additional pairing operation that allows for a single multiplication
(we assume all groups are of prime order of sufficient size throughout). That is, there is a pairing e(xg, yg) =
e(g, g)xy for generator g ∈ G. (Following the notation of Okamoto and Takashima we use additive notation
for the source group and multiplicative in the target group [OT12].) In a DPVS system, there are two bases

B and B∗. These bases have the property that for ~bi ∈ B and ~b∗j ∈ B∗ then

〈~bi,~b∗j 〉 =

{
1 i = j

0 otherwise
.

The high-level idea of a scheme is to sample B and B∗ randomly (subject to the basis restrictions above),
and then project ~x and ~y into the bases B and B∗ and encode them in G. When computing the pairing
between one computes 〈xB,B∗y〉 = 〈x, y〉. For a basis B we use the notation (~x)B to indicate that ~x is first
appropriately mapped into the basis and then encoded into G. To demonstrate our technique, we start from
the scheme of Okamoto and Takashima [OT12, Section 4] which is a public key inner product scheme IPEpk.

4

4Okamoto and Takashima also introduce a technique for reducing key size, we believe our technique is conceptually simpler
and complementary to their technique.
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In this scheme vectors are of size 4n+ 2 as follows:

c~x′ = (ζ, ω · ~x, 02n, 0n, ϕ)B,

tk~y′ = (1, σ · ~y, 02n, η1, ..., ηn, 0)B∗ .

In addition, the ciphertext includes an encoding of ζ in the target group, c0 = gζT , so one can compute:

g
(〈~x′,~y′〉−ζ)
T = g

ωσ〈x,y〉
T

and check if this value is the identity in the target group. In the above, all greek letters (ζ, ϕ, σ, ω, ηi) are
random field elements. The secret key in the above is the two bases B,B∗ which are a quadratic number of
field elements.

Our core idea is that one needs not to have a DPVS basis pair for the entire vector, instead one can
compute α pairs of DPVS bases that allow for partial computation of the inner product as long this inter-
mediate value is blinded until all factors have been included. Since the size of bases grow quadratically with
the number of dimensions, by creating α copies the size of each basis reduces by a factor of α2, resulting
in an overall reduction by a factor of α. Suppose that {Bi,B∗i }αi=1 are α-pairs of DPVS bases (consisting of
4n/α+ 2 vectors of dimension of 4n/α+ 2), our ciphertexts now consist of α+ 1 values and tokens consist
of α values as follows:

c~x =



(

1︷︸︸︷
ζi ,

n/α︷︸︸︷
ω~xi ,

n/α︷ ︸︸ ︷
0, . . . , 0,

n/α︷ ︸︸ ︷
0, . . . , 0,

n/α︷ ︸︸ ︷
0, . . . , 0

1︷︸︸︷
ϕi )Bi


α

i=1

,

g
(
∑α
i=1 ζi)

T ,

tk~y =

(

1︷︸︸︷
1 ,

n/α︷︸︸︷
σ~yi ,

n/α︷ ︸︸ ︷
0, . . . , 0,

n/α︷ ︸︸ ︷
0, . . . , 0,

n/α︷︸︸︷
~ηi ,

1︷︸︸︷
0 )B∗i


α

i=1

.

Note, ~x, ~y are split into α parts each of size n/α and ~xi refers to the ith component. Each pair Bi,B∗i is a
DPVS basis pair. We show security of this transformation in the public key setting based on the decisional
linear assumption as in Okamoto and Takashima [OT12, Section 4]. We believe this technique can be applied
across a number of inner product encryption variants [TAO16].

Organization The rest of this work is organized as follows, Section 2 describes mathematical and crypto-
graphic preliminaries, Section 3 describes prior leakage attacks and how to configure a biometric database
so these attacks are mitigated, Section 4 introduces our proximity search, Section 5 describes our transform
for reducing key size.

2 Preliminaries

Let λ be the security parameter throughout the paper. We use poly(λ) and negl(λ) to denote unspecified

functions that are polynomial and negligible in λ, respectively. Let x
$←− S denote sampling x uniformly at

random from the finite set S.
Let q = q(λ) ∈ N be a prime, then Gq denotes a cyclic group of order q and Fq denotes a finite field of

order q. We use F×q as a shorter notation for Fq \ {0}. Let GL(n,Fq) denote the general linear group of
degree n over Fq. Let ~x denote a vector over Fq such that ~x = (x1, · · · , xn) ∈ Fnq , the dimension of vectors

should be apparent from context. Let the vectors ~ei be defined as ~ei = (0i−1, 1, 0n−i) for 1 ≤ i ≤ n. Consider
vectors ~x = (x1, · · · , xn) and ~v = (v1, · · · , vn), their inner-product is denoted by 〈x, v〉 =

∑n
i=1 xivi. Let X

be a matrix, then XT denotes its transpose.
Let V be a vector space, to differentiate its elements from other values we will use bold letters. Let

bi ∈ V, 1 ≤ i ≤ n, then we denote the subspace generated by these vectors as span(b1, · · · , bn) ⊆ V.
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Consider the bases B = (b1, · · · , bn) and B∗ = (b∗1, · · · , b∗n), and the vectors ~x and ~v then (~x)B =
∑n
i=1 xibi

and (~v)B∗ =
∑n
i=1 vib

∗
i . Note that we will consider basis over both Fq and Gq.

Hamming distance is defined as the distance between the bit vectors x and y: d(x, y) = |{i |xi 6= yi}|.
We note that if a vector is encoded as follows:

x±1
def
=

{
x±1,i = 1 if xi = 1

x±1,i = −1 if xi = 0.

Then it is true that 〈x±1, y±1〉 = n− 2d(x, y).

2.1 Secret Key Inner Product Predicate Encryption

Secret-key predicate encryption with function privacy supporting inner products queries was first proposed
by Shen et al. [SSW09]. This primitive allows to check if the inner product between vectors is zero or not.
The scheme they presented is both attribute and function hiding, meaning that an adversary running the
decryption algorithm gains no knowledge on either the attribute or the predicate. First we need to define
predicate encryption.

Definition 1 (Secret key predicate encryption). Let λ ∈ N be the security parameter, M be the set of
attributes and F be a set of predicates. We define PE = (PE.Setup, PE.Encrypt, PE.TokGen, PE.Decrypt), a
secret-key predicate encryption scheme, as follows:

� PE.Setup(1λ)→ (sk, pp): Takes as input the security parameter λ, outputting a secret key sk and some
public parameters pp.

� PE.Encrypt(sk, x) → ctx: Takes as input the secret key sk, a plaintext x ∈ M, outputting a ciphertext
ctx.

� PE.TokGen(sk, f)→ tkf : Takes as input the secret key sk, a predicate f ∈ F , outputting a token tkf .

� PE.Decrypt(pp, tkf , ctx) → b: Takes as input the public parameters pp, a token tkf , a ciphertext ctx
and outputs a bit b ∈ {0, 1}.

We require the scheme to have the following properties:

� Correctness: For any x ∈ M let ctx denote the random variable resulting from PE.Encrypt(sk, x).
Similarly, for any f ∈ F let tkf denote the random variable resulting from PE.TokGen(sk, f). PE is
correct if PE.Decrypt(pp, tkf , ctx) = b where, with overwhelming probability, b = 1 if f(x) = 1 and
b = 0 if f(x) = 0.

� Security of admissible queries: Any PPT adversary A has only negl(λ) advantage in the following
game with challenger C . Let r = poly(λ) and s = poly(λ). Token and encryption queries must meet
the following admissibility requirements:

∀j ∈ [1, r], ∀i ∈ [1, s], PE.Decrypt(pp, tk
(0)
j , ct

(0)
i ) =

PE.Decrypt(pp, tk
(1)
j , ct

(1)
i )

ExpPEIND is defined as:

1. C draws β
$←− {0, 1}, computes (sk, pp)← PE.Setup(1λ) and sends pp to A.

2. For 1 ≤ i ≤ s, A chooses two plaintexts x
(0)
i , x

(1)
i ∈ M. For 1 ≤ j ≤ r, A chooses two predicates

f
(0)
j , f

(1)
j ∈ F . We denote R =

(
x
(0)
1 , x

(1)
1

)
, · · · ,

(
x
(0)
s , x

(1)
s

)
and S =

(
f
(0)
1 , f

(1)
1

)
, · · · ,

(
f
(0)
r , f

(1)
r

)
.

3. A sends the list of token generation queries R and the list of encryption queries S to C. A
immediately loses the game if R and S are not admissible, otherwise it receives back a list of

tokens T (β) = tk
(β)
1 , · · · , tk(β)r and a list of ciphertexts C(β) = ct

(β)
1 , · · · , ct(β)s such that ct

(β)
i ←

PE.Encrypt
(
sk, x

(β)
i

)
and tk

(β)
j ← PE.TokGen

(
sk, f

(β)
j

)
, with i ∈ {1, · · · , r} and j ∈ {1, · · · , s}.
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4. A returns β′ ∈ {0, 1} and her advantage in the game is defined to be

Adv
ExpPEIND
A (λ) =

∣∣∣ Pr[A(1λ, T (0), C(0)) = 1]− Pr[A(1λ, T (1), C(1)) = 1]
∣∣∣

The above definition is called full security in the language of Shen, Shi, and Waters [SSW09]. Note
that this definition is selective (not adaptive), as the adversary specifies two sets of plaintexts and functions
apriori. The relevant primitive for us is IPEfh,sk,pred which uses the above definition restricted to the class
of predicates F = {fy|y ∈ Znq } be the set of predicates such that for all vectors x ∈ Znq , fy(x) = 1 when
〈x, y〉 = 0, fy,t(x) = 0 otherwise. We use (IPE.Setup, IPE.Encrypt, IPE.TokGen, IPE.Decrypt) to refer to the
corresponding tuple of algorithms.

3 Leakage Attacks and Biometric Data

Searchable encryption achieves acceptable performance by allowing the attacker to glean information about
the queries being asked and records returned. Formally called leakage, the attacker gathers information while
observing queries and responses, such as the number of records returned as part of a query. See Kamara,
Moataz, and Ohrimenko for an overview of leakage types in structured encryption [KMO18]. The key to
attacks is combining leakage with auxiliary data, such as the frequency of values stored in the data set.
Together these sources can prove catastrophic – allowing the attacker to run attacks to recover either the
queries being made or the data stored in the database. We consider attacks that rely on injecting files or
queries [ZKP16] to be out of scope. Common, attackable, relevant leakage profiles are:

1. Response length leakage [KKNO16, GLMP18] Often known as volumetric leakage, the attacker is
given access to only the number of records returned for each query. Based on this information, attacks
cross-correlate with auxiliary information about the dataset, and identify high frequency items in both
the encrypted database and the auxiliary dataset. Fuller et al. [FVY+17] noted this type of attack has
difficulty over uniform distributions.

2. Query equality leakage [WLD+17] the attacker is able to glean which queries are querying the same
value, but not necessarily the value itself. Attacks on this profile rely on having information about
the query distribution, and much like the response length leakage attacks, match with that auxiliary
information based on frequency.

3. Access attern leakage [IKK12, CGPR15] here the attacker is given knowledge if the same dataset
element is returned for different queries. This allows the attacker to build a co-occurrence matrix,
mapping what records are returned for pairs of queries. Based on the frequencies of the co-occurrence
matrix for the encrypted dataset, and the co-occurrence matrix for the auxiliary dataset, the attack
can identify records. See Definition 4.

Almost all searchable encryption schemes leak the access pattern and these attacks have higher efficacy
than those relying on response length or query equality. When considering the leakage profile of a biometric
searchable encryption scheme, we have to consider the leakage profile the scheme would have in general,
but more importantly, what leakage profile it actually has based on the data distribution. Leakage explicitly
depends on the distribution of records and queries.

3.1 Biometrics Statistical Properties

Biometrics represent a unique target for encrypted databases as their statistical properties are stable and
well-understood. In this section, we provide a brief overview of how irises are captured and the statistical
properties of the iris. The majority of this discussion applies to other biometrics such as fingerprints and
face as well.

Daugman [Dau05, Dau09] introduced the seminal iris processing pipeline. This pipeline assumes a near
infrared camera. Note that iris images in near infrared are believed to be independent from the visible light
pattern and that the iris is epigenetic, irises of identical twins are believed to be independent [Dau09, HBF10].
Traditional iris recognition consists of three primary phases:
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Segmentation This takes the image and identifies which pixels should be included as part of the iris. This
produces a {0, 1} matrix of the same size as the input image with 1s corresponding to iris pixels.

Normalization This takes the variable size set of iris pixels and maps them to a fixed size rectangular
array. This can roughly be thought of as unrolling the iris. It is designed to deal with pupil dilation
and changes in the angle of image collection.

