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Abstract

Non-committing encryption (NCE) is a type of public key encryption which comes with the
ability to equivocate ciphertexts to encryptions of arbitrary messages, i.e., it allows one to find
coins for key generation and encryption which “explain” a given ciphertext as an encryption of
any message. NCE is the cornerstone to construct adaptively secure multiparty computation
[Canetti et al. STOC’96] and can be seen as the quintessential notion of security for public key
encryption to realize ideal communication channels.

A large body of literature investigates what is the best message-to-ciphertext ratio (i.e.,
the rate) that one can hope to achieve for NCE. In this work we propose a near complete
resolution to this question and we show how to construct NCE with constant rate in the plain
model from a variety of assumptions, such as the hardness of the learning with errors (LWE) or
the decisional Diffie-Hellman (DDH). Prior to our work, constructing NCE with constant rate
required a trusted setup and indistinguishability obfuscation [Canetti et al. ASIACRYPT’17].

1 Introduction

Multiparty computation (MPC) considers the problem of mutually distrustful parties comput-
ing a function over their inputs, while revealing no information beyond the output of the func-
tion [Yao82, GMW87]. Traditionally, the security of MPC protocols is analyzed considering two
different adversarial models: In the static settings, the adversary is required to announce the set
of parties that he wants to corrupt prior to the execution of the protocol. On the other hand,
in the adaptive settings, the adversary can corrupt parties at any point in time of the execution,
possibly depending on previously exchanged messages. Adaptive security is widely believed to be
the correct notion of security to consider when analyzing the security of cryptographic protocols as
we do not have any real-life justification for the static model (except that adaptive security is in
general harder to achieve).

Non-Committing Encryption (NCE) was presented in [CFGN96] as the cornerstone to construct
adaptively-secure MPC, both in the stand-alone model [CFGN96] and in the UC settings [CLOS02].
Loosely speaking, NCE incarnates the notion of an ideal private channel, which retains the security
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of its messages, even if it is corrupted at a later point in time. NCE is a public-key encryption
(PKE) scheme for which there exists a simulator that is able to create a pair of public key pk and
ciphertext ct, indistinguishable from a real pair public key/ciphertext. Given any message M at
any later point in time, the simulator can craft random coins that explain the transcript (pk, ct)
for M . A central efficiency measure for PKE is the rate of encryption, i.e., the asymptotic ratio
between the size of the message and the size of the ciphertext. While we know how to construct
high-rate PKE1 from numerous hardness assumptions, the situation is less cheerful for NCE. The
most efficient schemes from the literature in the plain model have ciphertext-rate poly-logarithmic
in the security parameter [YKT19, HORR16], whereas (asymptotically) matching the efficiency of
PKE currently requires a trusted setup and indistinguishability obfuscation [CPR17]. Motivated
by the current state of affairs, we ask the following question:

Can we build NCE with ciphertext rate O(1) from standard assumptions?

1.1 Our Results

We present a nearly complete resolution of this question by constructing the first NCE schemes
with constant ciphertext-rate from a new abstraction, which we call Packed Encryption with Partial
Equivocality (PEPE). Then we show how to instantiate PEPE from several standard problems,
such as learning with errors (LWE) or decisional Diffie-Hellman (DDH). Specifically, we prove the
following main theorem.

Theorem 1 (Informal). Assuming the hardness of the {LWE, DDH} problem, there exists a non-
committing encryption scheme with ciphertext rate O(1).

We note that our PEPE schemes achieve rate 1. The rate of our NCE schemes is a small
constant which is mostly determined by an information-theoretic technique in the construction of
NCE from PEPE.

As a contribution of independent interest, we present a novel ciphertext-compression technique
for packed ElGamal encryption schemes which preserves correctness perfectly. As a direct corollary,
we obtain a linearly-homomorphic encryption scheme with rate 1 from the DDH assumption.

Theorem 2 (Informal). Assuming the hardness of the DDH problem, there exists a linearly homo-
morphic encryption scheme with rate 1.

This result generalizes and improves the recent work of Döttling et al. [DGI+19], where they
obtained a rate-1 oblivious transfer from DDH (trivially implied by rate-1 linearly-homomorphic
encryption) with inverse polynomial correctness error. Their scheme could be lifted to achieve
negligible decryption error at the cost of introducing error-correcting codes, thus losing the additive
homomorphism. Among other things, our scheme implies simpler and more direct constructions of
rate-1 private information retrieval and rate-1 lossy trapdoor functions (using the same compilers
as described in [DGI+19]) from the DDH assumption, without error correcting codes.

1.2 Related Work

The study of the rate of NCE has been the subject of a large body of literature. In the following
we briefly review prior progress on improving the rate of NCE. We only consider NCE schemes

1Rate-1 PKE can be easily constructed using hybrid encryption.
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Ciphertext
Rate

Hardness
Assumption

Setup

[CFGN96] O(λ2) RSA, CDH -

[CDSMW09] O(λ) Factoring Blum integers -

[OPW11] O(λ)
DDH, LWE,

Factoring Blum integers
-

[HOR15] poly(log `) φ-hiding
Oblivious sampling

of RSA modulus

[HORR16] poly(log λ) LWE -

[CPR17] 1− o(1) iO CRS

[YKT19] O(log λ) DDH -

Our result O(1) LWE, DDH -

Table 1: Comparison with previous work. We focus only on constructions which have two rounds
of communication. λ denotes the security parameter and ` denotes the length of the message to be
encrypted.

with optimal round complexity, i.e., two-round protocols. The first instantiation of NCE is due
to Canetti et al. [CFGN96] and achieved quadratic ciphertext-rate O(λ2) under the RSA or the
Computational Diffie-Hellman (CDH) assumption. Some three-round protocols were proposed after
that [Bea97, DN00] (both achieving linear rate), but the only improvement in the two-round settings
was only made several years later in [CDSMW09], where an NCE with ciphertext-rate O(λ) was
presented, assuming the hardness of factoring Blum integers.

The rate question for NCE has recently received renewed interest: In [HOR15], a scheme based
on the φ-hiding assumption and achieving polylogarithmic (in the length of the message) ciphertext-
rate was presented. This result was improved in a subsequent work [HORR16], where a scheme
with polylogarithmic (in the security parameter) ciphertext-rate and based on the LWE assumption
with superpolynomial modulus-to-noise ratio was proposed. Finally, a scheme with quasi-optimal
(i.e., logarithmic) ciphertext-rate was presented in [YKT19], assuming the hardness of the DDH
problem. We also mention the work of Canetti et al. [CPR17], which constructs NCE with optimal
rate (i.e., 1− o(1)) but at the cost of assuming indistinguishability obfuscation (iO) and a trusted
setup. A comparison with our results is presented in Table 1.

1.3 Discussion and Open Problems

We stress that, as done in (most of) prior works improving the rate of NCE (e.g. [HOR15, YKT19]),
we do not take the size of the public key into account when measuring the rate of the scheme. This
is justified by the fact that (i) the public keys do not depend on the encrypted messages: In some
scenarios it might be acceptable to have a more expensive “offline” communication while optimizing
for an efficient “online” (i.e. message-dependent) phase. Furthermore, (ii) one can encrypt multiple
messages under the same public key. That is, the size of the public key grows linearly with the
number of equivocable ciphertexts, as opposed to all ciphertexts.

Finally, our work still leaves open the question about the true rate of NCE: Is (round-optimal)
NCE with (asymptotic) rate 1 possible from standard assumptions and in the plain model, or is a
small constant rate, as achieved in this work, the best we can hope for?
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2 Technical Overview

Before delving in the presentation of our scheme, we briefly recall the NCE scheme of [HORR16],
which is based on LWE with superpolynomial modulus-to-noise ratio. Let M ∈ {0, 1}` be a (long)
message we want to encrypt. The public key of this scheme is essentially a packed Regev key, that is
it consists of a matrix A and vectors v1, . . . ,v`. The matrix A ∈ Zk×nq is chosen uniformly random
(where k, n are two polynomials in the security parameter λ) whereas the vectors vi are chosen
in two different modes. Let IR ⊆ [`] be a set of indices of size `/8 chosen at random by the key
generator. We think of this set as part of the secret key.

• For all i ∈ IR the component public key vi is computed by vi = siA+ei where s←$Zkq is the
corresponding component secret key and ei←$χn is a noise term, chosen from an appropriate
LWE error distribution χ.

• For all i /∈ IR the component keys vi←$Znq are chosen uniformly random.

To encrypt a message M , it is first encoded into a binary string y ∈ {0, 1}` using a suitable
error-correcting code (ECC), the choice of which is rather delicate2. The encrypter then chooses a
random subset IS ⊆ [`], also of size `/8. For all indices i ∈ IS , we replace the i-th component of
the string y by uniformly random bits.

