
An Efficient Authenticated Key Exchange from Random
Self-Reducibility on CSIDH

Tomoki Kawashima1, Katsuyuki Takashima2, Yusuke Aikawa2, and Tsuyoshi Takagi1

1 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan {tomoki kawashima,

Takagi}@mist.i.u-tokyo.ac.jp
2 Mitsubishi Electric Corporation, Kanagawa, Japan Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp,

Aikawa.Yusuke@bc.MitsubishiElectric.co.jp

Abstract. SIDH and CSIDH are key exchange protocols based on isogenies and conjectured to be
quantum-resistant. Since their protocols are similar to the classical Diffie–Hellman, they are vulnerable
to the man-in-the-middle attack. A key exchange which is resistant to such an attack is called an
authenticated key exchange (AKE), and many isogeny-based AKEs have been proposed. However,
none of them are efficient in that they all have relatively large security losses. This is partially because
the random self-reducibility of isogeny-based decisional problems has not been proved yet.
In this paper, we show that the computational problem and the gap problem of CSIDH are random
self-reducible. A gap problem is a computational problem given access to the corresponding decision
oracle. Moreover, we propose a CSIDH-based AKE with small security loss, following the construction
of Cohn-Gordon et al. at CRYPTO 2019, as an application of the random self-reducibility of the gap
problem of CSIDH. Our AKE is proved to be the fastest CSIDH-based AKE when we aim at 110-bit
security level.

Keywords: post-quantum · tight security · authenticated key exchange · isogeny-based cryptography
· CSIDH

1 Introduction

1.1 Backgrounds

Most of the public key cryptosystems currently used depend on the difficulty of Discrete Logarithm Problem
(DLP) or factorization, so will be broken by Shor’s algorithm [21] with quantum computers. To prepare for
the appearance of quantum computers, quantum-resistant cryptosystems are needed. Isogeny-based cryp-
tosystems, such as SIDH [15] and CSIDH [4], are expected to be quantum-resistant. CSIDH can be considered
to be an instantiation of Hard Homogeneous Spaces (HHS) proposed in [7], and its protocol is similar to
the classical Diffie–Hellman. SIDH also has a very similar protocol to the classical Diffie–Hellman, but we
cannot regard it as an instantiation of HHS.

Since SIDH and CSIDH are subject to the man-in-the-middle attack, we cannot use them under insecure
channels. Although the classical Diffie–Hellman is also vulnerable to the man-in-the-middle attack, there are
many Diffie–Hellman-based key exchange protocols which are secure under insecure channels, e.g., [17,16].
Such key exchange protocols are called authenticated key exchanges (AKE).

As for isogeny-based cryptosystems, there are several SIDH-based AKEs [12,18,22]. There also exist
CSIDH-based AKEs [11], though [11] mainly focuses on a group AKE. However, these existing isogeny-
based AKEs are not so efficient in that they all have large security losses. When we have a small security
loss, we can use smaller parameters to achieve a specific security level, e.g., 110-bit security, which means
the protocol becomes faster.

To achieve an AKE with a small security loss, “random self-reducibility” of the underlying problem is
useful. Informally, we say that a problem is random self-reducible when we can produce multiple independent
instances from a single instance such that we can restore the original answer from the answer of any one of
the generated instances. In other words, a problem is random self-reducible if we can reduce the problem

tightly to the corresponding multi-instance problem. It is well-known that the decisional Diffie–Hellman
(DDH) problem and the computational Diffie–Hellman (CDH) problem are random self-reducible, see the
left part of the Figure 1.

Since the security of an AKE is often defined in the decisional game, it is plausible to use a decisional
problem for the security proof. However, even though the (classical) DDH problem is random self-reducible,
the decisional problem of SIDH and that of CSIDH (denoted as SI-DDH and CSI-DDH respectively) have
not been proved so, see the middle and right part of the Figure 1. Thus it seems difficult to construct
an AKE with a small security loss from the decisional isogeny-based problems. Here, the next candidates
are isogeny-based computational problems. However, the security proof of an AKE from a computational
problem is often difficult, since we have to reduce the computational problem to the decisional game. Thus,
other kinds of problems are needed to construct an AKE with a small security loss.

For that reason, we use gap problems introduced by Okamoto and Pointcheval [20]. A gap problem is
a problem to solve a computational problem given access to the corresponding decisional oracle, and often
used in the security proof of an AKE [17,11]. Though not quantum-resistant, the gap problem of the classical
Diffie–Hellman (the GDH problem in short) is also random self-reducible, see the left part of the Figure 1.
As for SIDH, no gap problem which is suitable for cryptosystems has been found. Related discussions are in
[13,8]. So we put our hope on the gap problem of CSIDH, CSI-GDH problem.

Following the discussion above, a natural question which arises is:

Can we construct a (almost) tightly secure quantum-resistant key exchange
which is secure against man-in-the-middle attack from isogenies?

1.2 Contributions

Random Self-Reducibility of the Gap Problem of CSIDH Our first contribution is that we prove the
random self-reducibility of the CSI-GDH problem. Though the classical Diffie–Hellman, CSIDH, and SIDH
have very similar structures, the situations about random self-reducibility are different. As for the classical
Diffie–Hellman, the decisional problem and the gap problem are both random self-reducible (see the left part
of the Figure 1). On the contrary, neither the decisional problem and the gap problem of SIDH has been
proved to be random self-reducible (see the right part of the Figure 1). Here, our contribution is that we prove
that the gap problem of CSIDH, CSI-GDH problem, is random self-reducible (see the middle part of the
Figure 1). So, among the classical Diffie–Hellman, SIDH, and CSIDH, CSIDH is the only quantum-resistant
cryptosystems which have random self-reducibility.

Fig. 1. The comparison of our result with existing result. We prove that the random self-reducibility of the CSI-GDH
problem. As for the gap problems of SIDH, no suitable problems has been proposed, see the section 3.2 for more
details.

2

Efficient CSIDH-based AKE Our second contribution is that we construct a quantum-resistant efficient
AKE based on CSIDH, following the construction of Cohn-Gordon et al. [6]. Our AKE has a security loss
of O(µ), where µ is the number of users and Cohn-Gordon et al. showed that it is optimal among “simple”
reductions 3. So, even though the loss of O(µ) is not tight, i.e., the security loss is not constant, it is optimally
tight, and our AKE is efficient in this sense. Moreover, since our AKE is based on CSIDH, it is quantum-
resistant. As far as we know, our AKE has the smallest security loss among isogeny-based AKEs as shown
in Table 1.

We also compare our AKE with existing CSIDH-based AKEs. As far as we know, [11] is the only study
that proposes CSIDH-based AKEs. [11] proposes two CSIDH-based AKEs and we show that our AKE is
faster than these two AKEs if we aim at 110-bit security.

Table 1. AKEs proposed in the literature. “Assumption” shows which problem is assumed to be hard and “Model”
represents which AKE security model was used. The number of hash queries and RevealSessKey are denoted as h
and q. Also, l and ns denote the maximum number of sessions per user and the number of sessions activated by the
adversary.

Protocol Assumption Model Loss

the classical Diffie–Hellman-based

HMQV [16] CDH CK µ2l2

NAXOS [17] GDH strong AKE µ2l2

Protocol Π [6] stDH CCGJJ µ

SIDH-based

SIDH UM [10] SI-DDH CK µl
SIDH-AKE [12] SI-CDH CK µ2l2

SIGMA-SIDH [18] SI-DDH SK µns

SIAKE2 [22] SI-DDH CK+ µ2lq
SIAKE3 [22] 1-OSIDH CK+ µ2lq

CSIDH-based

CSIDH UM [11] 2DDH G-CK µns(h+ q)2

CSIDH Biclique [11] 2GDH G-CK+ max(µ2, n2
s)

Proposed Protocol CSI-stDH CCGJJ µ

1.3 Key Techniques

Relationship between AKE and Randon Self-Reducibility The security of an AKE is defined with
the following game between a challenger C and an adversary A. First, C gives public information of the
AKE to A, such as public keys of users and public parameters. Second, A carries out some attacks allowed
in the security model. Finally, A chooses some sessions to get each person’s shared keys or random keys.
Such sessions are called test sessions. Here, a session is a single execution of the protocol. If A cannot decide
whether the given keys are real-or-random with noticeable advantage, we say the AKE is secure. For further
details, see Appendix A.