Feature Extraction In the final stage the fixed size rectangular array is used for feature extraction. In
Daugman’s original work this consisted of convolving small areas of the rectangle with a fixed 2D
wavelet. The resulting sign of the convolution was used to populate a binary vector. (The convolution
actually produces an imaginary number, frequently the sign of either the real or imaginary component
is used as the resulting set of features.) Each bit of the resulting feature vector can be seen as
characterizing a small region of the iris. Different bits correspond to different rectangular regions
(which in turn correspond to small polar regions.

There are two important aspects to consider when discussing iris biometrics. The first is how similar
two images of a single iris are over time. There are many reasons for noise between collections of the same
iris, these include changes in lighting, collection angle, collection distance, physiological changes, and sensor
noise. As described above, when one wishes to match a biometric r∗ against a database one considers
matches as the set {ri|D(ri, r

∗) ≤ t} for some metric D and distance parameter t. In most iris systems, the
distance metric is Hamming distance. In fingerprint systems, the metric is usually set difference, in facial
recognition, the metric is usually the L2 distance. Selecting a small t accepts images with less noise and a
large t corresponds to accepting images with a lot of noise. This corresponds to the true positive rate of the
resulting system.

However, t is not a free parameter because of the second important statistical aspect: how similar are the
resulting vectors of two different irises? Ideally, the Hamming distance of two different irises would be half
the length of the resulting vector meaning that irises are well spread in the high dimensional vector space.
Naturally, it is unreasonable to expect all pairs of irises to have distance of exactly half the length of the
resulting vector. For biometric search, the relevant question is for a fixed t how frequently will a different
iris return a match. This corresponds to the false positive rate of the system.

To understand the tradeoff between true positive rate and false positive rate we need to consider a
reference dataset and a particular feature extractor. There are many iris datasets collected across a variety
of conditions. We consider the NotreDame 0405 dataset [PSO+09, BF16] which is a superset of the NIST
Iris Evaluation Challenge [PBF+08]. This dataset consists of images from 356 (both left and right eyes)
with 64964 images in total. Additionally, we consider the IITD dataset [KP10]. The IITD dataset consists
of 224 persons and 2240 images. The IITD dataset is considered “easier” than the ND-0405 dataset because
images are collected in more controlled environments leading to less noise and variation between images.

For the feature extractor, we use the recent pipeline called ThirdEye [AF18, AF19] which is publicly
available [Ahm20]. Resulting histograms (when training and testing according to the description in [AF19])
for the ND 0405 and IITD datasets are in Figure 1. In these figures, blue represents comparisons between
images of the same iris while red represents comparisons between images of different irises. Note that these
two datasets produce different statistics. The x-axis scale is different on the figures. Furthermore, note that
in both cases there is overlap between the red and blue histogram indicating that there is a tradeoff between
false positive and true positive rates. That is, there is no distance t such that all future readings of the same
iris will be marked as the same and that all images of a different iris will be considered different. However,
one call still achieve a high true accept rate with a 0% false positive rate.

Eliminating Useful Leakage Proximity search considered in a vacuum has leakage similar to any nearest
neighbor scheme. Queries will reveal any records that are within distance t of the queried point, records
that will be returned in multiple queries can potentially be correlated across those queries, and the number
of records returned will be leaked. Consider a system where t was large enough that several records were
returned, over time this would be enough information to build a co-occurrence matrix and execute a version
of the attack from [CGPR15]. However, if we set t in our system such that at most 1 record is returned,
he co-occurrence matrix will always be all zeroes. We are never given enough information to cross-correlate
across different queries in this case and the existing attacks fail. Furthermore, for response length leakage
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(a) ND 0405 Histogram (b) IITD Histogram

Figure 1: Hamming distance distribution for images from the same iris in blue, and different irises in
red. Histograms are produced using recent state of the art deep neural network based feature extractor
ThirdEye [AF19] (Source at [Ahm20]). Resulting histograms for the ND 0405 and IITD datasets respectively.
Comparisons between images of the same iris are in Blue, comparisons between different irises are in Red.

attacks, all queries would either return zero records or one record; this leaves the attack no information to
leverage. Essentially, all queries are alike. This leaves query equality leakage as the one remaining leakage
type in our scheme. In the case that this is not a leakage pattern that the use case can support, there
are compilers that can suppress it [KMO18]. As discussed above, our MPIPE construction has additional
leakage, for stored values ri, rj and query r∗ it reveals

D(ri, r
∗)

?
= D(rj , r

∗).

We now investigate the largest possible settings of t where at most one record will be returned by each
query. This has dual benefits: 1) making access pattern leakage unusable and 2) making MPIPE have no
addition leakage. There are two possible settings of distance that are relevant for biometric search. We now
consider safe settings of t for two assumptions on the query distribution. In all cases, we assume at most
one record corresponding to a particular biometric (an individual iris) is present in the database.

Biometric Query If the query value r∗ is drawn from the biometric distribution, for a particular distance
threshold t, the false accept probability of the system corresponds to the probability that there will be
additional leakage.

Arbitrary Query If the query value r∗ is assumed to be arbitrary, then let tmin be the minimum observed
distance between two different biometrics, one must allow searching at distance at most t = tmin/2 to
ensure that r∗ does not match multiple records.

Table 1 summarizes the distances required for access pattern leakages and the corresponding true accept
rates for the ND 0405 and IITD datasets. As mentioned above, these values vary based on many envi-
ronmental conditions. For arbitrary queries we report on true accept rate when setting t = tmin/2. For
biometric queries, we report true accept rate when setting t to be tmin which is 0% of leakage, as well as a
1% and 10% probability of leakage. That is, the distance parameter that corresponds to a 1% (resp. 10%)
chance of a query matching a different biometric.

4 From MPIPE to PSE

4.1 Multi-point inner product encryption

Secret key inner product predicate encryption [SSW09] allows to test if the inner product between two
vectors is equal to zero. By appending a value to the first vector and -1 to the second vector, we can support
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Dataset tmin Biometric Queries Arbitrary
TAR at prob. leakage Queries
.10 .01 .00

ND-0405 .302 .887 .771 .756 .014
IITD .266 .945 .909 .905 .164

Table 1: Summary of true accept rates for queries drawn from Same distribution for noise tolerance pa-
rameters. The value tmin is the smallest recorded distance between different biometrics in the dataset. For
biometric queries, we report the true accept rate (TAR) when allowing for a 0%, 1% and 10% chance of a
query matching a record other than the intended biometric.

equality testing for non-zero values. To implement proximity searchable encryption, we need to extend this
notion to one that allows to test if the inner product is in a range of values. We introduce a new primitive,
multi-point inner product predicate encryption (MPIPE), that achieves this goal.

Definition 2 (Multi-point inner product predicate encryption). Let λ ∈ N be the security parameter. Let
n, q, t ∈ N such that n = poly(λ), t = poly(λ) and q is a prime. Let F = {f~y,D : Znq → {0, 1}

∣∣ ~y ∈ Znq , D ∈
Ztq} be the set of predicates such that for all vectors ~x ∈ Znq , f~y,D(~x) = 1 when 〈~x, ~y〉 ∈ D and f~y,D(~x) = 0
otherwise. We define MPIPE = (MPIPE.Setup, MPIPE.Encrypt, MPIPE.TokGen, MPIPE.Decrypt), a multi-
point inner product predicate encryption scheme, as a PE over Znq and restricted to the class of predicates
F . We require the scheme to have the additional admissibility property in the security game:

� Admissibility: Let i ∈ {1, · · · , r}, ` ∈ {1, · · · , t}, j ∈ {1, · · · , s}, and consider a token generation

query
(
~y

(0)
i , D

(0)
i , ~y

(1)
i , D

(1)
i

)
:

– Let J
(β)
i =

{
d
(β)
` ∈ D(β)

i | ∃ ~x (β)
j such that 〈~x (β)

j , ~y
(β)
i 〉 = d

(β)
`

}
then |J (0)

i | = |J
(1)
i |.

– ∀~y (β)
i there is at most one ~x

(β)
j such that 〈~x (β)

j , ~y
(β)
i 〉 ∈ D(β)

i .

Let us now present a construction for MPIPE built upon IPE.

Construction 1 (MPIPE). Fix the security parameter λ ∈ N and let n ∈ N+ be a parameter. Let IPE =
(IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be an IPE scheme over Zn+1

q and let π : Ztq → Ztq be a
random permutation. Let ~x and ~y be two vectors in Znq and D ∈ Ztq be the set of desired values for their
inner product.

� MPIPE.Setup(1λ) → (sk, pp): Takes as input 1λ and calls (skIPE, ppIPE) ← IPE.Setup(1λ). Outputs
sk = skIPE and pp = ppIPE.

� MPIPE.TokGen(sk, ~y,D)→ tk~y,D: Takes as inputs the secret key sk, the vector ~y and the set of values
D. Computes D∗ = π(D) = {d1, · · · , dt}. For 1 ≤ i ≤ t, calls tki ← IPE.TokGen(skIPE, ~y || di).
Outputs tk~y,D = (tk1, · · · , tkt).

� MPIPE.Encrypt(sk, ~x)→ ct~x: Takes as inputs sk and the vector ~x. Calls ct← IPE.Encrypt(skIPE, ~x || -1).
Outputs ct~x = ct.

� MPIPE.Decrypt(pp, tk~y,D, ct~x)→ b: Takes as inputs the public parameters pp, the token tk~y,D and the
ciphertext ct~x. For each tki ∈ tk~y,D, calls bi ← IPE.Decrypt(ppIPE, tki, ct~x). If bi = 1 outputs b = 1,
otherwise pass to tki+1. If bi = 0 for every tki ∈ tk~y,D, outputs b = 0.

Note on Admissibility Query admissibility in MPIPE is a strict subset of admissibility in IPE. Consider
for example some

~y (0), ~y (1), ~x (0), ~x (1) ∈ Znq
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and D(0) = {d(0)1 , d
(0)
2 }, D(1) = {d(1)1 , d

(1)
2 } such that 〈~x (0), ~y (0)〉 = d

(0)
1 and 〈~x (1), ~y (1)〉 = d

(1)
2 . Then for all

d
(0)
` ∈ D(0), d

(1)
` ∈ D(1):

(〈~x (0), ~y (0)〉
?
∈ D(0)) = (〈~x (1), ~y (1)〉

?
∈ D(1))

6=⇒ (〈~x (0), ~y (0)〉 ?
= d

(0)
1 ) = (〈~x (1), ~y (1)〉 ?

= d
(1)
1 )

Moreover, notice that in this construction, ∀i, j ∈ {1, · · · , s} and if 〈~x (β)
i , ~y (β)〉, 〈~x (β)

j , ~y (β)〉 ∈ D(β), the
following equality predicate is leaked:

〈~x (β)
i , ~y (β)〉 = 〈~x (β)

j , ~y (β)〉

Theorem 1 (MPIPE main theorem). Let IPE = (IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be
a function hiding inner product predicate encryption scheme over Zn+1

q . Then there exists MPIPE =
(MPIPE.Setup,MPIPE.TokGen,MPIPE.Encrypt,MPIPE.Decrypt), an function hiding multi-point inner prod-
uct predicate encryption scheme over Znq , such that for any PPT adversary AMPIPE for ExpMPIPE

IND , there exists

a PPT adversary AIPE for ExpIPEIND, such that for any security parameter λ ∈ N,

Adv
ExpMPIPE

IND

AMPIPE
= Adv

ExpIPEIND
AIPE

Proof. The correctness of the scheme follows from the correctness of the underlying IPE scheme. Assume
〈~x, ~y〉 ∈ D then there exists a unique tki ∈ tk~y,D, such that b ← IPE.Decrypt(pp, tki, ct~x) and b = 1
with overwhelming probability by the correctness of the IPE scheme. Now assume 〈~x, ~y〉 /∈ D, then for
any tki ∈ tk~y,D, such that b ← IPE.Decrypt(pp, tki, ct~x), we have b = 1 with negligible probability. Then
considering the worst case where either 〈~x, ~y〉 is equal to the value in D corresponding to the last token or
no value in D:

Pr[MPIPE.Decrypt(pp, tk~y,D, ct~x) = (〈~x, ~y〉
?
∈ D)]

≥ 1− t× Pr[IPE.Decrypt(pp, tki, ct~x) 6= (〈~x, ~y〉 ?
= di)]

≥ 1− t× negl(λ).

