
Correlation Power Analysis and Higher-order
Masking Implementation of WAGE

Yunsi Fei1 and Guang Gong2 and Cheng Gongye1 and Kalikinkar Mandal3 and
Raghvendra Rohit2 and Tianhong Xu1 and Yunjie Yi2 and Nusa Zidaric2

1 Department of Electrical and Computer Engineering, Northeastern University, 360
Huntington Ave., Boston, MA, 02115, USA

yfei@ece.neu.edu, {gongye.c, xu.tianh}@northeastern.edu
2 Department of Electrical and Computer Engineering, University of Waterloo,

Ontario, N2L 3G1, Canada
{ggong, rsrohit, yunjie.yi, nzidaric}@uwaterloo.ca

3 Faculty of Computer Science, University of New Brunswick, Fredericton, E3B 5A3,
Canada

kmandal@unb.ca

Abstract. WAGE is a hardware-oriented authenticated cipher, which
has the smallest (unprotected) hardware cost (for 128-bit security level)
among the round 2 candidates of the NIST lightweight cryptography
(LWC) competition. In this work, we analyze the security of WAGE
against the correlation power analysis (CPA) on ARM Cortex-M4F mi-
crocontroller. Our attack detects the secret key leakage from power con-
sumption for up to 12 (out of 111) rounds of the WAGE permutation
and requires 10,000 power traces to recover the 128-bit secret key. Mo-
tivated by the CPA attack and the low hardware cost of WAGE, we
propose the first optimized masking scheme of WAGE in the t-strong
non-interference (SNI) security model. We investigate different masking
schemes for S-boxes by exploiting their internal structures and leveraging
the state-of-the-art masking techniques.To practically demonstrate the
effectiveness of masking, we perform the test vector leakage assessment
on the 1-order masked WAGE. We evaluate the hardware performance
of WAGE for 1, 2, and 3-order security and provide a comparison with
other NIST LWC round 2 candidates.
Keywords: Authenticated encryption, WAGE, Side-channel attack, Cor-
relation power analysis, Masking scheme

1 Introduction

Side-channel analysis is a class of attacks that exploit the implementation and
physical execution of a cryptographic algorithm to extract secret information
through the power consumption [30] or electro-magnetic emanations [24, 3].
Starting from the seminal work of Kocher et al. [30], there has been an active
research on evaluating the security of ciphers against differential power anal-
ysis (DPA) and its variant correlation power analysis (CPA) [14]. In general,

a DPA attack aims to recover the secret information by analyzing the differ-
ences in power consumption for varying input data, while a CPA attack focuses
on the correlation factor between the hamming weight of handled (unknown)
data and power samples. Several standardized encryption algorithms and hash
functions such as DES, AES, Keccak and ASCON have been analyzed against
such attacks and countermeasures of side-channel attacks have been proposed
[5, 4, 31, 13, 38, 28, 25, 26].

An effective countermeasure against side-channel attacks exploiting the
power consumption is masking. In a masked implementation, each input variable
x is secret-shared into n shares such that x = x1 ⊕ · · · ⊕ xn. Each share xi is
processed independently via a sequence of linear and nonlinear operations to
produce n output shares y1, · · · , yn satisfying y = y1 ⊕ · · · ⊕ yn where y is the
actual output corresponding to the input x. Any linear operation over the shares
can be masked linearly, however processing nonlinear operations such as AND
and/or S-box is complex. The design of efficient secure masking schemes for non-
linear operations is a challenging task. Ishai, Sahai and Wagner (ISW) [29] have
initiated the study of securely computing a circuit consisting of XOR, AND and
NOT gates where the AND gates are replaced by secure AND gadgets. From the
security point of view, the ISW construction is resistant to the t-order probing
attack when the number of shares n ≥ 2t+1, i.e., evaluating the leakage on a set
of at most t out of n points does not reveal information about a sensitive variable
x. Barthe et al. [8] redefined the ISW security and introduced a stronger security
notion, called t-strong non interference (t-SNI) security under the ISW probing
model, which minimizes the number of shares to n = t+1 (i.e., almost half) and
its compositional security definition guarantees the t-SNI security in a large con-
struction by securely composing t-SNI secure gadgets. Several other techniques
for side-channel attacks have been proposed, including Threshold implementa-
tion [32], Consolidated Masking Scheme [33], Domain Oriented Masking (DOM)
[27] and Unified Masking Approach [26]. In [23], De Cnudde et al. presented an
AES hardware implementation using t+1 shares in the presence of glitches. The
countermeasures on the secure evaluation of the AES S-box have been investi-
gated in the literature extensively, e.g., [34, 16, 20, 35, 17, 19, 22, 36] based on
finite field computations, randomized lookup table, and customized gate-level
implementations. In particular, for the randomized lookup table, a first-order
countermeasure for S-boxes was first proposed by Chari et al. in [17], and later
on, in [19], Coron generalized the randomized lookup table countermeasure [19].
In the follow-up work [22], Coron et al. proposed a construction of a randomized
lookup table countermeasure that is t-SNI secure.

The aforementioned masking techniques typically introduce an overhead due
to performing additional operations on shares, complex nonlinear masking (gad-
get) operations, and processing randomnesses. However, in actual hardware im-
plementations, they offer varying trade-offs due to the availability of varying
gates and memory modules in specific libraries. For resource constrained devices
such as Internet of Things (IoT) and sensor networks where the implementa-
tion cost is critical, the actual implementation numbers bring more confidence

2

in a cipher’s design and in turn provides a fair comparison with other ciphers.
The NIST lightweight cryptographic (LWC) competition [11] for standardizing
lightweight cryptographic algorithm(s) is currently in the second phase where
32 candidates are being analyzed. The performance of the protected implemen-
tations of these ciphers is an important criterion for the selection of next round
candidates. WAGE [1, 6] is one of the round 2 candidates in this competition. It
is a permutation-based authenticated encryption where the construction of the
underlying permutation is based on a Galois nonlinear feedback shift register
(NLFSR) with two 7-bit S-boxes (WGP and SB) as the nonlinear components.
The design offers an efficient performance in hardware with an area of 2540 GE
in STMicro 90 nm, the smallest among the round 2 candidates for a security level
of 128 bits [1, 2]. Further, it can be additionally tweaked to a WG-based pseudo-
random bit generator with a low hardware overhead and theoretical randomness
properties [6].

Motivated by the smallest hardware footprint and features of WAGE, in this
work, we analyze the security of WAGE against the CPA attack and propose the
first masking implementations to evaluate its performance in hardware. In what
follows, we list our contributions.

– Correlation power analysis: We present the first analysis of WAGE
against correlation power analysis on ARM Cortex-M4F microcontroller. We
use the hamming weight (HW) model on 7-bit state words to detect the
leakage. Our experiments show that the power traces for up to 12 out of 111
rounds of the WAGE permutation reveals the secret key information. We use
the Pearson correlation coefficient between the HW of the state word value
and the power value of the leakage point to recover the entire 128-bit key in
a word-wise fashion. In our attack, the key words are recovered in 13 batches
and requires 10,000 power traces to recover the entire key.