The (modified) string y is then encrypted using a noisy version of the packed Regev scheme
[Reg05] in its gaussian variant. More precisely, one first samples a vector r from a suitable discrete
gaussian over Zn and computes

c1 = ArT

∀i ∈ [`] : wi = vir
T + e∗i + yi · q/2,

where the masking noise terms e∗i are chosen from an appropriate discrete gaussian. To decrypt
a ciphertext (c1, w1, . . . , w`) one proceeds as follows. For all indices i ∈ IR, the decrypter is in
possession of a component secret key si which allows him to recover yi by computing wi − sic1 ≈
yi ·q/2 and rounding. All components with indices outside of IR are effectively erased from the view
of the receiver. However, by the above choice of parameters the receiver will be able to recover the
message M with high probability using the efficient decoder of ECC. This establishes correctness
of the scheme.

We will briefly discuss how we can equivocate messages if the system is set up in simulation
mode. Instead of running honest key generation, the simulator chooses a set Ib ⊆ [`] of size `/4.
We call Ib the set of bad indices. Now, the simulator chooses the matrix A jointly with the vi for

i ∈ Ib via a lattice trapdoor sampler. I.e., the simulator generates a matrix B ∈ Z(k+`/4)×n
q with a

lattice trapdoor tdB, then sets A to be the first k rows of B and uses the remaining `/4 rows for
the vectors vi with indices i ∈ Ib. The remaining vi with indices in the good set Ig = [`]\ Ib will be
chosen as LWE samples, i.e. for these components the simulator will know a corresponding secret
key si.

To simulate a ciphertext, the simulator chooses a uniformly random bit string y′ and encrypts
it as before via noisy Regev encryption. We will briefly sketch the main ideas of how ciphertexts
are equivoked. Given a message M , the simulator needs to compute random coins rG which explain

2We need a code ECC which can efficiently decode from a 1/2 − δ fraction of random errors.
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the public key pk and rE which explain the ciphertext ct. Now, M is encoded into a binary string
y ∈ {0, 1}` via ECC. Now, note since the string y′ was chosen at random, it will agree with y in
approximately 50% of the indices. For the remaining 50% of indices on which y′ and y disagree,
the simulator has two strategies at its disposal.

• For all indices i ∈ Ib it will be able to resample the gaussian r via a gaussian sampler that
uses the lattice trapdoor tdB. This effectively allows the simulator to reprogram all ciphertext
components wi with index i ∈ Ib as encryptions of yi (instead of y′i). This resampling
procedure is the reason the masking noise terms e∗i are needed. The resampling procedure
creates small artifacts in the ciphertext components with indices i ∈ Ig, and the masking
noise terms are used to statistically drown these artifacts.

• For the remaining indices, it will claim they were in the set IS by choosing this set appropri-
ately.

A good deal of care has to be taken when opening the sets IR and IS in order to ensure that they
have the right statistics. In order to ensure this, the simulator will make use of the fact that any
component key in the set Ig can be claimed to be either from the set IR or [`] \ IR.

2.1 Packed Encryption with Equivocality

Our first contribution is an abstraction of the above framework into a generic construction of NCE
using a novel primitive that we call Packed Encryption with Partial Equivocality (PEPE).3 A PEPE
is a cryptographic primitive that allows one to encrypt a message M ∈ {0, 1}` into a ciphertext ct,
using random coins rE . Later, we can find random coins r′E such that the encryption of M ′ 6= M is
exactly ct, conditioned on the fact that M ′ and M differ only on some predefined positions. More
precisely, a PEPE consists of the following algorithms.

• Key Generation: Given a subset I ⊂ [`] and a bit b, it outputs a pair of public and
secret keys (pk, sk) ← KG(b, I; rG) on either the real mode (if b = 0) or on the ideal mode
(if b = 1), created using random coins rG. Public keys created in different modes should be
indistinguishable. A pair of keys created in the ideal mode will allow for equivocation of some
of the positions of an encrypted message.

• Encryption: Given a message M ∈ {0, 1}` and a public key pk, it outputs a ciphertext
ct← E(pk,M ; rE) encrypted using random coins rE .

• Decryption: Given a secret key sk corresponding to the subset I, it outputs Mi for i ∈ I.

Additionally, a PEPE scheme is equipped with the algorithms EquivPK and EquivCT defined as
follows.

• Equivocation of public key randomness: Given a subset I ′ ⊂ I and the pair (pk, sk)←
KG(b, I; rG), this algorithm outputs r′G such that (pk, sk′) = KG(0, I ′; r′G).

3A somewhat similar notion is the one of Somewhere Equivocal Encryption [HJO+16]. However, Somewhere
Equivocal Encryption is a purely symmetric-key primitive and equivocation is performed by finding a new secret key.
On the other hand, PEPE is a public-key primitive and equivocation is achieved by finding new random coins for the
key generation and encryption algorithms.
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• Equivocation of ciphertext randomness. Given a message M ′ (that differs from M only
in the indexes not in I) and random coins rE , this algorithm outputs random coins r′E such
that E(pk,M ; rE) = E(pk,M ′; r′E).

As security requirement, the random coins outputted by the algorithms described above should be
indistinguishable from real random coins.

NCE from PEPE. Our construction of NCE from PEPE closely follows the outline [HORR16]
as explained above, where we replace packed Regev encryption with a PEPE scheme. In the real
mode, we also setup the PEPE scheme in real mode. In simulation mode, we setup keys in the
appropriate simulation mode. The ciphertext randomness equivocation property of the PEPE
scheme serves as a drop-in replacement for the gaussian sampling property of the packed Regev
scheme in [HORR16]. The remaining aspects are essentially identical to the [HORR16] such as the
use of error correcting codes and set partitions.

Assuming that we have a PEPE scheme which achieves constant rate, then the rate of this NCE
construction is dominated by the rate penalty of the error correcting code ECC. Consequently, given
that ECC has constant rate, this transformation results in an NCE scheme with constant rate.

In the remainder of this outline we briefly discuss constructing rate-1 PEPE schemes from LWE
and DDH.

2.2 Construction from LWE

Before presenting our construction for PEPE from the LWE assumption, we recall a compression
technique for Regev’s scheme, recently introduced in [BDGM19]. Recall that in packed Regev
encryption, a ciphertext is of the form

ct = (c1, (w1, . . . , w`)) ∈ Znq × Z`q

where c1 is a ciphertext header and w1, . . . , w` are the ciphertext payload components. As explained
above, given a component secret key si a component wi can be decrypted by computing wi− si · c1

and rounding the result to either 0 or q/2. Given that the modulus q is sufficiently large, we can
compress such a ciphertext by choosing an offset z such that for all indices i

wi + z /∈ [q/4−B, q/4 +B] ∪ [−q/4−B,−q/4 +B] ,

where B is a bound on the decryption noise. Given that the modulus q is large enough, we can
ensure that such an offset z always exists and can be found efficiently. Note that z is computed
from the ciphertext only, i.e. without the knowledge of the corresponding plaintexts. Given such
a z, we can compress the wi into single bits by computing ci = bwi + ze2. The new compressed
ciphertext is composed by (c1, {ci}i∈[`], z). To decrypt such a compressed ciphertext, we compute
ci − bsic1 + ze2. A routine calculation shows that, given that z satisfies the constraints above,
decryption is always correct.

PEPE from LWE. Recasting the construction of [HORR16] in terms of PEPE, immediately
gives us a PEPE scheme of polylogarithmic rate. Since the scheme obtained in this way is a packed
Regev scheme, it is naturally compatible with the ciphertext compression technique provided above.
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To see that the resulting scheme still supports public key and ciphertext equivocation, note
first that we leave the public key unmodified. On the other hand, note that ciphertext compres-
sion is merely a public post-processing operation on a ciphertext. Consequently, to equivocate a
compressed ciphertext, all we have to do is to equivocate the underlying uncompressed ciphertext.
Thus, given that the message length ` is sufficiently large, we obtain a PEPE scheme with rate 1
under the same assumptions as above.

2.3 Construction from DDH

We will now outline our DDH-based construction, which follows the same blueprint as the LWE-
based construction. We first construct a PEPE scheme with poor rate (O(λ)), and then combine
it with a public ciphertext compression technique.

We will first explain our novel ciphertext compression technique for the discrete logarithm
settings. This algorithm, can be seen as the computational analog of the one described above and
it is inspired by recent techniques developed in the domain of homomorphic secret sharing [BGI16].
The scheme is perfectly correct, however the caveat is that the compression algorithm will run
in expected polynomial time (or, alternatively, will introduce a decryption error with negligible
probability). Let G be a prime order group with generator g and let

(h1 = gs1 , . . . , h` = gs`)

be a set of public keys. The ciphertexts that we want to compress are of the form

(gr, (hri g
M1 , . . . , hri g

M`)) = (c1, (w1, . . . , w`)) ∈ G`+1

where r←$Zp and M ∈ {0, 1}`, which is an extended version of the El-Gamal scheme. Decryption
is performed component-wise by computing wi/c

si
1 and checking if the result is equal to 1 (in which

case, Mi = 0) or g (Mi = 1).
Let T be a polynomial in the security parameter. Our compression algorithm uses a pseu-

dorandom function PRF : {0, 1}λ × G → {0, 1}τ . On input a ciphertext (c1, (w1, . . . , w`)), the
compression algorithm samples a random key K for the PRF until the following two conditions are
simultaneously satisfied: For all i ∈ [`] it holds that

(1) PRF(K,wi/g) 6= 0.