Let AMPIPE be a PPT adversary for experiment ExpMPIPE
IND . Let r = poly(λ) be the number of token queries,

s = poly(λ) be the number of encryption queries and β
$←− {0, 1}. Let CIPE be the challenger for the IPE

experiment we build a PPT adversary AIPE for the experiment ExpIPEIND as follows:

1. AIPE receives pp from CIPE and forwards it to AMPIPE.

2. AIPE receives r key generation queries and s encryption queries from AMPIPE. For 1 ≤ i ≤ r, AIPE

receives the non-zero vectors ~y
(0)
i , ~y

(1)
i ∈ Znq and D

(0)
i , D

(0)
i ∈ Ztq. For 1 ≤ j ≤ s, AIPE receives the

non-zero vectors ~x
(0)
j , ~x

(1)
j ∈ Znq .

3. For 1 ≤ i ≤ r:

(a) AIPE creates D
(0)∗
i by reordering the elements in D

(0)
i such that for all ` ∈ {1, · · · , t} and d

(0)
` ∈

D
(0)∗
i , d

(1)
` ∈ D

(1)
i we have (

〈~x (0)
j , ~y

(0)
i 〉

?
= d

(0)
`

)
=
(
〈~x (1)
j , ~y

(1)
i 〉

?
= d

(1)
`

)
.

(AIPE can always find a permutation to make this last condition true as queries that are admissible
to MPIPE are also admissible to IPE.)

(b) AIPE samples a random permutation ψi : Ztq → Ztq.

(c) For 1 ≤ ` ≤ t, AIPE creates ~y
(β)
i || d(β)` with d

(β)
` ∈ D(β)∗

i and β ∈ {0, 1}, then computes

R
(β)
i = ψi

(
~y

(β)
i || d(β)1 , · · · , ~y (β)

i || d(β)t

)
and sets Ri = (R

(0)
i , R

(1)
i ).
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4. For 1 ≤ j ≤ s, AIPE sets Sj = (~x
(0)
j || -1, ~x

(1)
j || -1).

5. AIPE sends the token generation queries R1, · · · , Rr and the encryption queries S1, · · · , Ss to CIPE and

receives back a set of tokens T (β) = tk
(β)
1,1 , · · · , tk

(β)
r,t and a set of encrypted vectors C(β) = ct

(β)
1 , · · · , ct(β)s

such that tk
(β)
i,` ← IPE.TokGen(sk, ~y

(β)
i || d(β)` ) and ct

(β)
j ← IPE.Encrypt(sk, ~x

(β)
j || -1). AIPE forwards

T (β) and C(β) to AMPIPE.

6. AIPE receives β′ ∈ {0, 1} from AMPIPE and returns it.

Since the number of token generation queries, r × t, sent by AIPE remains polynomial in the security
parameter, the advantage of AMPIPE is

Adv
ExpMPIPE

IND

AMPIPE
= Adv

ExpIPEIND
AIPE

Construction 2 (MPIPE variant). Fix the security parameter λ ∈ N. Let IPE = (IPE.Setup, IPE.TokGen,
IPE.Encrypt, IPE.Decrypt) be an IPE scheme over Zn+tq and let π, ϕ : Ztq → Ztq be two random permutations.
Let ~x and ~y be two vectors in Znq and D ∈ Ztq be the set of desired values for their inner product.

� MPIPE.Setup(1λ) → (sk, pp): Takes as input 1λ and calls (skIPE, ppIPE) ← IPE.Setup(1λ). Outputs
sk = skIPE and pp = ppIPE.

� MPIPE.TokGen(sk, ~y,D) → tk~y,D: Takes as inputs the secret key sk, a vector ~y and a set of values
D. Computes D∗ = π(D) = (d1, · · · , dt) and sets ~y ∗ = ~y || D∗. Calls tk ← IPE.TokGen(skIPE, ~y

∗).
Outputs tk~v,D = tk.

� MPIPE.Encrypt(sk, ~x)→ ct~x: Takes as inputs sk and a vector ~x. For i ∈ {1, · · · , t} creates ~x ∗i ∈ Zn+tq

such that

~x ∗i = (~x ||
i−1︷ ︸︸ ︷

0, · · · , 0, -1,
t−i︷ ︸︸ ︷

0, · · · , 0).

Calls cti ← IPE.Encrypt(skIPE, ~x
∗
i ). Outputs ct~x = ϕ(ct1, · · · , ctt).

� MPIPE.Decrypt(pp, tk~y,D, ct~x)→ b: Takes as inputs the public parameters pp, the token tk~y,D and the
ciphertext ct~x. For each cti ∈ ct~x, calls bi ← IPE.Decrypt(ppIPE, tk~y,D, cti). If bi = 1 outputs b = 1,
otherwise pass to cti+1. If bi = 0 for every cti ∈ ct~x, outputs b = 0.

Correctness Let pp, sk, tk~y,D, ct~x be defined as in the above construction and let ~x, ~y ∈ Znq , D ∈ Ztq and
~x ∗, ~y ∗ ∈ Zn+tq . Assume 〈~x, ~y〉 ∈ D then there exists a unique cti ∈ ct~x such that bi ← IPE.Decrypt(pp, tk~y,D, cti)
and bi = 1 with overwhelming probability. Now assume 〈~x, ~y〉 /∈ D, then for any cti ∈ ct~x, bi ← IPE.Decrypt(pp,
tk~y,D, cti) and bi = 1 with negligible probability. Then considering the worst case where either 〈~x, ~y〉 is equal
to the last ciphertext or no ciphertext in ct~x:

Pr[MPIPE.Decrypt(pp, tk~y,D, ct~x) = (〈~x, ~y〉
?
∈ D)]

≥ 1− t× Pr[IPE.Decrypt(pp, tk~y,D, cti) 6= (〈~x, ~y〉 ?
= dl)]

≥ 1− t× negl(λ)

and this construction is thus correct.
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Equality leakage Notice that contrary to Construction 1, in this MPIPE variant, ∀i, j ∈ {1, · · · , s} and

even if 〈~x (β)
i , ~y (β)〉, 〈~x (β)

j , ~y (β)〉 ∈ D(β), the following equality is not leaked:

〈~x (β)
i , ~y (β)〉 = 〈~x (β)

j , ~y (β)〉

Theorem 2. Let IPE be an IND-secure function hiding point-testing inner product encryption scheme over
Zn+tq . Then for MPIPE.Setup(1λ), MPIPE.TokGen(sk, ~y,D), MPIPE.Encrypt(sk, ~x) and
MPIPE.Decrypt(pp, tk~y,D, ct~x) built as described in Construction 2, MPIPE is a single token IND-secure
function hiding multi-point inner product encryption scheme over Znq .

Proof. Let s = poly(λ) be the number of encryption queries. Let OIPE be an oracle for the experiment
ExpIPEIND and AMPIPE be a PPT adversary for the experiment ExpMPIPE

IND . Then we can build a PPT adversary
AIPE for the experiment ExpIPEIND as follows:

1. AIPE receives pp from OIPE and forwards it to AMPIPE.

2. AIPE receives a token generation query and s encryption queries from AMPIPE: AIPE receives the non-
zero vectors ~y (0), ~y (1) ∈ Znq and D(0), D(1) ∈ Ztq. For 1 ≤ j ≤ s, AIPE receives the non-zero vectors

~x
(0)
j , ~x

(1)
j ∈ Znq .

3. AIPE samples a random permutation ϕ : Ztq → Ztq and creates ~y (0)∗ = ~y (0) || ϕ
(
D(0)

)
and ~y (1)∗ =

~y (1) || ϕ
(
D(1)

)
.

4. For 1 ≤ j ≤ s:

(a) AIPE samples a random permutation ψj : Ztq → Ztq.
(b) For 1 ≤ ` ≤ t, AIPE creates

~x
(β)∗
j,` =

(
~x

(β)
j ||

`−1︷ ︸︸ ︷
0, · · · , 0, -1,

t−`︷ ︸︸ ︷
0, · · · , 0

)
.

(c) If 〈~x (1)∗
j,` , ~y (1)∗〉 = 0 and 〈~x (0)∗

j,k , ~y (0)∗〉 = 0 for some k 6= ` then AIPE swaps ~x
(0)∗
j,` with ~x

(0)∗
j,k to

ensure that for ` = 1, · · · , t (
〈~x (0)
j,` , ~y

(0)〉 ?
= 0
)

=
(
〈~x (1)
j,` , ~y

(1)〉 ?
= 0
)
.

(d) AIPE computes S
(0)
j = ψj(~x

(0)∗
j,1 , · · · , ~x (0)∗

j,t ) and S
(1)
j = ψj(~x

(1)∗
j,1 , · · · , ~x (1)∗

j,t ), and sets Sj =

(S
(0)
j , S

(1)
j ).

5. AIPE sends the token generation query (~y (0)∗, ~y (1)∗) and the encryption queries S1, · · · , Ss to OIPE and

receives back a token tk(β) and a set of ciphertexts C(β) = ct
(β)
1,1 , · · · , ct

(β)
s,t such that

tk(β) ← IPE.TokGen(sk, ~y (β)∗),

ct
(β)
j,` ← IPE.Encrypt(sk, ~x

(β)∗
j,` ).

AIPE forwards tk(β) and C(β) to AMPIPE.

6. AIPE receives β′ ∈ {0, 1} from AMPIPE and returns it.

Since the number of encryption queries sent by AIPE, s× t, remains polynomial in the security parameter
λ, the advantage of AMPIPE is

Adv
ExpMPIPE

IND

AMPIPE
= Adv

ExpIPEIND
AIPE

.
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4.2 Proximity searchable encryption

We now turn to proximity searchable encryption (PSE), a variant of searchable encryption, that supports
proximity queries. Specifically, we show that one can use MPIPE to construct PSE for Hamming distance. At
a high level, each keyword is encoded as a {−1, 1} vector, which in turn is encrypted with MPIPE. Keywords
are similarly encoded and tokens generated as part of the underlying MPIPE scheme.

Definition 3 (History). Let W ∈ W be a list of keywords drawn from space W, let F be the set of all
predicates over W, a q-query history over W is a tuple History = (W, F ), with F = (f1, · · · , fq) a list of q
predicates, fi ∈ F .

Definition 4 (Access pattern). Let W be a list of keywords, the access pattern induced by a q-query history
H = (W, F ) is the tuple AccPatt(H) = (f1(W ), · · · , fq(W ))

Many searchable encryption schemes also leaks when queries are repeated (query equality leakage) but
this is not the case with our construction.

Definition 5 (Proximity Searchable Encryption). Let λ ∈ N be the security parameter. Consider a database
DB = (M1, · · · ,M`) containing ` documents Mi and a list of keywords W = (~w1, · · · , ~w`), such that ~wi ∈ Znq
is the keyword related to Mi. Let F = {f~y,t | ~y ∈ Znq , t ∈ N} be a family of predicates such that, for a keyword
~w ∈ Znq , f~y,t(~w) = 1 if d(~w, ~y) ≤ t, 0 otherwise, where d(~w, ~y) denotes the Hamming distance between ~w and
~y. The tuple of algorithms PSE = (PSE.Setup,PSE.BuildIndex,PSE.Trapdoor,PSE.Search) defines a proximity
searchable encryption scheme:

� PSE.Setup(1λ)→ (sk, pp): Takes as input 1λ and outputs a secret key sk and public parameters pp.

� PSE.BuildIndex(sk,W ) → IW : Takes as inputs the secret sk and the list of keywords W . Outputs a
searchable encrypted index IW .

� PSE.Trapdoor(sk, f~y,t)→ tk~y,t: Takes as inputs the secret sk and a predicate f~y,t ∈ F . Outputs a query
Q~y,t.

� PSE.Search(pp, Q~y,t, IW) → JW,~y,t: Takes as inputs the public parameters pp, the query Q~y,t and the
encrypted index IW . Outputs JW,~y,t ⊆ {1, · · · , `}.

We require the scheme to have the following properties:

� Correctness: Let PSE = (PSE.Setup, PSE.BuildIndex, PSE.Trapdoor, PSE.Search) be an PSE scheme
of security parameter λ ∈ N and (sk, pp) ← PSE.Setup(1λ). For any W let IW denote the random
variable resulting from PSE.BuildIndex(sk,W). Similarly, for any f~y,t ∈ F let Q~y,t denote the random
variable resulting from PSE.Trapdoor(sk, f~y,t). Let JW,~y,t ⊆ {1, · · · , `} denote the set of integers such
that i ∈ JW,~y,t if f~y,t(~wi) = 1,

JW,~y,t = {i | f~y,t(~wi) = 1}

PSE is correct if we have:

Pr[PSE.Search(pp, Q~y,t, IW) = JW,~y,t] ≥ 1− negl(λ)

� Security for admissible queries: Any PPT adversary A has only negl(λ) advantage in the following
game ExpPSEIND with challenger C. Let l = poly(λ) and q = poly(λ).