When we want to prove the security of an AKE from the difficulty of a problem, we give a simulator of the
game above. Given an instance of the problem, the simulator embeds the instance to the AKE. For example,
the simulator sets the instance to a user’s public key. The simulator embeds the problem deliberately so
that if the adversary wins the game, then the simulator can answer the problem with high probability. In
this case, the security loss is often equal to the reciprocal of the probability of the event that the adversary
chooses the embedded sessions as the test sessions.

3 Informally, a reduction is simple if the reduction runs the adversary only once.

3

To lower the security loss, embedding the instance of the underlying problem to multiple sessions is helpful.
This is because the probability that A “hits” the embedded sessions becomes higher and the security loss
becomes smaller. In this case, the simulator has to embed instances so that the simulator can solve the
underlying problem if the adversary hits the embedded sessions. However, while embedding the instance to
AKE-settings, the simulator has to set the embedded keys independently. So, the simulator must generate
multiple keys independently while the embedded keys are related to the original (single) instance.

Though it sounds difficult, we can do it easily if the underlying problem is random self-reducible. In the
proof of random self-reducibility, we make multiple and independent instances from one instance, which is
analogous to the proof technique in AKE above.

Difference between the Classical Diffie–Hellman and Isogeny-Based Cryptosystems As for the
classical Diffie–Hellman, the DDH problem and the CDH problem are both random self-reducible. The
random self-reducibility of the GDH problem follows from that of the CDH problem.

Here, we describe the proof technique. Let G be a cyclic group of prime order p. Given (X = gx, Y =
gy, Z = gz), the DDH problem is to decide whether Z = gxy, where g is a generator of G. In the proof of
the random self-reducibility of the DDH problem, we take random elements ui, vi, wi ∈ Z/pZ and generate
random instances (Xi, Yi, Zi) = (Xwigui , Y gvi , ZwiXviwiY uiguivi) for i = 1, 2, · · · . Note that in this reran-
domization, we use the operations in Z/pZ and G. In other words, we use the operations in the set of secret
keys and the set of public keys. On the contrary, in CDH case, we only use the operation in Z/pZ, the set
of secret keys as discussed in Section 3.1.

As for SIDH, the key exchange is modeled as a random walk in isogeny graphs. Thus, we have poor
algebraic structure. For example, the set of secret keys and public keys are the set of torsion points and
the set of isomorphism classes of supersingular elliptic curves, respectively. So, we cannot transfer the proof
of the classical Diffie–Hellman case to SIDH. This is the main reason why the random self-reducibilities of
SIDH-related problems have not been proved yet.

In contrast, as for CSIDH, we have algebraic structure, i.e., we use the action of the ideal class group
Cℓ(Z[

√
−p]) on the set of isomorphic classes of supersingular elliptic curves Eℓℓp(Z[

√
−p]), where p is a prime

such that p ≡ 3 mod 4. Since we still have no operations in Eℓℓp(Z[
√
−p]), we cannot transfer the proof of

DDH case to CSIDH. However, in CSIDH, the set of secret keys is Cℓ(Z[
√
−p]), the ideal class “group” of

an order Z[
√
−p]. So, we have an operation in the set of secret keys and it is homomorphic to the action.

This operation enables us to transfer the proof of the CDH-case to CSIDH, which is our main contribution.

2 Hard Homogeneous Spaces and CSIDH

Commutative Supersingular Isogeny-based Diffie–Hellman, CSIDH, is one of the candidates for post-quantum
cryptosystems, proposed by Castryck et al. in 2018 [4]. CSIDH realizes Hard Homogeneous Space (HHS),
formulated by Couveignes [7], using elliptic curves and isogenies. We briefly introduce CSIDH here. More
detailed description of CSIDH is in Appendix B.

2.1 Hard Homogeneous Space

First, we give an informal definition of HHS. See [7] for more details.

Definition 1 (Homogeneous Space). Let G be a finite abelian group and X be a finite set. X is called
homogeneous space for G if G acts on X simply transitively, i.e., for every x ∈ X, a map G → X such that
g 7→ gx is bijective.

Here, we consider two problems in a homogeneous space. The first one is the vectorization, which is
to invert the group action, i.e., given x1, x2 ∈ X, find g ∈ G such that x2 = gx1. The second one is the
parallelization, which is, given x1, x2, x3, compute gx3, where g ∈ G is the unique element in G which enjoys
x2 = gx1. We say H is a hard homogeneous space (HHS) for G if these two problems are hard.

4

2.2 CSIDH

Let p be a prime such that p ≡ 3 mod 4. It is a well known fact that Cℓ(Z[
√
−p]), the ideal class group of

an order Z[
√
−p] acts simply transitively to Eℓℓ(Z[

√
−p]), the set of Fp-isomorphic classes of supersingular

elliptic curves whose Fp-endomorphism ring is isomorphic to Z[
√
−p]. It is believed that this action is hard

to invert even for quantum computers, so we can regard (Cℓ(Z[
√
−p]), Eℓℓp(Z[

√
−p])) as a quantum-resistant

HHS.

Remark 2. A recent study [3] proposes a protocol similar to CSIDH and slightly faster than CSIDH. This
protocol is called CSURF, CSIDH on the surface. Since CSURF is also an instantiation of HHS, our result
is also applicable to CSURF.

2.3 Key Exchanges based on HHS

We can construct a Diffie–Hellman type key exchange protocol from HHS as shown in [7]. For a HHS (G, X),
the key exchange between Alice and Bob proceeds as follows:

1. Alice and Bob share a public parameter x0 ∈ X beforehand.
2. Alice chooses a random element a ∈ G and sends ax0 to Bob as a public key. Bob sends bx0 to Alice in

the same way.
3. On receiving Bob’s public key bx0, Alice computes KA = a(bx0) = abx0. Bob computes KB = b(ax0) =
bax0 in the same way.

It is easy to see that KA = KB because G is an abelian group. CSIDH is a Diffie–Hellman-like key exchange
of this form. As mentioned above, CSIDH is conjectured to be a quantum-resistant key exchange protocol.
For more details, see appendix B and [4].

Note that this kind of key exchange is vulnerable to the man-in-the-middle attack. Let Charlie be an
attacker who conducts the man-in-the-middle attack. Charlie intercepts Bob’s message bx0 and sends C = cx0
to Alice instead, where c ∈ G is chosen by Charlie. Then, receiving altered message C, Alice computes her
shared key aC = (ac)x0. Here, Charlie can compute this key with cA = (ca)x0. So, we cannot use this kind
of key exchange in insecure channels.

3 Random Self-Reducibility of Isogeny-Based Problems

In this section, we discuss the random self-reducibility of isogeny-based problems. First, we review the
classical Diffie–Hellman-based problems in section 3.1 to see what kinds of techniques are used to prove the
random self-reducibility. Then, we move on to isogeny-based problems such as SIDH-based ones (section 3.2)
and CSIDH-based ones (section 3.3). Our main contribution, the random self-reducibility of the gap problem
of CSIDH, is in section 3.3.

We first define the random self-reducibility:

Definition 3 (Random Self-Reducibility). Let f be a function f : X → Y . For a problem P , which
is to evaluate f(x) for randomly chosen x ∈ X, we say P is k-random self-reducible when we can generate
x1, . . . , xk in polynomial time such that (1) x1, . . . , xk independently follow the same distribution which x
follows and (2) given any one of (1, f(x1)), . . . , (k, f(xk)), we can compute f(x0) correctly with overwhelming
probability. Moreover, if the solver of P whose instance is x′ is given the access to the oracle Ox′ , then P is
k-random self-reducible if we can simulate Oy perfectly for all generated instances y with or without the help
of Ox0 .

If the problem P is k-random self-reducible for arbitrary positive integer k, we say P is random self-
reducible.

3.1 The Classical Diffie–Hellman-Related Problems

Firstly, we will review Diffie–Hellman based problems in this subsection.

5

Decisional Problems of the Classical Diffie–Hellman Now, we will describe the random self-reducibility
of the DDH problem. We start with the definition of the DDH problem.

