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Abstract

Biometric databases collect people’s information and allow users to perform proximity searches (finding all records
within a bounded distance of the query point) with few cryptographic protections. This work studies proximity
searchable encryption applied to the iris biometric.

Prior work proposed inner product functional encryption as a technique to build proximity biometric databases
(Kim et al., SCN 2018). This is because binary Hamming distance is computable using an inner product. This
work identifies and closes two gaps to using inner product encryption for biometric search:

1. Biometrics naturally use long vectors often with thousands of bits. Many inner product encryption schemes
generate a random matrix whose dimension scales with vector size and have to invert this matrix. As a
result, setup is not feasible on commodity hardware unless we reduce the dimension of the vectors. We
explore state of the art techniques to reduce the dimension of the iris biometric and show that all known
techniques harm the accuracy of the resulting system. That is, for small vector sizes multiple unrelated
biometrics are returned in the search. For length 64 vectors, at a 90% probability of the searched biometric
being returned, 10% of stored records are erroneously returned on average.

Rather than changing the feature extractor, we introduce a new cryptographic technique that allows one to
generate several smaller matrices. For vectors of length 1024 this reduces time to run setup from 23 days
to 4 minutes. At this vector length, for the same 90% probability of the searched biometric being returned,
.02% of stored records are erroneously returned on average.

2. Prior inner product approaches leak distance between the query and all stored records. We refer to these
as distance-revealing. We show a natural construction from function hiding, secret-key, predicate, inner
product encryption (Shen, Shi, and Waters, TCC 2009). Our construction only leaks access patterns, and
which returned records are the same distance from the query. We refer to this scheme as distance-hiding.

We implement and benchmark one distance-revealing and one distance-hiding scheme. The distance-revealing
scheme can search a small (hundreds) database in 4 minutes while the distance-hiding scheme is not yet practical,
requiring 4 hours.

Keywords: Searchable encryption, biometrics, proximity search, inner product encryption.

1 Introduction

Biometrics are measurements of physical phenomena of the human body. We focus on the iris biometric in this
work. Iris data, like all biometric data is noisy, which means that two readings from the same iris are unlikely to be
identical. Feature extractors convert such physical phenomena to a digital representation that is more stable but still
noisy. The output of feature extractors is called a template. Biometric databases are used for both security critical
applications (such as access control) and privacy critical applications (such as immigration). Let D be some distance
metric and t be some distance threshold. Applications building on biometric templates require:

*A conference version of this work is published at AsiaCCS 2022 under DOI Number: 10.1145/3488932.3497754. This version contains
substantial material that is not present in the conference version.
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1. Low False Reject Rate (FRR) templates from the same biometric are within distance t with high probability,
and

2. Low False Accept Rate (FAR) templates from two different biometrics are within distance t with low
probability.

Learning stored biometric templates enables an attacker to reverse this value into a convincing biometric [GRGB+12,
MCYJ18,AF20], enabling presentation attacks [VS11,HWKL18,SDDN19] that can compromise users’ accounts and
devices. Since biometrics cannot be updated, such a compromise lasts a lifetime.

Searchable encryption [SWP00, CGKO11, BHJP14, FVY+17] enables servers to be queried without decrypting
the data. For a distance metric D, proximity searchable encryption returns all records that are within distance t.
That is, for a dataset x1, ..., xℓ for a query y, one should return all xi such that D(xi, y) ≤ t. Since biometric data is
inherently noisy, proximity searchable encryption is a key tool to secure biometric databases while allowing queries.

Iris feature extractors usually produce binary vectors that are similar in Hamming distance (fingerprints are
usually compared by set difference, faces with L2 norm)1. Kim et al. proposed to use secret-key, function-hiding
inner product encryption or IPEfh,sk for encrypted comparison of binary Hamming biometrics [KLM+18,KLM+16].
IPEfh,sk allows computation of inner product without revealing underlying values. Inner product of vectors x, y in
{−1, 1}n encodes Hamming distance:

D(x, y) = (n− ⟨x, y⟩)/2.

More formally the functionality of IPEfh,sk is as follows: one generates sk ← Setup(·) and has two algorithms
ctx ← Encrypt(x, sk) and tky ← TokGen(y, sk) such that one can use Decrypt (without sk) to learn ⟨x, y⟩. That
is, Decrypt(ctx, tky) = ⟨x, y⟩. One can use IPEfh,sk to build proximity search by encrypting ci ← Encrypt(xi, sk) and
providing all ci to the database server (additional data can be associated with xi using traditional encryption). For
queries y the client provides tky ← TokGen(y, sk) to the server. The server can compute the inner product between
the query and each stored record and should return all records with the appropriate inner product.

We identify and close two gaps in the use of inner product encryption to build proximity searchable encryption
for the iris.

1.1 Our Contribution

Multi Random Projection Inner Product Encryption Daugman’s seminal iris feature extractor [Dau05,
Dau09] produces a vector of length n = 1024, the open source OSIRIS [ODGS16] system uses n = 32768 by default,
and recent neural network feature extractors [AF19] use n = 2048.

The most efficient IPEfh,sk schemes rely on dual pairing vector spaces [OT15] in bilinear groups. The secret key
for such constructions is a random matrix A ∈ Fn×nq and its inverse A−1; q is a large prime that is the order of the
bilinear pairing. Setup for the scheme must invert a random A ∈ Fn×nq .

This operation is prohibitive for n > 1000, as is the case for iris feature extractors. For the most efficient known
scheme which we call Random Projection with Check or RProjC [KLM+18], the authors’ parallel implementation of
key generation in FLINT [Har10] (on a modern 16 core machine), generating keys for n = 240 took roughly four
hours. In our experiments, Setup time grows cubicly as expected.2 Through interpolation, we estimate the time to
generate keys for n = 1024 at 23 days.

While one can train feature extractors with smaller n, we show (in Section 3) that known techniques harm the
quality of the biometric features, making the irises of different people appear similar. The false accept vs false reject
rate tradeoff degrades, leaving the application with the choice of either not matching readings of the same iris or
matching readings of difference individuals’ irises. Both choices have consequences for the resulting application.

In Section 3.1 and Table 3, we show that for a small size dataset of 356 individuals using a feature extractor with
n = 64 a distance t that enables a 90% true accept rate searching for an individual in the dataset returns 40 incorrect
biometrics with an average query! By comparison when n = 1024, queries return .06 incorrect biometrics on average.
Datasets with more individuals are not available; we expect this rate to be consistent across dataset sizes.

Section 4 introduces a new transform for inner product encryption that generates multiple matrices A1, ...,Aσ

and their inverses during key generation where each Ai is an (N + 1)× (N + 1), where N = ⌈n/σ⌉, matrix instead

1Note that real-valued vectors for the Euclidean distance can be converted to binary vectors for the Hamming distance using mean or
median thresholding, where values above the mean/median are encoded as 1 and values below as 0.

2We have not evaluated sub-cubic matrix inversion in finite fields.
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Underlying IPE Type Multi Random Proj Distance Operation Time
Scheme Name IPE fh sk pred Applied Hiding Setup BuildIndex Trapdoor Search
RProjC [KLM+18] ✓ ✓ − − − 2× 106 10.8 .07 235
MRProjC [KLM+18] ✓ ✓ − ✓ − 268 10.8 .08 241
MRProj [BCSW19] ✓ ✓ ✓ ✓ ✓ 268 10.8 22.4 12600

Table 1: Time (in seconds) for operations with ℓ = 356 records stored at n = 1024. All algorithms are naturally
parallelizable. Timing for the single base scheme is interpolated from smaller vector lengths. BuildIndex encrypts
the dataset at initialization time, Trapdoor generates a search token, and Search finds the resulting indices. fh, sk
and pred indicate that the underlying IPE scheme is respectively a function-hiding, secret key and/or predicate only
scheme. Distance Hiding indicates that the scheme does not reveal the distance between the stored value and the
query.

of a single large pair A,A−1. To hide partial information, both x and y are augmented when they are split into
component vectors:

x′i = 1 || xi∗N , ..., xi∗N+(N−1)

y′i = ζi || yi∗N , ..., yi∗N+(N−1)

for i = 0, ..., σ − 1 and ζ0, ..., ζσ−1 is a linear secret sharing of 0 that is chosen in TokGen. The intuition is that
any collection of σ − 1 or fewer components represents a random group element, so one cannot learn information
about inner products between vector components. We show security of two prior IPE schemes with multi random
projection (one in Section 4 and one in Appendix C).

We implemented two versions of proximity search building on this form of IPEfh,sk. The first is a direct application
of the RProjC [KLM+18] scheme and the second is our new multi random projection version, called Multi Random
Projection with Check or MRProjC. To benchmark, we encrypted a single reading of each individual (ℓ = 356) from
the ND0405 dataset [PSO+09,BF16] which is a superset of the NIST Iris Evaluation Challenge [PBF+08]. Queries
are drawn from other readings in the ND0405 dataset. This performance is summarized in Table 1 with search
taking approximately 4 minutes. Our multi random projection technique reduces time for Setup by four orders
of magnitude with minimal impact on the timings of the rest of the algorithms. This multi random projection
technique makes proximity searchable encryption on a 350 biometric dataset feasible.

Distance Hiding Proximity Search By design, proximity search from IPEfh,sk for any searched value y, allows
the server to compute the distance [KLM+18] between y and all stored records.3 This establishes a geometry on the
space of stored records. If the server has side information on the stored records xi, they may be able to reconstruct
global geometry from the local geometry revealed by pairwise distances [PBDT05, AEG+06]. While we are not
aware of any leakage abuse attacks directly against proximity search, there are attacks against k-nearest neighbor
databases [KPT19,KE19].4 Distance allows one to easily compute the k-nearest points (with some error) so attacks
that can exploit this leakage apply. Like most leakage abuse attacks, the efficacy of these attacks depends on what
the adversary knows about the stored data. We discuss these attacks more in Section 7.

For applications where such leakage is unacceptable (or the adversary has side information on the encrypted data),
we show a transform from a predicate version of inner product encryption to proximity search that does not reveal
pairwise distance. A predicate IPE scheme produces ciphertexts cx and tokens tky which allow one to effectively
check if ⟨x, y⟩ = 0 (instead of revealing the inner product). Barbosa et al. [BCSW19] recently proposed such a scheme
that is a modification of Kim et al.’s construction [KLM+18]. Their construction simply removes the group elements
that allow one to check the inner product, so we call this Random Projection or RProj. We call such a scheme an
IPEfh,sk,pred scheme. IPEfh,sk,pred allows one to test if the inner product is equal to some value i as follows: add an
n+1th element as −1 to x, denoted x′, and create yi = y||i. Then, ⟨x′, yi⟩ = (⟨x || -1, y ||i⟩ = 0)⇔ (⟨x, y⟩ = i) . One
can check all values in a set I by generating a token tkyi for each i ∈ I. Setting I = {n− 2 ∗ 0, ...., n− 2 ∗ t}, yields
a proximity check (these tokens are permuted before being sent to server).

3Some prior work allows computation of approximate distance [KIK12] using locality sensitive hashes [IM98], allowing the server to
see how many hashes match, the number of matches approximates distance.

4Here we focus on attacks that apply to proximity searchable encryption. There is a rich history of leakage abuse attacks against
different types of searchable encryption [IKK12,CGPR15,KKNO16,WLD+17,GSB+17,GLMP18,KPT19,MT19,KE19,KPT20,FMC+20].
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We call this construction Multi Random Projection or MRProj. The simplicity and generality of this construction
is an advantage, it immediately benefits from efficiency improvements in inner product encryption and can be built
from multiple computational assumptions. However, the size of tky and search time grow linearly with t. For the iris
t is usually around .3n.

Since the server can see if the same tkyi matches different records, when two records are both within distance
t, the server learns if they match the same distance (but not the specific distance). Thus, the resulting proximity
scheme leaks two pieces of information:

Access Pattern [IKK12,CGPR15] The set of records returned by the query. If xi and xj are both returned by
a query it must be the case that D(xi, xj) ≤ 2t. Preventing attacks that only require access pattern usually
requires oblivious RAM [GKL+20] and its high storage and communication overhead.

Distance Equality Leakage For a database x1, ..., xℓ for a
searched value y if there are multiple records xi, xj such that D(xi, y) ≤ t and D(xj , y) ≤ t our scheme
additionally reveals if D(xi, y) = D(xj , y).

No information is leaked about data that is not returned (beyond that it was not returned). Biometrics are well
spread, so one does not expect readings of two biometrics to be close to a query. As mentioned, the vector size has
a large impact on the number of improper records that will be returned by a query (recall for n = 64, 40 improper
records are returned, when n = 1024, .06 improper records are returned). Since MRProj only leaks when multiple
records are returned it is critical to ensure an accurate system, underscoring the importance of our multi random
projection approach enabling Setup for large n where high correctness is possible.

In RProjC and MRProjC, the server learns the pairwise distance between the query y and all records xi. So in
that setting, n only affects correctness, not security.

The search complexity of MRProj is roughly a multiplicative of t ≈ .3n slower than for MRProjC. See the difference
in concrete timing in Table 1. For n = 1024 this corresponds to a t ≈ 307, the measured multiplicative overhead
is only 52.5. Closing this performance gap is the main open problem resulting from this work; MRProj is not fast
enough. In Section 8 we present avenues for improving search efficiency.

Organization The rest of this work is organized as follows, Section 2 describes mathematical and cryptographic
preliminaries, Section 3 describes the n vs accuracy tradeoff for the iris and its impact on security, Section 4 introduces
the multi random projection technique, Section 5 shows that IPEfh,sk,pred suffices to build proximity search, Section 6
discusses our implementation, Section 7 reviews further related work and Section 8 concludes.

2 Preliminaries

Let λ be the security parameter throughout the paper. We use poly(λ) and negl(λ) to denote unspecified functions

that are polynomial and negligible in λ, respectively. For some n ∈ N, [n] denotes the set {1, · · · , n}. Let x
$←− S

denote sampling x uniformly at random from the finite set S. Let q = q(λ) ∈ N be a prime, then Gq denotes a cyclic
group of order q. Let x denote a vector over Zq such that x = (x1, · · · , xn) ∈ Znq , the dimension of vectors should be
apparent from context. Consider vectors x = (x1, · · · , xn) and v = (v1, · · · , vn), their inner-product is denoted by
⟨x, v⟩ =

∑n
i=1 xivi. Let X be a matrix, then XT denotes its transpose.

Hamming distance is defined as the distance between the bit vectors x and y of length n: D(x, y) = |{i |xi ̸= yi}|.
We note that if a vector over {0, 1} is encoded as x±1,i = 1 if and xi = 1 and x±1,i = −1 if xi = 0 then it is true
that ⟨x±1, y±1⟩ = n− 2D(x, y).

Definition 1 (Asymmetric Bilinear Group). Suppose G1,G2, and GT are three groups (respectively) of prime order
q with generators g1 ∈ G1, g2 ∈ G2 and gT ∈ GT respectively. We denote a value x encoded in G1 with either gx1 or
[x]1, we denote G2 similarly. Let e : G1×G2 → GT be a non-degenerate (i.e. e(g1, g2) ̸= 1) bilinear pairing operation
such that for all x, y ∈ Zq, e([x]1, [y]2) = e(g1, g2)

xy. We assume the group operations in G1,G2 and GT and the
pairing operation e are efficiently computable, then (G1,G2,GT , q, e) defines an asymmetric bilinear group.

Let Gabg be an algorithm that takes input 1λ and outputs a description of an asymmetric bilinear groups (G1,G2,GT , q, e)
with security parameter λ.
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1. Draws β
$←− {0, 1},

2. Computes (sk, pp)← PE.Setup(1λ), sends pp to A,

3. For 1 ≤ i ≤ s, A chooses x
(0)
i , x

(1)
i ∈M,

4. For 1 ≤ j ≤ r, A chooses f
(0)
j , f

(1)
j ∈ F ,

5. Denote R :=
(
x
(0)
1 , x

(1)
1

)
, · · · ,

(
x
(0)
r , x

(1)
r

)
, S :=

(
f
(0)
1 , f

(1)
1

)
, · · · ,

(
f
(0)
s , f

(1)
s

)
.

6. A sends R and S to C,
7. A loses the game if R and S are not admissible,

8. A receives C(β) := {ct(β)i ← PE.Encrypt
(
sk, x

(β)
i

)
}ri=1 and T (β) := {tk(β)j ← PE.TokGen

(
sk, f

(β)
j

)
}sj=1

9. A returns β′ ∈ {0, 1},

10. Her advantage is Adv
ExpPEIND

A (λ) =
∣∣∣ Pr[A(1λ, T (0), C(0)) = 1]− Pr[A(1λ, T (1), C(1)) = 1]

∣∣∣
Figure 1: Definition of ExpPEIND for predicate encryption.

2.1 Inner Product Encryption

Secret-key predicate encryption with function privacy supporting inner products queries was first proposed by Shen
et al. [SSW09]. This primitive allows one to check if the inner product between vectors is zero or not. The scheme
they presented is both attribute and function hiding, meaning that an adversary running the decryption algorithm
gains no knowledge on either the attribute or the predicate.

Definition 2 (Secret key predicate encryption). Let λ ∈ N be the security parameter,M be the set of attributes and
F be a set of predicates. We define PE = (PE.Setup, PE.Encrypt, PE.TokGen, PE.Decrypt), a secret-key predicate
encryption scheme, as follows: PE.Setup(1λ)→ (sk, pp), PE.Encrypt(sk, x)→ ctx,
PE.TokGen(sk, f)→ tkf , and PE.Decrypt(pp, tkf , ctx)→ b.
We require the scheme to have the following properties:

Correctness: For any x ∈M, f ∈ F ,

Pr

[
f(x) = b

∣∣∣∣ ctx←PE.Encrypt(sk,x)
tkf←PE.TokGen(sk,f)

b←PE.Decrypt(pp,tkf ,ctx)

]
≥ 1− negl(λ).