1. C draws β
$←− {0, 1}, computes (sk, pp)← PSE.Setup(1λ) and sends pp to A.

2. A chooses two q-query histories History(0),History(1) such that History(β) = (W (β), F (β)), β ∈
{0, 1}. A sends History(0) and History(1) to C and immediately loses the game if

AccPatt(History(0)) 6= AccPatt(History(1))

or if there exist fj ∈ F and ~xi ∈ W such that fj(~wi) > 1. Otherwise, it receives back an encrypted
index I(β) and a list of trapdoors Q(β).
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3. A outputs β′ ∈ {0, 1} and her advantage in the game is defined to be:

Adv
ExpPSEIND
A (λ) =

∣∣∣ Pr[A(1λ, I(0), Q(0)) = 1]− Pr[A(1λ, I(1), Q(1)) = 1]
∣∣∣

Then a proximity searchable encryption scheme PSE is said to be secure if Adv
ExpPSEIND
A is negligible in λ.

As mentioned in Section 2, Hamming distance can be calculated using the inner product between the two
biometric vectors. As such, we can use a range of possible inner product values as the distance threshold.
Using the previously defined MPIPE primitive, we can then build a PSE scheme for the Hamming distance.

Construction 3 (Proximity Searchable Encryption). Fix the security parameter λ ∈ N. Let MPIPE =
(MPIPE.Setup,MPIPE.TokGen, MPIPE.Encrypt,MPIPE.Decrypt) be an MPIPE scheme. Let ~wi ∈ Znq and
W = ~w1, · · · , ~w` be the list of keywords. Let F be the set of all predicates such that for any ~wi ∈ W,
f~y,t(~wi) = 1 if the Hamming distance between ~wi and the query vector ~y ∈ Znq is less or equal to some chosen
threshold t ∈ Zq, f~y,t(~wi) = 0 otherwise. We can then construct a proximity searchable encryption scheme
for the Hamming distance as follows:

� PSE.Setup(1λ)→ (sk, pp): Takes as input 1λ and outputs (sk, pp)← MPIPE.Setup(1λ).

� PSE.BuildIndex(sk,W)→ IW : Takes as inputs the secret key sk and the keywords list W. For each key-
word ~wi ∈ W, i ∈ {1, · · · , `}, encodes it as ~w ∗i ∈ {−1, 1}n and computes cti ← MPIPE.Encrypt(sk, ~w ∗i ).
Outputs IW = ct1, · · · , ct`.

� PSE.Trapdoor(sk, f~y,t)→ Q~y,t: Takes as inputs sk and a predicate f~y,t. Creates D = {d1, · · · , dt} such
that dj = n−2j with 0 ≤ j ≤ t. Encodes ~y as ~y ∗ ∈ {−1, 1}n and computes tk← MPIPE.TokGen(sk, ~y ∗, D).
Outputs Q~y,t = tk.

� PSE.Search(pp, Q~y,t, IW) → JW,~y,t: Creates an empty set JW,~y,t. For each cti ∈ IW , computes b ←
MPIPE.Decrypt(pp, tk, cti) and adds i to JW,~y,t if b = 1. Outputs JW,~y,t.

Note on Admissibility Query admissibility in PSE is a strict subset of admissibility in MPIPE. For
example, for all i ∈ {1, · · · , `}, j ∈ {1, · · · , q} we have

τ(H(0)) = τ(H(1)) =⇒ f
(0)
j (~w

(0)
i ) = f

(1)
j (w

(1)
i )

=⇒ |J (0)
j | = |J

(1)
j |

for J
(β)
j = {d(β)k ∈ D(β)

j | ∃ ~w (β)
i such that 〈~y (β)

j , ~w
(β)
i 〉 = d

(β)
k }

Notice that this restriction naturally holds for databases of biometric readings for which we want the distance
between any two pair of records to be greater than twice the distance threshold defined for the search
∀ (~wi, ~wj) ∈ W, d(~wi, ~wj) > 2t.

Let us now introduce the second main theorem stating that PSE can be built from IPE.

Theorem 3 (PSE main theorem). Let IPE = (IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be an
IND-secure function hiding inner product predicate encryption scheme over Znq . Then there exists PSE =
(PSE.Setup, PSE.BuildIndex, PSE.Trapdoor, PSE.Search), a secure proximity searchable encryption scheme
for the Hamming distance, such that for any PPT adversary APSE for ExpPSEIND, there exists a PPT adversary
AIPE for ExpIPEIND, such that for any security parameter λ ∈ N,

Adv
ExpPSEIND
APSE

= Adv
ExpIPEIND
AIPE

Proof. Theorem 1 shows that IPE yields MPIPE and Lemma 1 proves that PSE can be built from MPIPE.
Thus, IPE yields PSE.

Lemma 1. Let MPIPE be an IND-secure function hiding multi-point inner product encryption scheme over
Znq . Then there exists PSE = (PSE.Setup,PSE.BuildIndex,PSE.Trapdoor,PSE.Search) an IND-secure proxim-
ity searchable encryption scheme for the Hamming distance, over Znq .
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Proof. The correctness of the scheme follows from the correctness of the underlying MPIPE scheme. Assume
there exists ~wi ∈ W such that f~y,t(~wi) = 1, that is d(~y, ~wi) ≤ t with d(~y, ~wi) the Hamming distance between
vectors ~y and ~wi. For b is sampled from MPIPE.Decrypt(pp, tk, cti) and b = 1 with overwhelming probability.
Now assume that for all ~wi in W we have f~y,t(~wi) = 0, then b← MPIPE.Decrypt(pp, tk, cti) and b = 0 with
high probability. We thus have

Pr[PSE.Search(pp, Q~y,t, IW) = JW,~y,t]

≥ 1− t× Pr[MPIPE.Decrypt(pp, tk~y,D, ct~w) 6= (〈~w, ~y〉
?
∈ D)]

≥ 1− t× negl(λ)

and this construction is thus correct.
We now prove the security of the construction. Let APSE be a PPT adversary for the experiment ExpPSEIND

and CMPIPE be an challenger for ExpMPIPE
IND . Then there exists a PPT adversary AMPIPE for the experiment

ExpMPIPE
IND which works as follows:

1. AMPIPE receives pp from CMPIPE and forwards it to APSE.

2. AMPIPE receives two q-query histories H(0), H(1) from APSE. (AMPIPE can always build admissible
queries from H(0), H(1) as their admissibility is a strict subset of admissible queries for MPIPE.) AMPIPE

parses H(β) = (W(β), F (β)), β ∈ {0, 1} as follows: AMPIPE creates the queries S = (~w
(0)
1 , ~w

(1)
1 ), · · · ,

(~w
(0)
` , ~w

(0)
` ), where ~w

(β)
i ∈ W(β) and i ∈ {1, · · · , `}. From each f

(β)
j ∈ F (β), j ∈ {1, · · · , q}, AMPIPE

extracts a vector ~y
(β)
j ∈ Znq and a distance threshold t

(β)
j ∈ N. AMPIPE creates the key generation

queries R = (~y
(0)
1 , ~y

(1)
1 , D

(0)
1 , D

(1)
1 ), · · · , (~y

(0)
q , ~y

(1)
q , D

(0)
q , D

(1)
q ) where D

(β)
j = {1, · · · , t(β)j }.

3. AMPIPE sends R and S to CMPIPE and receives back a set of tokens T (β) = tk
(β)
1 , · · · , tk(β)q and a set of

encrypted keywords C(β) = ct
(β)
1 , · · · , ct(β)` such that

tk
(β)
j ← MPIPE.TokGen(sk, ~y

(β)
j , D

(β)
j ),

ct
(β)
i ← MPIPE.Encrypt(sk, ~w

(β)
i ).

AMPIPE forwards T (β) and C(β) to APSE, respectively as the encrypted index I(β) and the list of queries
Q(β).

4. AMPIPE receives β′ ∈ {0, 1} from APSE and returns it.

The advantage of APSE is then

Adv
ExpPSEIND
APSE

= Adv
ExpMPIPE

IND

AMPIPE

5 IPE with reduced key sizes

As described in the introduction, we show a general technique for reducing the size of keys of IPE schemes
that use dual pairing vector spaces (DPVS). The key idea of the technique is to use a different pair of bases
for portions of the vectors and add blinding factors so that these intermediate values are not useful until
combined. We show this technique starting from the IPE scheme of Okamoto and Takashima [OT12, Section
4]. We note that this scheme is a public key scheme that is adaptively attribute-hiding against chosen
plaintext attacks under the (decisional linear) DLIN assumption. So this scheme is public key and is not
function hiding.5 Thus, it cannot be directly used to instantiate PSE, we use it as an example due to the
relative simplicity of the scheme.

5This corresponds to three changes to Definition 1:

1. The adversary no longer specifies pairs of functions, only a single value,

2. The adversary is adversary can adaptively query for values fj receiving back tkj ,

3. There is only a single challenge plaintext x(0), x(1) because the adversary can encrypt values on either own.
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5.1 Dual Pairing Vector Spaces and Decisional Linear Assumption

Definition 6 (Symmetric Bilinear Group). Suppose G,GT are an additive and multiplicative groups (respec-
tively) of prime order q with generators g ∈ G, and gT ∈ GT respectively. The group G uses additive notation,
and the group GT uses multiplicative notation. Let e : G × G → GT be a non-degenerate (i.e. e(g, g) 6= 1)
bilinear pairing operation such that for all x, y ∈ Zq, e(x(g), y(g)) = e(g, g)xy. Assume the group operations
in G,GT and the pairing operation e are efficiently computable, then (G,GT , g, e) defines a symmetric bilin-
ear group. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , g, e) with security parameter λ.

We use the symmetric version of dual pairing vector spaces [OT15] where the pairing is based on sym-
metric bilinear groups defined in Definition 6.

Definition 7 (Dual Pairing Vector Spaces). Let (q,G,GT , g, ebg) be the symmetric bilinear pairing groups,

then Dual Pairing Vector Spaces (DVPS) is a tuple of prime q, N-dimensional vector space V =

N︷ ︸︸ ︷
G× . . .×G

over Fq, cyclic group GT of order q, canonical basis A defined as:

A := (~a1, . . . ,~an) , ~ai :=
(
0i−1, g, 0N−i

)
and pairing e : G×G→ GT . The pairing e is defined with respect to ebg from the symmetric bilinear pairing

group e(~x, ~y) =
∏N
i=1 ebg(gi, hi) ∈ GT where ~x = (g1, . . . , gN ) ∈ V and ~y = (h1, . . . , hN ) ∈ V. This pairing is

nondegenerate bilinear, i.e. e(s~x, t~y) = e(~x, ~y)st and if e(~x, ~y) = 1 for all ~y ∈ V then ~x = 0N . For all i and
j, e(~ai,~aj) = e(G,G)δi,j where δi,j = 1 if i = j and 0 otherwise, and e(g, g) 6= 1 ∈ GT .

DPVS also has a linear transformation (“canonical maps”) φi,j on V such that φi,j(~aj) = ~ai and
φi,j(~ak) = 0 if k 6= j. We define φi,j(~x) :=

(
0i−1, gj , 0

N−i) where ~x = (g1, . . . , gN ). We then define
the dual-pairing vector space generator as Gdpvs which takes input 1λ (λ ∈ N) and N ∈ N:

1. Runs (q,G,GT , g, e)← Gbpg
(
1λ
)
,

2. Compute A,V,

3. Returning (q,G,GT , g, e,V,A).

Lemma 2. Let (q,G,GT , g, e,V,A) ← Gdpvs be a (DPVS) generator as described above. We can efficiently

sample a random linear transformation W by sampling random coefficients {ri,j}i,j=1,··· ,n
$←− GL(n,Fq) and

setting

W :=

n,n∑
i,j=1

ri,jφi,j .

The matrix R := (ri,j) and R∗ := ((ri,j)
−1)T then defines the adjoint action on V and we can define (W−1)T

as

(W−1)T :=

N,N∑
i,j=1

r∗i,jφi,j

such that for any x, y ∈ V, we have

e(W (x), (W−1)T (y)) = e(x, y).

Assumption 1 (Decisional Linear Assumption). Let λ ∈ N and β ∈ {0, 1}. We define a generator for the
Decisional Linear Assumption (DLIN) problem, GDLIN

β , which on input 1λ:

1. Samples paramG = (q,G,GT , g, e)← Gbpg(1λ).

2. Samples κ, δ, ξ, σ
$←− Fq.

3. Sets Y (0) = (δ + σ)g and Y (1) $←− G.
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4. Returns (paramG, g, ξg, κg, δξg, σκg, Y
(β)).