(2) There exists a δi ∈ [T − 1] such that PRF(K,wi · gδi) = 0.

The compressed ciphertext ct is composed by ct = (K, c1, δ1 mod 2, . . . , δ` mod 2) ∈ {0, 1}λ×G×
{0, 1}` where δi is the smallest integer that satisfies condition (2). In order to decrypt, one needs to
find, for every i ∈ [`], the smallest γi such that PRF(K, csi1 · gγi) = 0 by exhaustive search. Finally
it outputs Mi = δi ⊕ LSB(γi), where LSB denotes the least significant bit of an integer. Note that
the scheme is correct with probability 1, since condition (1) ensures that there is no ambiguity in
the decoding of the bit Mi. By setting the parameters appropriately, we can guarantee that K can
always be found in polynomial time, except with negligible probability.

PEPE from DDH. We will now outline our uncompressed DDH-based PEPE construction,
which shares some ideas with the LWE based construction above. Assume that the underlying
group G supports oblivious sampling, i.e. we can sample uniformly random group elements without
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knowledge of any discrete logarithm relation. For a vector a ∈ Znp we will use the notation [a] to
denote ga (i.e. the component-wise exponentiation). In real mode, the public key pk = ([a], {[v]})
of our DDH-based PEPE is chosen as follows. Choose the vector [a] and all [vi] for i ∈ [`] \ I
obliviously. For all indices i ∈ I choose a uniformly random si←$Zp and set [vi] = si · [a] = [si · a]
(where we write exponentiation multiplicatively). The secret key consists of the component keys
{si}i∈I .

To encrypt a message M ∈ {0, 1}`, first choose a uniformly random r←$Znp and compute
[c1] = [a] · r = [a · r] and for all i ∈ [`] [wi] = [vi] · r + [Mi]. The vector r ∈ Znp constitute the
random coins for encryption. To decrypt the i-th ciphertext component, compute [wi] − si · [c1],
output 0 if this equals 1 and 1 if it equals g = [1].

We will now briefly outline how ciphertext equivocation works for this scheme. In the ideal
mode, all elements of the public key are computed non-obliviously with respect to a single generator
g = [1]. That is, we sample [a] by choosing a uniformly random a′←$Znp and setting [a] = a′ · [1].
For all i ∈ I we choose a random si←$Zp and set [vi] = si · a′ · [1]. For all i ∈ [`] \ I we choose
a uniformly random v′i←$Znp and set [vi] = v′i · [1]. The simulator will keep all non-obliviously
sampled ring elements as equivocation trapdoor. Notice that obliviously sampled public keys and
non-obliviously sampled public keys are identically distributed.

We will finally describe how ciphertexts are equivoked. For a given a ciphertext ct = ([c1], [w1], . . . , [w`])
encrypting a message M ∈ {0, 1}`, the simulator knows the random coins r that were used to gen-
erate this ciphertext. I.e. it knows (in Zp) that

c1 = a · r
w1 = v1 · r +M1

...

w` = v` · r +M`

Now, given a message M ′ ∈ {0, 1}` which agrees with M on the index set I we can equivoke the
ciphertext ct as an encryption of M ′ by by uniformly choosing a solution r̄ ∈ Znp for the linear
equation system

c1 = a · r̄
w1 = vi1 · r̄ +M ′i1

...

wik = vik · r̄ +M ′ik

where [`] \ I = {i1, . . . , ik}. Notice that since for i ∈ [`] \ I the vi are chosen uniformly at random,
given that k + 1 ≤ n this system has full rank with overwhelming probability. Consequently, we
can sample a uniform solution r̄ via basic linear algebra. Finally, note that since for i ∈ I the vi
are of the form si · a, it also holds that wi = vi · r̄ +M ′i , as ar = c1 = ar̄1 and Mi = M ′i . Thus this
scheme has perfect ciphertext equivocality.

Finally, applying the oblivious ciphertext compression algorithm described above yields a PEPE
scheme of rate 1.
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3 Preliminaries

Throughout this work, λ denotes the natural security parameter. By negl(λ), we denote a negligible
function in λ, that is, a function that vanishes faster than any polynomial in λ.

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we denote by y ← A(x)
the output y after running A on input x. If S is a (finite) set, we denote by x←$S the experiment
of sampling uniformly at random an element x from S. If D is a distribution over S, we denote by
x←$D the element x sampled from S according to D. We say that D is B-bounded if for every
x←$D, we have ‖x‖ < B, except with negligible probability, and where ‖x‖ is the usual `2 norm.
We will usually use bold upper-case letters (e.g., M) to denote matrices and lower-case letters (e.g.,
v) to denote vectors, unless explicitly state otherwise. Let q ∈ N. We define the rounding function
b·e2 : Zq → Z2 as bxe2 = bx · 2/qe mod 2.

We say that two distributions are computationally indistinguishable if no probabilistic polynomial-
time (PPT) adversary can distinguish them.

The following lemma will be useful and provides a tail bound for the hypergeometric distribution.

Lemma 3. Let H(a, b, n) be a hypergeometric distribution, with a = αn and b = βn, and let X be
a random variable sampled from H(a, b, n). Then

Pr [X ≤ (αβ − ε)n] ≤ negl(n)

for some constant 0 < ε < 1.

3.1 Coding Theory

We present some basic coding theory definitions and results that will be useful for our work.

Definition 4 (Error-Correcting Code). A (binary) Error-Correnting Code (ECC) consists of a
pair of algorithms ECCN,n = (Encode,Decode) such that:

• c ← Encode(M ∈ {0, 1}n) takes as input a message M ∈ {0, 1}n to be encoded. It outputs a
codeword c ∈ {0, 1}N .

• M ← Decode(c′) takes as input a corrupted codeword c′ ∈ {0, 1}N . It outputs M if c′ and
c← Decode(M) differ in at most t positions.

Let ECCN,n be a ECC. We call R = n/N the rate of a code C. The error rate is defined as
E = t/N . A list-decoding ECC [GS00] is a ECC such that the Decode algorithm outputs a list S of
polynomial size (in the security parameter), one of which is the correct original encoded message.
Constructions for list-decoding ECC with constant rate and that correct a large amount of errors
(say, 1/2− ζ for any constant ζ > 0) are known to exist [GS00].

Lemma 5 ([MPSW05]). Let C be a list-decoding ECC with rate R and error rate E. Then, there
exists a unique-decoding error correction code with rate R and error rate E given that One-Way
Functions exist.

In particular, there exists a code with constant rate R and error rate of 1/2−ζ, for any constant
ζ > 0, given that One-Way Functions exist.
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3.2 Hardness Assumptions

In the following, we present the hardness assumptions that we use in this work.

3.2.1 Learning with Errors

The Learning with Errors (LWE) problem was firstly presented in [Reg05]. We now present the
decisional version of the problem. In the following, let Dσ be a discrete Gaussian distribution with
parameter σ.

Definition 6 (Learning with Errors). Let k, q ∈ Z and let Dσ be an error distribution. The LWE
assumption holds if for any PPT adversary

|Pr [1← A(A, sA + e)]− Pr [1← A(A,u)]| ≤ negl(λ)

for all n ∈ Z, where A←$Zk×nq , s←$Zkq , e←$Dn
σ and u←$Znq .

In this work, we assume the hardness of the LWE with superpolynomial modulus-to-noise ratio.
That is, we assume that the problem remains hard even when B/q = negl(λ) where the error e
comes from a B-bounded distribution.

The following lemma states that we can drown (i.e., statistically hide) an error vector with a
much wider distribution.

Lemma 7. Let q, B, σ such that q = λω(1) and σ/B = λω(1). Then the distributions Dσ and Dσ+e
are statistically close, where e is sampled from a B-bounded distribution.

The following lemma states that there are matrices statistically close to uniform and for which
we can sample low-norm pre-images with the help of a trapdoor [GPV08, MP12].

Lemma 8 ([MP12]). There exists a pair of algorithms (TrapGen,SampleD) such that:

• (B, td) ← TrapGen(1λ, k, n, q) takes as input the security parameter λ and n, k, q ∈ Z. It
outputs a matrix B ∈ Zk×nq and a trapdoor td. The matrix B is 2−k close to uniform.

