
Secure and Efficient Bootstrapping for
Approximate Homomorphic Encryption

Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza,
Jean-Pierre Hubaux

École polytechnique fédérale de Lausanne
first.last@epfl.ch

Abstract. We present a bootstrapping procedure for the full-RNS vari-
ant of the approximate homomorphic encryption scheme of Cheon et al.,
CKKS (Asiacrypt 17, SAC 18). Compared to the previously proposed
procedures (Eurocrypt 18 & 19, CT-RSA 20), our bootstrapping is si-
multaneously more precise and more efficient in terms of CPU cost and
number of consumed levels. Moreover, unlike the previous approaches, it
does not require the use of sparse secret-keys. Hence, to the best of our
knowledge, this is the first procedure that enables efficient bootstrap-
ping for parameters that are 128-bit-secure under more recent attacks
on sparse R-LWE secrets.

We achieve this by introducing two novel contributions, applicable to
the CKKS scheme: (i) We propose a generic algorithm for homomor-
phic polynomial evaluation that is scale-invariant and optimal in level
consumption. (ii) We optimize the key-switch procedure and propose a
new technique to perform rotations (double hoisting) that significantly
reduces the complexity of homomorphic matrix-vector products.

Our scheme improvements and bootstrapping procedure are implemented
in the open source Lattigo library1. As an example, bootstrapping a
plaintext in C32768 takes 17 seconds, with an output coefficient modu-
lus of 505 bits and a mean precision of 19.2 bits. Hence, we achieve an
order of magnitude improvement in bootstrapped throughput (plaintext-
bit per second) with respect to the previous best results, while ensuring
128-bit of security.

Keywords: Fully Homomorphic Encryption, Bootstrapping, Implementation

1 Introduction

Homomorphic encryption (HE) is becoming increasingly popular as a solution for pro-
cessing confidential data in untrustworthy environments, as it enables computing over
encrypted data without decrypting them first. Since Gentry’s introduction of the first
fully-homomorphic encryption (FHE) scheme over ideal lattices [1], continuous effi-
ciency improvements brought these techniques closer to practical application domains.

1https://github.com/ldsec/lattigo

https://github.com/ldsec/lattigo

As a result, lattice-based FHE schemes are being increasingly used in experimental
systems [2]–[4] and some of them are now being proposed as an industry-standard [5].

Cheon et al. [6] introduced a leveled encryption scheme, CKKS, which enables the
encryption of vectors of complex numbers and the evaluation of arbitrary polynomial
functions over those vectors in the encrypted domain. Although the family of leveled
cryptosystems only offers a finite multiplicative depth, each multiplication consuming
one level, the CKKS scheme enables the homomorphic re-encryption of an exhausted
ciphertext into an almost fresh one. This capability, which is commonly called boot-
strapping, theoretically enables the evaluation of arbitrary-depth circuits. In practice,
however, the bootstrapping procedure for CKKS is approximate, and its precision and
performance determine the actual maximum depth of a circuit.

Improving the performance of the bootstrapping is crucial for the practicality of
FHE, and can be achieved in two ways: (i) Adapting the circuit representation of the
bootstrapping by using HE-friendly numerical methods. (ii) Optimizing the scheme
operations themselves, which also impacts the scheme performance in general.

Since the initial CKKS bootstrapping procedure by Cheon et al. [7] until the most
recent work by Han and Ki [8], the bootstrapping efficiency has improved by several
orders of magnitude. However, it is not yet fully practical, and is hence rarely used in
real-world applications, where workarounds (e.g., increasing the parameters to accom-
modate deeper circuits) can yield better performance.

Additionally, all bootstrapping approaches [7]–[9] rely on sparse secret-keys to re-
duce the depth of their circuit representation. Hence, none of them has so far supported
parameters with an equivalent security of at least 128 bits under the recent attacks on
sparse R-LWE secrets [10], [11]. The lack of stability in the security of sparse keys has
lead the standardization initiatives to exclude sparse secrets and therefore the boot-
strapping operation from the currently proposed standards [5]. This raises the question
about the practicality of a bootstrapping procedure that would not require the use of
sparse secret-keys. In this work, we present a constructive proof to Proposition 1:

Proposition 1. There exists a practical CKKS bootstrapping procedure that does not
require the use of sparse secret-keys.