Problem 4 (Decisional Diffie–Hellman (DDH) Problem). Let p be a prime of λ bits, G be a cyclic group of
prime order p, and g be a generator of G. Furthermore, a random bit b ∈ { 0, 1 } is taken uniformly. For
uniformly sampled x, y, z ∈ Z/pZ, (X,Y, Z) = (gx, gy, gxy) if b = 1 and (X,Y, Z) = (gx, gy, gz) otherwise.
Here, the problem is to guess b, given p,G, g, (X,Y, Z).

Here, for an adversary A whose guess is b′, the advantage is defined as AdvADDH(λ) =

∣∣∣∣∣Pr[b′ = b]−
1

2

∣∣∣∣∣.
Note that even when b = 0, Z happens to be equal to gxy. However, since this event happens only with

negligible probability, we can ignore such a case to avoid pathologies. In other words, we assume that Z = gxy

if and only if b = 1 throughout this paper.
It is a well-known fact that the DDH problem is random self-reducible.

Proposition 5. The DDH problem is random self-reducible.

Proof. For an instance (X,Y, Z) of the DDH problem, we generate independent exponents ui, vi, wi ∈ Z/pZ
for all i = 1, 2, Then, we generate instances of the DDH problem as

(Xi, Yi, Zi) = (Xwigui , Y gvi , ZwiXviwiY uiguivi). (1)

Finally, given j-th answer (j, bj), we answer bj to the original problem.
Here, we check that (Xi, Yi, Zi) are distributed uniformity and independently, and that b = bj , where b de-

notes the correct answer of the original problem. Let (X,Y, Z) = (gx, gy, gz) and (Xi, Yi, Zi) = (gxi , gyi , gzi).
Then, we have xi = wix+ui, yi = y+vi, zi = xiyi+wi(z−xy). Since ui and vi are independent and uniform,
we can easily check that Xi and Yi are uniform and independent. When b = 1, z = xy, thus zj = xjyj , which
means that bj = 1. Otherwise, z − xy 6= 0, so uj , vj , wj(z − xy) distribute independently and uniformly 4.
Then, Xj , Yj , Zj are uniform and independent, so bj = 0. ut

Note that we use two actions of Z/pZ on G in this proof. One is the “additive action”, which maps (x, h) ∈
Z/pZ × G to h · gx. This action is additive in that we regard Z/pZ as an additive group. The other is the
“multiplicative action”, which maps (x, h) ∈ Z/pZ×G to hx. We regard (Z/pZ)× as a multiplicative group in
this case. Both actions are necessary to maintain independency of generated instances. Here, we remark that
the additive action cannot be used to construct HHS because we can compute h · gx+y from g, h, h · gx, h · gy
easily, which means that the parallelization is easy. However, the multiplicative action is considered to form
HHS, and the classical Diffie–Hellman utilizes this action to achieve a secure key exchange.

Computational Problems of the Classical Diffie–Hellman Here, we discuss the random self-reducibility
of the CDH problem. As above, we start with the definition of problem.

Problem 6 (Computational Diffie–Hellman (CDH) Problem). Let p be a prime of λ bits, G be a cyclic group
of prime order, and g be a generator of G. For uniformly sampled x, y ∈ Z/pZ, the CDH problem is to
compute gxy given p, g, and (gx, gy).

Here, for an adversary A whose output is Z, the advantage is defined as AdvACDH(λ) = Pr[Z = gxy].

Note that we can prove the random self-reducibility of the CDH problem in the same way as the DDH
problem.

Proposition 7. The CDH problem is random self-reducible.

4 As mentioned above, we assume that z = xy if and only if b = 1 to avoid pathology.

6

Proof. For given a CDH instance (X,Y), we generate instances of the CDH problem (Xui , Y vi), where ui

and vi are chosen independently and uniformly. Then, given j-th answer Zj , we answer Z
(vjuj)

−1

j to the
original problem. Here, independency and uniformness are checked in a similar way to Proposition 5. As

for correctness, let (Xi, Yi) = (gxi,g
yi
). Then we have xiyi = xuiyvi, so Z

(vjuj)
−1

j = (gxujyvj)(vjuj)
−1

= gxy,
where (X,Y) = (gx, gy). ut

On the contrary to the DDH-case, we use only multiplicative action in this proof. This difference enables
us to prove the random self-reducibility of the computational problem of CSIDH as discussed later in 3.3.

Gap Problems of the Classical Diffie–Hellman Now, we see the GDH problem, the gap Diffie–Hellman
problem. The GDH problem is defined as follows:

Problem 8 (Gap Diffie–Hellman (GDH) problem). Notation as in Problem 6. The GDH problem is to com-
pute gxy, given access to the decision oracle DDH, which solves the DDH problem, i.e., DDH(ga, gb, gc) = true
if and only if c = ab.

Here, for an adversary A whose output is Z, the advantage is defined as AdvAGDH(λ) = Pr[Z = gxy].

Note that if the DDH problem is solved, we have to consider the CDH problem as the GDH problem. In
other words, the GDH problem is the CDH problem where the DDH problem is solved. Note that the GDH
problem is also random self-reducible. The proof is almost identical to the proof of Proposition 7. The only
difference is that we have to simulate the decision oracles but we have only to pass the query to the original
oracle.

3.2 SIDH-Related Problems

Secondly, we discuss the problems related to Supersingular Isogeny Diffie–Hellman, SIDH in short. SIDH is
one of the most major isogeny-based cryptosystems proposed in [15], so we cannot ignore SIDH if we try to
construct an isogeny-based AKE. However, our conclusion is that it is difficult to construct a SIDH-based
AKE with small security loss since there is no suitable problem assumed to be hard.

Decisional and Computational Problems of SIDH SIDH is a key exchange protocol which can be
modeled as random walks on the isogeny graphs. Thus, SIDH has a very pour algebraic structure. See [15]
for the detailed protocol. Note that neither the decisional nor the computational problem of SIDH has been
proved to be random self-reducible. Poor algebraic structure is one of the reason for this. Thus we cannot
transfer the proof of the classical Diffie–Hellman case naively.

Since SIDH is subject to the man-in-the-middle attack, a lof of SIDH-based AKEs have been proposed
[10,18,22]. Most of them are based on the difficulty of decisional problems, and have relatively large security
loss, which indicates that the decisional problem of SIDH is not random self-reducible. To the best of our
knowledge, no AKE based on the computational problem of SIDH has been proposed.

As a summary, it seems difficult to construct an AKE with small security loss from the decisional or the
computational problem of SIDH.

Gap Problems of SIDH Gap problems are very helpful to prove the security of AKE in the random oracle
model, because we can capture the hash query of an adversary and check if they contain the correct answer
of the problem with the decision oracle. However, as for SIDH, it is hopeless at present as discussed below.

As pointed out in [12], gap assumptions related to SIDH sometimes do not hold, that is, there are cases
that we can solve the gap problems efficiently, see [14]. So, it is risky to use a gap type problem for a security
proof of SIDH-based schemes. As a result, the security of almost all existing SIDH-based AKE schemes
[12,18,22] are proved without using gap problems contrary to the utility of gap problems in security proofs
for the classical Diffie–Hellman setting. This is one of the biggest obstruction to construct SIDH-based AKE
schemes.

7

On the other hand, there is an attempt to overcome this obstruction. The gap problem which proved to
be easy has a restriction on the degree of isogenies, which is essential condition for Galbraith-Vercauteren
attack [13] work. So, in order to avoid this attack, removing the condition on the degree of isogenies, Fujioka
et al. propose a new gap problem, the degree-insensitive SI-GDH problem, see [10] §4. They use such a gap
problem in the security proof of their AKE protocol. However, in [8], it is conjectured with an evidence
that public keys in the degree-insensitive version are uniformly distributed. This conjecture shows that the
degree-insensitive SI-GDH problem no longer makes sense. Here, we note that this does not mean that the
AKE scheme in [10] is broken and only that its security is not supported by the computational assumption
used in [10], for more detail, see [8].