– Higher-order masking scheme of WAGE: To provide resistance against
such side-channel attacks, we propose a higher-order masking scheme for
WAGE adopting both the gate-level and randomized-lookup table based ap-
proaches. To achieve the area optimized masked S-boxes, we exploit the
internal structures of the SB and WGP S-boxes. For SB S-box, we exploit its
iterative construction and apply the common share multiplication technique
to optimize the area while for WGP S-box, we generate an optimized Boolean
circuit consisting of 313 XOR, 172 AND and 66 NOT gates. We provide the
security analysis of the masked WAGE permutation in the t-SNI security
model along with its complexity analysis. We further analyze the first-order
masked WAGE (implemented with randomized-lookup table approach) using
the standard test vector leakage assessment method [18, 37], however the
power traces do not reveal any secret key information (see Appendix B).

– Hardware implementation: Our hardware architecture for the masked
WAGE is parallel. We implement the round function for the t-order (t =
1, 2, 3) masked WAGE in STMicro 65 nm and TSMC 65 nm technologies and
provide area results for WGP and SB S-boxes and the WAGE authenticated
encryption (AE) scheme in Table 4. For instance, our smallest implemen-

3

tation of WAGE AE has a cost of 11.2 kGE for the 1-order protection in
STMicro 65 nm technology. We provide a comparison 4 of WAGE AE with
the currently known available first-order protected implementations of the
NIST LWC round 2 candidates in Table 1.

Table 1: Comparison of WAGE with NIST LWC round 2 candidates for the
1-order protection. Only the results for the round based implementation of pri-
mary members is listed.
Algorithm Ref. Impl. type Technology Synthesis Area [GE]

WAGE AE Section 5 Masking
STMicro 65 nm

Physical
11177

TSMC 65 nm 12711
ASCON [28] Threshold UMC 90 nm Physical 28610

SKINNY-AEAD [12] DOM
UMC 90 nm - 20534
IBM 130 nm - 18817

GIFT-COFB [7] Threshold STMicro 90 nm Logic 13131
SUNDAE-GIFT [15] Threshold TSMC 90 nm Logic 13297

Organization. The rest of the article is organized as follows. Section 2 gives
a brief overview of the WAGE and masking schemes for side channel counter-
measures. In Section 3, we present the correlation power analyis of WAGE on
ARM Cortex-M4F. Section 4 explains our construction of the gate-level and
randomized-look up table based masking schemes of WAGE. The details of our
hardware implementations and a discussion on performance results are provided
in Section 5. Finally, the paper is concluded in Section 6.

2 Preliminaries

In this section, we provide a background on the WAGE authenticated encryption,
the adversarial model and basic techniques on the side-channel protection.

Notations. Let F2 = {0, 1} be the Galois field, and F27 be an extension field
where each element is a tuple of 7 bits. Fm

2 is a vector space of dimension m.
⊕ and � denote the bitwise XOR and bitwise AND operations, respectively.
Double square brackets [[x]] = (x1, x2, · · · , xn) denotes the additive shares of
x = ⊕n

i=1x
i. r ←$ Fp denotes the element r is chosen from Fp uniformly at

random.

2.1 Description of WAGE

We provide a description of WAGE, following the same notations from [1, 6].
The WAGE authenticated encryption is built upon the WAGE permutation in
the unified sponge duplex mode where the WAGE permutation is a 111-round of

4 A fair comparison is difficult due to different types of side-channel implementations
and ASIC libraries.

4

an iterative permutation with a state width of 259 bits over an extension field
F27 . The core components of the permutation, described in detail below, include
two different S-boxes (WGP and SB), a linear feedback function defined over F27 ,
five word-wise XORs, and 111 pairs of 7-bit round constant (rc1, rc0). Figure 1
provides an overview of the round function of the WAGE permutation.

S36 S35 S34 S33 S32 S31 S30 S29 S28 S27 S26 S25 S24 S23 S22 S21 S20 S19

WGP SB SB

S17S18 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

WGP SB SB

⊕
ω

rc1

rc0

Fig. 1: An overview of the state update function of WAGE [6].

Nonlinear components of WAGE. WAGE uses two distinct 7-bit S-boxes,
namely WGP and SB where WGP is defined over a finite field F27 and SB is
constructed iteratively at the bit-level from quadratic functions. We now provide
a brief description of WGP and SB.
Welch-Gong permutation (WGP). The WGPerm, denoted by WGP7, is de-
fined over F27 which is given by

WGP7(x) = x + (x + 1)33 + (x + 1)39 + (x + 1)41 + (x + 1)104, x ∈ F27

where F27 is defined by the primitive polynomial x7+x3+x2+x+1. WGP is con-
structed from WGP7 by applying decimation d = 13 as WGP(x) = WGP7(x13).

SB S-box. The 7-bit S-box SB is constructed in an iterative way using the
nonlinear transformation Q and the bit permutation P which are given by

Q(x0, x1, · · · , x5, x6) = (x0 ⊕ (x2 � x3), x1, x2, x3 ⊕ (x5 � x6), x4, x5 ⊕ (x2 � x4), x6)

P (x0, x1, x2, x3, x4,x5, x6) = (x6, x3, x0, x4, x2, x5, x1).

The construction of SB is given by

(x0, x1, x2, x3, x4, x5, x6)← R5(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← Q(x0, x1, x2, x3, x4, x5, x6)

x0 ← x0 ⊕ 1;x2 ← x2 ⊕ 1

where the round R is a composition of Q and P , i.e., R = P ◦Q.

State update function of WAGE. The 259-bit state of WAGE consists of 37
7-bit words and is denoted by S = (S36, · · · , S0) where each Si is of 7 bits.The
state update function of WAGE, denoted by wage stateupdate, takes as inputs
the current state S and a pair of round constants (rc1, rc0), and updates the state
with the following three steps:

5

1. Computing linear feedback: fb← FB(S). The following primitive poly-
nomial of degree 37 over F27 is used as a feedback function

`(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω

where ω is a root x7 + x3 + x2 + x + 1, which is a primitive polynomial
defining F27 . The feedback computation is given by

fb = S31 ⊕ S30 ⊕ S26 ⊕ S24 ⊕ S19 ⊕ S13 ⊕ S12 ⊕ S8 ⊕ S6 ⊕ (ω ⊗ S0).

For an input x ∈ F27 , the multiplier ω maps x to ω⊗x, i.e., x 7→ ω⊗x. The
ANF representation of it is given by

(x0, x1, x2, x3, x4, x5, x6)⊗ ω → (x6, x0 ⊕ x6, x1 ⊕ x6, x2 ⊕ x6, x3, x4, x5).

2. Updating intermediate words and adding round constants:
(S, fb)← IWRC(S, fb, rc0, rc1).

S5 ← S5 ⊕ SB(S8)

S11 ← S11 ⊕ SB(S15)

S19 ← S19 ⊕WGP(S18)⊕ rc0

S24 ← S24 ⊕ SB(S27)

S30 ← S30 ⊕ SB(S34)

fb← fb⊕WGP(S36)⊕ rc1.

3. Shifting register contents and update the last word:
S ← Shift(S, fb).

Sj ← Sj+1, 0 ≤ j ≤ 35

S36 ← fb.

On an input state S, the output of the WAGE permutation is obtained by apply-
ing the state update function 111 times. Note that only the IWRC transformation
performs the nonlinear operations and the others are linear operations.

2.2 Adversarial Model

We consider an adversarial model in which an attacker can probe up to t in-
termediate variables in the circuit, known as the t-probing (ISW) model [29]
or t-non interference (NI) model [9] where the number of shares for each secret
variable is n ≥ 2t + 1. The t-probing security is provided in Definition 1. The
security of t-strong non interference (t-SNI) was introduced in [8] (see Defini-
tion 3). Intuitively, a t-SNI gadget information-theoretically hides dependencies
between each of its inputs and its outputs, even in the presence of internal probes
[8]. Note that combining t-probing (or t-NI) secure gadgets does not necessarily
results in a t-probing secure algorithm [21]. We consider the standard t-SNI se-
curity for WAGE as the number of shares is only n = t+ 1, instead of n = 2t+ 1
in the t-NI security and it provides an assurance on the t-SNI security of the
entire scheme when t-SNI secure gadgets are composed securely.