Security of admissible queries: Let r = poly(λ) and s = poly(λ). Any PPT adversary A has only negl(λ)
advantage in the ExpPEIND game (defined in Figure 1). Token and encryption queries must meet the following admis-
sibility requirements, ∀j ∈ [1, r],∀i ∈ [1, s],

PE.Decrypt(pp, tk
(0)
j , ct

(0)
i ) = PE.Decrypt(pp, tk

(1)
j , ct

(1)
i ).

The above definition is called full security in the language of Shen, Shi, and Waters [SSW09]. Note that this definition
is selective (not adaptive), as the adversary specifies two sets of plaintexts and functions apriori. The relevant
primitive for us is IPEfh,sk,pred which uses the above definition restricted to the class of predicates F = {fy | y ∈ Znq }
be the set of predicates such that for all vectors x ∈ Znq , fy(x) = 1 when ⟨x, y⟩ = 0, fy,t(x) = 0 otherwise. We use
(IPE.Setup, IPE.Encrypt, IPE.TokGen, IPE.Decrypt) to refer to the corresponding tuple of algorithms.

2.2 Proximity searchable encryption

In this section we define proximity searchable encryption (PSE), a variant of searchable encryption that supports
proximity queries.
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1. Draws β
$←− {0, 1},

2. Computes (sk, pp)← PSE.Setup(1λ) and sends pp to A.

3. A chooses and outputs History(0),History(1).

4. A loses the game if AccPatt(History(0)) ̸= AccPatt(History(1)) ∨ DisEq(History(0),History(1)) = 0

5. A receives I(β) and Q(β).

6. A outputs β′ ∈ {0, 1}

7. Her advantage in the game is: Adv
ExpPSEIND

A (λ) =
∣∣∣ Pr[A(1λ, I(0), Q(0)) = 1]− Pr[A(1λ, I(1), Q(1)) = 1]

∣∣∣
Figure 2: Definition of ExpPSEIND.

Definition 3 (History). Let X ∈ M be a list of keywords drawn from space M, let F be a class of predicates over
M. An m-query history over W is a tuple History = (X,F ), with F = (f1, · · · , fm) a list of m predicates, fi ∈ F .

Definition 4 (Access pattern). Let X ∈M be a list of keywords. The access pattern induced by an m-query history
History = (X,F ) is the tuple AccPatt(History) = (f1(X), · · · , fm(X))

Definition 5 (Distance Equality). Let History(0),History(1) be m-query histories for predicates of the type fy,t(x) =

(D(x, y)
?
≤ t). Let, DisEq(History(0),History(1)) = 1 if and only if for each j it is true that{

(i, k)

∣∣∣∣∣(D(x
(0)
i ,y

(0)
j )=D(x

(0)
k ,y

(0)
j )∧D(x

(1)
i ,y

(1)
j )̸=D(x

(1)
k ,y

(1)
j ))

∨
(D(x

(0)
i ,y

(0)
j ) ̸=D(x

(0)
k ,y

(0)
j )∧D(x

(1)
i ,y

(1)
j )=D(x

(1)
k ,y

(1)
j ))

}
,

is the empty set.

Definition 6 (Proximity Searchable Encryption). Let

� λ ∈ N be the security parameter,

� DB = (M1, · · · ,Mℓ) be a database of size ℓ,

� Keywords X = (x1, · · · , xℓ), such that xi ∈ Znq relates to Mi,

� F = {fy,t | y ∈ Znq , t ∈ N} be a family of predicates such that, for a keyword x ∈ Znq , fy,t(x) = 1 if D(x, y) ≤ t,
0 otherwise.

The algorithms PSE = (PSE.Setup,PSE.BuildIndex, PSE.Trapdoor, PSE.Search) defines a proximity searchable en-
cryption scheme:
PSE.Setup(1λ)→ (sk, pp), PSE.BuildIndex(sk, X)→ IX ,
PSE.Trapdoor(sk, fy,t) → tky,t, and PSE.Search(pp, Qy,t, IX) → JX,y,t. We require the scheme to have the following
properties:

Correctness Define JX,y,t = {i|fy,t(xi) = 1, xi ∈ X}. PSE is correct if for all X and fy,t ∈ F :

Pr

[
J ′ = JX,y,t

∣∣∣∣ IX←PSE.BuildIndex(sk,X)
Qy,t←PSE.Trapdoor(sk,fy,t)

J′←PSE.Search(pp,Qy,t,IX)

]
≥ 1− negl(λ).

Security for Admissible Queries Any PPT adversary A has only negl(λ) advantage in the experiment ExpPSEIND

defined in Figure 2, for ℓ = poly(λ) and m = poly(λ).
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3 Iris Statistics and Leakage

This section introduces iris feature extractors and shows that reducing the length of the feature extractor harms the
uniqueness of the resulting biometric. Reduced uniqueness harms both the correctness (because the wrong set of irises
is returned) and security of the MRProj construction (because the server learns information about returned irises).
Daugman [Dau05, Dau09] introduced the seminal iris processing pipeline. This pipeline assumes a near infrared
camera. Iris images in near infrared are believed to be independent from the visible light pattern; the near-infrared
iris pattern is epigenetic, irises of identical twins are believed to be independent [Dau09,HBF10]. Traditional iris
recognition consists of three phases:

Segmentation takes the image and identifies which pixels should be included as part of the iris. This produces a
{0, 1} matrix of the same size as the input image with 1s corresponding to iris pixels.

Normalization takes the variable size set of iris pixels and maps them to a fixed size rectangular array. This can
roughly be thought of as unrolling the iris.

Feature Extraction transforms the rectangular array into a fixed number of features. In Daugman’s original work
this consisted of convolving small areas of the rectangle with a 2D wavelet. Modern feature extractors are
usually convolutional neural networks.

In identification systems the tradeoff is between FRR and FAR. FRR is how frequently readings of the same biometric
are regarded as different. FAR is how frequently readings of different biometrics are regarded as the same. As
described above, when one wishes to match a biometric y against a database one considers matches as the set
{xi|D(xi, y) ≤ t} for some metric D and distance parameter t. Selecting a small t increases FRR and reduces FAR.
Before investigating the dependence on feature vector length and the FRR/FAR tradeoff we introduce the feature
extractor and dataset used in this analysis.

Feature Extractor For the feature extractor, we use the recent pipeline called ThirdEye [AF18,AF19], which is
publicly available [Ahm20]. The software produces a 1024 dimensional real valued feature vector. We convert this
to a binary vector by setting f ′i = 1 if fi > Exp[fi] where the Exp[fi] is the expectation of the individual feature,
otherwise f ′i = 0. We train the feature extractor as specified in [AF19].

Biometric Database There are many iris datasets collected across a variety of conditions. In this work we use
the NotreDame 0405 dataset [PSO+09,BF16] which is a superset of the NIST Iris Evaluation Challenge [PBF+08].
This dataset consists of images from 356 biometrics (we consider left and right eyes as separate biometrics) with
64964 images in total. (See Appendix B for similar results with the IITD dataset [KP10].) Figure 3(a) shows
the histograms for the testing portions of the feature extractor outputs. The blue histogram contains comparisons
between different readings of the same biometric while the red histogram contains comparisons between different
biometrics. Let t′ = t/1024 be the fractional Hamming distance, the FRR is the fraction of the blue histogram to
the right of t′ and the FAR is the fraction of the red histogram to the left of t′. There is overlap between the red
and blue histogram indicating that there is a tradeoff between FRR and FAR.

3.1 Performance of Biometric Identification with Small Dimension

The efficiency of IPE based proximity search critically depends on the number of features n (see Table 4). In our
experiments we estimate Setup for n = 1024 for the schemes of Kim et al. [KLM+18] and Barbosa et al. [BCSW19]
to take 30 days on a modern server machine (see details in Section 6). It is tempting to consider statistical methods
to produce feature vectors of reduced size. We show this comes at a cost to the quality of the resulting feature
vectors. This motivates our approach to reduce the complexity of Setup in Section 4. Our analysis consists of two
major parts:

1. We compare different mechanisms for reducing the size of feature vectors using n = 64 as the target dimension.

2. Using the best feature reduction mechanism we compare the FRR/FAR tradeoff for n < 1024, showing direct
impacts for the correctness and security of the resulting biometric search.
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(a) ND 0405 Histogram with n = 1024 (b) ND 0405 Histogram with n = 64

Figure 3: Hamming distance distribution for images from the same iris in blue, and different irises in red. Histograms
are produced using ThirdEye [AF19]. Resulting histograms for the ND 0405 dataset. Figure 3(a) shows the histogram
when n = 1024 with a small overlap between distances comparisons of the same iris and different irises. This overlaps
is increased substantially when n = 64 in in Figure 3b). Figure 3b) is produced using the E method.

3.1.1 Dimensionality Reduction Method

We consider four different mechanisms for dimension reduction and consider their impact on FRR/FAR. For all
techniques, the most important phenomena is that variance of Different comparisons increases as the sample size
decreases.5 Compare Figure 3(a) and Figure 3(b). This makes the tails of Same and Different wider leading to worse
identification. The four mechanisms we consider are:6

Random Sample Select a random subset of positions of size 64 and use this as the feature extractor. We denote
this technique by R-64 (for random).

Error Rate Minimization Hollingsworth et al. [HBF08] and Bolle et al. [BPCR04] propose the concept of “fragile
bits” which are more likely to be susceptible to bit flips. Their work is based on the Gabor based feature
extractor (described at the beginning of this section) while ThirdEye [AF19] is a convolutional neural network.

We select the 64 bits which have the least probability of flipping. Results for this approach are shown in Table 2
and denoted by S-64 (for stable).

Surprisingly, this approach is worse than random sampling. We believe this approach to be appropriate for
the Gabor based feature extractor since it produces large number of noisy features due to noise in different
readings of an iris. This is in contrast to our feature extractor which outputs a succinct feature vector where
the CNN tries to make individuals features independent.

Error Delta Maximization This approach uses bits which maximize the difference between the means of the intra
and inter class distributions. That is, these are bits where the difference between intra class and inter class
error is the highest. That is, we select the bits that maximize the following difference:

max
i

(
Pr

x,y←Different
[xi ̸= yi]− Pr

x,y←Same
[xi ̸= yi]

)
The intuition is that bits are the most useful as they maximize the difference in probability of error between
the same and different comparisons. The hope is to overcome the weakness of the prior approach which did

5This is consistent with previous observations that sampling from the iris red histogram behaves similarly to a binomial distribution
where the number of trials is proportional the included entropy of the iris [SSF19].

6For all experiments we computed the mechanism four times and report the average in Table 2.
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FRR False Accept Rate
Size 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

1024 .50 .03 .02 .01 .01 .01 .01 .01 .01 0 0
R-64 .99 .38 .29 .24 .22 .18 .17 .16 .14 .13 .12
S-64 1 .61 .61 .51 .41 .41 .41 .32 .32 .32 .26
E-64 .97 .30 .24 .18 .14 .14 .10 .10 .10 .07 .07
T-64 .96 .27 .16 .13 .13 .09 .09 .06 .06 .06 .04

Table 2: FRR for different output sizes and probabilities of leakage for the ND0405 datasets. Summary of false reject
rates for queries drawn from Same distribution. We vary a threshold t, report the false reject rate (FRR) when
allowing for the corresponding FAR. The original n = 1024 system is presented for comparison.

not consider the entropy of bits across different biometrics. The top 64 bits are used. This approach is denoted
by E-64 (for error). This approach improves over both R and S techniques.

Training Network Lastly, we train the ThirdEye architecture [AF19] from scratch to output a smaller feature
vector of size n = 64 for both datasets. Essentially we train a new feature extractor on the same training data
to reduce dimensions. The feature extractor remains the same but is now constrained to learn 64 features. This
is achieved by changing the number of neurons in the second last layer of our convolutional neural network.
We can expect this to perform better than random sampling since the feature extractor is explicitly learning
to classify using 64 features. We use T (for train) to denote this technique.

Results are summarized in Table 2. The E and T techniques outperform the R and S techniques. Going forward we
use the E dimensionality reduction technique for the rest of this work because it is simpler to compute for different
vector sizes.

3.1.2 Impact of reducing n

We now show that decreasing n using the E method hurts the identification quality of the iris biometric. First we
note that an FRR of ≤ .10 requires a distance tolerance of t ≥ .3n (see the histograms in Figure 3). However,
comparisons between different irises are tightly centered around t = .5n. This means for a dataset {xi}ℓi=1 for most
pairs xi, xj there exists some value x∗ such that D(xi, x∗) ≤ t and D(xj , x∗) ≤ t. This means for most pairs xi, xj ,
there is some query that will cause them both to be returned.

The goal of this subsection is to understand behavior on actual queries. We consider a distribution over x∗ of
different readings of individuals stored in the dataset to see how frequently multiple records are returned. Recall that
multiple records being returned impacts the system correctness for both the MRProjC and MRProj constructions. It
additionally affects leakage for MRProj. For these analysis we consider the ND-0405 dataset with the E mechanism
for reducing the size of a feature vector (see the previous subsection).

We consider correctness of the system at different feature vector lengths n. We select a random reading of each
biometric to represent the encrypted dataset. We first select a t that yields at most ≤ 10% FRR (for comparisons of
the same iris on the training dataset). We then use the following procedure:

1. Initialize matrix Ci,j = 0356×356.

2. Pick I ⊂ {1, ...., 356} of size 150 randomly.

3. For each i in I:

(a) Select 3 random readings of iris i, denoted x∗i (removing reading that is encrypted):7

(b) For all j if D(x∗i , xj) ≤ t and D(x∗i , xi) ≤ t Ci,j = Ci,j + 1.

4. Compute ACount =
∑355
i=0

(∑355
j=0,j≥i Ci,j

)
/(3 ∗ 150).

The value ACount represents how frequently a record of a different biometric would be returned by an in use search
system. For both correctness and security considers one desires ACount to be as close to 0 as possible. We ran this

7Every iris in the ND0405 dataset has at least 4 readings so this is the maximum number of queries that will have an equal number
of readings from the size 150 subset.
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Vector Length
ACount 64 96 128 256 384 512 768 1024
Avg. 40.8 34.5 13.0 6.03 3.86 1.03 .53 .06
σ2 .75 .74 .42 .23 .17 .083 .076 .019

Table 3: Effect of dimensionality reduction on the correctness and security of the resulting biometric search system.
ACount is the average number of improperly records when searching for a biometric that is in the dataset. All feature
extractors with n < 1024 use the E method to select features.

experiment 40 times and report the mean and standard deviation of ACount in Table 3. As one can see keeping
a vector size of n = 1024 has a three order of magnitude reduction in the average number of improperly returned
records, underscoring the importance of inner product encryption to work with large n.

Leakage on readings of the same iris There are two types of biometric databases, those which associate a
single reading xi of a biometric with each record ri and those where multiple readings of a biometric xi,1, ..., xi,k
are associated with a single record. Until now, we’ve implicitly assumed that the database has only one reading of
a biometric. We now briefly consider the implications of leakage between readings of the same biometric. That is,
xi,1, ..., xi,k are readings from the same biometric and associated with a record ri in the biometric database. First
note that xi,α and xi,β are likely to be close together (because readings of the same biometric are similar).

One may able to infer information about xi,1, ..., xi,k from access pattern and distance equality leakage. One may
be able to learn the relative positioning of the different readings by which values I are return by a query y (if it is not
all values). Similarly, we expect the adversary to learn distance equality leakage for the entire set xi,1, ..., xi,k. Both
of these leakage profiles allow an adversary to construct geometry of a biometric’s different readings. This may allow
the adversary to determine the type of noise present in that individual’s biometric. It may be possible to use noise
rates to draw conclusions about sensitive attributes about the corresponding person. Biometric systems frequently
demonstrate systemic bias [DRD+20]. As one example most datasets draw from volunteer undergraduates students.
Systems accuracy varies based on sensitive attributes such as gender, race, and age (see [DRD+20, Table 1]). Thus
one may be able to infer sensitive attributes based on the relative size of |I|/k.

If one stores multiple readings, it seems important to use cryptographic techniques to hide such leakage. A
potential solution is to instead store a single reading that is the average of the multiple readings [ZD08] and make
other values associated data that are not searchable.

4 Multi Random Projection IPE

As described in the Introduction, we show a general technique improving Setup efficiency for IPE schemes where
ciphertexts and tokens are projected into dual vector spaces by a pair of matrices A,A−1. We call this multi random
projection technique. The key idea is to create multiple pairs of matrices of smaller dimension for subvectors of
the inputs. These independent encodings are then combined with an additive secret sharing of 0 in the encryption
so that computation with ciphertexts and tokens is only useful when using all of the components. Without this
additional step, an adversary could discard some subvectors of the inputs and still learn the inner products of the
remaining ones. In this section we show security of the technique when applied to the RProj scheme of Barbosa et
al. [BCSW19, Section 4].8

Construction The construction is in Figure 4. We first argue correctness and then security. For security we show
the scheme satisfies a stronger simulation based definition of security, as in the work of Barbosa et al. [BCSW19].