• r ← SampleD(td,B,y, σ) takes as input a trapdoor td, a matrix B and a vector y ∈ Zkq . It
outputs r ∈ Znq such that r←$DΛ⊥y (B),σ, where DΛ⊥y (B),σ is the discrete Gaussian distribution

with standard deviation σ over the lattice Λ⊥y (B) = {r ∈ Znq : ArT = y}.

3.2.2 Decisional Diffie-Hellman

A (prime-order) group generator is an algorithm G that takes as an input a security parameter 1λ

and outputs (G, p, g), where G is the description of a multiplicative cyclic group, p is the order of the
group which is always a prime number unless differently specified, and g is a generator of the group.
In the following we state the decisional version of the Diffie-Hellman (DDH) assumption [DH76].

Definition 9 (Decisional Diffie-Hellman Assumption). A group generator algorithm G satisfies the
DDH assumption (or is DDH-hard) if for any PPT adversary A∣∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣∣ ≤ negl(λ)

where (G, p, g)←$G(1λ) and (a, b, c)←$Zp.
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In this work, we use the matrix version of the DDH assumption, called the Matrix Decisional
Diffie-Hellman Assumption (MDDH), which generalizes the DDH assumption (and other number-
theoretic assumptions). Let g ∈ G and let M ∈ Zk×np . We denote by [M] ∈ Gk×n the matrix

gM =

g
M1,1 . . . gM1,n

...
. . .

...
gMk,1 . . . gMk,n

 .

Definition 10 (Matrix Decisional Diffie-Hellman Assumption [EHK+13]). A group generator al-
gorithm G satisfies the MDDH if for any PPT algorithm A such that

|Pr [1← A((G, p, g), ([A], [wA]))]− Pr [1← A((G, p, g), ([A], [u]))]| ≤ negl(λ)

where (G, p, g)←$G(1λ), k < n, A←$Zk×np , w←$Zkp and u←$Znp .

Observe that anyone can compute s[A] = [sA], w[A] = [wA] or [A]vT = [AvT ] knowing [A],
s, w and v, for any A ∈ Zk×nq , s ∈ Zq, w ∈ Zkq and v ∈ Znq .

3.3 Non-Committing Encryption

The formal definition of Non-Committing Encryption, as well as its security requirements, are
presented below.

Definition 11 (Non-Committing Encryption). A Non-Committing Encryption (NCE) scheme is
composed by a tuple of algorithms (Gen,Enc,Dec,Sim1,Sim2) such that:

• (pk, sk) ← Gen(1λ, rG) takes as input a security parameter λ and some randomness rG. It
outputs a pair of public and secret keys (pk, sk).

• c ← Enc(pk,M, rE) takes as input a public key pk, a message M and randomness rE. It
outputs a ciphertext c.

• M/ ⊥← Dec(sk, c) takes as input a secret key sk and a ciphertext c. It outputs either a
message M or an error message ⊥.

• (pk, c, st)← Sim1(1λ) takes as input a security parameter λ. It outputs a simulated public key
pk, a ciphertext c and an internal state st.

• (rG, rE) ← Sim2(M, st) takes as input a message M and an internal state st. It outputs a
pair of randomness for key generation and for encryption (rG, rE).

A NCE scheme should have the following properties:

• Correctness. A NCE scheme is said to be correct if

Pr

[
M ← Dec(sk, c) :

(pk, sk)← Gen(1λ)
c← Enc(pk,M)

]
≥ 1− negl(λ) .
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• Simulatability. Let A be any PPT adversary. A NCE scheme is said to be simulatable if
the distributions IDEAL and REAL are computationally indistinguishable to A, where

IDEAL =

(M, pk, c, rG, rE) :
(pk, c, st)← Sim1(1λ)

M ← A(pk)
(rG, rE)← Sim2(M, st)


and

REAL =

(M, pk, c, rG, rE) :
(pk, sk)← Gen(1λ, rG)

M ← A(pk)
c← Enc(pk,M, rE)

 .

4 Ciphertext Shrinking Algorithms

In this section we discuss how we can shrink the ciphertext of certain cryptosystems based on LWE
or DDH. Every procedure presented in this section is a post-processing operation that is applied
to a ciphertext in order to reduce its size.

4.1 Ciphertext Shrinking Algorithm for LWE-based Encryption Schemes

The following technique to shrink ciphertexts of LWE-based PKE schemes was firstly introduced in
[BDGM19]. This is a post-processing technique that can be applied to every decrypt-and-multiply
PKE scheme (see [BDGM19] for details). In particular, it can be applied to the usual Regev’s
scheme [Reg05] which we use to construct our NCE scheme.

Construction 1. Consider a PKE scheme with ciphertexts of the form (c1, (w2,1, . . . , w2,`)) ∈
Znq × Z`q, secret key S ∈ Z`×nq and where decryption is computed by multiplying b(w2,1, . . . , w2,`) −
ScT1 e2 = bM + ee2 where e is sampled from a B-bounded distribution. We describe the shrinking
algorithms in detail:

Shrink(pk, (c1, (w2,1, . . . , w2,`))):

• Choose z←$Zq \ U where

U =
⋃̀
i=1

([
−q

4
− w2,i −B,−

q

4
− w2,i +B

]
∪
[q

4
− w2,i −B,

q

4
− w2,i +B

])
.

• Compute c2,i = bw2,i + ze2 ∈ Z2 for every i ∈ [`].

• Output ct = (c1, (c2,1, . . . , c2,`), z).

ShrinkDec(sk = S, ct) :

• Parse ct as (c1, (c2,1, . . . , c2,`), z).

• Compute Mi ←
(
c2,i − bsicT1 + ze2

)
mod 2 where si is the i-th row of S.

• Output M = (M1, . . . ,M`).
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Note that each bit of M is independently recovered from the other ones. Hence, we can relax
the definition of ShrinkDec in order to output only a partial decryption of M . More precisely, if a
subset I ⊆ [`] is given as input to ShrinkDec, then it outputs {Mi}i∈I .

The following lemma guarantees the correctness of the shrinking procedure presented above.

Lemma 12 ([BDGM19]). Let B = B(λ) and q > 4`B. Then the shrinking algorithm described in
Construction 1 is correct up to noise B.

4.2 Ciphertext Shrinking Algorithm for DDH-based Encryption Schemes

Before presenting the shrinking procedure compatible with DDH-based encryption schemes, recall
the definition of Pseudorandom Functions (PRF).

Definition 13 (Pseudorandom Function). Let α = α(λ) and β = β(λ). A Pseudorandom Function
(PRF) is defined by a keyed function PRF : {0, 1}λ×{0, 1}α → {0, 1}β such that, for any adversary
A

|Pr [1← A(y, x) : y ← PRF(K,x)]− Pr [1← A(y, x) : y ← f(x)]| ≤ negl(λ)

for any x ∈ {0, 1}α, where f : {0, 1}α → {0, 1}β is a uniformly chosen random function and the
key K is sampled uniformly at random from {0, 1}λ.

We now explain how one can compress ciphertexts of ElGamal-based encryption schemes. The
following technique is a variant of the compression technique introduced in [BGI16, DGI+19].
However, in this variant we achieve perfect correctness.

Construction 2. Below we show our DDH-based scheme, with message space Z`q, for some poly-
nomials q = q(λ) and ` = `(λ). The scheme is parametrized by two polynomials τ = τ(λ) and
T = T (λ) that influence the runtime of the evaluation algorithm, whose exact value will be fixed
later. The scheme assumes the existence of a pseudorandom function PRF : {0, 1}λ ×G→ {0, 1}τ .
We also assume that we have ciphertexts of the form (c1, (w2,1, . . . , w2,`)) ∈ G × G` and that the
secret key is of the form (x1, . . . x`) ∈ Z`p. Decryption is done by computing w2,i/c

xi
1 = gMi and

recovering Mi ∈ Zq, for each i ∈ [`].

Shrink(pk, (c1, (w2,1, . . . , w2,`))):

• Set d0 = c1 and di = w2,i, for all i = 1, . . . , `.

• Sample a uniform key K←$ {0, 1}λ such that the following conditions are simultaneously
satisfied:

(1) For all i = 1, . . . , ` and for all k = 1, . . . , (q − 1) it holds that

PRF(K, di/g
k) 6= 0τ .

(2) For all i = 1, . . . , ` there exists some k = 0, . . . , (T − 1) such that PRF(K, di · gk) = 0τ .

• For all i = 1, . . . , ` let δi be the smallest non-negative integer such that PRF(K, di · gδi) = 0τ .

• Return ct = (K, d0, δ1 mod q, . . . , δ` mod q).
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ShrinkDec(sk, ct) :

• Parse sk as (x1, . . . , x`) and ct as (K, d0, δ1 mod q, . . . , δ` mod q).

• Compute for all i = 1, . . . , ` the smallest non-negative integer γi such that PRF(K, dxi0 · gγi) =
0τ

• Set Mi = δi − γi mod q.