6

Definition 1 (t-probing Security). [29] An algorithm C is t-probing secure
if the values taken by at most t intermediate variables of C during its execution
do not leak any information about secrets.

Definition 2 (t-NI Security). [8] Let G be a gadget accepting (xi)1≤i≤n as
input and outputting (yi)1≤i≤n. We call the gadget G is t-non interference (t-NI)
(also known as t-threshold probing) secure if for any set of ` ≤ t intermedi-
ate variables, there exists a subset I of input indices with |I|≤ ` such that `
intermediate variables can be perfectly simulated from x|I = (xi)i∈I .

Definition 3 (t-SNI Security). [8] Let G be a gadget accepting (xi)1≤i≤n
as input and outputting (yi)1≤i≤n. We call the gadget G is t-strongly non-
interference (t-SNI) secure if for any set of ` ≤ t intermediate variables and
any subset of output indices O such that ` + |O|≤ t, there exists a subset I
of input indices with |I|≤ ` such that the ` intermediate variables and output
variables y|O can be perfectly simulated from x|I .

2.3 Masking Schemes for Side-channel Countermeasures

Masking is an effective countermeasure against side-channel attacks such as
power analysis on cryptographic algorithms. In a masking scheme, a variable
x containing sensitive information is protected by masking it with a random
value r as x′ = x⊕ r, i.e., x = x′ ⊕ r, meaning the sensitive variable x is shared
between variables r and x′. In an n-order masking, each sensitive variable x is
shared among n variables xi as x = x1 ⊕ x2 ⊕ · · · ⊕ xn. We denote the n shares
of x by [[x]] = (x1, x2, · · · , xn) such that x = ⊕n

i=1x
i. For [[x]] = (x1, x2, · · · , xn)

and [[y]] = (y1, y2, · · · , yn), [[x]]⊕ [[y]] = (x1⊕y1, x2⊕y2, · · · , xn⊕yn) = [[x⊕y]].
For a binary variable x with shares [[x]], it is easy to compute [[x̄]] from [[x]] as
x̄ = x̄1 ⊕ x2 ⊕ · · · ⊕ xn. Computing the nonlinear operations such as AND and
S-box introduce a large overhead when sensitive variables are additively shared.
Below we describe the techniques for securely computing an AND gate and an
S-box.

Private AND computation. Ishai, Sahai and Wagner (ISW) [29] have ini-
tiated the study of securely computing a circuit where an adversary can probe
a certain number of wires in the circuit to extract sensitive information. The
construction of ISW is generic and based on secret-sharing each wire in the cir-
cuit. Their technique transforms the original circuit into another circuit that
is secure in the t-probing model when the number of shares n ≥ 2t + 1, with
an addition overhead. For each AND gate, a gadget taking a 2n-bit input and
producing an n-bit output that securely computes the AND gate is introduced.
The multiplication of x = ⊕n

i=1x
i and y = ⊕n

i=1y
i outputting n shares [[z]] is

computed as

z = xy =
⊕

0≤i,j≤n

xiyj

where z = z1 ⊕ z2 ⊕ · · · ⊕ zn and zi = xiyi +
⊕

j 6=i z
i,j and for each pair

(i, j) with i < j, a random bit zi,j is generated and zj,i = zi,j ⊕ xiyj ⊕ xjyi.

7

Each AND gate introduces O(n2) gates, thus increasing the size of the circuit.
In [8], Barthe et al. proposed the construction of the t-SNI secure AND gadgets
relying on the ISW construction (see Appendix A).

High-order randomized lookup table. The countermeasures on the (AES)
S-box evaluation was studied from various approaches, notably finite field based
masking computations, e.g., [34, 16, 20, 35], and the randomized lookup table,
e.g., [17, 19, 22]. A first-order randomized table countermeasure for S-boxes
was first proposed by Chari et al. in [17] where the countermeasure consists of
recomputing the S-box in the RAM with input shifted by some random value r
and the output is masked by another random value s, i.e., T (x) = S(x⊕ r)⊕ s
where S is the S-box. In [19], Coron generalized the randomized lookup table
countermeasure to an n-th order masking as output y = y1 ⊕ y2 ⊕ · · · ⊕ yn =
S(x⊕x1⊕· · ·⊕xn−1) where x =

⊕n
i=1 x

i. This countermeasure is secure against
a t-order attack in the ISW probing model (t-NI secure) for n ≥ 2t + 1. Coron
et al. in [22] proposed a randomized lookup table scheme that is secure against
t-SNI (see Appendix A). For the details of the randomized lookup table, the
reader is referred to [19, 22].

3 Correlation Power Analysis of WAGE

In this section, we present a correlation power analysis (CPA) attack on the
unprotected WAGE. The CPA attack is conducted in the microcontroller envi-
ronment. For simplicity, we consider the first execution of the WAGE permutation
in the initialization phase where the key and nonce are loaded and processed.

3.1 Experimental Setup

Figure 2 shows a high-level overview of our experimental setup. The Device
Under Test (DUT) is a Pinata 5 board with an ARM Cortex-M4F core running
at a 168 MHz clock speed. We measured the voltage of the 3.3V power supply
that powers the entire DUT. The power traces are collected using a LeCroy
oscilloscope. We use the reference C implementation code of WAGE from the
NIST website [11] and modify it to add a trigger to synchronize the power
traces, which is the standard procedure for the power trace acquisition.

3.2 The CPA Attack

Leakage model. We consider the hamming weight (HW) of the state register
as a leakage model. We tested both the HW and the hamming distance of WGP
and SB output tables, but did not find any leakage for the DUT. We then use
the Pearson correlation coefficient (PCC) between the HW of the state value
and the power value of the leakage point to detect leakage. The PCC describes a
linear correlation between two variables and its value lies in the range of -1 and
1, where higher the absolute value indicates a stronger linear correlation.

5 https://www.riscure.com/product/pinata-training-target/

8

Power supply DUT Workstation

Oscilloscope
4. Power trace

1. Nonce

2. Trigger3. Probe

Fig. 2: An overview of our experimental setup. The workstation is used to control
the microcontroller and record the nonce and the power traces. Oscilloscope
measures the main’s voltage.

Attack overview. Our attack targets the first 12 rounds of the WAGE per-
mutation after loading the 128-bit key and 128-bit nonce in the initialization
phase. The 16-byte nonce and 16-byte key are arranged into 37 state words, 19
key words K0 - K18, and 19 nonce words N0 - N18 where K0 - K17 contain seven
bits, and K18 contains only two bits (see Appendix C). In our attack, we run
the initialization phase 10,000 times with randomly generated nonces for a fixed
key where the nonce is assumed as known, and the key is unknown. We run a
data flow analysis of the 12-round computations and identify the dependency of
state registers 6 in each round on the key words. We identify an initial batch
of seven state registers, each of which is only dependent on a single key word
(see Table 2). Our attack recovers the key words in two steps, namely the initial
batch that recovers seven key words and the final batch which recovers the rest of
the key words sequentially based on the prior recovered key words. The detailed
steps are elaborated below.