8Functional encryption for orthogonality (OFE) as defined by Barbosa et al. is equal to predicate inner product encryption, as defined
in this work.
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Setup(1λ, n, σ):

1. Sample (G1, G2, GT , q, e) ← Gabg and randomly
sample generators g1 ∈ G1 and g2 ∈ G2.

2. For 1 ≤ ℓ ≤ σ, randomly samples an invertible
square matrix Bℓ ∈ ZN×Nq and sets B∗ℓ = (B-1ℓ )T ,
with N = ⌈n/σ⌉+ 1.

3. Outputs pp = (G1, G2, GT , q, e, n, σ) as public pa-
rameters and sk = (g1, g2, {Bℓ,B∗ℓ}σℓ=1).

TokGen(pp, sk, y):

1. Sample α
$←− Zq.

2. Splits y into σ subvectors yℓ of size ⌈n/σ⌉ and
pads with zeroes if needed.

3. For 1 ≤ ℓ ≤ σ, defines y′ℓ = 1 || yℓ and sets
tkℓ = [ α · (y′ℓ)T · Bℓ ]1, a vector in G1.

4. Outputs tk = (tk1, · · · , tkσ).

Encrypt(pp, sk, x):

1. Samples β
$←− Zq.

2. Splits x into σ subvectors xℓ of size ⌈n/σ⌉,
and pads with zeroes if needed.

3. For 1 ≤ ℓ ≤ σ − 1, samples ζℓ
$←− Zq then

sets ζσ = −
∑σ−1
ℓ=1 ζℓ.

4. For 1 ≤ ℓ ≤ σ defines x′ℓ = ζℓ || xℓ and sets
ctℓ = [ β · (x′ℓ)T · B∗ℓ ]2, a vector in G2.

5. Outputs ct = (ct1, · · · , ctσ).

Decrypt(pp, tk, ct):

Computes
(
Πσℓ=1Π

N
i=1e(tkℓ[i], ctℓ[i])

)
and re-

turns ⊤ if the results is equal to 1 ∈ GT , ⊥
otherwise.

Figure 4: Construction of MRProj.

RealIPE,A(1
λ)

(sk, pp)← IPE.Setup(1λ)
b← AIPE.TokGen(sk,·),IPE.Encrypt(sk,·)(1λ)
Output b

IdealIPE,A(1
λ)

(sk, pp)← IPE.Setup(1λ)
b← AS(Φ(·))(1λ)
Output b

Figure 5: Definition of experiment ExpIPESIM . Φ denotes the information leakage received by the simulator S such that
Φ(i, j) = fyj (xi) for all i, j.

Correctness First note that ⟨x, y⟩ =
∑σ
ℓ=1⟨xℓ, yℓ⟩, and thus

Πσℓ=1Π
N
i=1e(tkℓ[i], ctℓ[i]) = g

∑σ
ℓ=1 β·(x

′
ℓ)

T ·B∗
ℓ ·B

T
ℓ ·α·(y

′
ℓ)

T

= g
∑σ

ℓ=1 β·(x
′
ℓ)

T ·α·(y′ℓ)
T = g

αβ
∑σ

ℓ=1 ζℓ+⟨xℓ,yℓ⟩
T

= g
αβ·⟨x,y⟩+αβ·

∑σ
ℓ=1 ζℓ

T = g
αβ·⟨x,y⟩
T

If ⟨x, y⟩ = 0 then Πσℓ=1Π
N
i=1e(tkℓ[i], ctℓ[i]) = e(g1, g2)

0 = 1, which is the identity element in GT and is easily detectible
and ⊤ ← Decrypt(pp, tk, ct) with probability 1. If ⟨x, y⟩ ≠ 0, then the probability that ⊤ ← Decrypt(pp, tk, ct) is
Pr[αβ · ⟨x, y⟩ = 0] ≤ 2

q .

Definition 7 (Simulation-based security). Let IPE =
(IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be a predicate IPE scheme over Znq . Then IPE is SIM-secure if

for all PPT adversaries A, there exist a simulator S such that for the experiment ExpIPESIM described in figure 5, the

advantage of A (adv
ExpIPESIM

A ) is∣∣ Pr[1← RealIPE,A(1
λ)]− Pr[1← IdealIPE,A(1

λ)]
∣∣ ≤ negl(λ).

Kim et. al. [KLM+16, Remark 2.5] show that Definition 7 which implies Definition 2 so we argue that the scheme
in Figure 4 satisfies Definition 7.

Theorem 1. In the Generic Group Model for asymmetric bilinear groups the construction in Figure 4 is a secure
IPEfh,sk,pred scheme according to Definition 7 for the family of predicates F = {fy|y ∈ Znq } such that for all vectors

x ∈ Znq , fy(x) = (⟨x, y⟩ ?
= 0).
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Proof of Theorem 1. This scheme has the security as the original IPEfh,sk,pred scheme from [BCSW19] for the simu-
lation based security definition. We note that that scheme of Barbosa et al. [BCSW19] builds on the work Kim et
al. [KLM+16] and our proof uses similar definitions of formal variables. The scheme works by having a challenger
interact with a simulator S and two oracles, O′TokGen and O′Encrypt, in the ideal scheme and a pair of oracles, OTokGen

and OEncrypt, in the real scheme. For this proof, we will build the simulator S which can correctly simulate the distri-
bution of tokens and ciphertexts only using the predicate evaluation on whether the inner product of the two vectors
is 0. This information is supplied to the simulator by the oracles O′TokGen and O′Encrypt to match the functionality of
the encryption scheme.

Inner-product collection: Let i, j be shared counters between the token generation and encryption oracles. Let
x(i) ∈ Znq and y(j) ∈ Znq denote respectively the adversary’s ith query to the token generation oracle and jth query
to the encryption oracle. The collection of mappings Cip is defined as

Cip =

{
(i, j)→ 0 if ⟨x(i), y(j)⟩ = 0

(i, j)→ 1 otherwise.

Formal variables: The simulator constructs formal variables for the unknowns of the system in order to respond
as correctly as possible. Let Q be the maximum number of queries made by an adversary. Let σ and N be as in the

construction in Figure 4. For all i ∈ [Q], ℓ ∈ [σ] and k ∈ [N ], let α̂(i), β̂(i), x̂
(i)
ℓ,k, ŷ

(i)
ℓ,k represent the hidden variables

α(i), β(i), x
(i)
ℓ,k, y

(i)
ℓ,k, let b̂ℓ,k,m and b̂∗ℓ,k,m represent the entry in position (k, m) of the Bℓ and B∗ℓ matrices respectively,

let ζ̂
(i)
ℓ be the formal variables for ζ

(i)
ℓ where the simulator tracks the constraints that for each i ∈ [Q],

∑σ
ℓ=1 ζ̂

(i)
ℓ = 0

and let ŝ
(i)
ℓ,m and t̂

(i)
ℓ,m represent formal polynomials as constructed below,

ŝ
(i)
ℓ,m =

N∑
k=1

ŷ
′(i)
ℓ,k · b̂ℓ,k,m = b̂ℓ,1,m +

N∑
k=2

ŷ
(i)
ℓ,k-1 · b̂ℓ,k,m (1)

t̂
(i)
ℓ,m =

N∑
k=1

x̂
′(i)
ℓ,k · b̂

∗
ℓ,k,m = ζ̂

(i)
ℓ · b̂

∗
ℓ,1,m +

N∑
k=2

x̂
(i)
ℓ,k-1 · b̂

∗
ℓ,k,m (2)

Then the universe of formal variables is U = R∪ T , where

R =
{
α̂(i), β̂(i)

}
i∈[Q]

∪
{
ŝ
(i)
ℓ,m , t̂

(i)
ℓ,m

}
i∈[Q], ℓ∈[σ], m∈[N ]

and
T =

{
α̂(i), β̂(i)

}
i∈[Q]

∪
{
x̂
′(i)
ℓ,k , ŷ

′(i)
ℓ,k , ζ̂

(i)
ℓ

}
i∈[Q], ℓ∈[σ], k∈[N ]

∪
{
b̂ℓ,k,m , b̂∗ℓ,k,m

}
ℓ∈[σ],m,k∈[N ]

Specification of the simulator Let A be a PPT adversary that makes at most Q = poly(λ) queries to the
oracles. The simulator S starts by initializing an empty set of inner products Cip and three empty tables T1, T2, TT
which map handles to the polynomials over the variables of R. The state of the simulator consists of these four
objects, (Cip, T1, T2, TT ), which are updated after each query received. The simulator S answers the adversary’s
queries as follows.

Token generation queries: On input x(i) ∈ Znq , O′TokGen sends the collection C′ip to the simulator. S updates

Cip ← C′ip. For 1 ≤ ℓ ≤ σ, 1 ≤ m ≤ N , S generates a new handle hℓ,m
$←− {0, 1}λ and adds the mapping

hℓ,m → α̂(i) · ŝ(i)ℓ,m to T1. S then sets tkℓ = hℓ,1, · · · , hℓ,N . Finally, S returns the token tk = (tk1, · · · , tkσ).

Encryption queries: On input y(i) ∈ Znq , O′Encrypt sends the collection C′ip to the simulator. S updates Cip ← C′ip.

For 1 ≤ ℓ ≤ σ, 1 ≤ m ≤ N , S generates a new handle hℓ,m
$←− {0, 1}λ and adds the mapping hℓ,m → β̂(i) · t̂(i)ℓ,m to T2.

S sets ctℓ = hℓ,1, · · · , hℓ,N . Finally, S returns the ciphertext ct = (ct1, · · · , ctσ).
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Addition oracle queries: Given h1, h2 ∈ {0, 1}λ, S verifies that formal polynomials p1, p2 exist in table Tτ ,
τ ∈ {1, 2, T} such that h1 → p1 and h2 → p2. If it is not the case S returns ⊥. If a handle for (p1 + p2) already

exists in Tτ S returns it. Otherwise, S generates a new handle h
$←− {0, 1}λ, adds the mapping h→ (p1 + p2) to Tτ

and returns h.

Pairing oracle queries: Given h1, h2 ∈ {0, 1}λ, S verifies that formal polynomials p1, p2 exist in tables T1 and
T2 respectively, such that h1 → p1 in T1 and h2 → p2 in T2. If it is not the case S returns ⊥. If a handle for (p1 · p2)
already exists in TT S returns it. Otherwise, S generates a new handle h

$←− {0, 1}λ, adds the mapping h→ (p1 · p2)
to TT and returns h.

Zero-testing oracle queries: Given h ∈ {0, 1}λ, S verifies that formal polynomials p exists in Tτ , τ ∈ {1, 2, T},
such that h→ p. If it is not the case S returns ⊥. S then works as follows.

1. It “canonicalizes” the polynomial p by expressing it as a sum of products of formal variables in T with poly(λ)
terms.

2. If τ ∈ {1, 2} and p is the zero polynomial, S outputs “zero”. Otherwise if outputs “non-zero”.

3. If τ = T the simulator decomposes p into the form

p =

Q∑
i,j=1

α̂(i)β̂(j) ·

(
pi,j

({
ŝ
(i)
ℓ,m, t̂

(j)
ℓ,m

}
ℓ∈[σ],m∈[N ]

)
+ fi,j

({
ŝ
(i)
ℓ,m, t̂

(j)
ℓ,m

}
ℓ∈[σ],m∈[N ]

))
(3)

where for 1 ≤ i, j ≤ Q, pi,j is defined as

pi,j = ci,j ·

(
σ,N∑
ℓ,m=1

ŝ
(i)
ℓ,m t̂

(j)
ℓ,m

)

where ci,j ∈ Zq is the coefficient of the term ŝ
(i)
1,1t̂

(j)
1,1, and fi,j consists of the remaining terms.

4. If for all 1 ≤ i, j ≤ Q, (i, j) = 0 in Cip (corresponding to a zero inner product) and fi,j does not contain any
non-zero term, S outputs “zero”. Otherwise it outputs “non-zero”.

Correctness of the simulator As in the original proof, the simulator’s responses to token generation, encryption
and group oracle queries are distributed identically as in the real experiment. We now have to show correctness of
the simulator’s answers to zero-testing oracle queries.

1. We first need to show that the canonicalization process in step 1 is efficient. Since the adversary can only
obtain handles to new monomials using token generation and encryption queries, the monomials are all over
formal variables in R. Also, since the adversary can make Q queries at most, the polynomial p they can build
and submit to the zero-testing oracle has at most poly(Q) terms and degree 2.
Then using Equations 1 and 2, the formal polynomial p can be expressed as a polynomial over formal variables
in T . Since p has degree at most 2 over variables in R, it can be expressed as a sum of at most poly(Q,n)
monomials over variables in T and has degree at most poly(n). Since both the polynomial over R and the
canonical polynomial over T are polynomially-sized, this is efficient.

2. For τ = 1, the only monomials the adversary can obtain are responses to token generation queries. Then the
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canonical polynomial is of the form

p =

Q∑
i=1

α̂(i)

(
σ,N∑
ℓ,m=1

c
(i)
ℓ,m · ŝ

(i)
ℓ,m

)

=

Q∑
i=1

α̂(i)

(
σ,N∑
ℓ,m=1

c
(i)
ℓ,m

N∑
k=1

ŷ
′(i)
ℓ,k · b̂ℓ,k,m

)

=

Q∑
i=1

α̂(i)

(
σ,N∑
ℓ,m=1

c
(i)
ℓ,m

(
b̂ℓ,1,m +

N∑
k=2

ŷ
(i)
ℓ,k · b̂ℓ,k,m

))

where c
(i)
1,1, · · · , c

(i)
σ,N ∈ Zq.

Notice that the sum b̂ℓ,1,m +
∑N
k=2 ŷ

(i)
ℓ,k · b̂ℓ,k,m can never be the identically zero polynomial over the formal

variables {b̂ℓ,k,m}ℓ∈[σ], k,m∈[N ]. This holds irrespective of the actual values of the adversary’s query x(i). Since

all {α̂(i)}i∈[Q] and {b̂ℓ,k,m}ℓ∈[σ], k,m∈[N ] are sampled uniformly and independently in the real game and the
polynomial p has degree poly(n) = poly(λ), then by the Schwartz-Zippel lemma [KLM+16, Lemma 2.9], p
evaluates to non-zero with overwhelming probability. This implies that the simulator is correct with over-
whelming probability.

3. For τ = 2, the only monomials the adversary can obtain are responses to ciphertexts queries. Then the
canonical polynomial is of the form

p =

Q∑
i=1

β̂(i)

(
σ,N∑
ℓ,m=1

c
(i)
ℓ,m · t̂

(i)
ℓ,m

)

=

Q∑
i=1

β̂(i)

(
σ,N∑
ℓ,m=1

c
(i)
ℓ,m

N∑
k=1

x̂
′(i)
ℓ,k · b̂

∗
ℓ,k,m

)

=

Q∑
i=1

β̂(i)

(
σ,N∑
ℓ,m=1

c
(i)
ℓ,m

(
ζ
(i)
ℓ · b̂

∗
ℓ,1,m +

N∑
k=2

x̂
(i)
ℓ,k · b̂

∗
ℓ,k,m

))

where c
(i)
1,1, · · · , c

(i)
σ,N ∈ Zq. Notice that the sum ζ

(i)
ℓ · b̂∗ℓ,1,m +

∑N
k=2 x̂

(i)
ℓ,k · b̂∗ℓ,k,j can only be the identically

zero polynomial over the formal variables {b̂∗ℓ,k,m}ℓ∈[σ], k,m∈[N ] if ζ
(i)
ℓ = 0 which happens with negligible

probability. Again, this holds irrespective of the adversary’s queries y(1), · · · , y(Q) and p is not the identically
zero polynomial over the formal variables {β̂(i)}i∈[Q] and {b̂∗ℓ,k,m}ℓ∈[σ], k,m∈[N ]. Since all b̂

∗
ℓ,k,m are independent

from one another (since b̂ℓ,k,m was sampled uniformly and independently), then again by Schwartz-Zippel lemma
p evaluates to non-zero with overwhelming probability, the simulator is correct with overwhelming probability.

4. For τ = T , the only polynomials the adversary can obtain are products of two polynomials, one from each base
group. Then the polynomial p can be decomposed into a sum of monomials that each contain α(i) and β(j) for
some i, j ∈ [Q]. Then S can regroup terms for each i, j ∈ [Q] and obtain Equation 3. If fi,j does not contain
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any term, then p is of the form

p =

Q∑
i,j=1

α̂(i)β̂(j) · ci,j ·

(
σ,N∑
ℓ,m=1

ŝ
(i)
ℓ,m t̂

(j)
ℓ,m

)

=

Q∑
i,j=1

α̂(i)β̂(j) · ci,j ·

(
σ,N∑
ℓ,m=1

(
N∑
k=1

ŷ
′(i)
ℓ,k · b̂ℓ,k,m

)
·

(
N∑
k=1

x̂
′(j)
ℓ,k · b̂

∗
ℓ,k,m

))

=

Q∑
i,j=1

α̂(i)β̂(j) · ci,j ·

(
σ∑
ℓ=1

(x̂
′(j)
ℓ )T · B∗ℓ · BTℓ · ŷ

′(i)
ℓ

)

=

Q∑
i,j=1

α̂(i)β̂(j) · ci,j ·

(
σ∑
ℓ=1

ζ
(i)
ℓ + ⟨x̂(j)ℓ , ŷ

(i)
ℓ ⟩

)

=

Q∑
i,j=1

α̂(i)β̂(j) · ci,j · ⟨x̂(j), ŷ(i)⟩

p is the zero polynomial when all (i, j) inner products are zero, which can be known by checking if (i, j) → 0
in Cip.
Now suppose that for some i, j ∈ [Q] the polynomial fi,j contains at least one term. Then we claim that fi,j
cannot be the identically zero polynomial over the formal variables { b̂ℓ,k,m }ℓ∈[σ],k,m∈[N ], irrespective of the
adversary’s choice of admissible queries. We refer the reader to the original work [KLM+16, Section 3] for a
detailed proof of this claim. Then by the Schwartz-Zippel lemma, p evaluates to non-zero with overwhelming
probability when fi,j contains at least one term.