• Return M = (M1, . . . ,M`).

Again, note that each element Mi can be independently decrypted. Thus, if the ShrinkDec
algorithm receives as input a subset I ⊆ [`], it outputs {Mi} for i ∈ I.

Analysis. The more interesting aspects of this scheme concern its correctness and the runtime
of the subroutines.

Lemma 14. The scheme as described in Construction 2 is perfectly correct.

Proof. We assume without loss of generality that the decryption algorithm takes as input an eval-
uated ciphertext ct = (K, d0, δ1, . . . , δ`). Recall that d0 = c1 = gr for a random r←$Zp. Further-
more, for all i = 1, . . . , ` the term δi is defined to be the smallest non-negative integer (mod q) such
that PRF(K, di · gδi) = 0τ , where

di = hri g
Mi = gxirigMi = dxi0 g

Mi

Recall that γi is defined to be the smallest non-negative integer such that PRF(K, dxi0 · gγi) = 0τ .
Note that the pair (δi, γi) is always well defined by condition (2). We claim that

di · gδi = dxi0 · g
γi

with probability 1. Assume that this is not the case, then we have that Mi+δi 6= γi. We distinguish
two cases:

(a) Mi+δi < γi : This case cannot happen since we assumed that γi was the smallest non-negative
integer such that PRF(K, dxi0 · gγi) = 0τ .

(b) Mi + δi > γi : This case implies that γi < q since Mi ≤ q and δi is the smallest non-negative
integer such that PRF(K, di · gδi) = PRF(K, dxi0 · gMi · gδi) = 0τ . Consequently we have that
PRF(K, di/g

γi) = 0τ where γi < q, which violates condition (2).

Therefore we have that
Mi = γi − δi mod q

for all i = 1, . . . , `. This concludes our proof.

By condition (2), the values of γi always lie within T −1 steps from dxi0 and therefore ShrinkDec
runs in strict polynomial time. What is left to be shown is that Shrink runs in expected polynomial
time.

Lemma 15. Let PRF be a pseudorandom function, let τ = log2(2(q−1)`) and let T = 2τλ loge(`)+
(q − 1)`. Then Shrink terminates within λ iterations except with negligible probability.
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Proof. Observe that all the subroutines of Shrink run in strict polynomial time, except for the
sampling of K. It therefore suffices to bound the probability that some K satisfies conditions (1)
and (2) simultaneously. Throughout the following analysis we treat PRF(K, ·) as a truly random
function (indexed by K) and the same analysis holds true, up to a negligible amount, for the case
that PRF(K, ·) is a pseudorandom function by a standard argument.

We first bound from below the probability that a uniform K←$ {0, 1}λ satisfies condition (1),
that is,

Pr
[
∀i ∈ [`],∀k ∈ [q − 1] : PRF(K, di/g

k) 6= 0τ
]
≥
(

1− 1

2τ

)(q−1)`

≥ 1− (q − 1)`

2τ

= 1− (q − 1)`

2(q − 1)`
=

1

2

where the probability is taken over the random choice of K. The first inequality comes from
the fact that we assume that all points di/g

k are distinct (since it minimizes the probability) and
therefore the outputs of PRF(K, ·) are uniformly and independently distributed over {0, 1}τ . The
second inequality is from Bernoulli. We now bound from above the probability that condition (2)
is not satisfied, conditioned on the fact that condition (1) is met. Let us denote by S ⊆ {0, 1}λ the
set of all keys K that satisfy condition (1). Then we have

Pr
[
∃i ∈ [`] s.t. ∀k = 0, . . . , (T − 1) : PRF(K, di · gk) 6= 0τ

∣∣∣K ∈ S]
≤
∑̀
i=1

Pr
[
∀k = 0, . . . , (T − 1) : PRF(K, di · gk) 6= 0τ

∣∣∣K ∈ S]
≤
∑̀
i=1

(
1− 1

2τ

)T−(q−1)`

≤
∑̀
i=1

e−
T−(q−1)`

2τ =
∑̀
i=1

e−λ loge(`) = e−λ

where the probability is taken over the random choice of K. The first inequality comes from a
union bound whereas the second inequality is derived by observing that the constraint K ∈ S fixes
the value of PRF(K, ·) on at most (q − 1)` points.

To conclude, the probability that condition (1) is not satisfied after λ uniform choices of K is at
most 2−λ and the probability that condition (2) is not satisfied constrained on meeting condition
(1) is e−λ. By a union bound, the probability that Shrink does not terminate after λ iterations is
at most 2−λ + e−λ.

Rate-1 Linearly Homomorphic Encryption from DDH. An interesting consequence of our
algorithm is that it yields a linearly homomorphic encryption scheme with rate approaching 1
from the DDH assumption. To see why this is the case, we recall the packed version of ElGamal
encryption: The public key of the scheme consists of the tuple (g, h1, . . . , h`) = (g, gx1 , . . . , gx`),
and a ciphertext for a message (M1, . . . ,M`) is of the form

(gr, hr1 · gM1 , . . . , hr` · gM`)

for some uniformly chosen r←$Zp. This scheme can be shown secure by ` invocations of the
DDH assumption and satisfies the structural requirements to apply our shrinking algorithm as
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described above. Furthermore note that the scheme supports the homomorphic evaluation of linear
functions f : Z`q → Zq. One caveat of this scheme is that the runtime of the shrinking algorithm
is polynomial q and therefore the function f has a polynomial-size range (we stress that q is a
bound on the output size and not the order of the DDH-hard group p). Yet these homomorphic
capabilities suffice for many interesting applications, such as constructing rate-1 oblivious transfer,
or semi-compact homomorphic encryption for branching programs [DGI+19].

5 Packed Encryption with Partial Equivocality

We begin this section by presenting the formal definition of PEPE as well as its security properties.
We then show how to construct this primitive under several hardness assumptions. Then, we
present constructions of PEPE from LWE or DDH assumptions.

Definition 16. A Packed Encryption with Partial Equivocality (PEPE) scheme that encrypts mes-
sages in {0, 1}` is composed by a tuple of algorithms (KG,E,D, EquivPK,EquivCT) where:

• (pk, sk) ← KG(1λ, b ∈ {0, 1}, I, r) takes as input a security parameter λ, a bit b, a set of
indexes I ∈ [`] and random coins r.4 It outputs a pair of public and secret keys (pk, sk).
When b = 0 we say that the keys were generated in the real mode. Otherwise, if b = 1, we
say that the keys were generated in the ideal mode.

• ct← E(pk,M ∈ {0, 1}`, r) takes as input a public key pk, a message M and random coins r,
and outputs a ciphertext ct.

• (Mi)i∈I ← D(sk, ct) takes as input a secret key sk and a ciphertext ct. It outputs bits Mi, for
i ∈ I.

• r′ ← EquivPK(sk, b, (I, r), I ′) takes as input a secret key sk, a bit b, subsets I, I ′ ⊆ [`] and
randomness r. It outputs randomness r′.

• r′ ← EquivCT(sk, (M, r), {M ′i}i/∈I) takes as input a secret key sk, a pair of message and
randomness (M, r) and and some bits {M ′i}i/∈I together with a subset I ⊆ [`]. It outputs
random coins r′.

A PEPE scheme should fulfill correctness for decryption and for equivocality. Also, the random
coins used in the key generation and encryption algorithms should be indistinguishable from random
coins outputted by the equivocality algorithms.

• Correctness. For any message M ∈ {0, 1}` and any subset I ⊂ [`], we have that

Pr

{Mi}i∈I = {M ′i}i∈I :
(pk, sk)← KG(1λ, 0, I, rG)

ct← E(pk,M, rE)
{M ′i}i∈I ← D(sk, ct)

 ≥ 1− negl(λ) .

4When the random coins r are omitted, it means they are chosen uniformly at random during the execution of
the algorithm. In this case, the algorithm also outputs r. The same happens for algorithm E.
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• Public key randomness indistinguishability. The random coins outputted by the algo-
rithm EquivPK should be computationally indistinguishable from true random coins. That is,
the distributions IDEALpk and REALpk should be computationally indistinguishable, where

IDEALpkb =

{
rG :

(pk, sk)← KG(1λ, b, I ′, r′G)
rG ← EquivPK(sk, b, (I ′, r′G), I)

}
and

REALpk =
{
rG : (pk, sk)← KG(1λ, 0, I, rG)

}
for any subsets I, I ′ ⊂ [`] such that I ⊂ I ′ and any b ∈ {0, 1}.
Note that this also ensures that no adversary can distinguish public keys created in the ideal
mode or in the real mode as the distribution of both keys are indistinguishable.