Recovering the initial batch of key words. To recover a key word in the
initial batch, we need a value of the state word such that it depends on only 1 key
word and at least 7 nonce bits at a specific round. Table 2 shows the targeted
round and state register positions satisfying this criterion and are utilized to
recover a single key word. We follow the standard CPA procedure to retrieve

Table 2: Targeted round and state register positions in the initial batch.
Key word Round State register Key word Round State register

K12 5 0 K15 3 22
K13 3 21 K16 5 2
K14 5 1 K17 3 23
K18 10 0

these seven key words one-by-one. For each key word, the select function is the
HW power model of the state register which is dependent on a key word and a
nonce. We run the initialization phase several times where each time, a random,
but known nonce is used and the power trace is collected. We collect 10,000 such
power traces. Figure 3a shows a sample power trace. We perform the CPA on all

6 We use “word” and “register” interchangeably throughout this section.

9

0 100 200 300 400 500 600
Time point

80

60

40

20

0

20

40

60
Vo

lta
ge

 (V
)

(a) A power trace of round 10 of first call
of the WAGE permutation.

0 100 200 300 400 500 600
Time point

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Co
rre

la
tio

n
co

ef
fic

ie
nt

246

(b) Leakage of K18 on time axis at round
10 where the maximum leakage is observed
at the time point 246.

Fig. 3: Example of a power trace and leakage of a fixed key word.

the time points in these traces, i.e., enumerate the 128 possible key values and
calculate the Pearson correlation between the predicted and measured power
values. Figure 3b shows the correlation values along the time points (under the
correct key guess), which indicate the leakiest time point is 246. Figure 4 shows
the key distinguishing result at this time point, where the correct key guess, 96
(in integer notation), gives the highest correlation coefficient value.

0 20 40 60 80 100 120
Key guess

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Co
rre

la
tio

n
co

ef
fic

ie
nt

96

Fig. 4: Highest correlation among all the time points at round 10 for 128 guessed
key values of K18.

Recovering the remaining batch of key words. Similar to the initial
batch, to recover the rest of key words, we need a value of the state register
such that it is associated with only one unknown key word and at least seven
nonce bits, at a specific round. Table 5 in Appendix B depicts the targeted
round and state register positions to recover the key words of final batch. Due

10

to dependency among key words, the key bytes are recovered in a specific order.
Unlike the initial batch recovery, these key words cannot find a state that meets
the two conditions in the initial batch, hence few other key words have to be
known first so that there is only one unknown key word associated with the
targeted state word. The recovery technique is the same as the initial batch one.
The only difference is while calculating the value of a targeted state register
using the guessed key value, we use the value of known key words.

Our analysis reveals that the unprotected implementation of WAGE suf-
fers side-channel power analysis attacks, i.e., correlation power analysis attack.
Hence, similar to other symmetric-key ciphers, like DES, AES, Keccak and
ASCON [5, 4, 31, 13, 38, 28, 25, 26], a protected implementation of WAGE is
needed for applications in constrained environments such as chip card technolo-
gies. In the following section, we present our masking scheme for WAGE to resist
power analysis based side-channel attacks.

4 The Masking Scheme for WAGE

In this section, we present our construction for the masked WAGE permutation,
featured for hardware, along with its complexity analysis. We first provide two
optimized constructions of masked WGP and SB S-boxes that are t-SNI secure.
We start by providing a high-level overview of the masked WAGE permutation.

High-level description. We construct a t-SNI secure masking scheme of
WAGE where the number of shares n = t + 1. In doing so, the state of WAGE,
denoted by S, is split into n state shares such that S = S1⊕S2⊕· · ·⊕Sn where
Si = (Si

36, · · · , Si
0) is the i-th share of the state S. In our masked WAGE, we up-

date the shared states according to the round function so that at the end of 111
rounds, the state of the WAGE permutation can be constructed from the n state
shares. The operations involved in the round function of WAGE are the com-
putation of the linear feedback function, computing WGP and SB and updating
intermediate words, and shifting operation where all the operations in the round
function on the shared states are performed independently and parallelly, except
WGP and SB. To optimized the hardware area for SB with the SNI security, we
exploit the iterative construction of SB and apply the common share technique
for two AND operations in the Q transformation (see Figure 5). For the t-SNI
secure WGP, we use the randomized lookup table from [22], and develop a new
optimized gate-level implementation of WGP in which we replace the AND gates
by t-SNI secure AND gadgets of [8]. We summarize the computation steps of the
masking scheme as follows:

– Feedback computation: As the transformation ω-multiplier is linear, the
feedback computation is linear which can be performed parallelly on the
n shared states, i.e., for each shared state, the corresponding feedback is
computed as fbi ← FB(Si), i ∈ {1, · · · , n}.

– Secure WGP & SB evaluation and updating words: The evaluation
of the masked SB, denoted by SecSB, is performed in a single clock cycle

11

although our technique of the masked SB is iterative. The gate-level imple-
mentation of the masked WGP, denoted by SecWGP, is also computed in
one clock cycle. On the other hand, the randomized lookup table approach
for secure WGP and SB S-boxes takes at least 128 cycles, and was used for
the software implementation. The masked S-boxes are computed as [[Sj]]←
SecSB([[Sj]]), j ∈ {8, 15, 27, 34} and [[Sj]] ← SecWGP([[Sj]]), j ∈ {18, 36}
where Sj = ⊕n

i=1S
i
j .

– Shifting and updating last word operation: This operation can be
performed parallelly on the shared states, i.e., Si ← Shift(Si), i ∈ {1, · · · , n}.

Algorithm 7 summarizes the masked algorithm of the WAGE permutation. We
are now ready to describe the masking techniques for SB and WGP.

4.1 Construction of an SNI-secure SB

We present a construction of an area optimized masked SB guaranteeing the
t-SNI security. Note that the SB can be decomposed into six elementary trans-
formations where only the Q transformation has AND gates. Our idea is to iter-
atively compute the SB where in the Q transformation consisting of three AND,
three XOR and two NOT gates, we adopt a t-SNI secure AND gadget of [8] to
replace each AND gate and apply a t-SNI RefreshMask operation of [8] after the
Q transformation to ensure the SNI security. Let x = (x0, x1, x2, x3, x4, x5, x6)
be an input to the S-box SB. The nonlinear Q transformation is given by Q(x) =
(x0 ⊕ x2x3, x1, x2, x3 ⊕ x5x6, x4, x5 ⊕ x2x4, x6). The input x is shared among n
variables as x = x1⊕ x2⊕ · · · ⊕ xn where xi = (xi

0, x
i
1, x

i
2, x

i
3, x

i
4, x

i
5, x

i
6), xi

j ∈ F2

is the i-th share, and each component xi is shared as xi = x1
i ⊕x2

i ⊕· · ·⊕xn
i . Note

that the multiplications x2x3 and x2x4 have a common term x2. We exploit this
property to optimize the area. Thus, we apply a common input multiplication,
denoted by CommonMult, introduced in [20], for efficiently computing x2x3 and
x2x4. Figure 5 depicts the masked implementation of Q. Algorithm 1 provides
the detailed steps of the masked SB where SecMult denotes an SNI-secure AND
gadget of [8]. Note the masked SB is evaluated in a single clock cycle in hard-
ware. For instance, our masked implementation of SB for n = 2 has an overhead
of 4.5× the unprotected SB implementation (see Table 4).

Security. Lemma 1 states that Algorithm 1 is t-SNI secure in the ISW probing
model with n = t + 1. The proof is straightforward, follows from the security of
the composition of the gadgets for each round as proved in [10]. We only show
that the security of the gadget CommonMult in [20], and the gadgets SecMult
and RefreshMask in [8] ensures the t-SNI security of each round of SB.