5 Building distance hiding PSE

As mentioned in Section 2, Hamming distance can be calculated using the inner product between the two biometric
vectors. As such, we can use a range of possible inner product values as the distance threshold.

Predicate function-hiding secret key IPE [SSW09], or IPEfh,sk,pred, allows one to test if the inner product between
two vectors is equal to zero. By appending a value to the first vector and -1 to the second vector, we can support
equality testing for non-zero values. Generating several tokens or ciphertexts, one per distance in the range, allows
to test if the inner product is below the chosen threshold.
We show that one can use IPEfh,sk,pred to construct PSE for Hamming distance9. At a high level, each keyword is
encoded as a {-1, 1} vector and -1 is appended to it, which in turn is encrypted with IPEfh,sk,pred. Keywords are
similarly encoded but this time a distance from the range is appended to them, and tokens generated as part of the
underlying IPEfh,sk,pred scheme.

Construction 1 (Proximity Searchable Encryption). Fix the security parameter λ ∈ N. Let IPEfh,sk,pred = (IPE.Setup, IPE.TokGen,
IPE.Encrypt, IPE.Decrypt) be a predicate function-hiding secret key IPE scheme over Zn+1

q . Let xi ∈ Znq and X =
(x1, · · · , xℓ) be the list of keywords. Let F be the set of all predicates such that for any xi ∈ X, fy,t(xi) = 1 if
the Hamming distance between xi and the query vector y ∈ Znq is less or equal to some chosen threshold t ∈ Zq,
fy,t(xi) = 0 otherwise. Figure 6 is a proximity searchable encryption scheme for the Hamming distance.

Theorem 2 (PSE main theorem). Let IPEfh,sk,pred = (IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be an
IND-secure function-hiding inner product predicate encryption scheme over Zn+1

q . Then ∃PSE = (PSE.Setup,
PSE.BuildIndex, PSE.Trapdoor, PSE.Search), a secure proximity searchable encryption scheme for the Hamming dis-
tance, such that for any PPT adversary APSE for ExpPSEIND, there exists a PPT adversary AIPE for ExpIPEIND, such that
for any security parameter λ ∈ N,

Adv
ExpPSEIND

APSE
= Adv

ExpIPEIND

AIPE

9Support of addition/deletion of records seems achievable by deleting after search and inserting new ciphertexts in the database.
However this would result in additional access pattern leakage since these record would be clearly identifiable by the server.
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Proof of Theorem 2. The correctness of the scheme follows from the correctness of the underlying IPE scheme. As-
sume there exists xi ∈ X, i ∈ [1, ℓ], such that fy,t(xi) = 1. That is D(y, xi) ≤ t with D(y, xi) the Hamming distance
between vectors y and xi. Then there exists a unique tkj ∈ Qy,t such that bj ← IPE.Decrypt(pp, tkj , cti) and b = 1
with overwhelming probability by the correctness of the IPE scheme. Now assume that for some xi ∈ X, i ∈ [1, ℓ],
we have fy,t(xi) = 0. Then for all tkj ∈ Qy,t, bj ← IPE.Decrypt(pp, tkj , cti) and bj = 1 with negligible probability.
Then considering the worst case where either D(y, xℓ) = t or for all xi ∈ X, fy,t(xi) = 0, we have:

Pr
[
PSE.Search(pp, Qy,t, IX) = JX,y,t

]
≥ 1− ℓ(t+ 1)× Pr

[
IPE.Decrypt(pp,tkj ,cti)

̸=(D(xi,y)
?
=dj)

]
≥ 1− ℓ(t+ 1)× negl(λ).

We now prove the security of the construction. Let APSE be a PPT adversary for the experiment ExpPSEIND and CIPE
be an challenger for ExpIPEIND. We build a PPT adversary AIPE for the experiment ExpIPEIND as follows:

1. AIPE receives pp from CIPE and forwards it to APSE.

2. AIPE receives two m-query histories History(0),History(1) from APSE where History(β) = (X(β), F (β)) for β ∈
{0, 1}.

3. For each x
(β)
i ∈ X(β), i ∈ [1, ℓ], AIPE encodes it as x

(β)∗
i ∈ {-1, 1}n and creates the query Si = (x

(0)∗
i || -1, x (1)∗

i || -1).

4. AIPE sets S = S1, · · · , Sℓ.

5. For each f
(β)
j ∈ F (β), j ∈ [1,m]:

(a) AIPE extracts a vector y
(β)
j ∈ Znq and t ∈ N.

(b) AIPE encodes y
(β)
j as y

(β)∗
j ∈ {-1, 1}n and creates D

(0)
j = (d0, · · · , dt) such that dk = n−2k with 0 ≤ k ≤ t.

(c) AIPE createsD
(0)∗
j by reordering the elements inD

(0)
j such that for all k ∈ [0, t] and d

(0)
k ∈ D

(0)∗
j , d

(1)
k ∈ D

(1)
j

we have
(
⟨x (0)
i , y

(0)
j ⟩

?
= d

(0)
k

)
=
(
⟨x (1)
i , y

(1)
j ⟩

?
= d

(1)
k

)
. (AIPE can always find a permutation to make this

last condition by the admissibility requirement.)

(d) AIPE samples a random permutation ψj : [0, t]→ [0, t].

(e) For 0 ≤ k ≤ t, AIPE creates y
(β)∗
j || d(β)k with β ∈ {0, 1}, d(0)k ∈ D

(0)∗
j and d

(1)
k ∈ D

(1)
j . Then AIPE computes

R
(β)
j = ψj

(
y

(β)∗
j || d(β)0 , · · · , y (β)∗

j || d(β)t

)
and sets Rj = (R

(0)
j , R

(1)
j ).

(f) AIPE sets R = R1, · · · , Rm.

6. AIPE sends the token generation queries R and encryption queries S to CIPE and receives back a set of tokens

T (β) = tk
(β)
1,0 , · · · , tk

(β)
m,t and a set of encrypted keywords C(β) = ct

(β)
1 , · · · , ct(β)ℓ such that

tk
(β)
j,k ← IPE.TokGen(sk, y

(β)∗
j || d(β)k )

ct
(β)
i ← IPE.Encrypt(sk, x

(β)∗
i || -1)

for i ∈ [1, ℓ], j ∈ [1,m], k ∈ [0, t] and β ∈ {0, 1}. AIPE forwards T (β) and C(β) to APSE, respectively as the
encrypted index I(β) and the list of queries Q(β).

7. AIPE receives β′ ∈ {0, 1} from APSE and returns it.

Since the number of token generation queries, m× t, sent by AIPE remains polynomial in the security parameter, the
advantage of APSE is

Adv
ExpPSEIND

APSE
= Adv

ExpIPEIND

AIPE

This completes the proof of Theorem 2.

Table 4 presents the resulting efficiency of distance hiding PSE schemes based on different IPEfh,sk,pred construc-
tions. This table corresponds to t+ 1 tokens with all operations on dimension n+ 1.
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PSE.Setup(1λ)→ (sk, pp):

Run and output (sk, pp)← IPE.Setup(1λ).

PSE.Trapdoor(sk, fy,t)→ Qy,t:

1. For i = 0 to t, compute dj = n− 2j,

2. Set D = (d0, ..., dt),

3. Sample random permutation π : [0, t]→ [0, t],

4. Compute D∗ = π(D) = {d∗0, · · · , d∗t },
5. Encode y as y ∗ ∈ {−1, 1}n,
6. For 0 ≤ j ≤ t call

tkj ← IPE.TokGen(sk, y ∗|| d∗j ).,
7. Output Qy,t = (tk0, · · · , tkt).

PSE.BuildIndex(sk, X)→ IX :

1. For each keyword xi ∈ X, i ∈ {1, · · · , ℓ},
encode x ∗i ∈ {−1, 1}n,
compute cti ← IPE.Encrypt(sk, x ∗i || -1).

2. Outputs IX = (ct1, · · · , ctℓ).

PSE.Search(pp, Qy,t, IX)→ JX,y,t:

1. Initialize JX,y,t = ∅.
2. For each cti ∈ IX and for each tkj ∈ Qy,t,

call bj ← IPE.Decrypt(pp, tkj , cti).
If bj = 1, add i to JX,y,t, continue to cti+1.

3. Outputs JX,y,t.

Figure 6: Construction of proximity search from IPEfh,sk,pred.

Underlying IPE scheme
MRProj RProj [BCSW19, Section 4] [BCSW19, Section 5] [KT14] [SSW09]

group order Prime Prime Prime Prime Composite

Setup σ((n+ 1)/σ)3 (n+ 1)3 (n+ 1)3 (6n+ 6)3 4n+ 8
BuildIndex ℓ(n+ σ + 1) ℓ(n+ 1) ℓ(12n+ 21) 6ℓ(n+ 1) ℓ(32n+ 36)
Trapdoor (t+ 1)(n+ σ + 1) (t+ 1)(n+ 1) (t+ 1)(12n+ 21) 6(t+ 1)(n+ 1) (t+ 1)(24n+ 40)
Search ℓ(t+ 1)(n+ σ + 1) ℓ(t+ 1)(n+ 1) ℓ(t+ 1)(6n+ 12) 6ℓ(t+ 1)(n+ 1) ℓ(t+ 1)(4n+ 8)

|sk| 2(n+ 1)2/σ + 4n+ 2σ + 6 2(n+ 1)2 + 2 24n+ 42 60(n+ 1)2 4n+ 8
|I| ℓ(n+ σ + 1) ℓ(n+ 1) ℓ(6n+ 12) 6ℓ(n+ 1) ℓ(2n+ 4)
|tky,t| (t+ 1)(n+ σ + 1) (t+ 1)(n+ 1) (t+ 1)(6n+ 12) 6(t+ 1)(n+ 1) (t+ 1)(2n+ 4)

Table 4: PSE scheme efficiency for keywords of size n depending on underlying IPEfh,sk,pred scheme. Upper part of
the table shows number of group or pairing operations per function. Lower part of the table shows number of group
elements per component. The scheme of Shen, Shi, and Waters [SSW09] uses a composite order group whose order
is the product of four large primes. The number n is the length of the biometric template, σ is the number of bases
in the multi random projection scheme, t is the desired distance tolerance, and ℓ is the total number of records in
the database.

6 Implementation

This section presents an implementation and an evaluation of the PSE scheme proposed in this paper. We imple-
mented the MRProj construction described in section 4 and a PSE (see section 5) scheme using it in Python3. These
implementations can be found in a Github repository [ACD+21]. Our IPE implementations uses the Charm [AGM+13]
and FLINT [Har10] libraries for the pairing group operations and finite field arithmetic in Zq. For comparison
purposes, we used the pairing group over the asymmetric curve MNT159, the same as in Kim et al.’s FHIPE imple-
mentation [Lew16].

The search, encryption and token generation algorithms were parallelized. Benchmarking tests for each algorithm
were implemented and the number of random projections, the distance threshold and the input vector sizes for these
tests can vary. This allowed us to compare efficiency for different parameters and pinpoint values that yield a practical
and accurate scheme. With a number of random projections equal to 1, we obtain Setup timings and secret key size
for RProjC. Setting the distance threshold to 0 allows us to get timings for MRProj. To be as realistic as possible,
we used iris readings from the ND 0405 as input vectors to the benchmarking tests.

6.1 Evaluation

We evaluate our implementations on a Linux server with an AMD Ryzen 9 3950X 16-Core processor and 64GB of
RAM. Remember that the preferred input vector size for correctness is 1024 (as stated in Section 3).
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Time Sizes

MRProj MRProjC RProjC [KLM+18] MRProj RProjC [KLM+18]
n σ t Setup BuildIndex Trapdoor Search Trapdoor Search Setup |EncDB| |sk| |sk|
128 3 38 75 1.5 .36 234 .01 31 4× 103 5.9 MB 560 KB 1.6 MB
192 5 57 47 2.2 .8 495 .01 46 1.3× 104 8.9 MB 770 KB 3.6 MB
256 7 76 57 2.9 1.4 850 .02 62 3.2× 104 12 MB 980 KB 6.4 MB
384 10 115 94 4.4 3.1 1870 .03 92 1.1× 105 18 MB 1.5 MB 14 MB
512 13 153 153 5.7 5.7 3282 .04 140 2.6× 105 24 MB 2.1 MB 26 MB
768 19 230 269 8.6 13.4 7210 .06 185 8.6× 105 36 MB 3.2 MB 57 MB
1024 25 307 268 10.8 22.4 12600 .08 241 2.0× 106 47 MB 4.3 MB 100 MB

Table 5: Operations timing (in seconds) and sizes (in Megabytes/Kilobytes) for different vector sizes. n is the vector
length, σ the number of bases used, and t = .30 the distance tolerance. Setup and BuildIndex procedures for MRProj
and MRProjC schemes are the same procedures, MRProjC uses vectors whose length is 1 fewer. We only report these
algorithms for MRProj. Timing and storage for the MRProjC Setup is interpolated. Measured n = 10 to 240 in steps
of 10. For timing, cubic fit with coefficients y = .003x3 − .578x2 + 36x− 557 with R2 = .996. For storage, quadratic
fit with coefficients y = 96x2 + 192x+ 573 with R2 = 1.

Timing We evaluate the timing efficiency of our PSE construction with and without the multi random projection
technique. Table 5 reports the timings for all four algorithms of the PSE scheme. MRProj corresponds to the PSE
construction presented in this paper. RProjC corresponds to Kim et al.’s FHIPE construction, MRProjC corresponds
to the same scheme but with the multi random projection technique applied . In the last column of the timing
section of the table, we report the timing of the Setup algorithm without this multi random projection construction.
During our tests, we noticed a jump in Setup timings when going from sub-vectors of 40 to 60 group elements, we
thus chose σ values that yield sub-vectors lengths of approximately 40. We make three main observations.

1. Setup and BuildIndex have comparable performance for MRProj and MRProjC (the only difference is adding 1
to underlying dimension). However, Trapdoor is substantially slower for MRProj since it prepares t+ 1 tokens,
but performance remains reasonable.

2. Distance hiding has a large impact on the Search algorithm. MRProjC Search takes 4 minutes, MRProj Search
takes 3.5 hours. Both approaches scans the whole database which is problematic for large datasets. We discuss
possible solutions in Section 8.

3. Finally, this table shows that Setup without multi random projection is completely impractical for large input
vector sizes. In particular, for vectors of size 1024, Setup takes more than eleven days. In comparison, Setup
using multi random projection takes less than five minutes for input vectors of size 1024. Our multi random
projection construction thus allows to use a large enough input vector size to maintain a high correctness while
increasing the efficiency of the setup algorithm. This is explained by the fact that the Setup algorithm’s running
time is dominated by the matrix inversion. It is then more efficient to perform multiple inversions of small
matrices than a single inversion of a bigger one.

Storage We evaluate the impact of the multi random projection PSE construction on storage efficiency. As can
be seen on table 5, the impact is low for small input vectors, however, it makes a big difference for larger ones.
Indeed, when the size of the Barbosa key (key generated without the multi random projection technique) grows
quadratically with the vector size, the size of the key generated with the multi random projection technique grows
with (n/σ)2 ∗ σ ≈ n2/σ. For vectors of size 1024, we consider σ = 25 and the secret key generated with the multi
random projection technique is 23.2 times smaller than the single basis key, confirming the asymptotic analysis.

7 Further Related Work

In this section we review further related work on proximity search. We defer discussion of leakage abuse attacks to
Appendix A. Li et al. [LWW+10], Wang et al. [WMT+13] and Boldyreva and Chenette [BC14] reduced proximity
search to keyword equality search. These works propose two complimentary approaches:

1. When adding a record xi to a database, also insert all close values as keywords, that is {xj | D(xi, xj) ≤ t} are
added as keywords associated to xi.
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2. The second approach requires searchable encryption supporting disjunctive search. It inserts just xi, but when
searching for y it searches for the disjunction ∨xi|D(xi,y)≤t xi.

Either approach can be instantiated using a searchable encryption scheme that supports disjunction over keyword
equality (inheriting any leakage). However, for biometrics, the number of keywords ∨xi|D(xi,y)≤t{xi} usually grows ex-
ponentially in t. In existing disjunctive schemes, the size of the query grows with the size of the disjunction [FVY+17],
making this approach only viable for constant values of t.

Kuzu et al.’s [KIK12] solution relies on locality sensitive hashes [IM98]. A locality sensitive hash ensures that
close values have a higher probability to produce collisions than values that are far apart. Thus, a scheme can be
built from any scheme supporting disjunctive keyword equality, inheriting any leakage. The server learns the number
of matching locality sensitive hashes for each record (which is expected to be more than 0). The number of matching
locality sensitive hashes is a proxy for the distance between the query value and the records. More matching locality
sensitive hashes implies smaller distance. This allows the server to establish the approximate distance between each
record and the query.

Zhou and Ren [ZR18] propose a variant of inner product encryption that reveals if the distance is less than t only.
However, their security is based on Axi and yB hiding xi and y for secret square A and B. Security is heuristic
with no underlying assumption or proof of information theoretic security.

8 Conclusion

Iris biometric feature extractors produce feature vectors similar in the binary Hamming metric. Inner product
encryption was proposed to build encrypted search for the binary Hamming metric. In this work we explored a
domain specific solution for secure searchable encryption for iris biometric databases.

We observed in the statistics of the iris biometric data that large vectors are required for both correctness and
minimizing leakage. With large vectors, we see that the distance between readings of the same class can be separated
from the distance distribution from the readings of other classes (see Figure 3). This means that with a fixed distance
threshold, we can ensure that more readings of the same class are approved while readings from other classes are
denied (with high probability).