Summary As discussed above, since the mechanism of SIDH is modeled as random walks in the isogeny
graph, formulating a well-defined gap problem in SIDH setting is difficult. So, in order to construct AKE
from SIDH, we have to employ decisional problems. However, the random self-reducibility of SIDH-related
decisional problems has not been proved yet. In conclusion, constructing tightly secure AKE schemes in
SIDH setting is seems to be difficult currently.

3.3 CSIDH-Related Problems

Finally, we move on to CSIDH. Though the decisional problem of CSIDH is still likely not to be random
self-reducible, we show that the computational and the gap problems are random self-reducible.

Decisional Problem of CSIDH The decisional problem of CSIDH, CSI-DDH problem, seems not to be
random self-reducible. In this subsection, we will compare the CSI-DDH problem with the DDH problem
and discuss what prevents the random self-reducibility of the CSI-DDH problem.

First, we define the CSI-DDH problem.

Problem 9 (Commutative Supersingular Isogeny Decisional Diffie–Hellman (CSI-DDH) Problem). Let p be
a prime of λ bits such that p ≡ 3 mod 4 and E be a supersingular elliptic curve in Eℓℓ(Z[

√
−p]). Then,

given (E1, E2, E
′) = ([x]E, [y]E,E′) for uniformly chosen [x], [y] ∈ Cl(Z[

√
−p]), guess whether E′ ' [xy]E or

not.

Here, for an adversary A, the advantage is defined as AdvACSI-DDH(λ) =

∣∣∣∣∣Pr[guess is correct]− 1

2

∣∣∣∣∣.
One may imagine that the CSI-DDH problem is also random self-reducible since CSIDH and the classical

Diffie–Hellman have very similar structures. However, to the best of our knowledge, we have not succeeded
in proving so. For example, a recent study [9] leaves it as an open problem.

Here, we discuss the difference between the classical Diffie–Hellman and CSIDH, i.e., why we cannot
prove the random self-reducibility of the CSI-DDH problem in the same way for the DDH problem. As
for the classical Diffie–Hellman case, we use both additive action and multiplicative action to prove the
random self-reducibility of the decisional problem. In CSIDH case, we have only one action, so it seems
difficult to transfer the proof to the CSIDH settings. However, this lack of operation is inevitable to achieve
quantum-resistance because of Shor’s algorithm [21].

Remark 10. A recent study of the DDH assumption [5] shows that we can solve the DDH problem of HHS
from ideal-class group action under certain circumstances. That is, if p ≡ 1 mod 4, we can solve the CSI-
DDH problem efficiently. This is not the case here because we restrict p ≡ 3 mod 4 and in this case we
cannot use this result directly. However, some modification may be required in the future even when p ≡ 3
mod 4.

8

Computational Problems of CSIDH Now, we will show that the computational problem of CSIDH is
random self-reducible.

First, we define the CSI-CDH problem. It is defined in an analogous way to the classical Diffie–Hellman.

Problem 11 (Commutative Supersingular Isogeny-Computational Diffie-Hellman (CSI-CDH) Problem). Let
p be a prime of λ bits such that p ≡ 3 mod 4 and E be a supersingular elliptic curve in Eℓℓ(Z[

√
−p]). Then,

given (E1, E2, E
′) = ([x]E, [y]E,E′) for uniformly chosen [x], [y] ∈ Cl(Z[

√
−p]), compute [xy]E.

Here, for an adversary A whose output is E′, the advantage is defined as AdvACSI-CDH(λ) = Pr[E′ = [xy]E].

Here, we probe the random self-reducibility of the CSI-CDH problem.

Theorem 12. The CSI-CDH problem is random self-reducible.

Proof. For an instance (EA, EB) of the CSI-CDH problem, we generate random ideal classes [ρi], [ηi] ∈ Cℓ(O).
Then, we generate instances as ([ρi]EA, [ηi]EB). Then, given (j, Ej) for some j, we answer [ηj]

−1[ρj]
−1Ej

to the original problem. Since the action is simply transitive, the independency and uniformity of these
generated elliptic curves are assured. Here, since Ej = [ρi][ηi]E, [ηj]

−1[ρj]
−1Ej = [xy]E, which completes

the proof. ut

In this proof, we use almost the same technique as in Theorem 7, the CDH case, while it is impossible
in the decisional case. This is mainly because the proof of the random self-reducibility of the CDH problem
uses only one operation, whereas we use two operations in the decisional case. In the CDH problem case,
as discussed above, we use only the multiplicative action to prove the random self-reducibility. Since only
the multiplicative action forms HHS in the classical DH case, the action in CSIDH corresponds to the
multiplicative action of the classical DH, so it is plausible that we can transfer the proof to CSIDH settings
in this case.

Gap Problems of CSIDH As a corollary of Theorem 12, we can prove that the gap problem of CSIDH,
CSI-GDH problem, is also random self-reducible. We start with the definitions of problems:

Problem 13 (Commutative Supersingular Isogeny Gap Diffie–Hellman (CSI-GDH) problem). Notation as in
Problem 11. The GDH problem is to compute [xy]E, given access to the decision oracle CSI-DDH, which
solves the corresponding CSI-DDH problem, i.e., given ([a]E, [b]E,E′), CSI-DDH returns true if and only if
E′ = [ab]E.

Here, for an adversaryA whose output is E′, the advantage is defined as AdvACSI-GDH(λ) = Pr[E′ = [xy]E].

Here, we can prove that the CSI-GDH problem is also random self-reducible:

Corollary 14. The CSI-GDH problem is random self-reducible.

Proof. The only difference from the CSI-CDH case (Proposition 7) is that there exists a decision oracle, but
we don’t need special treatment since we have only to pass the original oracle. ut

Moreover, we will consider the CSI-stDH problem, which is a CSIDH-version of strong DH problem used
in [6]. This problem is also random self-reducible, and we will construct an AKE which is secure under the
difficulty of this problem in the following section. The proof of the random self-reducibility of the CSI-stDH
problem is in Appendix C.

Problem 15 (strong Diffie–Hellman (stDH) Problem). Notation as in Problem 6. The stDH problem is to
compute gxy, given access to the stDH oracle stDHx(·, ·), which solves the corresponding decisional problem,
i.e., stDHx(g

b, gc) = true if and only if c = xb.
Here, for an adversary A whose output is Z, the advantage is defined as AdvAstDH(λ) = Pr[Z = gxy].

Problem 16 (Commutative Supersingular Isogeny strong Diffie–Hellman (CSI-stDH) Problem). Let p be a
prime of λ bits such that p ≡ 3 mod 4 and E be a supersingular elliptic curve in Eℓℓ(Z[

√
−p]). Then, given

(E1, E2, E
′) = ([x]E, [y]E,E′) for uniformly chosen [x], [y] ∈ Cl(Z[

√
−p]), compute [xy]E. Here, the solver can

query to the CSI-strong DH oracle CSI-stDHx(·, ·), such that CSI-stDHx(E
′, E′′) = 1 if E′′ = [x]E′ and 0

otherwise.
Here, for an adversaryA whose output is E′, the advantage is defined as AdvACSI-stDH(λ) = Pr[E′ = [xy]E].

9

Summary We have proved that the computational problem and the gap problem of CSIDH are random
self-reducible. This is in stark contrast between computational problems and decisional problems. So, our
conclusion is: If we hope for (somewhat) tight reduction in quantum-resistant HHS, we should use compu-
tational assumptions rather than decisional assumptions.

4 Protocol ΠCSIDH

In this section, we propose an isogeny-based AKE ΠCSIDH, which is a variation of the Protocol Π in [6].
The security loss is O(µ), where µ stands for the number of users. In the security proof, we use the random
self-reducibility of the CSI-stDH problem implicitly. Since ΠCSIDH uses CSIDH instead of the classical Diffie–
Hellman, it is expected to be quantum-resistant.

4.1 AKE security model

In this subsection, we discuss the security model briefly.
The security of an AKE is often proved through a game between a challenger C and an adversary A.

First, C shows public information of AKE to A. Second, A executes some attacks defined in the model.
The main difference among AKE security models is which attacks are allowed to the attacker. We regard
every single execution of a user as an oracle, and every attack is written in the form of a query to an oracle.
Finally, A chooses some oracles to get real session keys or random session keys. This procedure is often called
test-query, and A wins the game if A can decide correctly whether the given keys are real keys or random
keys.