Lemma 1. Let [[x]] = (xi)1≤i≤n be the input shares and [[y]] = (yi)1≤i≤n be
the output shares of SB. For any subset of ` intermediate variables with ` ≤ t
and any subset O of output shares such that `+ |O|≤ t < n, there exists a subset
I of input indices such that |I|≤ `, the ` intermediate variables and the output
shares in O can be perfectly simulated from x|I .

12

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

CommonMult

SecMult

Fig. 5: Schematic of one-round gadget of SB with common multiplication.

Algorithm 1 New Masked SB Computation

1: Input: n shares (x1, x2, · · · , xn) s.t. x = x1 ⊕ x2 ⊕ · · · ⊕ xn.
2: Output: n output shares {y1, y2, · · · , yn} s.t. y = SB(x) = y1⊕y2⊕· · ·⊕yn.
3: procedure SecSB(x1, x2, · · · , xn)
4: for i = 0 to 4 do . Computing R5

5: (u,w)← CommonMult
(

(x1
2, x

2
2, · · · , xn

2), (x1
3, x

2
3, · · · , xn

3), (x1
4, x

2
4, · · · , xn

4)
)

6: . u = (u1, u2, · · · , un), . w = (w1, w2, · · · , wn)

7: v ← SecMult
(

(x1
5, x

2
5, · · · , xn

5), (x1
6, x

2
6, · · · , xn

6)
)

. v = (v1, v2, · · · , vn)

8: x1 ← (x1
0 ⊕ u1, x1

1, x
1
2, 1⊕ x1

3 ⊕ v1, x1
4, 1⊕ x1

5 ⊕ w1, x1
6)

9: x1 ← P (x1)
10: for j = 2 to n do
11: xj ← (xj

0 ⊕ uj , xj
1, x

j
2, x

j
3 ⊕ vj , xj

4, x
j
5 ⊕ wj , xj

6)
12: xj ← P (xj)
13: end for
14: (x1, x2, · · · , xn)← RefreshMask(x1, x2, · · · , xn)
15: end for
16: (u,w)← CommonMult

(
(x1

2, x
2
2, · · · , xn

2), (x1
3, x

2
3, · · · , xn

3), (x1
4, x

2
4, · · · , xn

4)
)

17: v ← SecMult
(

(x1
5, x

2
5, · · · , xn

5), (x1
6, x

2
6, · · · , xn

6)
)

18: y1 ← (x1
0 ⊕ u1, x1

1, x
1
2, 1⊕ x1

3 ⊕ v1, x1
4, 1⊕ x1

5 ⊕ w1, x1
6)

19: y1 ← P (x1)
20: y1 ← (x1

0 ⊕ 1, x1
1, x

1
2 ⊕ 1, x1

3, x
1
4, x

1
5, x

1
6)

21: for j = 2 to n do
22: yj ← (xj

0 ⊕ uj , xj
1, x

j
2, x

j
3 ⊕ vj , xj

4, x
j
5 ⊕ wj , xj

6)
23: yj ← P (xj)
24: end for
25: (y1, y2, · · · , yn)← RefreshMask(y1, y2, · · · , yn)
26: end procedure

13

Proof. Let G1, G2, G3 be three gadgets corresponding to RefreshMask and Com-
monMult, SecMult, respectively. Let O be the output corresponding to G1 and
O1 be the output corresponding to gadgets G2, G3. Let I = I1∪I2∪I3 be the set
of indices corresponding to intermediate variables that an attacker can observe
in three gadgets where |I|≤ `.

Since RefreshMask is t-SNI secure, there exists a set of indices S1 such that
|S1|≤ |I1|, and the gadget can be perfectly simulated from its input share
indices in S1. Similarly, as CommonMult and SecMult are t-SNI secure, any
probe within these two gadgets can generate indices in I2 or I3, such that
|S2|≤ |I2|+|I3|+|S1|, and the gadget can be perfectly simulated from its in-
put share indices in S2. Therefore, |S2|≤ |I2|+|I3|+|I1| as |S1|≤ |I1| from G1.
As the SNI security of each gadget ensures the existence of a simulator, thus the
simulator for one round can be constructed by composing these simulators to
perfectly simulate from x|I where I = S2 and |I|= |S2|≤ `. Hence the proof.

4.2 Construction of an SNI-secure WGP

The input to the WGP is shared as x = x1 ⊕ x2 ⊕ · · · ⊕ xn and the output
y = WGP(x) is shared as y = WGP(x) = y1 ⊕ y2 ⊕ · · · ⊕ yn. We explore two
approaches, namely randomized lookup table of [22] and the Boolean circuit
implementation, for secure evaluation of WGP. We implement the higher-order
randomized lookup table of WGP using the technique described in Algorithm 7
of [22], in software. We generated an optimized Boolean circuit of WGP, in
hardware, consisting of 313 XOR and 172 AND gates (2-input) and 66 NOT
gates. We construct a masked WGP using the Boolean circuit by substituting
each AND gate by an SNI-secure AND gadget (i.e., SecMult) and composing the
gadgets securely, which results in a t-SNI secure masked WGP. For instance, our
masked implementation of WGP using ANF for n = 2 has an overhead of 3.7×
compared to the unprotected (ANF) WGP implementation (see Table 4). The
security of the masked WGP implemented using the ANF is straightforward. We
omit it here.

4.3 Putting all together

Our masked WAGE is designed to provide a t-order protection against side-
channel attacks such as power analysis. Our hardware architecture for the
masked WAGE is parallel and designed to be low-latency. Algorithm 2 describes
the pseudocode of the masked WAGE permutation. In each round of the masked
WAGE, the state is shared among n state shares (Si) where the feedback compu-
tations in Lines 5-7, updating intermediate words in Lines 10-14 and shift oper-
ations in Lines 20-22 that are linear are computed in parallel. Our architecture
uses corresponding masked WGP and SB in Lines 8-9 for the S-box operations,
which are evaluated in parallel. Note that the pair of round constants at each
round are added to only one share (say S1) in Lines 15-16. A high-level overview
of the architecture of the masked WAGE permutation for the first-order pro-
tection is shown in Figure 6. For a low-latency implementation of the masked

14

WAGE, the circuit level implementation of the masked WGP is used as it can
be computed in one clock cycle. For software implementations, to avoid bit level
operations, we use the randomized lookup table for the secure evaluation of both
WGP and SB.

Algorithm 2 The Masked WAGE

1: Input: [[S]] = (S1,S2, · · · ,Sn)
2: Output: [[S]] where S← wage stateupdate111(S)
3: procedure Masked WAGE()
4: for i = 0 to 110 do
5: for j = 1 to n do
6: fbj ← FB(Sj)
7: end for
8: [[Sj]]← SecSB([[Sj]]), j ∈ {8, 15, 27, 34}
9: [[Sj]]← SecWGP([[Sj]]), j ∈ {18, 36}

10: [[S5]]← [[S5]] ⊕ [[S8]]
11: [[S11]]← [[S11]]⊕ [[S15]]
12: [[S19]]← [[S19]]⊕ [[S18)]]
13: [[S24]]← [[S24]]⊕ [[S27]]
14: [[S30]]← [[S30]]⊕ [[S34]]
15: S1

19 ← S1
19 ⊕ rc0

16: fb1 ← fb1 ⊕ tmp1 ⊕ rc1
17: for j = 2 to n do
18: fbj ← fbj ⊕ tmpj

19: end for
20: for j = 1 to n do
21: Sj ← Shift(Sj , fbj)
22: end for
23: end for
24: return [[S]] = (S1,S2, · · · ,Sn) s.t. S =

⊕n
i=1 Si

25: end procedure

Security. The masked WAGE permutation is constructed by composing 111
round function gadgets. Intuitively, according to the compositional security proof
of t-SNI security in [8], the masked WAGE permutation is t-SNI secure. We
summarize the security of the masked WAGE permutation in the ISW probing
model in Theorem 1.