In prior work, Setup was not feasible for large vector lengths due to the cost of inverting large matrices. In the
most relevant prior work [KLM+18], they skip this step in benchmarking due to the high cost. Our interpolation
results show that for n = 1024 would take roughly 23 days. This is estimated on a parallel implementation in C.
The length n = 1024 is the length of prior iris feature extractors. We do not consider this time acceptable.

In the RProjC scheme of Kim et al. [KLM+18], additionally the distance is leaked between queries and all points in
the database. Based on prior work on trilaterilation, with a constant number of queries observed in n, the server can
build complete distance information between the stored data points. If the adversary knows auxiliary information
about the database, the encryption may not protect the data at all.

In this work we offer solutions to these two problems. We show a multi random projection approach that allows for
breaking large vectors into small vectors. This allows us to use smaller matrices greatly reducing the computational
time required to invert the matrices. Doing two n/2 inversions takes 1/4 the time of one size n inversion. Careful
optimization improves Setup time by four orders of magnitude while only increasing search time by 3%.

We show how to use predicate inner product encryption to build a scheme that hides the distance between the
query and the stored records. By using a predicate scheme instead of one that gives the value of the inner product,
the server only learns if the two vectors are a fixed distance from one another. This greatly reduces the information
that is leaked through remotely executing this operation. The server only learns information about data that are
close the queried point and learns nothing about data that are outside the distance threshold. We show this scheme
leaks only access pattern and distance equality leakage.

The improvement in accuracy for higher n also yields an improvement of leakage profile for our MRProj scheme.
When two or more classes are returned from a single query, this leaks that the returned items are within distance
2t (through access pattern) and whether they are the same distance from the query (distance equality leakage).
Decreasing the statistical overlap between classes minimizes the probability of both leakages which translates to a
more private system for sensitive biometric data.

The transformation comes at a cost of making search slower and no longer appropriate for moderately sized
databases. We believe that this transformation is required in order to maintain the integrity of sensitive biometric
information. Thus, our main open problem is whether or not this significant slow down to search is avoidable.
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For databases at larger scales, doing a linear search of the entire database for each query is unacceptable. With
our distance hiding transformation we have to do a linear scan for each subtoken (that checks a specific distance)
and so we see a significant (but linear) slowdown over a single linear database scan. Of particular interest are
approaches that use indices that natively support k nearest neighbors but are not vulnerable to recent attacks (such
as [KPT19,KE19]) and interactive solutions where the client can guide the search. In parallel work, Boldyreva and
Ting [BT21] proposed such a scheme that hides all leakage using oblivious data structures in conjunction with locality
sensitive hashes [IM98].
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and Thomas Ristenpart. Pancake: Frequency smoothing for encrypted data stores. In 29th USENIX
Security Symposium, pages 2451–2468, 2020.
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[LMP18] M. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction attacks on encrypted data using
range query leakage. In 2018 IEEE Symposium on Security and Privacy (SP), pages 297–314, 2018.

22

https://github.com/kevinlewi/fhipe


[LTBL20] Lucas Laird, Richard C Tillquist, Stephen Becker, and Manuel E Lladser. Resolvability of Hamming
graphs. SIAM Journal on Discrete Mathematics, 34(4):2063–2081, 2020.

[LWW+10] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy keyword search over
encrypted data in cloud computing. In INFOCOM, 2010 Proceedings IEEE, pages 1–5. IEEE, 2010.

[MCYJ18] Guangcan Mai, Kai Cao, Pong C Yuen, and Anil K Jain. On the reconstruction of face images from
deep face templates. IEEE transactions on pattern analysis and machine intelligence, 41(5):1188–1202,
2018.

[MT19] Evangelia Anna Markatou and Roberto Tamassia. Full database reconstruction with access and search
pattern leakage. In International Conference on Information Security, pages 25–43. Springer, 2019.

[ODGS16] Nadia Othman, Bernadette Dorizzi, and Sonia Garcia-Salicetti. Osiris: An open source iris recognition
software. Pattern Recognition Letters, 82:124–131, 2016.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In Advances in Cryptology – CRYPTO 2010, pages 191–208,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product
encryption. In Advances in Cryptology – EUROCRYPT 2012, pages 591–608, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[OT15] Tatsuaki Okamoto and Katsuyuki Takashima. Dual pairing vector spaces and their applications. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 98(1):3–15,
2015.

[PBDT05] Nissanka Bodhi Priyantha, Hari Balakrishnan, Erik D Demaine, and Seth Teller. Mobile-assisted lo-
calization in wireless sensor networks. In Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies., volume 1, pages 172–183. IEEE, 2005.

[PBF+08] P Jonathon Phillips, Kevin W Bowyer, Patrick J Flynn, Xiaomei Liu, and W Todd Scruggs. The
iris challenge evaluation 2005. In 2008 IEEE Second International Conference on Biometrics: Theory,
Applications and Systems, pages 1–8. IEEE, 2008.

[PSO+09] P Jonathon Phillips, W Todd Scruggs, Alice J O’Toole, Patrick J Flynn, Kevin W Bowyer, Cathy L
Schott, and Matthew Sharpe. FRVT 2006 and ICE 2006 large-scale experimental results. IEEE trans-
actions on pattern analysis and machine intelligence, 32(5):831–846, 2009.

[SDDN19] Sobhan Soleymani, Ali Dabouei, Jeremy Dawson, and Nasser M Nasrabadi. Adversarial examples to
fool iris recognition systems. In 2019 International Conference on Biometrics (ICB), pages 1–8. IEEE,
2019.

[SSF19] Sailesh Simhadri, James Steel, and Benjamin Fuller. Cryptographic authentication from the iris. In
International Conference on Information Security, pages 465–485. Springer, 2019.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Theory of
Cryptography, pages 457–473, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, pages 44–55. IEEE,
2000.

[TFL19] Richard C Tillquist, Rafael M Frongillo, and Manuel E Lladser. Metric dimension. arXiv preprint
arXiv:1910.04103, 2019.

[VS11] Shreyas Venugopalan and Marios Savvides. How to generate spoofed irises from an iris code template.
IEEE Transactions on Information Forensics and Security, 6(2):385–395, 2011.

23



[WLD+17] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Hezhong Pan, Peiyi Han, and Binxing Fang. Query recovery
attacks on searchable encryption based on partial knowledge. In International Conference on Security
and Privacy in Communication Systems, pages 530–549. Springer, 2017.

[WMT+13] Jianfeng Wang, Hua Ma, Qiang Tang, Jin Li, Hui Zhu, Siqi Ma, and Xiaofeng Chen. Efficient verifiable
fuzzy keyword search over encrypted data in cloud computing. Comput. Sci. Inf. Syst., 10(2):667–684,
2013.

[ZD08] Sheikh Ziauddin and Matthew N Dailey. Iris recognition performance enhancement using weighted
majority voting. In 2008 15th IEEE International Conference on Image Processing, pages 277–280.
IEEE, 2008.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In 25th USENIX Security Symposium, pages
707–720, 2016.

[ZR18] Kai Zhou and Jian Ren. Passbio: Privacy-preserving user-centric biometric authentication. IEEE
Transactions on Information Forensics and Security, 13(12):3050–3063, 2018.

A Leakage Abuse Attacks

Searchable encryption achieves acceptable performance by leaking information to the server. See Kamara, Moataz,
and Ohrimenko for an overview of leakage types in structured encryption [KMO18]. The key to attacks is combining
leakage with auxiliary data, such as the frequency of values stored in the data set. Together these sources can prove
catastrophic – allowing the attacker to run attacks to recover either the queries being made or the data stored in the
database. We consider attacks that rely on injecting files or queries [ZKP16] to be out of scope. Common, attackable,
relevant leakage profiles are:

1. Response length leakage [KKNO16,GLMP18] Often known as volumetric leakage, the attacker is given access
to only the number of records returned for each query. Based on this information, attacks cross-correlate with
auxiliary information about the dataset, and identify high frequency items in both the encrypted database and
the auxiliary dataset.

2. Query equality leakage [WLD+17] the attacker is able to glean which queries are querying the same value, but
not necessarily the value itself. Attacks on this profile rely on having information about the query distribution,
and much like the response length leakage attacks, match with that auxiliary information based on frequency.

3. Access pattern leakage [IKK12,CGPR15] here the attacker is given knowledge if the same dataset element is
returned for different queries. This allows the attacker to build a co-occurrence matrix, mapping which records
are returned for pairs of queries. Based on the frequencies of the co-occurrence matrix for the encrypted dataset,
and the co-occurrence matrix for the auxiliary dataset, the attack can identify records.

Recent attacks have targeted the geometry present in range search [GSB+17,LMP18,GLMP18,KPT20,FMC+20].
Building on the co-occurrence matrix (available with access pattern leakage) consider the case when records a, b, c
are returned by a first query and c, d are returned by a second query. One can immediately infer that the comparison
relation between a and d is the same as the comparison relation between b and e. As more constraints of this type
are collected one can collect an ordering of all records (up to reflection).

In two (or three) dimensional Euclidean space, trilateration has been practiced for hundreds of years: one is
assumed to know the location of x1, ..., xk and the pairwise distances D(xi, y) and is trying to find the location of y.
Determining the location of y requires k to be one larger than the dimension. The problem is more difficult but well
studied for approximate distances [EA11]. Similar ideas can be applied in discrete metrics with each learned distance
reducing the set of possible y. In the Hamming metric of dimension n, k = Θ(n) suffices [TFL19,LTBL20,Lai20].
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FRR False Accept Rate
Size 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

1024 .70 1 1 1 1 1 1 1 1 1 1
512 .57 1 1 1 1 1 1 1 1 1 1
256 .47 .99 1 1 1 1 1 1 1 1 1
192 .48 .99 1 1 1 1 1 1 1 1 1
128 .54 .99 .99 1 1 1 1 1 1 1 1
96 .40 .99 .99 .99 1 1 1 1 1 1 1
64 27 .97 .99 .99 .99 .99 .99 1 1 1 1

Table 6: TAR for different output sizes and probabilities of leakage for the IITD Dataset. Summary of FAR for
queries drawn from Same distribution for noise tolerance parameters. We vary a threshold t, report the FRR when
FAR is as listed. All sizes use the R methodology.

B Additional Statistical Analysis

The IITD dataset which consists of 224 persons and 2240 images. The IITD dataset is considered “easier” than the
ND0405 dataset because images are collected in more controlled environments leading to less noise and variation
between images. Table 6 shows the FAR/FRR tradeoff for IITD dataset akin to Table 2. We additionally measured
the number of improperly returned records as in Table 3; improper records where only observed for length 64. Since
IITD is easier than ND0405, this indicates that the needed biometric dimension depends on collection conditions.

C Multi Random Projection applied to the OT12 IPE scheme [OT12,
Section 4]

To show the generality of our multi random projection technique we apply it to a second IPE scheme of Okamoto and
Takashima [OT12, Section 4]. We note that this scheme is a public key scheme that is adaptively attribute-hiding
against chosen plaintext attacks under the (decisional linear) DLIN assumption. This corresponds to three changes
to Definition 2:

1. The adversary no longer specifies pairs of functions, only a single value,

2. The adversary can adaptively query for values fj receiving back tkj ,

3. There is only a single challenge plaintext x(0), x(1) because the adversary can encrypt values on either own.

Since this scheme is public key and is not function hiding it cannot be directly used to instantiate PSE. We use it as
a second example of the applicability of the transform.

C.1 Additional notation and definitions

Let Fq denote a finite field of order q and GL(n,Fq) be the general linear group of degree n over Fq. Let the vectors
e⃗i be defined as e⃗i = (0i−1, 1, 0n−i) for 1 ≤ i ≤ n. Let V be a vector space, to differentiate its elements from other
values we will use bold letters. Let bi ∈ V, 1 ≤ i ≤ n, then we denote the subspace generated by these vectors as
span(b1, · · · , bn) ⊆ V. Consider the bases B = (b1, · · · , bn) and B∗ = (b∗1, · · · , b∗n), and the vectors x⃗ and v⃗ then
(x⃗)B =

∑n
i=1 xibi and (v⃗)B∗ =

∑n
i=1 vib

∗
i . Note that we will consider bases over both Fq and Gq.

Definition 8 (Symmetric Bilinear Group). Suppose G,GT are an additive and multiplicative groups (respectively)
of prime order q with generators g ∈ G, and gT ∈ GT respectively. The group G uses additive notation, and the
group GT uses multiplicative notation. Let e : G × G → GT be a non-degenerate (i.e. e(g, g) ̸= 1) bilinear pairing
operation such that for all x, y ∈ Zq, e(x(g), y(g)) = e(g, g)xy. Assume the group operations in G,GT and the pairing
operation e are efficiently computable, then (G,GT , g, e) defines a symmetric bilinear group. Let Gbpg be an algorithm
that takes input 1λ and outputs a description of bilinear pairing groups (q,G,GT , g, e) with security parameter λ.

We use the symmetric version of dual pairing vector spaces [OT15] where the pairing is based on symmetric
bilinear groups defined in Definition 8.

25



Definition 9 (Dual Pairing Vector Spaces). Let (q,G,GT , g, ebg) be the symmetric bilinear pairing groups, then Dual

Pairing Vector Spaces (DVPS) is a tuple of prime q, N-dimensional vector space V =

N︷ ︸︸ ︷
G× . . .×G over Fq, cyclic

group GT of order q, canonical basis A defined as:

A := (⃗a1, . . . , a⃗n) , a⃗i :=
(
0i−1, g, 0N−i

)
and pairing e : G×G→ GT . The pairing e is defined with respect to ebg from the symmetric bilinear pairing group

e(x⃗, y⃗) =
∏N
i=1 ebg(gi, hi) ∈ GT where x⃗ = (g1, . . . , gN ) ∈ V and y⃗ = (h1, . . . , hN ) ∈ V. This pairing is nondegenerate

bilinear, i.e. e(sx⃗, ty⃗) = e(x⃗, y⃗)st and if e(x⃗, y⃗) = 1 for all y⃗ ∈ V then x⃗ = 0N . For all i and j, e(⃗ai, a⃗j) = e(G,G)δi,j

where δi,j = 1 if i = j and 0 otherwise, and e(g, g) ̸= 1 ∈ GT .
DPVS also has a linear transformation (“canonical maps”) ϕi,j on V such that ϕi,j (⃗aj) = a⃗i and ϕi,j (⃗ak) = 0 if

k ̸= j. We define ϕi,j(x⃗) :=
(
0i−1, gj , 0

N−i) where x⃗ = (g1, . . . , gN ). We then define the dual-pairing vector space
generator as Gdpvs which takes input 1λ (λ ∈ N) and N ∈ N:

1. Runs (q,G,GT , g, e)← Gbpg
(
1λ
)
,

2. Compute A,V,

3. Returning (q,G,GT , g, e,V,A).

Lemma 1. Let (q,G,GT , g, e,V,A)← Gdpvs be a (DPVS) generator as described above. We can efficiently sample a

random linear transformation W by sampling random coefficients {ri,j}i,j=1,··· ,n
$←− GL(n,Fq) and setting

W :=

n,n∑
i,j=1

ri,jϕi,j .

The matrix R := (ri,j) and R
∗ := ((ri,j)

−1)T then defines the adjoint action on V and we can define (W−1)T as

(W−1)T :=

N,N∑
i,j=1

r∗i,jϕi,j

such that for any x, y ∈ V, we have
e(W (x), (W−1)T (y)) = e(x, y).

Assumption 1 (Decisional Linear Assumption). Let λ ∈ N and β ∈ {0, 1}. We define a generator for the Decisional
Linear Assumption (DLIN) problem, GDLIN

β , which on input 1λ:

1. Samples paramG = (q,G,GT , g, e)← Gbpg(1λ).

2. Samples κ, δ, ξ, σ
$←− Fq.

3. Sets Y (0) = (δ + σ)g and Y (1) $←− G.

4. Returns (paramG, g, ξg, κg, δξg, σκg, Y
(β)).

The DLIN problem then consists in guessing β given (paramG, g, ξg, κg, δξg, σκg, Y
(β))← GDLIN

β (1λ). The decisional
linear assumption is that for any PPT distinguisher D for the DLIN problem the advantage is:

AdvDLIN
D (λ) =

∣∣∣ Pr[D(1λ, X) = 1 | X ← GDLIN
0 (1λ)]− Pr[D(1λ, X) = 1 | X ← GDLIN

1 (1λ)]
∣∣∣ = negl(λ)
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Setup(1λ, n, α):

1. Sample (paramV,B,B∗)← GIPEob (1λ, N),

2. For 1 ≤ ℓ ≤ α, set B̂ℓ =
(bℓ,0, · · · , bℓ,n/α, bℓ,N−1)) and
B̂∗ℓ = (b∗ℓ,0, · · · , b∗ℓ,n/α, b

∗
ℓ,3n/α+1, · · · , b

∗
ℓ,N−1)).

3. pk = (1λ, paramV, {B̂ℓ}ℓ=1,··· ,α) and sk =

{B̂∗ℓ}ℓ=1,··· ,α.

TokGen(pk, sk, v⃗):

1. Sample σ ← Fq
2. Divide v⃗ in α smaller vectors of length n/α,

such that v⃗ = (v⃗1, · · · , v⃗α).

3. For 1 ≤ ℓ ≤ α, sample η⃗ℓ
$←− Fn/αq and set

kℓ := (

1︷︸︸︷
1 ,

n/α︷︸︸︷
σv⃗ℓ ,

2n/α︷ ︸︸ ︷
0, · · · , 0,

n/α︷︸︸︷
η⃗ℓ ,

1︷︸︸︷
0 )B∗

ℓ

4. tkv⃗ := (k1, . . . ,kα)

Encrypt(pk,m, x⃗):

1. Sample ω ← Fq
2. Divide x⃗ in α smaller vectors of length n/α, such

that x⃗ = (x⃗1, · · · , x⃗α).