In this paper, we use the same model as [6]. We call this model “CCGJJ model”. CCGJJ model does not
allow the adversary to reveal the internal state of an oracle, compared to the CK model [2], which is one of
the most popular models. In other words, we achieved an optimally tight AKE at the expense of security.
The CCGJJ model is described in Appendix A in a formal way. We note here that the adversary in CCGJJ
model is allowed to reveal the static key of user i if i is not the intended peer of the tested oracles, where
intended peer of an oracle is the user the oracle “wants” to communicate.

4.2 Construction

Protocol ΠCSIDH is defined in Figure 2. In this protocol, we use both static keys (a user’s key) and ephemeral
keys (an oracle’s key) to establish a shared secret key. Note that we choose an element from Cℓ(O) in the
same way as in CSIDH, see Appendix B for more details.

Public parameters

𝑝 : a prime number for CSIDH
𝐸 ∈ ℰℓℓ𝑝 𝒪 𝒪 = ℤ −𝑝 Bob

𝑠𝑘𝐵 = 𝔟 ← 𝒞ℓ 𝒪
𝑝𝑘𝐵 = 𝔅 = 𝔟 𝐸

Alice

𝑠𝑘𝐴 = 𝔞 ← 𝒞ℓ 𝒪
𝑝𝑘𝐴 = 𝔄 = 𝔞 𝐸

𝔯 ← 𝒞ℓ 𝒪
ℜ = 𝔯 𝐸

𝔰 ← 𝒞ℓ 𝒪

𝔖 = 𝔰 𝐸

𝑘 ← 𝐻(𝑐𝑡𝑥𝑡 ℳ 𝔰 𝔄 ℳ 𝔟 ℜ | ℳ 𝔰 ℜ

𝑐𝑡𝑥𝑡 = መ𝐴 𝐵 ℳ 𝔄 ℳ 𝔅 ℳ ℜ ||ℳ 𝔖

𝔖
𝑘 ← 𝐻(𝑐𝑡𝑥𝑡 ℳ 𝔞 𝔖 ℳ 𝔯 𝔅 | ℳ 𝔯 𝔖

ℜ

Fig. 2. Proposed AKE based on CSIDH (Protocol ΠCSIDH). M denotes the Montgomery coefficient.

10

4.3 Security

Here, we state the security theorem of ΠCSIDH. We denote the advantage of an adversary A against a problem
P whose parameters are param as AdvAP,param(λ), where λ is the security parameter. We often omit some
parameters when we don’t have much attention to the parameters.

Theorem 17. Let A be an adversary against Protocol ΠCSIDH in CCGJJ model under the random oracle
model and assume we use [−m,m]n as a secret key space of CSIDH for positive integers m,n. Then, there
are adversaries B1,B2,B3 against CSI-stDH problem such that

AdvAΠCSIDH
(λ) ≤ µ ·AdvB1

CSI-stDH(λ) + AdvB2

CSI-stDH(λ) + µ ·AdvB3

CSI-stDH(λ) +
µl2

(2m+ 1)n
,

where µ and l are the number of users and the maximum number of sessions per user, respectively. Moreover,
the adversaries B1,B2,B3 all run in essentially the same time as A and make essentially the same number
of queries to the hash oracle H.

Here, we explain the proof technique and discuss the relation to the random self-reducibility of the
CSI-stDH problem. The detailed proof is in Appendix A.2.

The security proof of Cohn-Gordon et al. In [6], the authors construct a simulator S that reduce the
AKE’s security to the hardness of the stDH problem. We briefly review the technique they used. S tries to
solve the stDH problem, so it gets (X = gx, Y = gy) as an instance of the stDH problem. Then, S chooses
one user i uniformly and sets X = gx as i’s static public key. Moreover, for every oracle whose intended peer
is i, S sets Y · gρ as its ephemeral public key. Here, ρ’s are chosen independently and uniformly for every
oracle, so embedded keys are also uniform and independent. Note that S cannot compute the corresponding
static secret key or ephemeral secret keys in polynomial time since S has to solve the DLP which contradicts
the assumption that stDH problem is hard.

Now, we assume that A test-queries to an oracle whose intended peer is i. This assumption prevents A
to reveal the secret key of the user i. In this case, A has to compute gx(y+ρ) and query it to the hash oracle
in order to decide whether the given key is real-or-random correctly with noticeable advantage. Here, in the
random oracle model, the simulator can catch the hash-queries made by the adversary, so S catches every
queries and checks if the query contains gx(y+ρ) with the decision oracle, CSI-stDH. Since we can eliminate
ρ with X−ρ · gx(y+ρ), this enables the simulator to solve the stDH problem correctly whenever A wins the
game. Since our assumption occurs with probability at least 1/µ, the security loss is O(µ).

Our proof sketch We apply the technique above to ΠCSIDH. Let S be the simulator for an adversary A.
Given (X = [x]E,Y = [y]E), S chooses a user i uniformly and sets X as i’s static public key. Then, for every
oracle whose intended peer is i, S chooses independent [ρ] ∈ Cℓ(O) uniformly and sets the oracle’s ephemeral
public key as [ρ]Y. We assume that A chooses the oracle whose intended peer is i as a test oracle as above.
In this case, in order for A to win the game, A has to compute [xρy]E and query it to the random oracle,
so S can detect it. Since S knows ρ and can invert it in CSIDH-setting, S can compute [xy]E in this case,
which completes the proof.

In our proof sketch above, we make multiple independent ephemeral keys, [ρ]Y. This is a similar rerandom-
ization to the proof of Theorem 7. So we can regard this proof as an application of the random self-reducibility
of the CSI-CDH problem or the CSI-stDH problem, which follows from our main contribution 5.

5 Similarly, the proof of Cohn-Gordon et al. can be considered as an application of the random self-reducibility of
the stDH problem.

11

4.4 Efficiency Analysis

In this subsection, we compare our AKE, ΠCSIDH, with other existing CSIDH-based AKEs in terms of
efficiency. To the best of our knowledge, [11] is the only study that proposes CSIDH-based AKEs. In [11],
two CSIDH-based AKEs, CSIDH UM and CSIDH Biclique, are proposed.

Assume that we want to construct an AKE of λ-bit security, with µ ' 2m users and each user conducts
at most l ' 2n times. Then, for CSIDH UM, we should use the parameters such that 2DDH assumption
provides at least (2λ+ 2m+ 2n− 1)-bit security. This evaluation follows from the inequality in the security
proof. In the same way, we 2GDH assumption for CSIDH Biclique (resp. CSI-stDH problem for ΠCSIDH)
should provide at least (λ+ 2max(m,n))-bit (resp. (λ+m)-bit) security.

As a concrete example, suppose that we want to achieve 110-bit classical security (λ = 110), with 216

users (µ = 216 and m = 16), and every user conducts sessions at most 216 times (l = 216 and n = 16), as
done in [6]. In this case, security levels required for the underlying hard problems of CSIDH UM, CSIDH
Biclique, and ΠCSIDH are 283, 143, and 126-bits, respectively. Though these assumptions are different, we
assume that the fastest way to solve these problems is to invert the group action, since we have not found
any other way to solve these problems yet.

Comparing ΠCSIDH with CSIDH Biclique, ΠCSIDH is the faster because the number of actions and the
required security level of the underlying problem are both lower. As for CSIDH UM, the required security
level of the underlying problem is about twice as much as that of ΠCSIDH. This is mainly because, in the
security proof of CSIDH UM, the square of the advantage of the adversary against CSIDH UM is bounded
from above by the advantage of the reduction. As a consequence, we have to use much larger parameters for
CSIDH UM. Actually, we can use the parameter set CSIDH-512 [4] for the ΠCSIDH, since CSIDH-512 offers
128-bit classical security. On the other hand, for CSIDH UM, we should use the parameter set CSIDH-1024
(or larger parameters), since CSIDH-1024 offers 256-bit classical security. As [1] shows, the evaluation of
the group action with parameters CSIDH-1024 takes more than 6 times as much as that of the CSIDH-512.
So, although CSIDH UM has relatively fewer number of actions than ΠCSIDH, ΠCSIDH is the faster because
every evaluation of the group action takes much more time.