Theorem 1. The protected WAGE described in Algorithm 2 is t-SNI secure
where t = n + 1.

Complexity. We now provide the amount of random bits required for the
masked WAGE permutation in terms of the number of shares n. The randomness
amount can be computed by calculating the unit operations of different gadgets.

The RefreshMask, CommonMult and SecMult gadgets consume 7n(n−1)
2 , 3n(n−1)

2

and n(n−1)
2 bits, respectively. Thus, the total number of random bits for SecSB

15

Share S1

Share S2

S
ec
W
G
P

S
ec
S
B

S
ec
S
B

S
ec
W
G
P

S
ec
S
B

S
ec
S
B

FB

FB

Fig. 6: Schematic of the masked WAGE permutation for 1-order protection.

is 33n(n − 1) bits (asymptotically O(n2)). According to [22], the number of

random bits for SecWGP with the randomized lookup table is 64n(n−1)(2n−1)
3

(asymptotically O(n3)). On the other hand, the number of random bits for the
gate-level implementation of SecWGP is 87n(n−1) bits. For each round of WAGE
with masked WGP implemented using gate-level, the amount of bits is (33n(n−
1)×4+87n(n−1)×2) = 255n(n−1), thus for evaluating the WAGE permutation
the total number of random bits is 255× 111×n(n− 1). The (asymptotic) time
complexity of the masked WAGE is O(n2) when SecWGP is implemented using
a Boolean circuit.

CPA on the first-order masked WAGE. We use the randomized lookup
table approach and implemented the Algorithm 2 in C. For the analysis, we first
converted the C code to the ARM Cortex-M4F (see Section 3.1) environment.
We then perform the standard test vector leakage assessment (TVLA) [18, 37]
to validate that our masked implementation is free of the first-order leakage.
We observed that power traces do not detect leakage till 60,000 time points for
the protected implementation while only 600 time points are sufficient to detect
leakage in case of the unprotected implementation. Note that the protected ver-
sion has more time points than the unprotected version is due to the slowdown
of the masking algorithm. Both traces are the entire execution of one round
of the WAGE permutation. Trying to find the leakage with 10,000 traces may
not be convincing or visible. Thus, we provided the result for more traces (see
Appendix B).

5 Hardware Implementation Results

In this section, we provide the implementation results of the protected WAGE
for different masking orders in hardware. Our simulations were done in Mentor
Graphics ModelSim SE v10.7c and logic synthesis was performed with Synopsys

16

Design Compiler version P-2019.03 (using the compile ultra command). For
the physical synthesis Cadence Encounter v14.13 was used. We used two 65 nm
ASIC cell libraries: ST Microelectronics 65 nm and TSMC 65 nm.

Implementation results. Our preliminary implementation results are pro-
vided in Tables 3 and 4. Table 3 shows the comparison of two SecMult multipli-
cation gadgets (Algorithm 4) with a common share CS SecMult multiplication
gadget (Algorithm 6). The two multiplication gadgets in 2x SecMult were im-
plemented with a common input. In Table 4, we include a detailed break down
of area and combinational delay (resp. clock period) for n = 2, 3, 4 shares (resp.
t = 1, 2, 3-order protection). For both technologies, the middle column indicates
the area overhead compared to the unprotected module. To accurately show the
scaling with n, all implementations assume an environment capable of providing
random bits. Further details are omitted for brevity.

Table 3: Area comparison [GE] of two SecMult multiplication gadgets with a
common share CS SecMult multiplication gadget.

STMicro 65 nm TSMC 65 nm
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

2x SecMult 24 59 119 24 59 130
CS SecMult 12 69 98 13 69 105

Brief discussion on results. Our theoretical and implementation results of
the stand-alone modules of SecMult (Table 3) show comparable or smaller area of
the common share multiplication gadget. However, the implementation results of
the protected SB modules in Table 4 show that this advantage is lost, most likely
due to the additional random inputs needed for the common share multiplication
gadget and their routing.

6 Conclusion and Future Work

In this paper, we practically demonstrated that the 128-bit key of WAGE can
be recovered using the correlation power analysis, requiring 10,000 power traces.
To resist against side-channel attacks, we presented the first high-order masking
scheme of WAGE and proved its t-SNI security in the ISW probing model. We
designed the hardware of the masked WAGE in ASIC using STMicro 65 nm
and TSMC 65 nm technologies for the first, second, and third-order security
and reported the detailed performance results along with a comparison with the
other NIST LWC round 2 candidates.

As a future work, we will perform side-channel attack experiments and an-
alyze the higher-order masked implementations of WAGE. Furthermore, we will
extend our work and incorporate other types of side-channel implementations
such as threshold, unified masked multiplication, and domain oriented masking
to investigate trade-offs among performance parameters of WAGE.

17

Table 4: Implementation results of S-boxes (WGP and SB) and the WAGE AE
in ASIC. Italic denotes the use of the common share multiplication gadget.

Algorithm STMicro 65 nm TSMC 65 nm
Area Area Delay Area Area Delay
[GE] overhead [ns] [GE] overhead [ns]

WGP
Constant array [1, 2] 258 - 1.4 270 - 0.9

Unprotected ANF 759 - 1.9 804 - 1.3
n = 2 2830 3.7 2.3 3090 3.8 1.9
n = 3 6030 2.1 3.1 6580 8.1 2.1
n = 4 10200 1.7 3.7 11400 14.1 2.4
SB

Unprotected ANF 63 - 0.9 70 - 0.8

n = 2
285 4.5 1.7 307 4.3 1.4
285 4.5 1.9 323 4.6 1.4

n = 3
626 9.9 2.2 677 9.6 1.5
715 11.3 2.3 829 11.8 1.5

n = 4
1140 18.1 2.3 1200 17.1 1.9
1275 20.2 2.2 1280 18.2 2.1
Area Area Clk. period Area Area Clk. period
[GE] overhead [ns] [GE] overhead [ns]

WAGE AE
Constant array [1, 2] 2900 - 1.1 3290 - 0.9

Unprotected ANF 3830 - 1.9 4430 - 1.8

n = 2
11177 2.9 3.6 12714 2.9 2.9
11177 2.9 2.9 12711 2.9 2.9

n = 3
21566 5.6 5.0 23912 5.4 4.9
21953 5.7 3.9 24174 5.5 3.4

n = 4
33985 8.9 5.2 38818 8.7 4.9
34238 8.9 4.6 39067 8.8 4.4

Acknowledgement. Hardware implementation in this work are based on the
original WAGE hardware implementation from [1]. The authors would like to
thank Dr. Mark Aagaard for his great help with synthesis tools and valuable
suggestions for this work. The work of Yunsi Fei, Cheng Gongye and Tian-
hong Xu was supported in part by US National Science Foundation under grant
SaTC-1563697. The work of Guang Gong, Kalikinkar Mandal, Raghvendra Ro-
hit, Yunjie Yi, and Nusa Zidaric was supported by the NSERC SPG grant.