The DLIN problem then consists in guessing β given (paramG, g, ξg, κg, δξg, σκg, Y (β)) ← GDLIN
β (1λ). The

decisional linear assumption is that for any PPT distinguisher D for the DLIN problem the advantage is:

AdvDLIN
D (λ) =

∣∣∣ Pr[D(1λ, X) = 1 | X ← GDLIN
0 (1λ)]

− Pr[D(1λ, X) = 1 | X ← GDLIN
1 (1λ)]

∣∣∣
= negl(λ)

5.2 Construction

This construction is an adaptation of Okamoto and Takashima’s IPE scheme [OT12, Section 4] (setting α = 1
in Figure 2 yields the original scheme). As in the original construction, we first need to describe a random
dual orthonormal bases generator, GIPE∗ob , which will be called in the main construction’s Setup algorithm to
generate the master keys. This is different from the previous generator as it generates α sets of bases.

Construction 4 (Dual Orthonormal Bases Generator). Let Gdpvs be a symmetric dual-pairing vector space
generator as described in Section 5.1. Let λ,N, α ∈ N, where λ is the security parameter, N is the dimension
of the vector space and α is the number of dual orthonormal bases pairs to generate. Then on inputs 1λ, N
and α, the orthonormal bases generator GIPE∗ob works as follows:

1. Sample (q,G,GT , g, e,V,A)← Gdpvs(1λ, N).

2. Sample a non-zero element of the field, ψ
$←− F×q .

3. Set gT = e(G,G)ψ and paramV = (q,V,GT ,A, e, gT ).

4. For each basis index 1 ≤ ` ≤ α:

(a) Sample a random map, as described in Lemma 2, X` = (χ`,i,j)
$←− GL(N,Fq) and set (ϑ`,i,j) =

ψ · (XT
` )−1, where 1 ≤ i, j ≤ N .

(b) For 1 ≤ i ≤ N , set b`,i =
∑N
j=1 χ`,i,j · aj and b∗`,i =

∑N
j=1 ϑ`,i,j · aj, where (a1, · · · ,aN ) = A.

(c) Set B` = (b`,1, · · · , b`,N ) and B∗` = (b∗`,1, · · · , b∗`,N ).

5. Return (paramV, {B`,B∗`}`=1,··· ,α).

In this construction ~x will always denote the attribute, and ~v will denote the predicate. As in the original
scheme, we assume that the first element of ~x is nonzero. Furthermore, note above we’ve used inner product
encryption with no associated plaintext, here we include the value m which can be decrypted if the inner
product is 0 and is hidden otherwise.

Construction 5. Let λ ∈ N be the security parameter and n, α ∈ N such that n/α ∈ N and define N =
4n/α + 2. Let ~x,~v ∈ Fnq \ {~0} and such that the first element of ~x is nonzero. Define the algorithms as in
Figure 2.

Correctness If the inner product of our attribute vector and our predicate vector is zero (in each basis),
〈~x,~v〉 =

∑α
`=1〈~x`, ~v`〉 = 0 , then by the properties of our group structures we cancel terms,

α∏
`=1

e(c`,k`) = g
(
∑α
`=1 ζ`+ωσ〈~x`,~v`〉)

T = g
(
∑α
`=1 ζ`)

T ,

and finally conclude m′ = m, therefore our construction is correct when the inner product is zero.

Key Reduction The key reduction is summarized in Table 2. In the Okamoto and Takashima scheme the
DPVSs are over vectors of dimension 4n + 2 with the public key being n + 2 basis vectors and the secret
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Setup(1λ, n, α) :

1. Sample (paramV,B,B∗)← GIPEob (1λ, N),

2. For 1 ≤ ` ≤ α, set B̂` =
(b`,0, · · · , b`,n/α, b`,N−1)) and

B̂∗` = (b∗`,0, · · · , b∗`,n/α, b
∗
`,3n/α+1 · · · , b

∗
`,N−1)).

3. pk = (1λ, paramV, {B̂`}`=1,··· ,α) and sk =

{B̂∗`}`=1,··· ,α.

TokGen(pk, sk, ~v) :

1. Sample σ ← Fq
2. Divide ~v in α smaller vectors of length n/α,

such that ~v = (~v1, · · · , ~vα).

3. For 1 ≤ ` ≤ α, sample ~η`
$←− Fn/αq and set

k` := (

1︷︸︸︷
1 ,

n/α︷︸︸︷
σ~v` , 0

2n/α,

n/α︷︸︸︷
~η` ,

1︷︸︸︷
0 )B∗`

4. tk~v := (k1, . . . ,kα)

Encrypt(pk,m, ~x) :

1. Sample ω ← Fq
2. Divide ~x in α smaller vectors of length n/α,

such that ~x = (~x1, · · · , ~xα).

3. For 1 ≤ ` ≤ α, sample ζ`, ϕ`
$←− Fq and set

c` := (

1︷︸︸︷
ζ` ,

n/α︷︸︸︷
ω~x` , 0

3n/α,

1︷︸︸︷
ϕ` )B`

4. Set c0 := mg
(
α∑̀
=1

ζ`)

T

5. Return ct~x := (c0, c1, . . . , cα)

Decrypt(pk, ct~x, sk~v) :

Return m′ =
∏α
`=1 e(c`,k`) / c0

Figure 2: Description of modified IPE algorithms.

Component Number of Group Elements

Secret Key α(2n/α+ 1)(4n/α+ 2) = 8n2/α+ 8n+ 2α
Public Key α(n/α+ 2)(4n/α+ 2) = 4n2/α+ 10n+ 4α
Ciphertext α(4n/α+ 2) = 4n+ 2α
Token α(4n/α+ 2) = 4n+ 2α

Table 2: Sizes in Group Elements of Each Component of Revised Scheme. The value α is how many separate
bases are used. Considering α = 1 gives sizes for the original scheme of Okamoto and Takashima. Setting
α = Ω(n) makes all components a linear number of group elements.

key being 2n + 1. Ciphertexts and tokens are a single vector. By splitting into α bases we introduce an α
overhead on each object while reducing the dimension to 4n/α + 2 and also reducing the number of basis
vectors released in the public and secret key to 2n/α+ 1 and n/α+ 2 respectively.

Security The proposed IPE scheme achieves the same security as the original construction [OT12, Theorem
1].

Theorem 4. The IPE construction in Figure 2 with α = 1 is adaptively attribute-hiding against chosen plain-
text attacks under the DLIN assumption, such that for any PPT adversary A there exists PPT distinguishers
D0-1,D1-1,D0-2-h,D1-2-h-1,D1-2-h-2 such that for any security parameter λ ∈ N

AdvIPEA (λ) ≤ AdvDLIN
D0-1(λ) + AdvDLIN

D1-1(λ)

+

ν∑
h=1

(
AdvDLIN

D0-2-h(λ) + AdvDLIN
D1-2-h-1(λ) + AdvDLIN

D1-2-h-2(λ)
)

+
28ν + 11

q
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where ν ∈ N is the maximum number of key queries A can make.6

We give a high level intuition here. This proof (like the proofs we build from) involve a system of games
where each game changes a single element of a vector and is shown to be indistinguishable from the last game.
These indistinguishability statements are made from a system of problems that stem from the decision linear
assumption. We modify the original problems of Okamoto and Takashima [OT12] to include multiple bases
of the DPVS. We can maintain security while spreading material across bases, because the public portions are
incomplete and the bases are sampled independently, making it difficult to create meaningful relationships
between bases. Using the same structure for our system of games and problems (but now including security
with multiple bases) we show that our scheme matches the security of Okamoto and Takashima [OT12].

Proof of Theorem 4. For this theorem’s proof we refer the reader to Okamoto and Takashima’s proof of
Theorem 1 [OT12, Section 4.3.1]. Notice that in this version Games 0′, 1, 2-h-1, · · · , 2-h-4, 3 are replaced by
Games 0∗, 1∗, 2-h-1∗, · · · , 2-h-4∗, 3∗ and the dimension of the hidden subspaces is 2n/α instead of 2n.

Lemma 3. For any PPT adversary A there exists PPT distinguishers D1,D2-h-1,D2-h-2 such that for any
security parameter λ ∈ N in Game 0*,

Pr[A wins | t = 1]− 1

2
≤ AdvDLIN

D1
(λ) +

ν∑
h=1

(
AdvDLIN

D2-h-1(λ) + AdvDLIN
D2-h-2(λ)

)
+

22ν + 6

q

where ν ∈ N is the maximum number of key queries A can make.7

Proof of Lemma 3. For a detailed high level overview of the proof, we refer the reader to Okamoto and
Takashima’s work [OT12, Section 4.3.2]. The games and the problems described in their proofs had to be
updated to fit our new construction, but as in the original work, the goal is to show that indistinguishably
of the games reduces to the DLIN assumption through a hierarchy of Problems. In the rest of this proof, we
will describe the updated version of the needed games and problems. The tree of the reductions, from the
games to the DLIN assumption, can be found in Figure 3.

We define the following 4ν + 3 updated games. In each game we will only describe the component that
changed compared to the previous game (either the keys or the ciphertexts). The boxed parts in keys and
ciphertexts indicate parts that have changed compared to the previous game.

Game 0* : This game is the same as the game described in the original proof [OT12, Definition 5] except

that before the setup phase the bit t
$←− {0, 1} is sampled and the game is aborted when t 6= s, where

s = 1 when m(0) = m(1) and s = 0 otherwise. For this proof we only consider the case where t = 1 thus
m(0) = m(1) and c0 is independent from β. The keys and ciphertexts are built as in our construction. The
answer to a key query for some vector ~v = (~v1, · · · , ~vα) is

k` = ( 1, σ~v`, 0n/α, 0n/α, ~η`, 0 )B∗`

where 1 ≤ ` ≤ α, σ
$←− Fq and ~η`

$←− Fn/αq . The challenge ciphertexts for attribute ~x(β) = (~x
(β)
1 , · · · , ~x (β)

α )
and message m(β) is

c` = ( ζ`, ω~x
(β)
` , 0n/α, 0n/α, 0n/α, ϕ` )B`

and

c0 = m(β)g

(
α∑̀
=1

ζ`

)
T

where 1 ≤ ` ≤ α, β
$←− {0, 1} and ω, ζ`, ϕ`

$←− Fq.

6In the original paper the constant was (29ν + 17)/q instead of (28ν + 11)/q but the proof still holds despite this small
difference.

7In the original paper the constant was (23ν + 12)/q instead of (22ν + 6)/q but the proof still holds despite this small
difference.
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Figure 3: Structure of reductions

Game 1* : This game is the same as Game 0* except that the challenge ciphertexts are now

c` = ( ζ`, ω~x
(β)
` , zx

(β)
`,1 , 0(n/α)-1 , 0n/α, 0n/α, ϕ` )B`

where x
(β)
`,1 6= 0 is the first coordinate of ~x

(β)
` , z

$←− Fq and all other values are generated as in Game 0*.

Game 2-h-1* : For 1 ≤ h ≤ ν, each game is the same as Game 2-(h-1)-4* (here Game 2-0-4* is Game
1*), except that the challenge ciphertexts are now

c` = ( ζ`, ω~x
(β)
` , ω′~x

(β)
` , ω′′0~x

(0)
` + ω′′1~x

(1)
` , 0n/α, ϕ` )B`

where ω′, ω′′0 , ω
′′
1

$←− Fq and all other values are generated as Game 2-(h-1)-4*.

Game 2-h-2* : For 1 ≤ h ≤ ν, each game is the same as Game 2-h-1*, except that the hth key query for
~v is now

k` = ( 1, σ~v`, σ′~v` , 0n/α, ~η`, 0 )B∗`

where σ′
$←− Fq and all other values are generated as in Game 2-h-1*.

Game 2-h-3* : For 1 ≤ h ≤ ν, each game is the same as Game 2-h-2*, except that the challenge ciphertexts
are now

c` = ( ζ`, ω~x
(β)
` , ω′0~x

(0)
` + ω′1~x

(1)
` , ω′′0~x

(0)
` + ω′′1~x

(1)
` , 0n/α, ϕ` )B`

where ω′0, ω
′
1

$←− Fq and all other values are generated as Game 2-h-2*.
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Game 2-h-4* : For 1 ≤ h ≤ ν, each game is the same as Game 2-h-3*, except that the hth key query for
~v is now

k` = ( 1, σ~v`, 0n/α, σ′′~v` , ~η`, 0 )B∗`

where σ′′
$←− Fq and all other values are generated as in Game 2-h-3*.

Game 3* : The game is the same as Game 2-ν-2*, except that the challenge ciphertexts are now

c` = ( ζ`, ω0~x
(0)
` + ω1~x

(1)
` , ω′0~x

(0)
` + ω′1~x

(1)
` , ω′′0~x

(0)
` + ω′′1~x

(1)
` , 0n/α, ϕ` )B`

where ω0, ω1
$←− Fq and all other values are generated as Game 2-h-2*. Notice that with this modification,

c` becomes independent from the bit β
$←− {0, 1}.