As a conclusion, our AKE is the fastest CSIDH-based AKE when we consider concrete security.

Table 2. Efficiency analysis when we aim for 110-bit secure AKE. We assume there exist 216 users and each users
executes the session at mos 216 times. “Assumption” shows the problems assumed to be hard. We use either CSIDH-
512 or CSIDH-1024 [4] for the parameters. “Number of actions” shows how many times every user evaluates the
group actions in a session. We estimated the expected clock cycles using the result of Bernstein et al. [1].

Protocol Assumption Parameters Number of actions Expected clock cycles

CSIDH UM 2DDH CSIDH-1024 3 719, 084, 288× 3 = 2, 157, 252, 864
CSIDH Biclique 2GDH CSIDH-512 5 119, 995, 936× 5 = 599, 979, 680
ΠCSIDH CSI-stDH CSIDH-512 4 119, 995, 936× 4 = 479, 983, 744

5 Conclusion

In this paper, we proved that the computational problem and the gap problem of CSIDH are random self-
reducible and concluded that we should use computational or gap problems to construct a CSIDH-based
protocol with small security loss. Moreover, we proposed an AKE from CSIDH as an application, following
the construction of Cohn-Gordon et al. [6]. This AKE is proved to be the fastest CSIDH-based AKE when
we aim for a certain level of security.

Now, we have some future works. First, we have to analyse the difficulty of the CSI-GDH problem.
Though the CSI-GDH problem is regarded as hard even for quantum computers at present, since few works

12

have been done on this gap problem, we have to study this problem more. Second, we need to study more
about how secure the CCGJJ model is, particularly compared to CK or CK+ model. CCGJJ model is weaker
than the CK model in that the states of the oracles are never leaked to the adversary. This difference seems
very large, so we have to analyze the security of CCGJJ model more. Finally, if we can construct a CSIDH-
based AKE in CK or CK+ model with (optimally) tight proof, it is a very large contribution because one of
the solution to the above future works is to construct a CSIDH-based AKE in CK model with (optimally)
tight proof. Note that it seems impossible to use random self-reducibility since if we embed the instance of
a problem to multiple oracles in the CK model, the adversary may try to reveal one of such oracle’s secret
key.

References

1. Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation of isogenies of large
prime degree. Cryptology ePrint Archive, Report 2020/341, 2020. https://eprint.iacr.org/2020/341.

2. Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building Secure
Channels. In EUROCRYPT 2001, pages 453–474, Berlin, Heidelberg, 2001. Springer.

3. Wouter Castryck and Thomas Decru. CSIDH on the surface. Cryptology ePrint Archive, Report 2019/1404,
2019. https://eprint.iacr.org/2019/1404.

4. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An Efficient Post-
Quantum Commutative Group Action. In ASIACRYPT 2018, pages 395–427, Cham, 2018. Springer.

5. Wouter Castryck, Jana Sotáková, and Frederik Vercauteren. Breaking the decisional Diffie-Hellman prob-
lem for class group actions using genus theory. Cryptology ePrint Archive, Report 2020/151, 2020.
https://eprint.iacr.org/2020/151.

6. Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, H̊akon Jacobsen, and Tibor Jager. Highly Efficient Key
Exchange Protocols with Optimal Tightness. In CRYPTO 2019, pages 767–797, Cham, 2019. Springer.

7. Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291, 2006.
https://eprint.iacr.org/2006/291.

8. Samuel Dobson and Steven D. Galbraith. On the Degree-Insensitive SI-GDH problem and assumption. Cryptology
ePrint Archive, Report 2019/929, 2019. https://eprint.iacr.org/2019/929.

9. Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy CSI-FiSh: Efficient signature scheme with
tight reduction to decisional CSIDH-512. In Public-Key Cryptography - PKC 2020, volume 12111, pages 157–
186. Springer, 2020.

10. Atsushi Fujioka, Katsuyuki Takashima, Shintaro Terada, and Kazuki Yoneyama. Supersingular Isogeny Diffie-
Hellman Authenticated Key Exchange. In ICISC 2018, pages 177–195, 2018.

11. Atsushi Fujioka, Katsuyuki Takashima, and Kazuki Yoneyama. One-Round Authenticated Group Key Exchange
from Isogenies. In ProvSec 2019, pages 330–338, 2019.

12. Steven D. Galbraith. Authenticated key exchange for SIDH. Cryptology ePrint Archive, Report 2018/266, 2018.
https://eprint.iacr.org/2018/266.

13. Steven D. Galbraith and Frederik Vercauteren. Computational problems in supersingular elliptic curve isogenies.
Cryptology ePrint Archive, Report 2017/774, 2017. https://eprint.iacr.org/2017/774.

14. Steven D. Galbraith and Frederik Vercauteren. Computational problems in supersingular elliptic curve isogenies.
Quantum Information Processing, 17(10):265, 2018.

15. David Jao and Luca De Feo. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve
Isogenies. In Post-Quantum Cryptography, pages 19–34, Berlin, Heidelberg, 2011. Springer.

16. Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In CRYPTO 2005, pages 546–566,
Berlin, Heidelberg, 2005. Springer.

17. Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger Security of Authenticated Key Exchange. In
Provable Security, pages 1–16, Berlin, Heidelberg, 2007. Springer.

18. Patrick Longa. A Note on Post-Quantum Authenticated Key Exchange from Supersingular Isogenies. Cryptology
ePrint Archive, Report 2018/267, 2018. https://eprint.iacr.org/2018/267.

19. Jürgen Neukirch. Algebraic number theory, volume 322. Springer-Verlag Berlin Heidelberg, 2013.
20. Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: A New Class of Problems for the Security of

Cryptographic Schemes. In Public Key Cryptography 2001, pages 104–118, Berlin, Heidelberg, 2001. Springer.
21. Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

13

22. Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, and Song Tian. Strongly Secure Authenticated Key Exchange
from Supersingular Isogenies. In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology –
ASIACRYPT 2019, pages 278–308, Cham, 2019. Springer International Publishing.

A Authenticated Key Exchange

In this section, we give a detailed proof of Theorem 17.

A.1 CCGJJ Security Model

First, we will introduce the security model, which we call CCGJJ model in this paper. This model was
introduced by [6]. The most important difference between CCGJJ model and CK model [2] is that the
adversary cannot reveal an oracle’s internal state, including an ephemeral secret key. In both models, we
define a game between a challenger and an adversary, and if the advantage of an arbitrary efficient adversary
is negligible, the protocol is regarded to be secure.

Execution Environment Here, we describe the mathematical model of the execution environment. We
assume that there exist µ users and each user i ∈ {1, · · · , µ} executes the protocol at most l times. Each
execution is regarded as an oracle, and user i’s s-th oracle is denoted as πs

i . π
s
i uses not only user’s static key

but also its ephemeral key in the execution. Note that a static key is a user’s key, so if two oracles belong to
the same user, then these two oracles use the same static key, where the ephemeral keys are different with
high probability. Each invocation of the protocol is called a session, and the shared secret is called a session
key.

Each oracle πs
i has an intended peer, denoted as Pidsi . Also, the session key of πs

i is denoted as ksi , where
ksi = ∅ if πs

i has not computed the session key yet. The oracles send messages each other, and sentsi/recv
s
i are

the messages sent/received by πs
i . Moreover, each oracle πs

i has a role, rolesi ∈ {∅, init, resp}. Here, the role
of an oracle is either an initiator (denoted as init) or a responder (denoted as resp). An initiator is an oracle
which sends a message first, and the responder oracle follows. In Figure 2, Alice’s oracle is the initiator and
Bob’s one is the responder. Note that a responder oracle computes its session key first in the session, and
the initiator follows.

To describe partnering between oracles, we define two notions:

Definition 18 (Origin oracle). πt
j is an origin oracle of πs

i if both oracles have completed its execution
and the messages sent by πt

j are equal to the messages received by πs
i , i.e., sent

t
j = recvsi .

Definition 19 (Partner oracles). πs
i and πt

j are called partners if (1) πt
j is an origin oracle of πs

i and

vice versa, (2) both oracles think the other as an intended peer, i.e., Pidsi = j and Pidtj = i, and (3) their

roles are distinct, i.e., rolesi 6= roletj.