3. For 1 ≤ ℓ ≤ α, sample ζℓ, φℓ
$←− Fq,

4. Set

cℓ = (

1︷︸︸︷
ζℓ ,

n/α︷︸︸︷
ωx⃗ℓ ,

3n/α︷ ︸︸ ︷
0, · · · , 0,

1︷︸︸︷
φℓ )Bℓ

c0 = m · g

(
α∑

ℓ=1

ζℓ

)
T

5. Return ctx⃗ := (c0, c1, . . . , cα)

Decrypt(pk, ctx⃗, skv⃗) :

Return m′ =
∏α
ℓ=1 e(cℓ,kℓ) / c0

Figure 7: Description of modified IPE algorithms.

C.2 Construction

This construction is an adaptation of Okamoto and Takashima’s IPE scheme [OT12, Section 4] (setting α = 1
in Figure 7 yields the original scheme). As in the original construction, we first need to describe a random dual
orthonormal bases generator, GIPE∗

ob , which will be called in the main construction’s Setup algorithm to generate the
master keys. This is different from the previous generator as it generates α sets of bases.

Construction 2 (Dual Orthonormal Bases Generator). Let Gdpvs be a symmetric dual-pairing vector space generator
as described in Definition 9. Let λ,N, α ∈ N, where λ is the security parameter, N is the dimension of the vector
space and α is the number of dual orthonormal bases pairs to generate. Then on inputs 1λ, N and α, the orthonormal
bases generator GIPE∗

ob works as follows:

1. Sample (q,G,GT , g, e,V,A)← Gdpvs(1λ, N).

2. Sample a non-zero element of the field, ψ
$←− F×q .

3. Set gT = e(G,G)ψ and paramV = (q,V,GT ,A, e, gT ).
4. For each basis index 1 ≤ ℓ ≤ α:

(a) Sample a random map, as described in Lemma 1, Xℓ = (χℓ,i,j)
$←− GL(N,Fq) and set (ϑℓ,i,j) = ψ ·(XT

ℓ )
−1,

where 1 ≤ i, j ≤ N .

(b) For 1 ≤ i ≤ N , set bℓ,i =
∑N
j=1 χℓ,i,j · aj and b∗ℓ,i =

∑N
j=1 ϑℓ,i,j · aj, where (a1, · · · ,aN ) = A.

(c) Set Bℓ = (bℓ,1, · · · , bℓ,N ) and B∗ℓ = (b∗ℓ,1, · · · , b∗ℓ,N ).

5. Return (paramV, {Bℓ,B∗ℓ}ℓ=1,··· ,α).

In this construction x⃗ will always denote the attribute, and v⃗ will denote the predicate. As in the original scheme,
we assume that the first element of x⃗ is nonzero. Furthermore, note above we’ve used inner product encryption with
no associated plaintext, here we include the value m which can be decrypted if the inner product is 0 and is hidden
otherwise.
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Component Number of Group Elements

Secret Key 8n2/α+ 8n+ 2α
Public Key 4n2/α+ 10n+ 4α
Ciphertext 4n+ 2α
Token 4n+ 2α

Table 7: Sizes in Group Elements of Each Component of Revised Scheme. The value α is how many separate bases
are used. Considering α = 1 gives sizes for the original scheme of Okamoto and Takashima. Setting α = Ω(n) makes
all components a linear number of group elements.

Construction 3. Let λ ∈ N be the security parameter and n, α ∈ N such that n/α ∈ N and define N = 4n/α + 2.
Let x⃗, v⃗ ∈ Fnq \ {⃗0} and such that the first element of x⃗ is nonzero. Define the algorithms as in Figure 7.

Correctness If the inner product of our attribute vector and our predicate vector is zero (in each basis), ⟨x⃗, v⃗⟩ =∑α
ℓ=1⟨x⃗ℓ, v⃗ℓ⟩ = 0 , then by the properties of our group structures we cancel terms,

α∏
ℓ=1

e(cℓ,kℓ) = g
(
∑α

ℓ=1 ζℓ+ωσ⟨x⃗ℓ,v⃗ℓ⟩)
T = g

(
∑α

ℓ=1 ζℓ)
T ,

and finally conclude m′ = m, therefore our construction is correct when the inner product is zero.

Key Reduction The key reduction is summarized in Table 7. In the Okamoto and Takashima scheme the DPVSs
are over vectors of dimension 4n+ 2 with the public key being n+ 2 basis vectors and the secret key being 2n+ 1.
Ciphertexts and tokens are a single vector. By splitting into α bases we introduce an α overhead on each object
while reducing the dimension to 4n/α + 2 and also reducing the number of basis vectors released in the public and
secret key to 2n/α+ 1 and n/α+ 2 respectively.

Security The proposed IPE scheme achieves the same security as the original construction [OT12, Theorem 1].

Theorem 3. The IPE construction in Figure 7 with α = 1 is adaptively attribute-hiding against chosen plain-
text attacks under the DLIN assumption, such that for any PPT adversary A there exists PPT distinguishers
D0-1,D1-1,D0-2-h,D1-2-h-1,D1-2-h-2 such that for any security parameter λ ∈ N

AdvIPEA (λ) ≤ AdvDLIN
D0-1(λ) + AdvDLIN

D1-1(λ) +

ν∑
h=1

(
AdvDLIN

D0-2-h(λ) + AdvDLIN
D1-2-h-1(λ) + AdvDLIN

D1-2-h-2(λ)
)
+

28ν + 11

q

where ν ∈ N is the maximum number of key queries A can make.10

This proof (like the proofs we build from) involve a system of games where each game changes a single element of a
vector and is shown to be indistinguishable from the last game. These indistinguishability statements are made from
a system of problems that stem from the decision linear assumption. We modify the original problems of Okamoto
and Takashima [OT12] to include multiple bases of the DPVS. We can maintain security while spreading material
across bases, because the public portions are incomplete and the bases are sampled independently, making it difficult
to create meaningful relationships between bases. Using the same structure for our system of games and problems
(but now including security with multiple bases) we show that our scheme matches the security of Okamoto and
Takashima [OT12].

Proof of Theorem 3. For this theorem’s proof we refer the reader to Okamoto and Takashima’s proof of Theo-
rem 1 [OT12, Section 4.3.1]. Notice that in this version Games 0′, 1, 2-h-1, · · · , 2-h-4, 3 are replaced by Games
0∗, 1∗, 2-h-1∗, · · · , 2-h-4∗, 3∗ and the dimension of the hidden subspaces is 2n/α instead of 2n.

10In the original paper the constant was (29ν + 17)/q instead of (28ν + 11)/q but the proof still holds despite this small difference.
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Figure 8: Structure of reductions.

Lemma 2. For any PPT adversary A there exists PPT distinguishers D1,D2-h-1,D2-h-2 such that for any security
parameter λ ∈ N in Game 0*,

Pr[A wins | t = 1]− 1

2
≤ AdvDLIN

D1
(λ) +

ν∑
h=1

(
AdvDLIN

D2-h-1(λ) + AdvDLIN
D2-h-2(λ)

)
+

22ν + 6

q

where ν ∈ N is the maximum number of key queries A can make.11

Proof of Lemma 2. For a detailed high level overview of the proof, we refer the reader to Okamoto and Takashima’s
work [OT12, Section 4.3.2]. The games and the problems described in their proofs had to be updated to fit our new
construction, but as in the original work, the goal is to show that indistinguishably of the games reduces to the DLIN
assumption through a hierarchy of Problems. In the rest of this proof, we will describe the updated version of the
needed games and problems. The tree of the reductions, from the games to the DLIN assumption, can be found in
Figure 8.

We define the following 4ν + 3 updated games. In each game we will only describe the component that changed
compared to the previous game (either the keys or the ciphertexts). The boxed parts in keys and ciphertexts indicate
parts that have changed compared to the previous game.

Game 0* : This game is the same as the game described in the original proof [OT12, Definition 5] except that

before the setup phase the bit t
$←− {0, 1} is sampled and the game is aborted when t ̸= s, where s = 1 when

m(0) = m(1) and s = 0 otherwise. For this proof we only consider the case where t = 1 thus m(0) = m(1) and c0 is
independent from β. The keys and ciphertexts are built as in our construction. The answer to a key query for some
vector v⃗ = (v⃗1, · · · , v⃗α) is

kℓ = (1, σv⃗ℓ, 0
n/α, 0n/α, η⃗ℓ, 0)B∗

ℓ

where 1 ≤ ℓ ≤ α, σ
$←− Fq and η⃗ℓ

$←− Fn/αq . The challenge ciphertexts for attribute x⃗(β) = (x⃗
(β)
1 , · · · , x⃗ (β)

α ) and
message m(β) is

cℓ = (ζℓ, ωx⃗
(β)
ℓ , 0n/α, 0n/α, 0n/α, φℓ)Bℓ

11In the original paper the constant was (23ν + 12)/q instead of (22ν + 6)/q but the proof still holds despite this small difference.
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and

c0 = m(β)g

(
α∑

ℓ=1

ζℓ

)
T

where 1 ≤ ℓ ≤ α, β $←− {0, 1} and ω, ζℓ, φℓ
$←− Fq.

Game 1* : This game is the same as Game 0* except that the challenge ciphertexts are now

cℓ = (ζℓ, ωx⃗
(β)
ℓ , zx

(β)
ℓ,1 , 0(n/α)-1 , 0n/α, 0n/α, φℓ)Bℓ

where x
(β)
ℓ,1 ̸= 0 is the first coordinate of x⃗

(β)
ℓ , z

$←− Fq and all other values are generated as in Game 0*.

Game 2-h-1* : For 1 ≤ h ≤ ν, each game is the same as Game 2-(h-1)-4* (here Game 2-0-4* is Game 1*), except
that the challenge ciphertexts are now

cℓ = (ζℓ, ωx⃗
(β)
ℓ , ω′x⃗

(β)
ℓ , ω′′0 x⃗

(0)
ℓ + ω′′1 x⃗

(1)
ℓ , 0n/α, φℓ)Bℓ

where ω′, ω′′0 , ω
′′
1

$←− Fq and all other values are generated as Game 2-(h-1)-4*.

Game 2-h-2* : For 1 ≤ h ≤ ν, each game is the same as Game 2-h-1*, except that the hth key query for v⃗ is now

kℓ = (1, σv⃗ℓ, σ
′v⃗ℓ , 0

n/α, η⃗ℓ, 0)B∗
ℓ

where σ′
$←− Fq and all other values are generated as in Game 2-h-1*.

Game 2-h-3* : For 1 ≤ h ≤ ν, each game is the same as Game 2-h-2*, except that the challenge ciphertexts are
now

cℓ = (ζℓ, ωx⃗
(β)
ℓ , ω′0x⃗

(0)
ℓ + ω′1x⃗

(1)
ℓ , ω′′0 x⃗

(0)
ℓ + ω′′1 x⃗

(1)
ℓ , 0n/α, φℓ)Bℓ

where ω′0, ω
′
1

$←− Fq and all other values are generated as Game 2-h-2*.

Game 2-h-4* : For 1 ≤ h ≤ ν, each game is the same as Game 2-h-3*, except that the hth key query for v⃗ is now

kℓ = (1, σv⃗ℓ, 0
n/α, σ′′v⃗ℓ , η⃗ℓ, 0)B∗

ℓ

where σ′′
$←− Fq and all other values are generated as in Game 2-h-3*.

Game 3* : The game is the same as Game 2-ν-2*, except that the challenge ciphertexts are now

cℓ =
(
ζℓ, ω0x⃗

(0)
ℓ + ω1x⃗

(1)
ℓ , ω′0x⃗

(0)
ℓ + ω′1x⃗

(1)
ℓ , ω′′0 x⃗

(0)
ℓ + ω′′1 x⃗

(1)
ℓ , 0n/α, φℓ

)
Bℓ

where ω0, ω1
$←− Fq and all other values are generated as Game 2-h-2*. Notice that with this modification, cℓ becomes

independent from the bit β
$←− {0, 1}.
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Let t = 1, we define the advantage of a PPT machine A in Game g* as Adv
(g∗)
A (λ), where g = 0, 1, 2-h-1, · · · , 2-h-4, 3.

In the following proofs, we will calculate the difference of advantages for each pair of neighboring games. As in the
original proof [OT12, Section 4.3.2] we then obtain∣∣ Adv(0∗)A (λ)

∣∣ ≤ ∣∣ Adv(0∗)A (λ)− Adv
(1∗)
A (λ)

∣∣+ ∣∣ Adv(2-ν-4∗)A (λ)− Adv
(3∗)
A (λ)

∣∣+ Adv
(3∗)
A (λ)

+

ν∑
h=1

( ∣∣ Adv(2-h-4∗)A (λ)− Adv
(2-h-1∗)
A (λ)

∣∣+ 4∑
i=2

∣∣ A(2-h-(i−1)∗)(λ)−A(2-h-i∗)(λ)
∣∣ )

≤ Advbp1
∗

D1
(λ) +

ν∑
h=1

(
Advbp2

∗

D2-h-1(λ) + Advbp3
∗

D2-h-1(λ)
)
+

10ν + 1

q

≤ AdvDLIN
D1

(λ) +

ν∑
h=1

(
AdvDLIN

D2-h-1(λ) + AdvDLIN
D2-h-2(λ)

)
+

22ν + 6

q

In the above, bounds on Advbp1
∗

D1
(λ),Advbp2

∗

D2-h-1(λ) and Advbp3
∗

D2-h-1(λ) are described in Lemmas 4, 5 and 6 respectively.
This hybrid proof relies on both computational and information theoretical problems. The computational problems
are the following:

Basic problem 0* embeds a DLIN instance in the smallest and simplest dual pairing vector space possible. The
resulting orthonormal bases are 3x3 matrices and are built using the random elements ξ and κ from the DLIN
instance. The game is then to distinguish between a vector in which the middle element is zero and a vector
in which the middle element is random.

Basic problem 1* consists in distinguishing between two challenge ciphertexts. One where the third slot contains
zeros, as in the actual construction, and the second where the third slot contains a randomized copy of the
second slot (i.e. the vector x).

Basic problem 2* consists in distinguishing between two challenge keys. One where the third slot contains zeros,
as in the actual construction, and the second where the third slot contains a randomized copy of the second
slot (i.e. the vector v).

Basic problem 3* consists in distinguishing between two challenge keys. One where the randomized vector is in
the third slot and the other where it is in the fourth slot. The second slot being all zeros in both cases.

The information theoretical problems are the following:

Type 1 is a linear transformation inside a hidden subspace of a ciphertext. Lemma 7 [OT12] states that the
advantage of a PPT adversary A in a Type 1 distinguishing game is∣∣Adv(2-(h-1)-4)∗A (λ)− Adv

(2-h-1)∗
A (λ)

∣∣ ≤ 2

q
.

Type 2 is a linear transformation inside a hidden subspace of a ciphertext where the corresponding token is pre-
served. Lemma 9 [OT12] states that the advantage of a PPT adversary A in a Type 2 distinguishing game
is ∣∣Adv(2-h-2)∗A (λ)− Adv

(2-h-3)∗
A (λ)

∣∣ ≤ 8

q
.

Type 3 is a linear transformation across both hidden and partially public subspaces. Lemma 11 [OT12] states that
the advantage of a PPT adversary A in a Type 3 distinguishing game is∣∣Adv(2-ν-4)∗A (λ)− Adv

(3)∗
A (λ)

∣∣ ≤ 1

q
.

We now give a detailed description of the needed computational problems and their respective proofs.
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C.3 Basic Problem 0*

This is a modified version of Basic Problem 0 [OT10, Definition 18]. Let λ, α ∈ N and β ∈ {0, 1}. We define a

Basic Problem 0∗ generator, Gbp0
∗

β , which on inputs 1λ and α:

1. Samples κ, ξ, ρ, τ
$←− F×q and δ, σ, ω

$←− Fq.

2. Samples (q,G,GT , g, e,V,A)← Gdpvs and sets pp = (q,V,GT ,A, e,GT ) where GT = e(g, g)κξ.

3. For 1 ≤ ℓ ≤ α:

(a) Samples a random transformation, as described in Lemma 1, Xℓ = (χℓ,1, χℓ,2, χℓ,3)
$←− GL(3,Fq) and sets

(νℓ,1, νℓ,2, νℓ,3) = ((Xℓ)
T )−1.

(b) Computes bℓ,i = κ
∑3
j=1 χℓ,i,jaj and sets B̂ℓ = (bℓ,1, bℓ,3).

(c) Computes b∗ℓ,i = ξ
∑3
j=1 νℓ,i,jaj and sets B∗ℓ = (b∗ℓ,1, b

∗
ℓ,2, b

∗
ℓ,3).

(d) Set fℓ = (ω, τ, 0)Bℓ
.

(e) Sets y
(0)
ℓ = (δ, 0, σ)B∗

ℓ
and y

(1)
ℓ = (δ, ρ, σ)B∗

ℓ
.

4. Returns (pp, {B̂ℓ,B∗ℓ ,y
(β)
ℓ ,fℓ}ℓ=1,··· ,α, κg, ξg, δξg).

Basic Problem 0* consists in guessing β given

(pp, {B̂ℓ,B∗ℓ ,y
(β)
ℓ ,fℓ}ℓ=1,··· ,α, κg, ξg, δξg)← Gbp0

∗

β (1λ, α).