• Ciphertext randomness indistinguishability. The random coins outputted by the al-
gorithm EquivCT should be statistically close to true random coins. That is, for any subset
I ⊂ [`] and any message M ′ ∈ {0, 1}`, the distributions IDEALct and REALct should be
statistically close, where

IDEALct =

(pk,M, rE) :

(pk, sk)← KG(1λ, 1, I, r′G)
ct← E(pk,M ′, r′E)

M ← A(pk)
rE ← EquivCT(sk, (M ′, r′E), {Mi}i/∈I)


and

REALct =

(pk,M, rE) :
(pk, sk)← KG(1λ, 0, I, r′G)

M ← A(pk)
ct← E(pk,M, rE)


where A is an unbounded adversary which outputs a message M such that Mi = M ′i for i ∈ I.

5.1 Packed Encryption with Partial Equivocality from LWE

We now present a PEPE scheme from the LWE assumption. The construction is similar to the one
in [HORR16], except that we use the compression technique introduced in [BDGM19] to achieve
better rate.

Construction 3. Let (TrapGen, SampleD) be the pair of algorithms described in Lemma 8, let
(Shrink, ShrinkDec) the pair of algorithms described in Construction 1 and let σ, σ′ ∈ R such that
σ/σ′ = negl(λ).

KG(1λ, b ∈ {0, 1}, I, rG):

• If b = 0, do the following:

– Choose A←$Zk×nq

– For i ∈ I, set vi = siA + ei where si←$Zkq and ei←$Dn
σ .

– For i /∈ I, set vi←$Znq .
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– Set pk = (A, {vi}i∈[`]) and sk = (I, {si}i∈I)
– Set the random coins rG = {ei}i∈I .

• Else if b = 1, do the following:

– Run (B, tdB)← TrapGen(1λ, k + `− |I|, n, q) and parse B as

(
A
V

)
∈ Z(k+`−|I|)×n

q .

– For i ∈ I, set
vi = siA + ei

where si←$Zkq and ei←$Dn
σ .

– For i /∈ I, set vi = Vi, where Vi is the i-th row of V.

– Set pk = (A, {vi}i∈[`]) and sk = (I, {si}i∈I , tdB).

– Set the random coins rG = {ei}i∈I .

• Output (pk, sk)

E(pk,M ∈ {0, 1}`, rE):

• Parse pk = (A, {vi}i∈[`]).

• Sample r←$Dn
σ .

• Compute c1 ← ArT and w2,i = vir
T + ei+ bq/2e ·Mi ∈ Zq, for every i ∈ [`], where ei←$Dσ′.

• Compress (c1, (w2,1, . . . , w2,`)) into

(c1, (c2,1, . . . , c2,`), z)← Shrink(c1, (w2,1, . . . , w2,`)).

• Set the random coins rE to be (r, {ei}i∈[`]).

• Output ct = (c1, (c2,1, . . . , c2,`), z).

D(sk, ct):

• Parse sk as (I, {si}i∈I) and ct as (c1, (c2,1, . . . , c2,`), z).

• Compute {Mi}i∈I ← ShrinkDec(sk, ct, I).

• Output {Mi}i∈I .

EquivPK(sk, b, (I, r), I ′):

• If I ′ 6⊆ I, then abort the protocol. Else, continue.

• Parse r as {ei}i∈I .

• If b = 0, parse sk as (I, {si}i∈I). Else, parse sk = (I, {si}i∈I , tdB).

• Set r′ = {ei}i∈I′ and sk = (I ′, {si}i∈I′)

• Output (sk′, r′)
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EquivCT((sk, rG), (M, r), (M ′i)i/∈I):

• Parse sk as (I, {si}i∈I , tdB) and rG = {ei}i∈I . Set ct = (c1, (c2,1, . . . , c2,`), z) ← E(pk,M, r)
where r = (r, {e∗i }i∈[`]).

• Sample e′i←$Dσ′ for i /∈ I, and r̄← SampleD(tdB,B,y, σ) where y = (c1, {w2,i − bq/2eMi −
e′i}i/∈I)

• For i ∈ I, set e′i = e∗i + ei(r− r̄)T .

• Output r′ = (r̄, {e′i}i∈[`]).

Analysis. Correctness for decryption follows from the correctness of the usual Regev’s scheme
and from Lemma 12.

Lemma 17 (Public-key randomness indistinguishability). The scheme in Construction 3 is public
key randomness indistinguishable given that the LWE assumption holds.

Proof. Assume that b = 1 in the experiment IDEALpk (the case where b = 0 is just a particular case
of this one). The proof follows from the following sequence of hybrids:

Hybrid H0. This is the experiment IDEALpk between a challenger C and an adversary A:

• (pk, sk)← KG(1λ, 1, I ′, r′G) where pk = (A, {vi}i∈[`]) and sk = (I ′, {si}i∈I′ , tdB).

• Run rG ← EquivPK(sk, 1, (I ′, r′G), I).

• b← A(rG).

Hybrid H1. In this hybrid, we replace the matrix A and the vectors vi, when i /∈ I ′, for uniform
ones.

• C chooses A ← Zk×nq and vi←$Znq for i /∈ I ′. For i ∈ I ′, it computes vi ← siA + ei. For
I ⊂ I ′, set rG = {(si, ei)}i∈I . It sends rG to A.

• b← A(rG).

Claim. |Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ) .
By Lemma 8, A is statistically close to a uniform matrix. Using the same lemma, each vi, for

i /∈ I ′, is also statistically close to a uniform vector. The claim follows.

Hybrid H2. In this hybrid, we replace each vi for i ∈ I ′ \ I by a uniform vector.

• C chooses A ← Zk×nq and vi←$Znq for i /∈ I ′ and for i ∈ I ′ \ I. For i ∈ I, it computes
vi ← siA + ei. For I ⊂ I ′, it sets rG = {si, ei}i∈I . It sends rG to A.

• b← A(rG).
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Claim. Assume that the LWE assumption holds. Then

|Pr [1← A : A plays H1]− Pr [1← A : A plays H2]| ≤ negl(λ) .

It is straightforward to build an algorithm that decides the LWE assumption given an adversary
that is able to distinguish hybrids H1 and H2. The claim follows.

Finally, note that hybrid H2 is exactly the experiment REALpk. Hence, the distributions are
computationally indistinguishability given that the LWE assumption holds.

Lemma 18 (Ciphertext randomness indistinguishability). The scheme in Construction 3 is ci-
phertext randomness indistinguishable.

Proof. Let ct = (c1, (c2,1, . . . , c2,`)) ← E(pk,M, rE) for (pk, sk) ← KG(1λ, 1, I, rG) where pk =
(A, {vi}i∈[`]), sk = (I, {si}i∈I , tdB), and rE = (r, {ei}i∈[`]) is the randomness used in E to encrypt
the message M = (M1, . . . ,M`). Now let M ′ = (M ′1, . . . ,M

′
`) such that Mi = M ′i , for all i ∈ I, and

Mi 6= M ′i otherwise. After running EquivCT(sk, (M, rE), (M ′i)i/∈I) we obtain

r′E = (r̄, {e′i}i/∈I).

Let ct′ = (c′1, (c
′
2,1, . . . , c

′
2,`)) ← E(pk,M ′, r′E). First, note that by definition of the algorithm

SampleD (Lemma 8) we have that ArT = Ar̄T . Hence c1 = c′1.
For i ∈ I, we have that

vir
T + e∗i +

⌊q
2

⌉
Mi = vir̄

T + e′i +
⌊q

2

⌉
Mi,

hence the rounded values are the same.
Finally, for i /∈ I, by definition of SampleD, we have that

vir + ei +
⌊q

2

⌉
Mi = vir̄ + e′i + bq/2eM ′i .

Hence,
c2,i = bvir + ei + bq/2eMi + ze2 = bvir̄ + e′i + bq/2eM ′i + ze2 = c′2,i.

We conclude that ct = ct′.
By Lemma 7, we have that e′i←$Dσ′ + ei(r− r̄)T and e∗i ←$Dσ′ are statistically close.

5.2 Packed Encryption with Partial Equivocality from DDH

The DDH-based construction for PEPE is presented below as well as the corresponding security
proofs.

Construction 4. Let (G, p, g) ← G(1λ), n ∈ N and (Shrink,ShrinkDec) be the algorithms from
Construction 2. The DDH-based PEPE scheme is defined as follows:
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KG(1λ, b ∈ {0, 1}, I, rG):

• If b = 0, do the following:

– Choose [a] = ga where a←$Znp , (here [a] is chosen obliviously).

– For i ∈ I, set [vi] = si[a] where si←$Zp.
– For i /∈ I, set [vi]←$Gn.

– Set pk = ([a], {[vi]}i∈[`]) and sk = (I, {si}i∈I).

• Else if b = 1, do the following:

– Choose a←$Znp and compute [a] = ga.

– For i ∈ I, set [vi] = si[a] where si←$Zkp.

– For i /∈ I, set [vi]←$Gn

– Set pk = ([a], {[vi]}i∈[`]) and sk = (I,a, {si}i∈I , {vi}i/∈I).