Attacker’s model Since each execution is regarded as an oracle, what attacker can do are described as
queries. In CCGJJ model, attacker can issue four queries, Send, RevLTK, RegisterLTK, and RevSessKey.

Send represents the ability of the adversary to control the network, i.e., Send query allows the adversary
to send arbitrary message to arbitrary oracle, or even starts an oracle. RevLTK and RevSessKey stand for
Reveal Long-Term Key and Reveal Session Key. The adversary can reveal arbitrary oracle’s long-term key
or session key. Here, the user whose oracle’s long-term key is revealed with this query is said to be corrupted.
RegisterLTK allows the adversary to add a new user. Any oracle of users added by this query is corrupted by
definition.

Moreover, the adversary can issue a special query, Test.

Definition 20 (Test query). Assume b ∈ {0, 1} is determined beforehand. If an adversary queries a Test
query to πs

i , π
s
i returns kb, where k0 is a random key and k1 is its session key. This query is denoted as

Test(i, s).

14

Here, we note that all oracles use a same bit b. Now, we define a state of an oracle, fresh.

Definition 21 (Freshness). We say πs
i is fresh if following conditions hold: (1) RevSessKey(i, s) has not

been queried, (2) when πt
j is the partner oracle of πs

i , neither Test(j, t) nor RevSessKey(j, t) has been issued,
and (3) Pidsi was not corrupted when πs

i completed its execution if πs
i has an origin oracle, and not corrupted

at all otherwise.

The session key of a fresh oracle is not revealed by queries (it is fresh in this sense). So, if all tested
oracles are fresh and the adversary can guess b correctly, we can conclude that the adversary can break the
AKE’s security. The following definition of the AKE security game describe this formally. We say that an
AKE is secure if all efficient adversary have negligible advantages.

Definition 22 (AKE security game). Let C be a challenger and A be an adversary. The security game
proceeds as follows:

1. C chooses µ static keys (ski, pki) (i = 1, 2, · · · , µ) and b ∈ {0, 1} uniformly at random, and initializes all
oracles.

2. C runs A with inputs pk1, · · · , pkµ. The model allows A to make some attacks on oracles as queries to
an oracle, including Test queries. Here, A must keep tested oracles fresh. Otherwise, the game aborts and
b′ is a random bit 6.

3. A outputs b′, a guess of b.

The advantage of an adversary is

AdvAprot(λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ,
where λ denotes a security parameter.

A.2 Detailed Security proof of ΠCSIDH

In this subsection, we give a proof of Theorem 17. First, we classify the oracles into 5 types in the same way
as [6].

Type I Initiator oracles whose messages are sent by a responder which has the same ctxt and whose intended
peer is honest, i.e., not corrupted when the message is received.

Type II Other initiators whose intended peer is honest until the initiator completes the execution.
Type III Responder oracles whose messages are sent by a initiator which has the same ctxt and whose

intended peer is honest when the message is received.
Type IV Other responders whose intended peer is honest until the responder completes the execution.
Type V Oracles that are not Type I, II, III, or IV. In other words, oracles whose intended peer is corrupted.

Note that Type I, II ,III, and IV oracles may be fresh, whereas Type V oracles are not fresh. So we have
only to consider first four types of oracles when we make a security proof, because we don’t need to care the
case when non-fresh oracles are tested.

Again, the security theorem is as follows:

Theorem 17. Let A be an adversary against Protocol ΠCSIDH in CCGJJ model under the random oracle
model and assume we use [−m,m]n as a secret key space of CSIDH for positive integers m,n. Then, there
are adversaries B1,B2,B3 against CSI-stDH problem such that

AdvAΠCSIDH
(λ) ≤ µ ·AdvB1

CSI-stDH(λ) + AdvB2

CSI-stDH(λ) + µ ·AdvB3

CSI-stDH(λ) +
µl2

(2m+ 1)n
,

where µ and l are the number of users and the maximum number of sessions per user, respectively. Moreover,
the adversaries B1,B2,B3 all run in essentially the same time as A and make essentially the same number
of queries to the hash oracle H.

6 In this case, the advantage of the adversary is zero.

15

In this Appendix, we give a proof of this theorem.

Proof. We prove this theorem by changing the game little by little. This technique is called “game-hopping”
technique. Let Sj (j = 0, 1, · · · , 5) be an event that the adversary wins in Game j.

Game 0 Game 0 is the original security game.

Game 1 In Game 1, we abort if two initiators or responders have the same ctxt. Since the size of our key
space is (2m+ 1)n, we have

|Pr[S0]− Pr[S1]| ≤
µl2

(2m+ 1)n
(2)

Game 2 In Game 2, the oracles change the way they choose their session keys. Intuitively, they try to
choose their session key uniformly at random, not using the hash function.

For example, let πt
j be a Type IV oracle, whose public secret key and ephemeral secret key are [b] and [s],

respectively. Also, let i be an intended peer of πt
j and the corresponding long-term public key and ephemeral

public key be A and R, respectively.
Then, πt

j has to query

x = î||ĵ||M(A)||M(B)||M(R)||M(S)||M([s]A)||M([b]R)||M([s]R)

to the hash oracle in Game 1. If x has not been queried or “registered” to the random oracle, then πt
j takes

its session key k uniformly at random, and “register” (x, k). If (x, k′) is registered to the random oracle, then
πt
j sets its session key to k′. In the beginning of the game, no queries are registered.
Other type of the oracles choose their session key in similar ways, so we omit the description. For further

details, see [6].
Random oracle model assures that no difference is observable by A, so we have

Pr[S1] = Pr[S2]. (3)

Game 3 In this game, Type IV oracles choose their session keys uniformly at random and do not modify
the hash oracle unless whose intended peer is corrupted.

Let πt
j be a type IV responder whose intended peer i is not corrupted when the responder sets its session

key. Moreover, we define i’s static secret key, j’s static secret key, ephemeral randomness, and received
ephemeral key as [a], [b], [v] ∈ Cl(O), and U ∈ E ll(O), respectively. Then, πt

j must have queried

x = î||ĵ||M(A)||M(B)||M(R)||M(S)||M([s]A)||M([b]R)||M([s]R) (4)

in Game 2. If queries of the form (4) do not happen before user i is corrupted, Game 2 and Game 3 are
identical. So when we define the event Fi as the event that such queries are made, we have

|Pr[S2]− Pr[S3]| ≤
∑
i

Pr[Fi].

In order to make our proof simple, we define event Gi as the event that queries of the form

î||ĵ||M(A)||M(B)||M(R)||M(S)||M(W)|| ⋆ || ⋆ ,W = [as]E (5)

are made before user i is corrupted. The symbol ⋆ means arbitrary elements. Since Pr[Fi] ≤ Pr[Gi] holds,
we have

|Pr[S2]− Pr[S3]| ≤
∑
i

Pr[Gi]. (6)

We can bound the righthand side by the advantage of a CSI-stDH adversary.

16

CSI-stDH adversary B1 The reduction B1 is an algorithm whose inputs are two elliptic curves (E1, E2) =
([x]E, [y]E) ∈ E ll(O)2, and output is an elliptic curve E3. The advantage of B1 is Pr[E3 = [xy]E].

When B1 is given a tuple (E1, E2) ∈ E ll(O)2, it chooses a user i uniformly at random, and sets its static
public key to E1. Then, for every Type IV responders, B1 sets its ephemeral public key [ρ]E2, where each
[ρ] ∈ Cl(O) is sampled in the same way as key generation for every oracle. Here, [ρ] is chosen independently
for every Type IV responders.

Suppose that Gi happens in Game 2. Then, a query of the form (5) is made to the random oracle before
user i is corrupted. The simulator can detect this query by querying CSI-stDHx(S,W). If the answer is true,
B1 outputs [ρ]−1W, which means whenever Gi happens, the simulator can answer strong CSIDH problem
correctly. Then we have

Pr[Gi] ≤ AdvB1

CSI-stDH(λ). (7)

From (6),(7), it is obvious that

|Pr[S2]− Pr[S3]| ≤ µ ·AdvB1

CSI-stDH(λ). (8)

For Game 4 and 5, the proof is similar to [6], so we just give an intuitive proof.