We define the advantage of a PPT machine Abp0∗ for Basic Problem 0* as

Advbp0
∗

Abp0∗
(λ) =

∣∣∣ Pr[Abp0∗(1
λ, X) = 1 | X ← Gbp0

∗

0 (1λ, α)]− Pr[Abp0∗(1
λ, X) = 1 | X ← Gbp0

∗

1 (1λ, α)]
∣∣∣

Lemma 3. For any PPT adversary Abp0∗ for Basic Problem 0*, there exists a PPT distinguisher D for the DLIN
problem such that for any security parameter λ ∈ N,

Advbp0
∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

Proof. Let Abp0∗ be an adversary for Basic Problem 0*. We can then build D, a distinguisher for the DLIN assump-
tion, as follows:

1. D receives a DLIN instance (paramG, g, ξg, κg, δξg, σκg, Y
(β)), where paramG = (q,G,GT , g, e) and Y (β) is

either Y (0) = (δ + σ)g or Y (1) = ψg
$←− G.

2. D samples (q,V,GT ,A, e)
$←− Gdpvs(1λ, 3, paramG).

3. D computes gT = e(κg, ξg) = e(g, g)κξ and sets pp = (q,V,GT ,A, e, gT ).

4. D considers12 the following basis vectors

u1 = (κ, 0, 0)A, u2 = (-κ, -ξ, κξ)A, u3 = (0, ξ, 0)A

such that U = (u1,u2,u3) is a basis of V. Notice that from the given DLIN instance, D can efficiently compute
u1,u3.

12In the next two steps D considers basis vectors of the matrices Π,Π∗,

Π =

κ
-κ -ξ κξ

ξ 1

 Π∗ =

ξ 1
1

κ 1


and observe that Π(Π∗)T = κξI3. D cannot efficiently compute Π.
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5. Similarly D considers
u∗1 = (ξ, 0, 1)A, u

∗
2 = (0, 0, 1)A, u

∗
3 = (0, κ, 1)A

such that U∗ = (u∗1,u
∗
2,u
∗
3) is a basis of V. Notice that from the given DLIN instance, D can efficiently compute

u∗1,u
∗
2,u
∗
3.

6. D samples η, φ
$←− Fq such that η ̸= 0 and sets

v = (φg, -ηg, ηκg) = (φ, -η, ηκ)A

and
w(β) = (δξg, σκg, Y (β))

7. D generates α random linear transformations W1, · · · ,Wα on V, as shown in Lemma 1.

8. For 1 ≤ ℓ ≤ α :

(a) D calculates

bℓ,i =Wℓ(ui) for i = 1, 3,

b∗ℓ,i = (W−1ℓ )T (u∗i ) for i = 1, 2, 3

and sets B̂ℓ = (bℓ,1, bℓ,3) and B∗ℓ = (b∗ℓ,1, b
∗
ℓ,2, b

∗
ℓ,3)

(b) D sets fℓ =Wℓ(v) and y
(β)
ℓ = (W−1ℓ )T (w(β)).

9. D sends (pp, {B̂ℓ,B∗ℓ ,y
(β)
ℓ ,fℓ}ℓ=1,··· ,α, κg, ξg, δξg) to Abp0∗ and returns whatever Abp0∗ sends back.

For the moment assume that η and κ are all now zero, we will later account for the probability that each could be 0

Define τ
def
= ξ−1η, since η ̸= 0 it holds that τ ̸= 0. Similarly, define ω

def
= τ + κ−1φ, we have

fℓ =Wℓ(v) =Wℓ

(
(φ, -η, ηκ)A

)
=Wℓ

(
((ω − τ)κ, -τξ, τκξ)A

)
=Wℓ

(
ωu1 + τu2

)
=Wℓ

(
(ω, τ, 0)U

)
= (ω, τ, 0)Bℓ

When β = 0 and Y (0) = (δ + σ)g we have

y
(0)
ℓ = (W−1ℓ )T

(
δξg, σκg, (δ + σ)g

)
= (W−1ℓ )T

(
(δξ, σκ, δ + σ)A

)
= (W−1ℓ )T

(
δu∗1 + σu∗3

)
= (W−1ℓ )T

(
(δ, 0, σ)U∗

)
= (δ, 0, σ)B∗

ℓ

When β = 1 and Y (1) = ψg where ψ
$←− Fq, if we define ρ = ψ − δ − σ, we have

y
(1)
ℓ = (W−1ℓ )T

(
δξg, σκg, ψg

)
= (W−1ℓ )T

(
δξg, σκg, (ρ+ δ + σ)g

)
= (W−1ℓ )T

(
(δξ, σκ, ρ+ δ + σ)A

)
= (W−1ℓ )T

(
δu∗1 + ρu∗2 + σu∗3

)
= (W−1ℓ )T

(
(δ, ρ, σ)U∗

)
= (δ, ρ, σ)B∗

ℓ
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Since the k linear maps Wℓ are sampled uniformly and independently, the distribution of the bases Bℓ and B∗ℓ is the

same as if they had been generated using Gbp0
∗

β . Then for the distributions of fℓ,y
(β)
ℓ to match the ones of the inputs

expected by A, we need κ, ρ, ξ ̸= 0. This is true except with probability 2/q when β = 0, and with probability 3/q
when β = 1. We then have:

Advbp0
∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

C.4 Basic Problem 1*

This is a modified version of Problem 1 [OT12, Definition 8]. Let λ, α, n ∈ N, β ∈ {0, 1}, and set N = 4n/α + 2.

We define a Basic Problem 1∗ generator, Gbp1
∗

β , which on inputs 1λ, α and n:

1. Samples ω, z
$←− Fq.

2. Samples (paramV, {Bℓ,B∗ℓ}ℓ=1,··· ,α)← GIPE
∗

ob (1λ, N).

3. For 1 ≤ ℓ ≤ α:

(a) Sets B̂∗ℓ = (b∗ℓ,0, · · · , b∗ℓ,n/α, b
∗
ℓ,3n/α+1 · · · , b

∗
ℓ,N−1).

(b) Samples γℓ
$←− Fq.

(c) Sets g
(0)
ℓ,1 = (0, ωe⃗1, 0

n/α, 0n/α, 0n/α, γℓ)Bℓ
and g

(1)
ℓ,1 = (0, ωe⃗1, ze⃗1, 0

n/α, 0n/α, γℓ)Bℓ
.

(d) For 2 ≤ i ≤ n/α, sets gℓ,i = ωbℓ,i.

4. Return
(paramV, {Bℓ, B̂∗ℓ , g

(β)
ℓ,1 , {gℓ,i}i=2,··· ,n/α}ℓ=1,··· ,α).

Then Basic Problem 1* consists in guessing β given

(paramV, {Bℓ, B̂∗ℓ , g
(β)
ℓ,1 , {gℓ,i}i=2,··· ,n/α}ℓ=1,··· ,α)← Gbp1

∗

β (1λ, n, α).

We define the advantage of a PPT machine Abp1∗ for Basic Problem 1* as

Advbp1
∗

Abp1∗
(λ) =

∣∣∣ Pr[Abp1∗(1
λ, X) = 1 | X ← Gbp1

∗

0 (1λ, n, α)]− Pr[Abp1∗(1
λ, X) = 1 | X ← Gbp1

∗

1 (1λ, n, α)]
∣∣∣

Lemma 4. For any PPT adversary Abp1∗ for Basic Problem 1*, there exists a PPT distinguisher D for the DLIN
problem such that for any security parameter λ ∈ N,

Advbp1
∗

Abp1∗
(λ) ≤ Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

Proof of Lemma 4. Let Abp1∗ be an arbitrary adversary for Basic Problem 1*. Then we can build Abp0∗ , an adversary
for Basic Problem 0* as follows:

1. Receive a Basic Problem 0* instance

(pp, {B̂ℓ,B∗ℓ ,y
(β)
ℓ ,fℓ}ℓ=1,··· ,α, κg, ξg, δξg)← Gbp0

∗

β (1λ, α).

2. Extract gT and paramG(q,G,GT , g, e) from pp and run (q,G,GT , g, e,V,A) ← Gdpvs(1λ, N, paramG). Sets
paramV = (q,V,GT ,A, e, gT ).

3. For 1 ≤ ℓ ≤ α :

(a) Sample a random linear transformation Wℓ on V, Wℓ = (wℓ,1, · · · , wℓ,N )
$←− GL(N,Fq).
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(b) Compute g
(β)
ℓ,1 =Wℓ(0,y

(β), 0N−4). (Recall that y(β) ∈ G3.)

(c) For 2 ≤ i ≤ n, compute gℓ,i =Wℓ(0
i, δξg, 0N−i−1).

(d) Compute:

dℓ,1 =Wℓ(0, b
∗
ℓ,1, 0

N−4),

dℓ,n/α+1 =Wℓ(0, b
∗
ℓ,2, 0

N−4),

dℓ,N =Wℓ(0, b
∗
ℓ,3, 0

N−4),

{dℓ,i =Wℓ(0
i+1, ξg, 0N−i−2)}i=0,2≤i≤n/α

{dℓ,i =Wℓ(0
i, ξg, 0N−i−1)}n/α+2≤i≤N−1.

(e) Consider the following vectors ( d∗ℓ,n/α+1 is not efficiently computable)

d∗ℓ,1 = (W−1ℓ )T (0, bℓ,1, 0
N−4),

d∗ℓ,n/α+1 = (W−1ℓ )T (0, bℓ,2, 0
N−4),

d∗ℓ,N = (W−1ℓ )T (0, bℓ,3, 0
N−4),

{d∗ℓ,i = (W−1ℓ )T (0i+1, κg, 0N−i−2)}i=0,2≤i≤n/α,

{d∗ℓ,i = (W−1ℓ )T (0i, κg, 0N−i−1)}n/α+2≤i≤N−1.

(f) Abp0∗ sets Dℓ = (dℓ,0, · · · ,dℓ,N ) and D̂∗ℓ = (d∗ℓ,1, · · · ,d∗ℓ,n/α,d
∗
ℓ,3n/α+1, · · · ,d

∗
ℓ,N ).

4. Send (paramV, {Dℓ, D̂∗ℓ , g
(β)
ℓ,1 , {gℓ,i}i=1,··· ,n}ℓ=1,··· ,α) to Abp1∗ and output the response bit.

From B̂ℓ = (bℓ,1, bℓ,3) and ξg, Abp0∗ is only able to compute d∗ℓ,i for i = 0, · · · , n/α, n/α + 2, · · · , N . From B∗ =
(b∗ℓ,1, b

∗
ℓ,2, b

∗
ℓ,3) and κg, Abp0∗ is able to compute dℓ,i for i = 0, · · · , N . Then for 1 ≤ ℓ ≤ α, Dℓ and D∗ℓ are dual

orthonormal bases. Then when we define

ω
def
= δ, γ

def
= σ, z

def
= ρ,

we have

g
(0)
ℓ,1 = (0, ωe⃗1, 0

n/α, 0n/α, γ)Dℓ

g
(1)
ℓ,1 = (0, ωe⃗1, ze⃗1, 0

n/α, γ)Dℓ

and for 2 ≤ i ≤ n,gℓ,i = ωdℓ,i. We then have Advbp1
∗

Abp1∗
(λ) ≤ Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) + 5/q.

Linear Algebra In the below we show that the linear system is properly prepared. Without loss of generality
consider α = 1. Then from BP0*, we have:

u∗1 = (ξ, 0, 1)A = (ξg, 0, g)

u∗2 = (0, 0, 1)A = (0, 0, g)

u∗3 = (0, κ, 1)A = (0, κg, g)

The matrix (X−1)T (from Basic Problem 0∗) is a random linear transformation (i.e. a random 3× 3 matrix):

(X−1)T =

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3.
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As a result for B∗ = (b∗1, b
∗
2, b
∗
3) :

b∗1 = (X−1)T (u∗1) = (X−1)T (ξg, 0, g)

=
(
(x1,1ξ + x1,3)g, (x2,1ξ + x2,3)g, (x3,1ξ + x3,3)g

)
b∗2 = (X−1)T (u∗2)

= (X−1)T (0, 0, g)

=
(
x1,3g, x2,3g, x3,3g

)
b∗3 = (X−1)T (u∗3)

= (X−1)T (0, κg, g)

=
(
(x1,2κ+ x1,3)g, (x2,2κ+ x2,3)g, (x3,2κ+ x3,3)g

)

From BP1* we have the random linear transformation (i.e. random N ×N matrix) W :

W =

w1,1 · · · w1,N

...
. . .

...
wN,1 · · · wN,N


and we obtain D = (d0, · · · ,dN−1) as follows:

dj =W (0j+1, ξg, 0N−j−2) =
(
w1,j+2ξg, · · · , wN,j+2ξg

)
, for j ∈ {0, 2, 3, ...., n/α},

d1 =W (0, b∗1, 0
N−4) =W

(
0, (x1,1ξ + x1,3)g, (x2,1ξ + x2,3)g, (x3,1ξ + x3,3)g, 0

N−4
)

=
(
(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)ξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)g

)
i=1,··· ,N

dn/α+1 =W (0, b∗2, 0
N−4) =W

(
0, x1,3g, x2,3g, x3,3g, 0

N−4
)
=
(
(wi,2x1,3 + wi,3x2,3 + wi,4x3,3)g

)
i=1,··· ,N

dj =W (0j , b∗2, 0
N−j−1) =

(
w1,j+1ξg, · · · , wN,j+1ξg

)
,

for j ∈ {n/α+ 2, · · · , N − 1}

dN−1 =W (0, b∗3, 0
N−4) =W

(
0, (x1,2κ+ x1,3)g, (x2,2κ+ x2,3)g, (x3,2κ+ x3,3)g, 0

N−4
)

=
(
(wi,2x1,2 + wi,3x2,2 + wi,4x3,2)κg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)g

)
i=1,··· ,N

Similarly, from BP0* we have:

y(0) = (δ, 0, σ)B∗ =
(
(xi,1ξ + xi,3)δg + (xi,2κ+ xi,3)σg

)
i=1,2,3

,

y(1) = (δ, ρ, σ)B∗ =
(
(xi,1ξ + xi,3)δg + ρ xi,3g + (xi,2κ+ xi,3)σg

)
i=1,2,3

From BP1* we have:

g
(0)
1 =W (0,y(0), 0N−4)

=W
(
0, (x1,1ξ + x1,3)δG+ (x1,2κ+ x1,3)σg, (x2,1ξ + x2,3)δg + (x2,2κ+ x2,3)σg, (x3,1ξ + x3,3)δg + (x3,2κ+ x3,3)σg, 0

N−4
)

=
(
(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N
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and

g
(1)
1 =W (0,y(1), 0N−4)

=W
(
0, (x1,1ξ + x1,3)δg + (x1,2κ+ x1,3)σg, (x2,1ξ + x2,3)δg + (x2,2κ+ x2,3)σg,

(x3,1ξ + x3,3)δg + (x3,2κ+ x3,3)σg, 0
N−4

)
=
(
(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg + (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N

Notice that for ω
def
= δ, z

def
= ρ and γ

def
= σ:

(0, ωe⃗1, 0
n/α, 0n, γ)D = (0, δ, 0n/α−1, 0n/α, 0n, σ)D

= δd2 + σdN

=
(
(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg

+ (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg

+ (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N

= g
(0)
1

(0, ωe⃗1, ze⃗1, 0
n, γ)D = (0, δ, 0n/α−1, ρ, 0n/α−1, 0n/α, σ)D

= δd2 + ρdn/α+1 + σdN

=
(
(wi,2x1,1 + wi,3x2,1 + wi,4x3,1)δξg

+ (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)δg

+ (wi,2x1,2 + wi,3x2,2 + wi,4x3,2)σκg

+ (wi,2x1,3 + wi,3x2,3 + wi,4x3,3)σg
)
i=1,··· ,N

= g
(1)
1

This completes the proof of Lemma 4.

C.5 Basic Problem 2*

This is a modified version of Problem 2 [OT12, Definition 9]. Let λ, α, n ∈ N and β ∈ {0, 1} and set N = 4n/α+2.

We define a Basic Problem 2∗ generator, Gbp2
∗

β (1λ, α, n):

1. Sample δ, δ0, τ, ω, σ
$←− Fq.

2. Sample (paramV, {Bℓ,B∗ℓ}ℓ=1,··· ,α)← GIPE
∗

ob (1λ, N).

3. For 1 ≤ ℓ ≤ α set
B̂ℓ = (bℓ,0, · · · , bℓ,n/α, bℓ,3n/α+1 · · · , bℓ,N ).

4. For 1 ≤ ℓ ≤ α, for 1 ≤ i ≤ n/α:

(a) Set h
(0)
ℓ,i = (0, δe⃗i, 0

n/α, 0n/α, δ0e⃗i, 0)Bℓ
and h

(1)
ℓ,i = (0, δe⃗i, τ e⃗i, 0

n/α, δ0e⃗i, 0)Bℓ
.

(b) Set gℓ,i = (0, ωe⃗i, σe⃗i, 0
n/α, 0n/α, 0)Bℓ

.
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5. Return
(paramV, {B̂ℓ,B∗ℓ , {h

(β)
ℓ,i , gℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α).

Basic Problem 2* is to guess β given (paramV, {B̂ℓ,B∗ℓ , {h
(β)
ℓ,i , gℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α) ← Gbp2

∗

β (1λ, n, α). We define
the advantage of a PPT machine Abp2∗ for Basic Problem 2* as

Advbp2
∗

Abp2∗
(λ) =

∣∣∣ Pr[Abp2∗(1
λ, X) = 1 | X ← Gbp2

∗

0 (1λ, n, α)]− Pr[Abp2∗(1
λ, X) = 1 | X ← Gbp2

∗

1 (1λ, n, α)]
∣∣∣

Lemma 5. Let λ ∈ N be a security parameter. For any PPT adversary Abp2∗ for Basic Problem 2*, there exists a
PPT adversary Abp0∗ for Basic Problem 0* and a PPT distinguisher D for the DLIN problem such that,

Advbp2
∗

Abp2∗
(λ) = Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

Proof of Lemma 5. Let Abp2∗ be an arbitrary adversary for Basic Problem 2*. Then we can build Abp0∗ , an adversary
for Basic Problem 0* as follows:

1. Receive a Basic Problem 0* instance

(pp, {B̂ℓ,B∗ℓ ,y
(β)
ℓ ,fℓ}ℓ=1,··· ,α, κg, ξg, δξg)← Gbp0

∗

β (1λ, α).