Let t = 1, we define the advantage of a PPT machineA in Game g* as Adv
(g∗)
A (λ), where g = 0, 1, 2-h-1, · · · , 2-h-4, 3.

In the following proofs, we will calculate the difference of advantages for each pair of neighboring games. As
in the original proof [OT12, Section 4.3.2] we then obtain∣∣ Adv(0∗)A (λ)

∣∣ ≤ ∣∣ Adv(0∗)A (λ)− Adv
(1∗)
A (λ)

∣∣
+

ν∑
h=1

( ∣∣ Adv(2-h-4∗)A (λ)− Adv
(2-h-1∗)
A (λ)

∣∣+

4∑
i=2

∣∣ A(2-h-(i−1)∗)(λ)−A(2-h-i∗)(λ)
∣∣ )

+
∣∣ Adv(2-ν-4∗)A (λ)− Adv

(3∗)
A (λ)

∣∣+ Adv
(3∗)
A (λ)

≤ Advbp1
∗

D1
(λ) +

ν∑
h=1

(
Advbp2

∗

D2-h-1(λ) + Advbp3
∗

D2-h-1(λ)
)

+
10ν + 1

q

≤ AdvDLIN
D1

(λ) +

ν∑
h=1

(
AdvDLIN

D2-h-1(λ) + AdvDLIN
D2-h-2(λ)

)
+

22ν + 6

q

In the above, bounds on Advbp1
∗

D1
(λ),Advbp2

∗

D2-h-1(λ) and Advbp3
∗

D2-h-1(λ) are described in Lemmas 5, 6 and 7
respectively. This hybrid proof relies on both computational and information theoretical problems. The
computational problems are the following:

Basic problem 0* embeds a DLIN instance in the smallest and simplest dual pairing vector space possible.
The resulting orthonormal bases are 3x3 matrices and are built using the random elements ξ and κ
from the DLIN instance. The game is then to distinguish between a vector in which the middle element
is zero and a vector in which the middle element is random.

Basic problem 1* consists in distinguishing between two challenge ciphertexts. One where the third slot
contains zeros, as in the actual construction, and the second where the third slot contains a randomized
copy of the second slot (i.e. the vector x).

Basic problem 2* consists in distinguishing between two challenge keys. One where the third slot contains
zeros, as in the actual construction, and the second where the third slot contains a randomized copy
of the second slot (i.e. the vector v).

Basic problem 3* consists in distinguishing between two challenge keys. One where the randomized vector
is in the third slot and the other where it is in the fourth slot. The second slot being all zeros in both
cases.

The information theoretical problems are the following:

Type 1 is a linear transformation inside a hidden subspace of a ciphertext. Lemma 7 [OT12] states that
the advantage of a PPT adversary A in a Type 1 distinguishing game is∣∣Adv(2-(h-1)-4)∗A (λ)− Adv

(2-h-1)∗
A (λ)

∣∣ ≤ 2

q
.
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Type 2 is a linear transformation inside a hidden subspace of a ciphertext where the corresponding token is
preserved. Lemma 9 [OT12] states that the advantage of a PPT adversary A in a Type 2 distinguishing
game is ∣∣Adv(2-h-2)∗A (λ)− Adv

(2-h-3)∗
A (λ)

∣∣ ≤ 8

q
.

Type 3 is a linear transformation across both hidden and partially public subspaces. Lemma 11 [OT12]
states that the advantage of a PPT adversary A in a Type 3 distinguishing game is∣∣Adv(2-ν-4)∗A (λ)− Adv

(3)∗
A (λ)

∣∣ ≤ 1

q
.

We now give a detailed description of the needed computational problems and their respective proofs.

Basic Problem 0* This is a modified version of Basic Problem 0 [OT10, Definition 18]. Let λ, α ∈ N
and β ∈ {0, 1}. We define a Basic Problem 0∗ generator, Gbp0

∗

β , which on inputs 1λ and α:

1. Samples κ, ξ, ρ, τ
$←− F×q and δ, σ, ω

$←− Fq.

2. Samples (q,G,GT , g, e,V,A)← Gdpvs and sets pp = (q,V,GT ,A, e,GT ) where GT = e(g, g)κξ.

3. For 1 ≤ ` ≤ α:

(a) Samples a random transformation, as described in Lemma 2, X` = (χ`,1, χ`,2, χ`,3)
$←− GL(3,Fq)

and sets (ν`,1, ν`,2, ν`,3) = ((X`)
T )−1.

(b) Computes b`,i = κ
∑3
j=1 χ`,i,jaj and sets B̂` = (b`,1, b`,3).

(c) Computes b∗`,i = ξ
∑3
j=1 ν`,i,jaj and sets B∗` = (b∗`,1, b

∗
`,2, b

∗
`,3).

(d) Set f` = (ω, τ, 0)B` .

(e) Sets y
(0)
` = (δ, 0, σ)B∗` and y

(1)
` = (δ, ρ, σ)B∗` .

4. Returns (pp, {B̂`,B∗` ,y
(β)
` ,f`}`=1,··· ,α, κg, ξg, δξg).

Basic Problem 0* consists in guessing β given

(pp, {B̂`,B∗` ,y
(β)
` ,f`}`=1,··· ,α, κg, ξg, δξg)← Gbp0

∗

β (1λ, α).

We define the advantage of a PPT machine Abp0∗ for Basic Problem 0* as

Advbp0
∗

Abp0∗
(λ) =

∣∣∣ Pr[Abp0∗(1
λ, X) = 1 | X ← Gbp0

∗

0 (1λ, α)]− Pr[Abp0∗(1
λ, X) = 1 | X ← Gbp0

∗

1 (1λ, α)]
∣∣∣

Lemma 4. For any PPT adversary Abp0∗ for Basic Problem 0*, there exists a PPT distinguisher D for the
DLIN problem such that for any security parameter λ ∈ N,

Advbp0
∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

Proof. Let Abp0∗ be an adversary for Basic Problem 0*. We can then build D, a distinguisher for the DLIN
assumption, as follows:

1. D receives a DLIN instance (paramG, g, ξg, κg, δξg, σκg, Y
(β)), where paramG = (q,G,GT , g, e) and Y (β)

is either Y (0) = (δ + σ)g or Y (1) = ψg
$←− G.

2. D samples (q,V,GT ,A, e)
$←− Gdpvs(1λ, 3, paramG).

3. D computes gT = e(κg, ξg) = e(g, g)κξ and sets pp = (q,V,GT ,A, e, gT ).
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4. D considers8 the following basis vectors

u1 = (κ, 0, 0)A, u2 = (-κ, -ξ, κξ)A, u3 = (0, ξ, 0)A

such that U = (u1,u2,u3) is a basis of V. Notice that from the given DLIN instance, D can efficiently
compute u1,u3.

5. Similarly D considers
u∗1 = (ξ, 0, 1)A, u

∗
2 = (0, 0, 1)A, u

∗
3 = (0, κ, 1)A

such that U∗ = (u∗1,u
∗
2,u
∗
3) is a basis of V. Notice that from the given DLIN instance, D can efficiently

compute u∗1,u
∗
2,u
∗
3.

6. D samples η, ϕ
$←− Fq such that η 6= 0 and sets

v = (ϕg, -ηg, ηκg) = (ϕ, -η, ηκ)A

and
w(β) = (δξg, σκg, Y (β))

7. D generates α random linear transformations W1, · · · ,Wα on V, as shown in Lemma 2.

8. For 1 ≤ ` ≤ α :

(a) D calculates

b`,i = W`(ui) for i = 1, 3,

b∗`,i = (W−1` )T (u∗i ) for i = 1, 2, 3

and sets B̂` = (b`,1, b`,3) and B∗` = (b∗`,1, b
∗
`,2, b

∗
`,3)

(b) D sets f` = W`(v) and y
(β)
` = (W−1` )T (w(β)).

9. D sends (pp, {B̂`,B∗` ,y
(β)
` ,f`}`=1,··· ,α, κg, ξg, δξg) to Abp0∗ and returns whatever Abp0∗ sends back.

For the moment assume that η and κ are all now zero, we will later account for the probability that each

could be 0 Define τ
def
= ξ−1η, since η 6= 0 it holds that τ 6= 0. Similarly, define ω

def
= τ + κ−1ϕ, we have

f` = W`(v) = W`

(
(ϕ, -η, ηκ)A

)
= W`

(
((ω − τ)κ, -τξ, τκξ)A

)
= W`

(
ωu1 + τu2

)
= W`

(
(ω, τ, 0)U

)
= (ω, τ, 0)B`

When β = 0 and Y (0) = (δ + σ)g we have

y
(0)
` = (W−1` )T

(
δξg, σκg, (δ + σ)g

)
= (W−1` )T

(
(δξ, σκ, δ + σ)A

)
= (W−1` )T

(
δu∗1 + σu∗3

)
= (W−1` )T

(
(δ, 0, σ)U∗

)
= (δ, 0, σ)B∗`

8In the next two steps D considers basis vectors of the matrices Π,Π∗,

Π =

κ
-κ -ξ κξ

ξ 1

 Π∗ =

ξ 1
1

κ 1


and observe that Π(Π∗)T = κξI3. D cannot efficiently compute Π.
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When β = 1 and Y (1) = ψg where ψ
$←− Fq, if we define ρ = ψ − δ − σ, we have

y
(1)
` = (W−1` )T

(
δξg, σκg, ψg

)
= (W−1` )T

(
δξg, σκg, (ρ+ δ + σ)g

)
= (W−1` )T

(
(δξ, σκ, ρ+ δ + σ)A

)
= (W−1` )T

(
δu∗1 + ρu∗2 + σu∗3

)
= (W−1` )T

(
(δ, ρ, σ)U∗

)
= (δ, ρ, σ)B∗`

Since the k linear maps W` are sampled uniformly and independently, the distribution of the bases B` and

B∗` is the same as if they had been generated using Gbp0
∗

β . Then for the distributions of f`,y
(β)
` to match the

ones of the inputs expected by A, we need κ, ρ, ξ 6= 0. This is true except with probability 2/q when β = 0,
and with probability 3/q when β = 1. We then have:

Advbp0
∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

Basic Problem 1* This is a modified version of Problem 1 [OT12, Definition 8]. Let λ, α, n ∈ N,

β ∈ {0, 1}, and set N = 4n/α + 2. We define a Basic Problem 1∗ generator, Gbp1
∗

β , which on inputs 1λ, α
and n:

1. Samples ω, z
$←− Fq.

2. Samples (paramV, {B`,B∗`}`=1,··· ,α)← GIPE∗ob (1λ, N).

3. For 1 ≤ ` ≤ α:

(a) Sets B̂∗` = (b∗`,0, · · · , b∗`,n/α, b
∗
`,3n/α+1 · · · , b

∗
`,N−1).

(b) Samples γ`
$←− Fq.

(c) Sets g
(0)
`,1 = (0, ω~e1, 0

n/α, 0n/α, 0n/α, γ`)B` and g
(1)
`,1 = (0, ω~e1, z~e1, 0

n/α, 0n/α, γ`)B` .

(d) For 2 ≤ i ≤ n/α, sets g`,i = ωb`,i.

4. Returns (paramV, {B`, B̂∗` , g
(β)
`,1 , {g`,i}i=2,··· ,n/α}`=1,··· ,α).

Then Basic Problem 1* consists in guessing β given

(paramV, {B`, B̂∗` , g
(β)
`,1 , {g`,i}i=2,··· ,n/α}`=1,··· ,α)← Gbp1

∗

β (1λ, n, α).

We define the advantage of a PPT machine Abp1∗ for Basic Problem 1* as

Advbp1
∗

Abp1∗
(λ) =

∣∣∣ Pr[Abp1∗(1
λ, X) = 1 | X ← Gbp1

∗

0 (1λ, n, α)]− Pr[Abp1∗(1
λ, X) = 1 | X ← Gbp1

∗

1 (1λ, n, α)]
∣∣∣

Lemma 5. For any PPT adversary Abp1∗ for Basic Problem 1*, there exists a PPT distinguisher D for the
DLIN problem such that for any security parameter λ ∈ N,

Advbp1
∗

Abp1∗
(λ) ≤ Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

See Appendix A.1 for the proof.
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Basic Problem 2* This is a modified version of Problem 2 [OT12, Definition 9]. Let λ, α, n ∈ N and

β ∈ {0, 1} and set N = 4n/α+ 2. We define a Basic Problem 2∗ generator, Gbp2
∗

β (1λ, α, n):

1. Sample δ, δ0, τ, ω, σ
$←− Fq.

2. Sample (paramV, {B`,B∗`}`=1,··· ,α)← GIPE∗ob (1λ, N).

3. For 1 ≤ ` ≤ α set B̂` = (b`,0, · · · , b`,n/α, b`,3n/α+1 · · · , b`,N ).

4. For 1 ≤ ` ≤ α, for 1 ≤ i ≤ n/α:

(a) Set h
(0)
`,i = (0, δ~ei, 0

n/α, 0n/α, δ0~ei, 0)B` and h
(1)
`,i = (0, δ~ei, τ~ei, 0

n/α, δ0~ei, 0)B` .