• Output (pk, sk)

E(pk,M ∈ {0, 1}`, rE):

• Parse pk = ([a], {[vi]}i∈[`]).

• Choose r←$Znp .

• Compute [c1] = [arT ] and w2,i = [vir
T ] · gMi for every i ∈ [`].

• Compress ([c1], (w2,1, . . . , w2,`)) into

(K, [c1], (c2,1, . . . , c2,`))← Shrink([c1], (w2,1, . . . , w2,`))

where (c2,1, . . . , c2,`) = (δ1 mod 2, . . . , δ` mod 2).

• Set the random coins rE to be r.

• Output ct = (K, [c1], (c2,1, . . . , c2,`)).

D(sk, ct):

• Parse sk as (I, {si}i∈I) and ct as (K, [c1], (c2,1, . . . , c2,`)).

• Compute {Mi}i∈I ← ShrinkDec(sk, ct, I).

• Output {Mi}i∈I .

EquivPK(sk, b, (I, r), I ′):

• If I ′ 6⊆ I, then abort the protocol. Else, continue.

• If b = 0, parse sk as (I, {si}i∈I). Else, parse sk as (I,a, {si}i∈I , {vi}i/∈I).

• Set sk′ = (I ′, {si}i∈I′)

• Output sk′
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EquivCT(sk, (M, r), {M ′i}i/∈I):

• Parse sk as (I,a, {si}i∈I , {vi}i/∈I) and r = r ∈ Znp . Let {i1, . . . , iα} = [`] \ I

• Sample uniformly at random a solution r̄ ∈ Znp for
a 0

vi1 M ′i1
...

...
viα M ′iα


(

r̄T

1

)
=


arT

vi1r
T +Mi1

...
viαrT +Miα

 .

• Output rE = r̄.

Analysis. We now proceed to the analysis of the construction above.

Lemma 19. The scheme in Construction 4 is correct.

Correctness for decryption follows from the correctness of the matrix version of the El Gamal
scheme and from Lemma 14.

Lemma 20 (Public-key randomness indistinguishability). The scheme in Construction 4 is public
key randomness indistinguishable given that the MDDH assumption holds.

Proof. The proof follows from the following sequence of hybrids:

Hybrid H0. This is the experiment IDEALpk between a challenger C and an adversary A:

• (pk, sk)← KG(1λ, 1, I ′, r′G) where pk = (a, {[vi]}i∈[`]) and sk = (I ′, {si}i∈I′).

• Run rG ← EquivPK(sk, 1, (I ′, r′G), I).

• b← A(rG).

Hybrid H1. In this hybrid, we replace the vectors vi, when i ∈ I ′ \ I, for uniform ones.

• C chooses a← Znp and vi←$Znp for i /∈ I ′ and for i ∈ I ′\I. For i ∈ I, it computes [vi]← si[a].
For I ⊂ I ′, set rG = {si}i∈I . It sends rG to A.

• b← A(rG).

Claim. |Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ) .
It is straightforward to build a distinguisher for the MDDH assumption if we are given an

algorithm A that can distinguish both hybrids.
Finally, note that hybrid H1 is exactly the experiment REALpk. Hence, the distributions are

computationally indistinguishability given that the MDDH assumption holds.

Lemma 21 (Ciphertext randomness indistinguishability). The scheme in Construction 4 is ci-
phertext randomness indistinguishable, if 1 + α ≤ n.
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Proof. Let M,M ′ ∈ {0, 1}` be any two messages such that Mi = M ′i , for i ∈ I, and Mi 6= M ′i
otherwise. We prove that, if 1 + α ≤ n, then the equation

a 0
vi1 M ′i1
...

...
viα M ′iα


(

r̄T

1

)
=


arT

v1r
T +Mi1

...
viαrT +Miα

 (1)

has a solution r̄ ∈ Znp , except with negligible probability.
First, note that the equation in 1 is equivalent to

a
vi1
...

viα

 (
r̄T
)

=


arT

v1r
T +Mi1 −M ′i1

...
viαrT +Miα −M ′iα


We now prove that the rank β of the matrix on the left side is maximal, that is, β = 1 + α.

Note that, every row of this matrix is uniformly chosen at random.
By a simple counting argument, we have that the rank of the matrix on the left side is maximal,

except with probability 1/|G|. Since |G| ∈ O(2ω(log λ)), then

Pr [β = 1 + α] ≥ 1− 1

|G|
≥ 1− negl(λ) .

If the rank of the matrix is equal to the rank of the augmented matrix, then the system of
equations has solutions. Hence, we can find a solution r̄ for equation 1, except with negligible
probability.

We now prove that, given r̄ satisfying Equation 1, ct = ct′, where ct = (K, [c1], (c2,1, . . . , c2,`))←
E(pk,M, rE) and ct′ = (K, [c′1], (c′2,1, . . . , c

′
2,`))← E(pk,M ′, r′E) where M ′ is such that M ′i = Mi for

i ∈ I and rE = r, r′E = r̄.
First, note that by Equation 1 we have that arT = ar̄T . Hence,[

arT
]

=
[
ar̄T

]
⇔ [c1] =

[
c′1
]
. (2)

A direct consequence of Equation 2 is that

siarT +Mi = siar̄T +Mi ⇔ c2i = c′2,i

for i ∈ I. It remains to show that c2,i = c′2,i for i /∈ I. Observe that

vir
T +Mi = vir̄

T +M ′i

for i /∈ I, from Equation 1. Hence, c2,i = c′2,i for i /∈ I.
Finally, the random coins rE used in the encryption algorithm E (in the real mode) and the

random coins r′E outputted by the equivocation algorithm EquivCT have exactly the same distri-
bution.
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6 From PEPE to constant ciphertext-rate NCE

Finally, we present the generic construction for NCE from PEPE, which generalizes the construction
of [HORR16]. Then, we analyze the security and efficiency of the construction.

The following lemma is adapted from [HORR16] and will help us to prove security for the
construction.

Lemma 22 ([HORR16]). Let ECC`,`′ = (ECC.Encode,ECC.Decode) be an error-correcting code
and let PEPE = (PEPE.KG,PEPE.E, PEPE.D,PEPE.Equiv) be a PEPE scheme. There exists an
algorithm Fid such that

(IR, IS , z
′)← Fid(Ig,y, z)

where IR, IS , Ig are subsets of [`] and y, z, z′ ∈ {0, 1}`. Moreover, the distributions IDEALsets and
REALsets are computationally indistinguishable given that the underlying PEPE scheme is public
key randomness indistinguishable, where

IDEALsets =


(IR, IS , z

′) :

Ig←$Wg

(pk, sk)← PEPE.KG(1λ, 1, Ig, rG)
z←$ {0, 1}`
M ← A(pk)

y← ECC.Encode(M)
(IR, IS , z

′)← Fid(Ig,y, z)


,

and

REALsets =


(IR, IS , z

′) :

IR←$W
(pk, sk)← PEPE.KG(1λ, 0, IR, rG)

M ← A(pk)
y← ECC.Encode(M)

IS←$W
z′ ← f(y, IS)


for any message M , where Wg = {I ⊂ [`] : |I| = 3`/4}, W = {I ⊂ [`] : |I| = `/8}, IR ⊂ Ig,
y = (y1, . . . , y`) and f is a function such that if z′ = (z′1, . . . , z

′
`)← f(y, IS) then

z′i =

{
yi, if i ∈ IS
z′i←$ {0, 1}, otherwise

.

Construction 5. Let ECC`,`′ = (ECC.Encode,ECC.Decode) be a suitable error-correcting code with
constant rate O(1) (Lemma 5) and PEPE = (PEPE.KG,PEPE.E, PEPE.D,PEPE.EquivPK,PEPE.EquivCT)
be a PEPE scheme with message space {0, 1}`′. Fid is the algorithm of Lemma 22. We describe the
NCE construction in full detail:

KeyGen(1λ):

• Choose a random subset IR ⊂ [`] such that |IR| = `/8.

• Compute (pkpepe, skpepe)← PEPE.KG(1λ, 0, IR, rG,pepe), where rG,pepe are the random coins.

• Output pk = pkpepe, sk = (skpepe, IR) and rG = (rG,pepe, IR).
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Enc(pk,M):

• Parse pk as pkpepe.

• Encode the message by computing y = (y1, . . . , y`)← ECC.Encode(M).

• Choose a random subset IS ⊂ [`] such that |IS | = `/8. For every i ∈ [`], set

zi =

{
yi, if i ∈ IS
z′i←$ {0, 1}, otherwise

for every i ∈ [`] and z = (z1, . . . , z`).

• Compute ct← PEPE.E(pkpepe, z, rE,pepe) where rE,pepe are random coins

• Output ct and rE = (z, rE,pepe, IS).

Dec(sk, ct):

• Parse sk as (skpepe, IR).