2. Extract gT and paramG(q,G,GT , G, e) from pp, run (q,V,GT ,A, e) ← Gdpvs(1λ, N, paramG). Set paramV =
(q,V,GT ,A, e, gT ).

3. For 1 ≤ ℓ ≤ α :

(a) Sample a random linear transformation Wℓ = (wℓ,1, · · · , wℓ,N )
$←− GL(N,Fq).

(b) For 1 ≤ i ≤ n/α, compute
gℓ,i =Wℓ(0, 0

3(i−1),fℓ, 0
3(n−i), 0).

(c) For 1 ≤ i ≤ n/α, compute

h
(β)
ℓ,i = (W−1ℓ )T (0, 03(i−1),y

(β)
ℓ , 03(N−i), 0).

(d) Compute dℓ,0 =Wℓ(κg, 0
N−1) and dℓ,N =Wℓ(0

N−1, κg).

(e) For 1 ≤ i ≤ n/α and 1 ≤ j ≤ 3, compute

dℓ,n(j−1)+i =Wℓ(0, 0
3(i−1), bℓ,j , 0

3(n−i), 0).

(f) Compute d∗ℓ,0 = (W -1
ℓ )T (ξg, 0N−1) and d∗ℓ,N = (W -1

ℓ )T (0N−1, ξg).

(g) For 1 ≤ i ≤ n/α and 1 ≤ j ≤ 3, compute

d∗ℓ,n(j−1)+i = (W−1ℓ )T (0, 03(i−1), b∗ℓ,j , 0
3(n−i), 0).

(h) Sets D∗ℓ = (d∗ℓ,0, · · · ,d∗ℓ,N ) and D̂ℓ = (dℓ,0, · · · ,dℓ,n/α,dℓ,2n/α+1, · · · ,dℓ,N ).

4. Send
(paramV, {D∗ℓ , D̂ℓ, {h

(β)
ℓ,i , gℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α)

to Abp2∗ .

5. Return β′ from Abp2∗ .
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From B̂ℓ = (bℓ,1, bℓ,3) and ξg, Abp0∗ is able to compute dℓ,j for j = 0, · · · , n/α, 2n/α + 1, · · · , N . Similarly, from
B∗ = (b∗ℓ,1, b

∗
ℓ,2, b

∗
ℓ,3) and κg, Abp0∗ can compute dℓ,j for j = 0, · · · , N . Then for 1 ≤ ℓ ≤ α, Dℓ and D∗ℓ are dual

orthonormal bases. Then we have for 1 ≤ i ≤ n/α:

h
(0)
ℓ,i = (0, δe⃗i, 0

n/α, 0n/α, σe⃗i, 0)
∗
Dℓ

h
(1)
ℓ,i = (0, δe⃗i, ρe⃗i, 0

n/α, σe⃗i, 0)
∗
Dℓ

gℓ,i = (0, ωe⃗i, τ e⃗i, 0
n/α, 0n/α, 0)Dℓ

.

We then have

Advbp2
∗

Abp2∗
(λ) = Advbp0

∗

Abp0∗
(λ) ≤ AdvDLIN

D (λ) +
5

q
.

This completes the proof of Lemma 5

C.6 Basic Problem 3*

This is a modified version of Problem 3 [OT12, Definition 10]. Let λ, α, n ∈ N and β ∈ {0, 1}, and set N = 4n/α+2.

We define a Basic Problem 3∗ generator, Gbp3
∗

β , which on inputs 1λ, α and n:

1. Samples τ, δ0, ω
′, ω′′, κ′, κ′′

$←− Fq.

2. Samples (paramV, {Bℓ,B∗ℓ}ℓ=1,··· ,α)← GIPE
∗

ob (1λ, N, α).

3. For 1 ≤ ℓ ≤ α:

(a) Set B̂ℓ = (bℓ,0, · · · , bℓ,n/α, bℓ,3n/α+1 · · · , bℓ,N−1)).

(b) Sets B̂∗ℓ = (bℓ,0, · · · , bℓ,n/α, bℓ,2n/α+1 · · · , bℓ,N−1)).

4. For 1 ≤ ℓ ≤ α, for 1 ≤ i ≤ n/α:

(a) Sets h
(0)
ℓ,i = (0, 0n/α, τ e⃗i, 0

n/α, δ0e⃗i, 0)B∗
ℓ
and h

(1)
ℓ,i = (0, 0n/α, 0n/α, τ e⃗i, δ0e⃗i, 0)B∗

ℓ
.

(b) Sets gℓ,i = (0, 0n/α, ω′e⃗i, ω
′′e⃗i, 0

n/α, 0)Bℓ
.

(c) Sets fℓ,i = (0, 0n/α, κ′e⃗i, κ
′′e⃗i, 0

n/α, 0)Bℓ
.

5. Return (paramV,

{B̂ℓ, B̂∗ℓ , {h
(β)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α).

Basic Problem 3* consists in guessing β given

(paramV, {B̂ℓ, B̂∗ℓ , {h
(β)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α)← Gbp3

∗

β (1λ, n, α).

We define the advantage of a PPT machine Abp3∗ for Basic Problem 3* as

Advbp3
∗

Abp3∗
(λ) =

∣∣∣ Pr[Abp3∗(1
λ, X) = 1 | X ← Gbp3

∗

0 (1λ, n, α)]− Pr[Abp3∗(1
λ, X) = 1 | X ← Gbp3

∗

1 (1λ, n, α)]
∣∣∣

Lemma 6. For any PPT adversary Abp3∗ for Basic Problem 3*, there exists a PPT distinguisher D for the DLIN
problem such that for any security parameter λ ∈ N,

Advbp3
∗

Abp3∗
(λ) ≤ Advbp2

∗

Abp2∗
(λ) +

2

q
≤ AdvDLIN

D (λ) +
7

q
.

Proof of Lemma 6. Basic Problem 3* can be decomposed into two experiments, Experiment 3-1 and 3-2 (Defini-
tions 10 and 11 respectively). We will show that these two games are close and then use the triangle inequality. We
now define these experiments.
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Definition 10 (Experiment 3-1). Let η ∈ {0, 1}. We define the Experiment 3-1 generator Gexp 3-1
η (1λ, n, α):

1. Samples (paramV, {Bℓ,B∗ℓ}1≤ℓ≤α)← GIPE
∗

ob (1λ, N, α).

2. For 1 ≤ ℓ ≤ α, sets B̂ℓ = (bℓ,0, · · · , bℓ,n/α, bℓ,3n/α+1, · · · , bℓ,N ) and B̂∗ℓ = (b∗ℓ,0, · · · , b∗ℓ,n/α, b
∗
ℓ,2n/α+1, · · · , b

∗
ℓ,N ).

3. Samples τ, τ ′, δ0, ω
′, ω′′, κ′, κ′′

$←− Fq.

4. For 1 ≤ ℓ ≤ α, for 1 ≤ i ≤ n/α set:

h
(0)
ℓ,i = (0, 0n/α, τ e⃗i, 0

n/α, δ0e⃗i, 0)B∗
ℓ
,

h
(1)
ℓ,i = (0, 0n/α, τ e⃗i, τ

′e⃗i, δ0e⃗i, 0)B∗
ℓ
,

gℓ,i = (0, 0n/α, ω′e⃗i, ω
′′e⃗i, 0

n/α, 0)Bℓ
,

fℓ,i = (0, 0n/α, κ′e⃗i, κ
′′e⃗i, 0

n/α, 0)Bℓ
.

5. Return (paramV, {B̂ℓ, B̂∗ℓ , {h
(η)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α).

Experiment 3-1 consists in guessing η ∈ {0, 1} given

(paramV, {B̂ℓ, B̂∗ℓ , {h
(η)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α)← Gexp 3−1

η (1λ, n, α).

We define the advantage of a PPT machine D for Experiment 3-1 as

Advexp 3−1
D (λ) =

∣∣∣ Pr[D(1λ, X) = 1 | X ← Gexp 3−1
0 (1λ, n, α)]− Pr[D(1λ, X) = 1 | X ← Gexp 3−1

1 (1λ, n, α)]
∣∣∣

Definition 11 (Experiment 3-2). Let η ∈ {1, 2}. We define the Experiment 3-2 generator Gexp 3-2
η (1λ, n, α):

1. Samples (paramV, {Bℓ,B∗ℓ}1≤ℓ≤α)← GIPE
∗

ob (1λ, N, α).

2. For 1 ≤ ℓ ≤ α, sets

B̂ℓ = (bℓ,0, · · · , bℓ,n/α, bℓ,3n/α+1, · · · , bℓ,N )

B̂∗ = (b∗ℓ,0, · · · , b∗ℓ,n/α, b
∗
ℓ,2n/α+1, · · · , b

∗
ℓ,N ).

3. Samples τ, τ ′, δ0, ω
′, ω′′, κ′, κ′′

$←− Fq.

4. For 1 ≤ ℓ ≤ α, for 1 ≤ i ≤ n/α set:

h
(1)
ℓ,i = (0, 0n/α, τ e⃗i, τ

′e⃗i, δ0e⃗i, 0)B∗
ℓ
,

h
(2)
ℓ,i = (0, 0n/α, 0n/α, τ ′e⃗i, δ0e⃗i, 0)B∗

ℓ
,

gℓ,i = (0, 0n/α, ω′e⃗i, ω
′′e⃗i, 0

n/α, 0)Bℓ),

fℓ,i = (0, 0n/α, κ′e⃗i, κ
′′e⃗i, 0

n/α, 0)Bℓ
.

5. Return (paramV,

{B̂ℓ, B̂∗ℓ , {h
(η)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α).

Experiment 3-2 consists in guessing η ∈ {1, 2} given

(paramV, {B̂ℓ, B̂∗ℓ , {h
(η)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α)← Gexp 3-1

η (1λ, n, α).

We define the advantage of a PPT machine D for Experiment 3-2 as

Advexp 3-2
D (λ) =

∣∣∣ Pr[D(1λ, X) = 1 | X ← Gexp 3-2
1 (1λ, n, α)]− Pr[D(1λ, X) = 1 | X ← Gexp 3-2

2 (1λ, n, α)]
∣∣∣
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Lemma 7. For any PPT distinguisher D and for any security parameter λ ∈ N,

Advexp 3−1
D (λ) ≤ 1

q

Proof. Sample θ
$←− Fq. Then for 1 ≤ i ≤ n/α set

dℓ,2n/α+i = bℓ,2n/α+i − θbℓ,n/α+i,
d∗n/α+i = b∗ℓ,n/α+i − θb

∗
ℓ,2n/α+i.

For 1 ≤ ℓ ≤ α, define

Dℓ = (bℓ,0, · · · , bℓ,2n/α,dℓ,2n/α+1, · · · ,dℓ,3n/α, bℓ,3n/α+1, · · · , bℓ,N−1),
D∗ℓ = (b∗ℓ,0, · · · , b∗ℓ,n/α,d

∗
ℓ,n/α+1, · · · ,d

∗
ℓ,2n/α, b

∗
ℓ,2n/α+1, · · · , b

∗
ℓ,N−1)

which form dual orthonormal bases. Then we have

h
(0)
ℓ,i = (0, 0n/α, τ e⃗i, 0

n/α, δ0e⃗i, 0)B∗
ℓ

= (0, 0n/α, τ e⃗i, τ
′e⃗i, δ0e⃗i, 0)D∗

ℓ

gℓ,i = (0, 0n/α, ω′e⃗i, ω
′′e⃗i, 0

n/α, 0)Bℓ

= (0, 0n/α, ω̃′e⃗i, ω
′′e⃗i, 0

n/α, 0)Dℓ

fℓ,i = (0, 0n/α, κ′e⃗i, κ
′′e⃗i, 0

n/α, 0)Bℓ

= (0, 0n/α, κ̃′e⃗i, κ
′′e⃗i, 0

n/α, 0)Dℓ

In the above, τ ′ = -θτ , ω̃′ = ω′+θω′′ and κ̃′ = κ′+θκ′′. Notice that since θ, ω′ and κ′ are sampled independently and
uniformly, then τ ′, ω̃′ and κ̃′ are independently and uniformly distributed except when τ = 0, which happens with
probability 1/q. As a result, the distributions when η = 0 and when η = 1 are equivalent, except with probability
1/q.

Lemma 8. For any PPT distinguisher D for Experiment 3-2, there is a PPT adversary Abp2∗ for Basic Problem 2*
such that for any security parameter λ ∈ N,

Advexp 3-2
D (λ) ≤ Advbp2

∗

Abp2∗
(λ) +

1

q

Proof. Suppose we have a PPT distinguisher D for Experiment 3-2, then we can build a PPT adversary Abp2∗ for

Basic Problem 2*. On receiving a Basic Problem 2* instance (paramV , {B̂ℓ,B∗ℓ , {h
(β)
ℓ,i , gℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α), Abp2∗

sets, for 1 ≤ ℓ ≤ α,

Dℓ = (bℓ,0, bℓ,2n/α+1, · · · , bℓ,3n/α, bℓ,n/α+1, · · · , bℓ,2n/α, bℓ,1, · · · , bℓ,n/α, bℓ,3n/α+1, · · · , bℓ,N−1)

D̂ℓ = (bℓ,0, bℓ,2n/α+1, · · · , bℓ,3n/α, bℓ,3n/α+1, · · · , bℓ,N−1)

and

D∗ℓ = (b∗ℓ,0, b
∗
ℓ,2n/α+1, · · · , b

∗
ℓ,3n/α, b

∗
ℓ,n/α+1, · · · , b

∗
ℓ,2n/α, b

∗
ℓ,1, · · · , b∗ℓ,n/α, b

∗
ℓ,3n/α+1, · · · , b

∗
ℓ,N−1)

D̂∗ℓ = (b∗ℓ,0, b
∗
ℓ,2n/α+1, · · · , b

∗
ℓ,3n/α, b

∗
ℓ,3n/α+1, · · · , b

∗
ℓ,N−1)

Then Abp2∗ samples η1, η2
$←− Fq and sets

fℓ,i = η1bℓ,i + η2e⃗i, for 1 ≤ i ≤ n/α
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Abp2∗ sends

(paramV, {D̂ℓ, D̂
∗
ℓ , {h

(β)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α)

to D and receives back β′ ∈ {0, 1}. Abp2∗ outputs β′. Thus,

h
(0)
ℓ,i = (0, δe⃗i, 0

n/α, 0n/α, δ0e⃗i, 0)B∗
ℓ

= (0, 0n/α, 0n/α, δe⃗i, δ0e⃗i, 0)D∗
ℓ

h
(1)
ℓ,i = (0, δe⃗i, τ e⃗i, 0

n/α, δ0e⃗i, 0)B∗
ℓ

= (0, 0n/α, τ e⃗i, δe⃗i, δ0e⃗i, 0)D∗
ℓ

gℓ,i = (0, ωe⃗i, σe⃗i, 0
n/α, 0n/α, 0)Bℓ

= (0, 0n/α, σe⃗i, ωe⃗i, 0
n/α, 0)Dℓ

fℓ,i = (0, (η1 + η2ω)e⃗i, η2σe⃗i, 0
n/α, 0n/α, 0)Bℓ

= (0, 0n/α, η2σe⃗i, (η1 + η2ω)e⃗i, 0
n/α, 0)Dℓ

.

Since δ, τ, ω, σ, η1 and η2 are independently and uniformly sampled, then δ, τ, ω, σ, η1+η2ω and η2σ are independently
and uniformly distributed in Fq except when σ = 0, which happens with probability 1/q. As a result, the distribu-

tions of (paramV, {D̂ℓ, D̂
∗
ℓ , {h

(β)
ℓ,i , gℓ,i,fℓ,i}i=1,··· ,n/α}ℓ=1,··· ,α) and of the output of Gexp 3-2

β are equivalent except with
probability 1/q.

Then from Lemmas 7, 8 and 5, for any PPT adversary Abp3∗ there exists PPT adversaries, Abp2∗ and ADLIN∗ , such
that for any security parameter λ ∈ N we have

Advbp3
∗

Abp3∗
(λ) ≤

∣∣∣Pr[Abp3∗(1
λ,Gexp 3-1

0 (1λ, n, α)) = 1]− Pr[Abp3∗(1
λ,Gexp 3-2

2 (1λ, n, α)) = 1]
∣∣∣

≤
∣∣∣Pr[Abp3∗(1

λ,Gexp 3-1
0 (1λ, n, α)) = 1]− Pr[Abp3∗(1

λ,Gexp 3-1
1 (1λ, n, α)) = 1]

∣∣∣
+
∣∣∣Pr[Abp3∗(1

λ,Gexp 3-2
1 (1λ, n, α)) = 1]− Pr[Abp3∗(1

λ,Gexp 3-2
2 (1λ, n, α)) = 1]

∣∣∣
≤ Advexp 3-1

Abp3∗
(λ) + Advexp 3-2

Abp3∗
(λ) ≤ Advbp2

∗

Abp2∗ (λ)
+

2

q
≤ AdvDLIN

ADLIN(λ)
+

7

q

This completes the proof of Lemma 6.

This completes the proof of Lemma 2.
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