(b) Set g`,i = (0, ω~ei, σ~ei, 0
n/α, 0n/α, 0)B` .

5. Return (paramV, {B̂`,B∗` , {h
(β)
`,i , g`,i}i=1,··· ,n/α}`=1,··· ,α).

Basic Problem 2* is to guess β given (paramV, {B̂`,B∗` , {h
(β)
`,i , g`,i}i=1,··· ,n/α}`=1,··· ,α) ← Gbp2

∗

β (1λ, n, α). We
define the advantage of a PPT machine Abp2∗ for Basic Problem 2* as

Advbp2
∗

Abp2∗
(λ) =

∣∣∣ Pr[Abp2∗(1
λ, X) = 1 | X ← Gbp2

∗

0 (1λ, n, α)]− Pr[Abp2∗(1
λ, X) = 1 | X ← Gbp2

∗

1 (1λ, n, α)]
∣∣∣

Lemma 6. Let λ ∈ N be a security parameter. For any PPT adversary Abp2∗ for Basic Problem 2*, there
exists a PPT adversary Abp0∗ for Basic Problem 0* and a PPT distinguisher D for the DLIN problem such
that,

Advbp2
∗

Abp2∗
(λ) = Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

See Appendix A.2 for the proof.

Basic Problem 3* This is a modified version of Problem 3 [OT12, Definition 10]. Let λ, α, n ∈ N and

β ∈ {0, 1}, and set N = 4n/α + 2. We define a Basic Problem 3∗ generator, Gbp3
∗

β , which on inputs 1λ, α
and n:

1. Samples τ, δ0, ω
′, ω′′, κ′, κ′′

$←− Fq.

2. Samples (paramV, {B`,B∗`}`=1,··· ,α)← GIPE∗ob (1λ, N, α).

3. For 1 ≤ ` ≤ α:

(a) Sets B̂` = (b`,0, · · · , b`,n/α, b`,3n/α+1 · · · , b`,N−1)).

(b) Sets B̂∗` = (b`,0, · · · , b`,n/α, b`,2n/α+1 · · · , b`,N−1)).

4. For 1 ≤ ` ≤ α, for 1 ≤ i ≤ n/α:

(a) Sets h
(0)
`,i = (0, 0n/α, τ~ei, 0

n/α, δ0~ei, 0)B∗` and h
(1)
`,i = (0, 0n/α, 0n/α, τ~ei, δ0~ei, 0)B∗` .

(b) Sets g`,i = (0, 0n/α, ω′~ei, ω
′′~ei, 0

n/α, 0)B` .

(c) Sets f`,i = (0, 0n/α, κ′~ei, κ
′′~ei, 0

n/α, 0)B` .

5. Returns (paramV, {B̂`, B̂∗` , {h
(β)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α).

Basic Problem 3* consists in guessing β given

(paramV, {B̂`, B̂∗` , {h
(β)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α)← Gbp3

∗

β (1λ, n, α).

We define the advantage of a PPT machine Abp3∗ for Basic Problem 3* as

Advbp3
∗

Abp3∗
(λ) =

∣∣∣ Pr[Abp3∗(1
λ, X) = 1 | X ← Gbp3

∗

0 (1λ, n, α)]− Pr[Abp3∗(1
λ, X) = 1 | X ← Gbp3

∗

1 (1λ, n, α)]
∣∣∣
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Lemma 7. For any PPT adversary Abp3∗ for Basic Problem 3*, there exists a PPT distinguisher D for the
DLIN problem such that for any security parameter λ ∈ N,

Advbp3
∗

Abp3∗
(λ) ≤ Advbp2

∗

Abp2∗
(λ) +

2

q
≤ AdvDLIN

D (λ) +
7

q
.

See Appendix A.3 for the proof. This completes the proof of Lemma 3.
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A IPE key reduction proofs

A.1 Proof of Lemma 5

Let Abp1∗ be an arbitrary adversary for Basic Problem 1*. Then we can build Abp0∗ , an adversary for Basic
Problem 0* as follows:

1. Receive a Basic Problem 0* instance (pp, {B̂`,B∗` ,y
(β)
` ,f`}`=1,··· ,α, κg, ξg, δξg)← Gbp0

∗

β (1λ, α).

2. Extract gT and paramG(q,G,GT , g, e) from pp and run (q,G,GT , g, e,V,A) ← Gdpvs(1λ, N, paramG).
Sets paramV = (q,V,GT ,A, e, gT ).

3. For 1 ≤ ` ≤ α :

(a) Sample a random linear transformation W` on V, W` = (w`,1, · · · , w`,N )
$←− GL(N,Fq).

(b) Compute g
(β)
`,1 = W`(0,y

(β), 0N−4). (Recall that y(β) ∈ G3.)

(c) For 2 ≤ i ≤ n, compute g`,i = W`(0
i, δξg, 0N−i−1).

(d) Compute:

d`,1 = W`(0, b
∗
`,1, 0

N−4),

d`,n/α+1 = W`(0, b
∗
`,2, 0

N−4),

d`,N = W`(0, b
∗
`,3, 0

N−4),

d`,i = W`(0
i+1, ξg, 0N−i−2), i = 0, 2 ≤ i ≤ n/α

d`,i = W`(0
i, ξg, 0N−i−1), n/α+ 2 ≤ i ≤ N − 1.

(e) Consider the following vectors ( d∗`,n/α+1 is not efficiently computable)

d∗`,1 = (W−1` )T (0, b`,1, 0
N−4),

d∗`,n/α+1 = (W−1` )T (0, b`,2, 0
N−4),

d∗`,N = (W−1` )T (0, b`,3, 0
N−4),

d∗`,i = (W−1` )T (0i+1, κg, 0N−i−2), i = 0, 2 ≤ i ≤ n/α,
d∗`,i = (W−1` )T (0i, κg, 0N−i−1), n/α+ 2 ≤ i ≤ N − 1.

(f) Abp0∗ sets D` = (d`,0, · · · ,d`,N ) and D̂∗` = (d∗`,1, · · · ,d∗`,n/α,d
∗
`,3n/α+1, · · · ,d

∗
`,N ).

4. Send (paramV, {D`, D̂∗` , g
(β)
`,1 , {g`,i}i=1,··· ,n}`=1,··· ,α) to Abp1∗ and output the response bit.
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From B̂` = (b`,1, b`,3) and ξg, Abp0∗ is only able to compute d∗`,i for i = 0, · · · , n/α, n/α + 2, · · · , N . From
B∗ = (b∗`,1, b

∗
`,2, b

∗
`,3) and κg, Abp0∗ is able to compute d`,i for i = 0, · · · , N . Then for 1 ≤ ` ≤ α, D` and D∗`

are dual orthonormal bases. Then when we define

ω
def
= δ, γ

def
= σ, z

def
= ρ,

we have

g
(0)
`,1 = ( 0, ω~e1, 0n/α, 0n/α, γ)D`

g
(1)
`,1 = ( 0, ω~e1, z~e1, 0n/α, γ)D`

and for 2 ≤ i ≤ n,g`,i = ωd`,i. We then have Advbp1
∗

Abp1∗
(λ) ≤ Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) + 5/q.

Linear Algebra In the below we show that the linear system is properly prepared. Without loss of
generality consider α = 1. Then from BP0*, we have:

u∗1 = (ξ, 0, 1)A = (ξg, 0, g)

u∗2 = (0, 0, 1)A = (0, 0, g)

u∗3 = (0, κ, 1)A = (0, κg, g)

The matrix (X−1)T (from Basic Problem 0∗) is a random linear transformation (i.e. a random 3×3 matrix):

(X−1)T =

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3.


As a result for B∗ = (b∗1, b

∗
2, b
∗
3) :

b∗1 = (X−1)T (u∗1) = (X−1)T (ξg, 0, g)

=
(

(x1,1ξ + x1,3)g, (x2,1ξ + x2,3)g, (x3,1ξ + x3,3)g
)

b∗2 = (X−1)T (u∗2)

= (X−1)T (0, 0, g)

=
(
x1,3g, x2,3g, x3,3g

)
b∗3 = (X−1)T (u∗3)

= (X−1)T (0, κg, g)

=
(

(x1,2κ+ x1,3)g, (x2,2κ+ x2,3)g, (x3,2κ+ x3,3)g
)

From BP1* we have the random linear transformation (i.e. random N ×N matrix) W :

W =

w1,1 · · · w1,N

...
. . .

...
wN,1 · · · wN,N
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and we obtain D = (d0, · · · ,dN−1) as follows:

dj = W (0j+1, ξg, 0N−j−2) =
(
w1,j+2ξg, · · · , wN,j+2ξg

)
, for j ∈ {0, 2, 3, ...., n/α},

d1 = W (0, b∗1, 0
N−4)

= W
(

0, (x1,1ξ + x1,3)g, (x2,1ξ + x2,3)g, (x3,1ξ + x3,3)g, 0N−4
)

=
(

(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)ξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)g
)
i=1,··· ,N

dn/α+1 = W (0, b∗2, 0
N−4)

= W
(

0, x1,3g, x2,3g, x3,3g, 0
N−4

)
=
(

(wi,2x1,3 + wi,3x2,3 + wi,4x3,3)g
)
i=1,··· ,N

dj = W (0j , b∗2, 0
N−j−1) =

(
w1,j+1ξg, · · · , wN,j+1ξg

)
, for j ∈ {n/α+ 2, · · · , N − 1}

dN−1 = W (0, b∗3, 0
N−4)

= W
(

0, (x1,2κ+ x1,3)g, (x2,2κ+ x2,3)g, (x3,2κ+ x3,3)g, 0N−4
)

=
(

(wi,2x1,2 + wi,3x2,2 + wi,4x3,2)κg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)g
)
i=1,··· ,N

Similarly, from BP0* we have:

y(0) = (δ, 0, σ)B∗ =
(

(xi,1ξ + xi,3)δg + (xi,2κ+ xi,3)σg
)
i=1,2,3

,

y(1) = (δ, ρ, σ)B∗ =
(

(xi,1ξ + xi,3)δg + ρ xi,3g + (xi,2κ+ xi,3)σg
)
i=1,2,3

From BP1* we have:

g
(0)
1 = W (0,y(0), 0N−4)

= W
(

0, (x1,1ξ + x1,3)δG+ (x1,2κ+ x1,3)σg, (x2,1ξ + x2,3)δg + (x2,2κ+ x2,3)σg,

(x3,1ξ + x3,3)δg + (x3,2κ+ x3,3)σg, 0N−4
)

=
(

(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N

and

g
(1)
1 = W (0,y(1), 0N−4)

= W
(

0, (x1,1ξ + x1,3)δg + (x1,2κ+ x1,3)σg, (x2,1ξ + x2,3)δg + (x2,2κ+ x2,3)σg,

(x3,1ξ + x3,3)δg + (x3,2κ+ x3,3)σg, 0N−4
)

=
(

(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N
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Notice that for ω
def
= δ, z

def
= ρ and γ

def
= σ:

(0, ω~e1, 0
n/α, 0n, γ)D = (0, δ, 0n/α−1, 0n/α, 0n, σ)D

= δd2 + σdN

=
(

(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N

= g
(0)
1

(0, ω~e1, z~e1, 0
n, γ)D = (0, δ, 0n/α−1, ρ, 0n/α−1, 0n/α, σ)D

= δd2 + ρdn/α+1 + σdN

=
(

(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N

= g
(1)
1

A.2 Proof of Lemma 6

Let Abp2∗ be an arbitrary adversary for Basic Problem 2*. Then we can build Abp0∗ , an adversary for Basic
Problem 0* as follows:

1. Receive a Basic Problem 0* instance (pp, {B̂`,B∗` ,y
(β)
` ,f`}`=1,··· ,α, κg, ξg, δξg)← Gbp0

∗

β (1λ, α).

2. Extract gT and paramG(q,G,GT , G, e) from pp, run (q,V,GT ,A, e) ← Gdpvs(1λ, N, paramG). Set
paramV = (q,V,GT ,A, e, gT ).

3. For 1 ≤ ` ≤ α :

(a) Sample a random linear transformation W` = (w`,1, · · · , w`,N )
$←− GL(N,Fq).