• Compute {zi}i∈IR ← PEPE.D(skpepe, ct).

• For i /∈ IR, set zi←$ {0, 1}.

• Output M ← ECC.Decode(z) where z = (z1, . . . , z`).

Sim1(1λ):

• Choose a random subset Ig ⊂ [`] such that |Ig| = 3`/4.

• Compute (pkpepe, skpepe)← PEPE.KG(1λ, 1, Ig, rG,pepe), where rG,pepe are the random coins.

• Choose a random encoding z←$ {0, 1}` and encrypt it

ct← PEPE.E(pkpepe, z, rE,pepe).

• Output pk = pkpepe, ct and st = (Ig, z, rG,pepe, rE,pepe).

Sim2(M, st):

• Parse st = (pkpepe, ct, skpepe, Ig, z, rG,pepe, rE,pepe).

• Encode the message M into y← ECC.Encode(M).

• Compute (IR, IS , z
′)← Fid(Ig,y, z).

• Set r′G,pepe ← PEPE.EquivPK(skpepe, 1, (Ig, rG,pepe), IR) to be the randomness according to IR.

• Let J = {i ∈ [`] \ Ig : zi 6= z′i}. Compute

r′E,pepe ← PEPE.EquivCT(skpepe, (z, rE,pepe), {zi}i∈J).

• Set rG = (r′G,pepe, IR) and rE = (z′, r′E,pepe, IS). Output (rG, rE).
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Analysis. We now proceed to the analysis of the scheme described above.

Theorem 23 (Correctness). Let ECC`,`′ = (ECC.Encode,ECC.Decode) be an ECC with error-rate
1/2−δ for some constant δ > 0 (Lemma 5) and PEPE = (PEPE.KG,PEPE.E, PEPE.D,PEPE.EquivPK,PEPE.EquivCT)
be a PEPE scheme. Then the scheme described in Construction 5 is correct.

Proof. The proof of correctness follows the proof of correctness presented in [HORR16]. Let z =
(z1, . . . , z`) be the codeword obtained after running Dec. The key observation is that |IR ∩ IS | = ξ
follows a hypergeometric distribution H(1/8, 1/8, `). Thus, we can bound the maximum value of ξ,
using Lemma 3, except with negligible probability. On the other hand, all other positions of z are
correct with probability 1/2. Thus, we can estimate the number of errors γ of z:

γ ≤
(

1

2
+ ε

)
(`− ξ)

≤ `
(

1

2
+ ε

)(
1 + ε− 1

16`2

)
≤ `

(
1

2
− δ
)

where the second inequality follows from Lemma 3, and the third one follows from considering an
appropriate value for the constant ε > 0.

Theorem 24 (Simulatability). Let PEPE be a PEPE scheme. Then the scheme in Construction 5
is simulatable.

Proof. We start with hybrid H0, that represents the ideal-world game, and end with hybrid H3,
that represents the real-world game. We prove that an adversary has negligible advantage in
distinguishing hybrids Hi and Hi+1 (for i = 0, 1, 2) and the Theorem follows.

Hybrid H0. This is the ideal-world game between the challenger C and the adversary A:

• C runs (pk, ct, st)← Sim1(1λ). That is:

– (pkpepe, skpepe)← PEPE.KG(1λ, 1, Ig, rG,pepe)

– ct← PEPE.E(pkpepe, z, rE,pepe), for a random z←$ {0, 1}`. It sends pk to A.

• M ← A(pk)

• C computes (rG, rE)← Sim2(M, st), where rG = (r′G,pepe, IR) and rE = (z′, r′E,pepe, IS). That
is:

– (IR, IS , z
′)← Fid(Ig,y, z) where y← ECC.Encode(M)

– r′G,pepe ← PEPE.EquivPK(skpepe, 1, (Ig, rG,pepe), IR)

– r′E,pepe ← PEPE.EquivCT(skpepe, (z, rE,pepe), {zi}i∈J)

• b← A(M, pk, ct, rG, rE).
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Hybrid H1. This game is similar to H0, except that ct is encrypted with Enc after the adversary
sends the message.

• C runs (pkpepe, skpepe)← PEPE.KG(1λ, 1, Ig, rG,pepe). It sends pk = pkpepe to A.

• M ← A(pk)

• C computes:

– (IR, IS , z
′)← Fid(Ig,y, z) for a random z←$ {0, 1}` where y← ECC.Encode(M).

– r′G,pepe ← PEPE.EquivPK(skpepe, 1, (Ig, rG,pepe), IR)

– ct ← Enc(pk,M, rE) with re = (z′, rE,pepe, IS) for randomly chosen rE,pepe. More pre-
cisely, ct ← PEPE.E(pk, z′, rE,pepe). It sends (ct, rG, rE) to A, where rG = (r′G,pepe, IR)
and rE = (z′, rE,pepe, IS)

• b← A(M, pk, ct, rG, rE).

Claim 25. Assume that the underlying PEPE scheme is ciphertext randomness indistinguishable.
Then

|Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ) .

The claim above follows from the fact that the underlying PEPE is ciphertext indistinguishable.
Hence, the distributions of rE in both worlds are statistically close. We conclude that the probability
of A in distinguishing both hybrids is negligible.

Hybrid H2. This game is similar to H1, except that pk is now chosen in the real-mode. Indistin-
guishability of games follows from the public key randomness indistinguishability of the underlying
PEPE.

• C runs (pkpepe, skpepe)← PEPE.KG(1λ, 0, Ig, rG,pepe). It sends pk = pkpepe to A.

• M ← A(pk)

• C computes:

– (IR, IS , z
′)← Fid(Ig,y, z) for a random z←$ {0, 1}` where y← ECC.Encode(M).

– ct← Enc(pk,M, rE), with re = (z′, rE,pepe, IS) for randomly chosen rE,pepe.

– r′G,pepe ← PEPE.EquivPK(skpepe, 0, (Ig, rG,pepe), IR). It sends (ct, rG, rE) to A where
rG = (r′G,pepe, IR).

• b← A(M, pk, ct, rG, rE).

Claim 26. Assume that the underlying PEPE scheme is public key randomness indistinguishable.
Then

|Pr [1← A : A plays H1]− Pr [1← A : A plays H2]| ≤ negl(λ) .

We prove that, if there is an adversary A that can distinguish both games, then there is an
algorithmA′ that can break the public key randomness indistinguishability of the underlying PEPE.
The algorithm A′ does the following:
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• It receives (rG, I) from the challenger and computes

(pk, sk)← PEPE.KG(1λ, 0, I, rG,pepe).

It sends pk to A.

• It receives M from A. Now, it follows the protocol and encrypts the message M . It sends
(ct, rG, rE) to A.

• Output b, the bit outputted by A.

Let ε be the advantage of A in distinguishing both hybrids. Then, A′ has exactly the same
advantage in breaking the public key randomness indistinguishability.

Hybrid H3. This is the real-world experiment where we now sample the sets from the real
distribution.

• C does the following:

– Chooses IR ⊂ [`] of size `/8

– (pkpepe, skpepe)← PEPE.KG(1λ, 0, IR, rG,pepe). It sends pk = pkpepe to A.

• M ← A(pk)

• C does the following:

– Chooses IS and z as in the real world execution

– ct← PEPE.E(pk, z, rE,pepe) for randomly chosen rE,pepe. It sends (ct, rG, rE) to A where
rG = (rG,pepe, IR) and rE = (z, rE,pepe, IS).

• b← A(M, pk, ct, rG, rE).

Claim 27. Assume that the underlying PEPE scheme is public key randomness indistinguishable.
Then

|Pr [1← A : A plays H2]− Pr [1← A : A plays H3]| ≤ negl(λ) .

The claim above is a direct consequence of Lemma 22.

Ciphertext-rate of the NCE scheme. Let R = `′/` be the rate of the code used in Construc-
tion 5 and M ∈ {0, 1}`′ . We now analyze the ciphertext-rate of the scheme when instantiated with
the PEPE constructions of Section 5.

• LWE case. The ciphertext is composed by ct = (c1, (c2,1, . . . , c2,`), z) ∈ Znq × {0, 1}` × Zq.
Then, the ciphertext-rate is

(n+ 1) log q + `

`′
=

(n+ 1) log q

`′
+R−1.
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• DDH case. The ciphertext is formed by ct = (K, [c1], (c2,1, . . . , c2,`)) where K ∈ {0, 1}λ,
[c1] ∈ Gn and (c2,1, . . . , c2,`) ∈ {0, 1}`. Hence, the ciphertext-rate is

λ+ n log p+ `

`′
=
λ+ n log p

`′
+R−1.

In all the cases above, the ciphertext-rate is equal to R−1 when `′ tends to infinity. When we use
a code as in Lemma 5, then R = O(1), therefore the whole rate of the NCE scheme is O(1) for all
of the cases above.
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