References

[1] Mark D. Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal,
Raghvendra Rohit, and Nusa Zidaric. Wage: An authenticated cipher, 2019.

18

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf.

[2] Mark D. Aagaard, Marat Sattarov, and Nuša Zidarič. Hardware design and anal-
ysis of the ACE and WAGE ciphers. NIST LWC Workshop 2019. Also available
at https://arxiv.org/abs/1909.12338.

[3] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The
em side—channel(s). In Burton S. Kaliski, çetin K. Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2002, pages 29–
45, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[4] Mehdi-Laurent Akkar, Régis Bevan, and Louis Goubin. Two power analysis at-
tacks against one-mask methods. In International Workshop on Fast Software
Encryption, pages 332–347. Springer, 2004.

[5] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and
aes, secure against some attacks. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 309–318. Springer, 2001.

[6] Riham AlTawy, Guang Gong, Kalikinkar Mandal, and Raghvendra Rohit. Wage:
An authenticated encryption with a twist. IACR Transactions on Symmetric
Cryptology, 2020(S1):132–159, Jun. 2020.

[7] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift-cofb.
Cryptology ePrint Archive, Report 2020/738, 2020. https://eprint.iacr.org/

2020/738.

[8] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page 116–129,
New York, NY, USA, 2016. Association for Computing Machinery.

[9] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT
2015, pages 457–485, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[10] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. Cryptology ePrint Archive, Report 2015/506,
2015. https://eprint.iacr.org/2015/506.

[11] Lawrence Bassham, Cagdas Calik, Donghoon Chang, Jinkeon Kang, Kerry
McKay, and Meltem Sonmez Turan. Lightweight cryptography: Round 2 can-
didates, 2019. https://csrc.nist.gov/Projects/lightweight-cryptography/

round-2-candidates.

[12] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. Skinny-aead
and skinny-hash. IACR Transactions on Symmetric Cryptology, pages 88–131,
2020.

[13] Olivier Benôıt and Thomas Peyrin. Side-channel analysis of six sha-3 candidates.
In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 140–157. Springer, 2010.

[14] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In International workshop on cryptographic hardware and
embedded systems, pages 16–29. Springer, 2004.

19

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://arxiv.org/abs/1909.12338
https://eprint.iacr.org/2020/738
https://eprint.iacr.org/2020/738
https://eprint.iacr.org/2015/506
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

[15] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy analysis of lightweight
aead circuits. Cryptology ePrint Archive, Report 2020/607, 2020. https:

//eprint.iacr.org/2020/607.
[16] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michael Quisquater, and

Matthieu Rivain. Higher-order masking schemes for s-boxes. In Anne Can-
teaut, editor, Fast Software Encryption, pages 366–384, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[17] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael Wiener, editor,
Advances in Cryptology — CRYPTO’ 99, pages 398–412, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[18] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenworthy,
Pankaj Rohatgi, et al. Test vector leakage assessment (tvla) methodology in
practice. In International Cryptographic Module Conference, volume 20, 2013.

[19] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT
2014, pages 441–458, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[20] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster evaluation of sboxes via common shares. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems – CHES
2016, pages 498–514, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[21] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, edi-
tor, Fast Software Encryption, pages 410–424, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[22] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order masking
of look-up tables with common shares. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(1):40–72, Feb. 2018.

[23] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking aes with d+1 shares in hardware. In Pro-
ceedings of the 2016 ACM Workshop on Theory of Implementation Security, TIS
’16, page 43, New York, NY, USA, 2016. Association for Computing Machinery.

[24] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analy-
sis: Concrete results. In Çetin K. Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2001, pages 251–261,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[25] Hannes Groß and Stefan Mangard. Reconciling d+1 masking in hardware and
software. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science, pages 115–136. Springer, 2017.

[26] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptographic
Engineering, 8(2):109–124, 2018.

[27] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order. In
Proceedings of the 2016 ACM Workshop on Theory of Implementation Security,
TIS ’16, page 3, New York, NY, USA, 2016. Association for Computing Machinery.

[28] H. Groß, E. Wenger, C. Dobraunig, and C. Ehrenhöfer. Suit up! – made-to-
measure hardware implementations of ascon. In 2015 Euromicro Conference on
Digital System Design, pages 645–652, 2015.

20

https://eprint.iacr.org/2020/607
https://eprint.iacr.org/2020/607

[29] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, pages 463–481, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[30] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual International Cryptology Conference, pages 388–397. Springer, 1999.

[31] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008.

[32] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Proceedings of the 8th In-
ternational Conference on Information and Communications Security, ICICS’06,
page 529–545, Berlin, Heidelberg, 2006. Springer-Verlag.

[33] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, pages 764–783,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[34] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of aes. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, pages 413–427, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[35] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic higher-
order masking scheme of fse 2012. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 417–434. Springer, 2013.

[36] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. Low-latency
hardware masking with application to aes. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(2):300–326, Mar. 2020.

[37] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel security
evaluations. In International Conference on Smart Card Research and Advanced
Applications, pages 65–79. Springer, 2018.

[38] Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata, editors, Ad-
vances in Cryptology – ASIACRYPT 2014, pages 282–296, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

A Basic Masking Gadgets

Refresh mask and Common share multiplication. We provide the pseu-
docodes for algorithms RefreshMask and SecMult from [8], and CommonMult and
CommonShare from [20] for the ease of completeness and quick references. Note
that in Algorithm 6, in Lines 5-6, the multiplications for a = (ai)1≤i≤n and
the common shares of b = (bi)1≤i≤n and c = (ci)1≤i≤n are computed only once
which results in reducing the area of the gadget.

t-SNI secure randomized table countermeasure of S-boxes. For the
sake of completeness, we rewrite the t-SNI secure randomize lookup table algo-
rithm from [22], and take WGP as an example to describe the algorithm.

21

Algorithm 3 Refresh Mask [8]

1: Input: (a1, a2, · · · , an) s.t. a = a1 ⊕ a2 ⊕ · · · ⊕ an, ai ∈ Fk
2

2: Output: (c1, c2, · · · , cn) s.t. a = c1 ⊕ c2 ⊕ · · · ⊕ cn, ai ∈ Fk
2

3: procedure RefreshMask(a1, a2, · · · , an)
4: for i = 1 to n do
5: ci ← ai

6: end for
7: for i = 1 to n− 1 do
8: for j = i + 1 to n do
9: r ←$ Fk

2

10: ci = ci ⊕ r
11: cj = cj ⊕ r
12: end for
13: end for
14: return (c1, c2, · · · , cn)
15: end procedure

Algorithm 4 Multiplication Gadget (t-SNI) [8]

1: Inputs: (x1, x2, · · · , xn) and (y1, y2, · · · , yn), xi, yi ∈ F2

2: Output: (z1, z2, · · · , zn)
3: procedure SecMult(x, y)
4: for i = 1 to n do
5: zi ← xiyi

6: end for
7: for i = 1 to n do
8: for j = i + 1 to n do
9: r ←$ F2

10: zi ← zi ⊕ r
11: t← xiyj

12: r ← r ⊕ t
13: t← xjyi

14: r ← r ⊕ t
15: zj ← zj ⊕ r
16: end for
17: end for
18: end procedure

B Details on Correlation Power Analysis of WAGE

CPA attack final phase. In Table 5, we provide the details of key words
recovery information at different batches in the final phase of the CPA attack.