(b) For 1 ≤ i ≤ n/α, compute g`,i = W`(0, 0
3(i−1),f`, 0

3(n−i), 0).

(c) For 1 ≤ i ≤ n/α, compute h
(β)
`,i = (W−1` )T (0, 03(i−1),y

(β)
` , 03(N−i), 0).

(d) Compute d`,0 = W`(κg, 0
N−1) and d`,N = W`(0

N−1, κg).

(e) For 1 ≤ i ≤ n/α and 1 ≤ j ≤ 3, compute d`,n(j−1)+i = W`(0, 0
3(i−1), b`,j , 0

3(n−i), 0).

(f) Compute d∗`,0 = (W -1
` )T (ξg, 0N−1) and d∗`,N = (W -1

` )T (0N−1, ξg).

(g) For 1 ≤ i ≤ n/α and 1 ≤ j ≤ 3, compute d∗`,n(j−1)+i = (W−1` )T (0, 03(i−1), b∗`,j , 0
3(n−i), 0).

(h) Sets D∗` = (d∗`,0, · · · ,d∗`,N ) and D̂` = (d`,0, · · · ,d`,n/α,d`,2n/α+1, · · · ,d`,N ).

4. Sends (paramV, {D∗` , D̂`, {h
(β)
`,i , g`,i}i=1,··· ,n/α}`=1,··· ,α) to Abp2∗ .

5. Return β′ from Abp2∗ .

From B̂` = (b`,1, b`,3) and ξg, Abp0∗ is able to compute d`,j for j = 0, · · · , n/α, 2n/α+ 1, · · · , N . Similarly,
from B∗ = (b∗`,1, b

∗
`,2, b

∗
`,3) and κg, Abp0∗ can compute d`,j for j = 0, · · · , N . Then for 1 ≤ ` ≤ α, D` and D∗`

are dual orthonormal bases. Then we have for 1 ≤ i ≤ n/α:

h
(0)
`,i = ( 0, δ~ei, 0n/α, 0n/α, σ~ei, 0 )∗D`

h
(1)
`,i = ( 0, δ~ei, ρ~ei, 0n/α, σ~ei, 0 )∗D`

g`,i = ( 0, ω~ei, τ~ei, 0n/α, 0n/α, 0 )D` .
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We then have

Advbp2
∗

Abp2∗
(λ) = Advbp0

∗

Abp0∗
(λ)

≤ AdvDLIN
D (λ) +

5

q
.

A.3 Proof of Lemma 7

Basic Problem 3* can be decomposed into two experiments, Experiment 3-1 and 3-2 (Definitions 8 and 9
respectively). We will show that these two games are close and then use the triangle inequality. We now
define these experiments.

Definition 8 (Experiment 3-1). Let η ∈ {0, 1}. We define the Experiment 3-1 generator Gexp 3-1
η (1λ, n, α):

1. Samples (paramV, {B`,B∗`}1≤`≤α)← GIPE∗ob (1λ, N, α).

2. For 1 ≤ ` ≤ α, sets B̂` = (b`,0, · · · , b`,n/α, b`,3n/α+1, · · · , b`,N ) and B̂∗` = (b∗`,0, · · · , b∗`,n/α, b
∗
`,2n/α+1, · · · , b

∗
`,N ).

3. Samples τ, τ ′, δ0, ω
′, ω′′, κ′, κ′′

$←− Fq.

4. For 1 ≤ ` ≤ α, for 1 ≤ i ≤ n/α set:

h
(0)
`,i = ( 0, 0n/α, τ~ei, 0n/α, δ0~ei, 0 )B∗` ,

h
(1)
`,i = ( 0, 0n/α, τ~ei, τ ′~ei, δ0~ei, 0 )B∗` ,

g`,i = ( 0, 0n/α, ω′~ei, ω′′~ei, 0n/α, 0 )B` ,

f`,i = ( 0, 0n/α, κ′~ei, κ′′~ei, 0n/α, 0 )B` .

5. Returns (paramV, {B̂`, B̂∗` , {h
(η)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α).

Experiment 3-1 consists in guessing η ∈ {0, 1} given

(paramV, {B̂`, B̂∗` , {h
(η)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α)← Gexp 3−1

η (1λ, n, α).

We define the advantage of a PPT machine D for Experiment 3-1 as

Advexp 3−1
D (λ) =

∣∣∣ Pr[D(1λ, X) = 1 | X ← Gexp 3−1
0 (1λ, n, α)]− Pr[D(1λ, X) = 1 | X ← Gexp 3−1

1 (1λ, n, α)]
∣∣∣

Definition 9 (Experiment 3-2). Let η ∈ {1, 2}. We define the Experiment 3-2 generator Gexp 3-2
η (1λ, n, α):

1. Samples (paramV, {B`,B∗`}1≤`≤α)← GIPE∗ob (1λ, N, α).

2. For 1 ≤ ` ≤ α, sets

B̂` = (b`,0, · · · , b`,n/α, b`,3n/α+1, · · · , b`,N )

B̂∗ = (b∗`,0, · · · , b∗`,n/α, b
∗
`,2n/α+1, · · · , b

∗
`,N ).

3. Samples τ, τ ′, δ0, ω
′, ω′′, κ′, κ′′

$←− Fq.

4. For 1 ≤ ` ≤ α, for 1 ≤ i ≤ n/α set:

h
(1)
`,i = ( 0, 0n/α, τ~ei, τ ′~ei, δ0~ei, 0 )B∗` ,

h
(2)
`,i = ( 0, 0n/α, 0n/α, τ ′~ei, δ0~ei, 0 )B∗` ,

g`,i = ( 0, 0n/α, ω′~ei, ω′′~ei, 0n/α, 0 )B`),

f`,i = ( 0, 0n/α, κ′~ei, κ′′~ei, 0n/α, 0 )B` .
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5. Returns (paramV, {B̂`, B̂∗` , {h
(η)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α).

Experiment 3-2 consists in guessing η ∈ {1, 2} given

(paramV, {B̂`, B̂∗` , {h
(η)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α)← Gexp 3-1

η (1λ, n, α).

We define the advantage of a PPT machine D for Experiment 3-2 as

Advexp 3-2
D (λ) =

∣∣∣ Pr[D(1λ, X) = 1 | X ← Gexp 3-2
1 (1λ, n, α)]− Pr[D(1λ, X) = 1 | X ← Gexp 3-2

2 (1λ, n, α)]
∣∣∣

Lemma 8. For any PPT distinguisher D and for any security parameter λ ∈ N,

Advexp 3−1
D (λ) ≤ 1

q

Proof. Sample θ
$←− Fq. Then for 1 ≤ i ≤ n/α set

d`,2n/α+i = b`,2n/α+i − θb`,n/α+i,
d∗n/α+i = b∗`,n/α+i − θb

∗
`,2n/α+i.

For 1 ≤ ` ≤ α, define

D` = (b`,0, · · · , b`,2n/α,d`,2n/α+1, · · · ,d`,3n/α, b`,3n/α+1, · · · , b`,N−1),

D∗` = (b∗`,0, · · · , b∗`,n/α,d
∗
`,n/α+1, · · · ,d

∗
`,2n/α, b

∗
`,2n/α+1, · · · , b

∗
`,N−1)

which form dual orthonormal bases. Then we have

h
(0)
`,i = ( 0, 0n/α, τ~ei, 0n/α, δ0~ei, 0 )B∗`

= ( 0, 0n/α, τ~ei, τ ′~ei, δ0~ei, 0 )D∗`

g`,i = ( 0, 0n/α, ω′~ei, ω′′~ei, 0n/α, 0 )B`

= ( 0, 0n/α, ω̃′~ei, ω′′~ei, 0n/α, 0 )D`

f`,i = ( 0, 0n/α, κ′~ei, κ′′~ei, 0n/α, 0 )B`

= ( 0, 0n/α, κ̃′~ei, κ′′~ei, 0n/α, 0 )D`

In the above, τ ′ = -θτ , ω̃′ = ω′ + θω′′ and κ̃′ = κ′ + θκ′′. Notice that since θ, ω′ and κ′ are sampled
independently and uniformly, then τ ′, ω̃′ and κ̃′ are independently and uniformly distributed except when
τ = 0, which happens with probability 1/q. As a result, the distributions when η = 0 and when η = 1 are
equivalent, except with probability 1/q.

Lemma 9. For any PPT distinguisher D for Experiment 3-2, there is a PPT adversary Abp2∗ for Basic
Problem 2* such that for any security parameter λ ∈ N,

Advexp 3-2
D (λ) ≤ Advbp2

∗

Abp2∗
(λ) +

1

q

Proof. Suppose we have a PPT distinguisher D for Experiment 3-2, then we can build a PPT adversary Abp2∗

for Basic Problem 2*. On receiving a Basic Problem 2* instance (paramV , {B̂`,B∗` , {h
(β)
`,i , g`,i}i=1,··· ,n/α}`=1,··· ,α),

Abp2∗ sets, for 1 ≤ ` ≤ α,

D` = (b`,0, b`,2n/α+1, · · · , b`,3n/α, b`,n/α+1, · · · , b`,2n/α, b`,1, · · · , b`,n/α, b`,3n/α+1, · · · , b`,N−1)

D̂` = (b`,0, b`,2n/α+1, · · · , b`,3n/α, b`,3n/α+1, · · · , b`,N−1)
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and

D∗` = (b∗`,0, b
∗
`,2n/α+1, · · · , b

∗
`,3n/α, b

∗
`,n/α+1, · · · , b

∗
`,2n/α, b

∗
`,1, · · · , b∗`,n/α, b

∗
`,3n/α+1, · · · , b

∗
`,N−1)

D̂∗` = (b∗`,0, b
∗
`,2n/α+1, · · · , b

∗
`,3n/α, b

∗
`,3n/α+1, · · · , b

∗
`,N−1)

Then Abp2∗ samples η1, η2
$←− Fq and sets

f`,i = η1b`,i + η2~ei, for 1 ≤ i ≤ n/α

Abp2∗ sends (paramV, {D̂`, D̂
∗
` , {h

(β)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α) to D and receives back β′ ∈ {0, 1}. Abp2∗

outputs β′. Thus,

h
(0)
`,i = ( 0, δ~ei, 0n/α, 0n/α, δ0~ei, 0 )B∗`

= ( 0, 0n/α, 0n/α, δ~ei, δ0~ei, 0 )D∗`

h
(1)
`,i = ( 0, δ~ei, τ~ei, 0n/α, δ0~ei, 0 )B∗`

= ( 0, 0n/α, τ~ei, δ~ei, δ0~ei, 0 )D∗`

g`,i = ( 0, ω~ei, σ~ei, 0n/α, 0n/α, 0 )B`

= ( 0, 0n/α, σ~ei, ω~ei, 0n/α, 0 )D`

f`,i = ( 0, (η1 + η2ω)~ei, η2σ~ei, 0n/α, 0n/α, 0 )B`

= ( 0, 0n/α, η2σ~ei, (η1 + η2ω)~ei, 0n/α, 0 )D` .

Since δ, τ, ω, σ, η1 and η2 are independently and uniformly sampled, then δ, τ, ω, σ, η1 + η2ω and η2σ are
independently and uniformly distributed in Fq except when σ = 0, which happens with probability 1/q.

As a result, the distributions of (paramV, {D̂`, D̂
∗
` , {h

(β)
`,i , g`,i,f`,i}i=1,··· ,n/α}`=1,··· ,α) and of the output of

Gexp 3-2
β are equivalent except with probability 1/q.

Then from Lemmas 8, 9 and 6, for any PPT adversary Abp3∗ there exists PPT adversaries, Abp2∗ and ADLIN∗ ,
such that for any security parameter λ ∈ N we have

Advbp3
∗

Abp3∗
(λ) ≤

∣∣∣Pr[Abp3∗(1
λ,Gexp 3-1

0 (1λ, n, α)) = 1]− Pr[Abp3∗(1
λ,Gexp 3-2

2 (1λ, n, α)) = 1]
∣∣∣

≤
∣∣∣Pr[Abp3∗(1

λ,Gexp 3-1
0 (1λ, n, α)) = 1]− Pr[Abp3∗(1

λ,Gexp 3-1
1 (1λ, n, α)) = 1]

∣∣∣
+
∣∣∣Pr[Abp3∗(1

λ,Gexp 3-2
1 (1λ, n, α)) = 1]− Pr[Abp3∗(1

λ,Gexp 3-2
2 (1λ, n, α)) = 1]

∣∣∣
≤ Advexp 3-1

Abp3∗
(λ) + Advexp 3-2

Abp3∗
(λ)

≤ Advbp2
∗

Abp2∗ (λ)
+

2

q

≤ AdvDLIN
ADLIN(λ)

+
7

q
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