Game 4 In Game 4, all type III responders choose their session key at random, and do not modify the hash
oracle.

Assume that the adversary B2 is given a CSI-stDH instance (E1, E2). Then, for all type I or II oracles,
B2 generates random elements [ρ1] ∈ Cl(O) independently, and sets their ephemeral public keys to [ρ1]E1.
Similarly, Type III oracles have ephemeral public keys [ρ2]E2. If the adversary against Game 3 does not
make any hash query corresponding to Type III oracles, the Game 4 is identical to Game 3, whereas if such
query is made, B2 can solve the strong CSIDH problem. Here, we have

|Pr[S3]− Pr[S4]| ≤ AdvB2

CSI-stDH(λ). (9)

Game 5 In Game 5, all type II initiator oracles choose their session key at random and do not modify the
hash oracle unless their intended peer is corrupted. The proof is identical to that of Game 3, so we have

|Pr[S4]− Pr[S5]| ≤ µ ·AdvB3

CSI-stDH(λ) (10)

for an adversary B3 against strong CSIDH problem.
Since all honest oracles chooses their session keys uniformly at random, the advantage of an arbitrary

adversary against Game 5 is strictly 0. Then, we have

Pr[S5] =
1

2
. (11)

Combining (2), (3), (8), (9), (10), and (11), we have

AdvAΠCSIDH
(λ) = |Pr[S0]− 1/2|

≤

(
4∑

i=0

|Pr[Si]− Pr[Si+1]|

)
+ |Pr[S5]− 1/2|

≤
µl2

(2m+ 1)n
+ µ ·AdvB1

CSI-stDH(λ) + AdvB2

CSI-stDH(λ) + µ ·AdvB3

CSI-stDH(λ).

Here, we complete the proof. ut

B CSIDH

In this section, we introduce the detailed protocol of CSIDH.

17

B.1 CSIDH as an Instantiation of HHS

In CSIDH, HHS is realized with the ideal class group of imaginary quadratic field and supersingular elliptic
curves. In this subsection, we see how the ideal class group Cℓ(O) for an order O acts on Eℓℓp(O), the set of
Fp-isomorphic classes of supersingular elliptic curves whose Fp-endomorphism ring is isomorphic to O.

Ideal Class Group Let K be an imaginary quadratic number field and O ⊂ K be an order, a subring
which is a free Z-module of rank 2. Then, a fractional ideal of O is an O-submodule of K which can be
written in the form of αa, where α ∈ K× and a is an ideal of O. Note that a multiplication of fractional
ideals is induced by the multiplication of ideals naturally. We say a fractional ideal a is invertible when there
exists a fractional ideal b such that ab = O.

The set of all invertible fractional ideals I(O) forms an abelian group under the above multiplication,
and the set of all principle ideals P (O) is a normal subgroup of I(O). So we can define a quotient group
Cl(O) = I(O)/P (O), which is called the ideal class group of O. We denote the class containing a ∈ I(O) by
[a]. For more details, see [19].

The Action on Supersingular Elliptic Curves For an order O in an imaginary quadratic field K, we
define Eℓℓp(O) as a set of isomorphism classes of elliptic curves E over Fp such that EndFp

(E) ' O. Here,
EndFp(E) is the ring of Fp-endomorphisms of E.

Now, we define a group action of Cl(O) on Eℓℓp(O). Fix [a] ∈ Cl(O) and E ∈ Eℓℓp(O), then there uniquely
exists nonnegative integer r and [as] ∈ Cl(O) such that [a] = [(πO)]r[as] and as 6⊆ πO, where π denotes the
Frobenius map. For such [as], we take an isogeny ψ from E with kerψ =

⋂
α∈as

kerα. Then, for [a], we take
an isogeny πrψ, and whose codomain is denoted as [a]E. We can easily show that this correspondence enjoys
the conditions to be a group action. A Hard Homogeneous Space can be constructed by this action.

B.2 Detailed Protocol of CSIDH

Let ℓ1 . . . ℓn be small distinct odd primes such that p = 4ℓ1 · · · ℓn−1 is a prime for some n. We can efficiently
compute the class group action of li = (ℓi, π − 1) and l−1

i = (ℓi, π + 1), since we have only to find a basis of
ℓi-torsion.

Moreover, it is assumed heuristically that the map which maps (e1, . . . , en) ∈ [−m,m]n to le11 le22 · · · lenn ∈
Cℓ(Z[

√
−p]) is almost bijective, whenm enjoys (2m+1)n ≥ #Cl(Z[

√
−p]). So we can choose e1, . . . , en instead

of [a], and its action can be computed efficiently. In this case, the size of the key space is approximately
(2m+ 1)n.

Here, we describe how the protocol proceeds between Alice and Bob. Fix E0 ∈ E llp(Z[
√
−p]) as a

public parameter. First, Alice chooses ei ∈ [−m,m] for i = 1, 2, . . . , n uniformly at random, and computes
EA = [a]E0, where [a] = [le11 le22 · · · lenn].

Then, Alice sends EA to Bob. Bob also computes EB = [b]E0, and sends it to Alice. Finally, Alice
computes [a]EB , and Bob computes [b]EA. The shared secret is M([a]EB) = M([b]EA), where M denotes
the Montgomery coefficient.

C On the CSI-stDH Problem

In this section, we prove the random self-reducibility of the CSI-stDH problem. Here, we use another definition
of the random self-reducibility. First, we define the CSI-stMDH problem, the multi-instance version of the
CSI-stDH problem.

Problem 18 (Commutative Supersingular Isogeny strong Multi Diffie–Hellman (CSI-stMDH) Problem). As-
sume that a large prime p which enjoys p ≡ 3 mod 4 and an elliptic E ∈ E llp(O) for O = Z[

√
−p] are given.

Then, given (X = [x]E; (Yi = [yi]E)i∈[S]), the CSI-stMDH problem with parameter S is to compute [xyj]E
for the index j chosen by the solver. Here, the solver is given accesses to the decision oracle CSI-stDHx(·, ·).

For an adversary A whose output is E′, the advantage is defined as AdvACSI-stMDH(λ) = Pr[E′ = [xy]E].

18

In this subsection, we say the CSI-stDH is random self-reducible if we can reduce the CSI-stDH problem
to the CSI-stMDH problem tightly. The only difference from the Definition 3 is that we fix the first curve X.
Though we can prove the random self-reducibility of the CSI-stDH problem in a similar way following the
Definition 3, we use this definition here so that we can see the analogy with the security proof of ΠCSIDH

easily. Actually, X corresponds to the user i’s long-term public key in the security proof in A, and Yi’s
correspond to the ephemeral public keys of the oracles whose intended peer is i.

Here, our goal is to prove the random self-reducibility of CSI-stDH problem, i.e., the existence of tight
reduction from CSI-stDH to CSI-stMDH:

Corollary 19 (Random Self-Reducibility of CSI-stDH Problem). For arbitrary adversary A against
the CSI-stMDH problem with parameter S, there is an adversary B against the CSI-stDH problem such that

AdvA,S
CSI-stMDH(λ) ≤ AdvB,S

CSI-stDH(λ), and Time(A) ' Time(B)

hold.

Proof. For an instance (EA, EB) of the CSI-stDH problem, B generates random ideal classes [ηi] ∈ Cℓ(O)
for i ∈ [S]. Then, B generates a CSI-stMDH instance (EA; (ηiEB)i∈[S]) and inputs this to A. If A outputs
Ej for j ∈ [S], A outputs [ηj]

−1Ej . For CSI-stDH query made by A, B queries it to its own CSI-stDH oracle.
Here, if A succeeds, B answers the CSI-stMDH problem correctly, which completes the proof. ut

Remark 20. If we use the Definition 3 for the definition of the random self-reducibility, we also rerandomize
the first curve X as Xi = [ξi]X for randomly chosen [ξi] ∈ Cℓ(O). Here, we should answer to the deci-
sion queries CSI-stDHξix(E1, E2) for every i. However, since E2 = [ξix]E1 ⇔ [ξ−1

i]E2 = [x]E1, we have
CSI-stDHξix(E1, E2) = CSI-stDHx(E1, [ξ

−1
i]E2), thus we can simulate the oracles perfectly.

19