Test vector leakage assessment of first-order masked WAGE. We use
the standard test vector leakage assessment (TVLA) to test the resistance of

22

Algorithm 5 Common Share [20]

1: Input: (a1, a2, · · · , an) and (b1, b2, · · · , bn) s.t.⊕n
i=1 a

i = a and
⊕n

i=1 b
i = b

2: Output: (c1, c2, · · · , cn) and (d1, d2, · · · , dn) s.t.⊕n
i=1 c

i =
⊕n

i=1 a
i and

⊕n
i=1 d

i =
⊕n

i=1 b
i

3: procedure CommonShare(a1, a2, · · · , an)
4: for i = 1 to n

2 do
5: r ← F2

6: ci ← r; c
n
2 +i ← ai ⊕ a

n
2 +i ⊕ r

7: di ← r; d
n
2 +i ← bi ⊕ b

n
2 +i ⊕ r

8: end for
9: return (c1, c2, · · · , cn) and (d1, d2, · · · , dn)

10: end procedure

Algorithm 6 Common Share Multiplication Gadget (t-SNI) [20]

1: Input: (a1, a2, · · · , an), (b1, b2, · · · , bn) and (c1, c2, · · · , cn)
2: Output: (d1, d2, · · · , dn) and (e1, e2, · · · , en) s.t.

d = a · b and e = a · b
3: procedure CommonMult((a1, a2, · · · , an), (b1, b2, · · · , bn), (c1, c2, · · · , cn))
4: (bi)1≤i≤n, (c

i)1≤i≤n ← CommonShare((bi)1≤i≤n, (c
i)1≤i≤n)

5: (di)1≤i≤n ← SecMul((ai)1≤i≤n, (b
i)1≤i≤n)

6: (ei)1≤i≤n ← SecMul((ai)1≤i≤n, (c
i)1≤i≤n)

7: return (d1, d2, · · · , dn), (e1, e2, · · · , en)
8: end procedure

the first-order masked implementation of WAGE against the CPA attack. We
collected same number of traces (nearly 10,000) and applied the TVLA on both
the unprotected and first-order masked implementations. An example of TVLA
for both implementations for the least significant bit (LSB) of K18 is shown in
Figure 7. It can be seen that the t-values are larger than 5 for the unprotected
version (Figure 7a) which indicates the leakage. For the masked WAGE, t-values
are uniform for up to 60,000 time points (Figure 7b) and as such no leakage is
detected.

C Key and Nonce Loading Procedure for WAGE [6]

In Table 6, we show the exact positions of the internal state where the 128-bit
key K = k0, k1, · · · , k127 and 128-bit nonce N = n0, n1, · · · , n127 are loaded.
In terms of 7-bit words key words are given by K0 = (k0, · · · , k6), · · ·, K17 =
(k120, · · · , k126) and K18 = (k63, k127). The nonce words are given similarly.

23

Algorithm 7 Randomized lookup table computation of y = WGP(x) (t-SNI)
[22]

1: Input: Input shares (x1, x2, · · · , xn) s.t. x = x1 ⊕ x2 ⊕ · · · ⊕ xn, xi ∈ F7
2

2: Output: Output shares (y1, y2, · · · , yn) s.t. y = WGP(x) = y1⊕y2⊕· · ·⊕yn

3: procedure SecWGP()
4: for u = 0 to 127 do
5: T (u)← (WGP(u), 0, · · · , 0) . n-tuple
6: end for
7: for i = 1 to n− 1 do
8: for u = 0 to 127 do
9: for j = 1 to i do

10: T ′(u)[j]← T (u⊕ xi)[j]
11: end for
12: end for
13: for u = 0 to 127 do
14: T (u)← (T ′(u)[1], T ′(u)[2], · · ·T ′(u)[i], 0, · · · , 0)
15: T (u)← RefreshMasksi+1(T (u))
16: end for
17: end for
18: (y1, y2, · · · , yn)← RefreshMasksn(T (xn))
19: return (y1, y2, · · · , yn)
20: end procedure
21: procedure RefreshMasksi () . RefreshMasksi()
22: Input: (z1, · · · , zi) s.t. z = z1 ⊕ z2 ⊕ · · · ⊕ zi

23: Output: (z1, · · · , zi) s.t. z = z1 ⊕ z2 ⊕ · · · ⊕ zi

24: for j = 2 to i do
25: t← {0, 1}7 . Randomly generate a 7-bit number
26: z1 ← z1 ⊕ t
27: zj ← zj ⊕ t
28: end for
29: return (z1, · · · , zi)
30: end procedure

24

Table 5: Key word recovery information at different batches in the final phase of
attack. The corresponding round number, state register, and previously known
key words used for the attack.

Batch Key word Round State register Known required key word
2 K1 10 0 K18

3 K3 10 1 K18,K1

4 K5 10 2 K18,K1,K3

5 K7 10 3 K18,K1,K3,K5

6 K9 12 2 K18,K1,K3,K5,K7

7 K11 12 3 K18,K1,K3,K5,K7,K9,K17

8 K0 0 36 K12,K16,K1,K11,K15

9 K2 1 36 K0,K1,K3,K11,K12,K14,K15,K16,K17

10 K4 2 36 K0,K1,K2,K3,K5,K11,K12,K14,K15,
K16,K17

11 K6 3 36 K0,K1,K2,K3,K4,K5,K7,K11,K12,K14,
K15,K16,K17

12 K8 4 36 K0,K1,K2,K3,K4,K5,K6,K7,K9,K11,K12,
K13,K14,K15,K16,K17

13 K10 5 36 K0,K1,K2,K3,K4,K5,K6,K7,K8,K9,K11,
K12,K13,K14,K15,K16,K17

0 100 200 300 400 500 600
Time point

2

0

2

4

6

t v
al

ue

(a) Unprotected WAGE

0 100000 200000 300000 400000 500000 600000
Time point

4

2

0

2

4

t v
al

ue

(b) First-order masked WAGE

Fig. 7: TVLA of LSB of K18 at round 10: a) unprotected WAGE and b) first-order
masked WAGE.

25

Table 6: The key and nonce loading procedure of WAGE AE.
Word Loaded bits Word Loaded bits Word Loaded bits
0 k0, · · · , k6 13 n64, · · · , n70 25 k92, · · · , k98
1 k14, · · · , k20 14 n78, · · · , n84 26 k106, · · · , k112
2 k28, · · · , k34 15 n92, · · · , n98 27 k120, · · · , k126
3 k42, · · · , k48 16 n120, · · · , n126 28 n0, · · · , n6

4 k56, · · · , k62 17 n106, · · · , n112 29 n14, · · · , n20

5 k71, · · · , k77 18 k63, k127, n63, n127, 0, 0, 0 30 n28, · · · , n34

6 k85, · · · , k91 19 k7, · · · , k13 31 n42, · · · , n48

7 k99, · · · , k105 20 k21, · · · , k27 32 n56, · · · , n62

8 k113, · · · , k119 21 k35, · · · , k41 33 n71, · · · , n77

9 n7, · · · , n13 22 k49, · · · , k55 34 n85, · · · , n91

10 n21, · · · , n27 23 k64, · · · , k70 35 n99, · · · , n105

11 n35, · · · , n41 24 k78, · · · , k84 36 n113, · · · , n119

12 n49, · · · , n55 - - - -

26

	Correlation Power Analysis and Higher-order Masking Implementation of WAGE
	Yunsi Fei and Guang Gong and Cheng Gongye and Kalikinkar Mandal and Raghvendra Rohit and Tianhong Xu and Yunjie Yi and Nusa Zidaric