1.1 Our Results

We show that it is possible to further improve the CKKS scheme and its bootstrapping
operation, up to a point where the constraints on secret-keys sparsity can be removed.
Our two major contributions for achieving this goal are: (i) A scale-invariant procedure
for the homomorphic evaluation of polynomials which prevents the precision loss due to
the approximate rescale. (ii) A faster key-switch procedure specific to the matrix-vector
product, that significantly reduces the cost of computing such linear transformations
over ciphertexts.

We show that our bootstrapping with standard “dense” keys has a 4.4× larger
throughput (bootstrapped plaintext bits per second) than the most recent work from
Han and Ki [8] with sparse keys on equivalent hardware. Moreover, when using the
sparse-key-adjusted parameters of Curtis and Player [12] for sparse-secrets, our through-
put is 15× larger. We now briefly describe the high-level ideas behind our contributions.

Scale-Invariant Homomorphic Polynomial Evaluation The efficiency gains
of the full-RNS variant of the CKKS scheme come at the cost of restricting the rescale

2

operation only to the division by the factors qi of the ciphertext modulus Q. As the
moduli qi are chosen as NTT-friendly primes, the rescale cannot be done by a power
of two as in the original CKKS scheme with power-of-two moduli, and it introduces a
small scale deviation in the process.

A partial solution, which solves this problem for linear circuits, is to scale plaintexts
by a scaling factor ∆ which is equal to the qi by which the ciphertext is going to be
divided. A ciphertext multiplied by such plaintexts will then enable exact division and
will also keep its original scale. However, when more complex circuits are involved,
such as polynomial evaluations, additions between ciphertexts of different scales will
eventually happen and will introduce errors. In such a case, one could first scale both
ciphertexts to a common scale before adding them together, but this would lead to
a sub-optimal level-consumption. For this reason, current state-of-the-art approaches
have to trade off between precision and optimal level-consumption.

In this work, we propose a generic algorithm to homomorphically evaluate degree-
d polynomial functions, that consumes an optimal number of dlog(d + 1)e levels. We
generalize the aforementioned partial solution, by observing that a polynomial can be
computed by recursively evaluating a linear function. Starting from a user-defined out-
put scale, the intermediate scales can be back-propagated in the recursion by ensuring
that each rescale operation in the circuit is exact (thus, so are the homomorphic sums).

Our algorithm enables a depth-optimal and scale-invariant evaluation of arbitrary
polynomials and is, to the best of our knowledge, the first general solution for the
problem of the approximate rescale arising from the full-RNS variant of the CKKS
scheme. We detail this approach and the rescale algorithm in Section 3.

Faster Matrix × Ciphertext Products The most expensive homomorphic op-
eration of the CKKS scheme, regardless of its variant, is the key-switch. This operation
is an integral building block of the homomorphic multiplication, slots rotations and con-
jugation. Moreover, the CKKS bootstrapping requires two linear transformations that
involve a large number of rotations (key-switch operations), so minimizing the number
of key-switch and/or their complexity will have a significant impact on bootstrapping.

Given an n× n plaintext matrix M and an encrypted vector v, all recent previous
works use a baby-step giant-step (BSGS) algorithm to compute the encrypted product
Mv [7]–[9] in O(

√
n) rotations. These works treat the key-switch procedure as a black-

box and focus on reducing the number of times it is executed.
We improve this BSGS algorithm by proposing a new format for rotation keys and

a modified key-switch procedure (Section 4), that enables us to add different levels of
hoisting2. This strategy is generic, ant it reduces the theoretical minimum complexity
(in terms of modular products) of any linear transformation over ciphertexts. In our
bootstrapping procedure, it reduces the cost of the CoeffsToSlots and SlotsToCoeffs
steps (Section 5.3) by roughly a factor of 3.

Improved Bootstrapping Procedure We integrate our proposed improvements
in the bootstrapping circuit proposed by Cheon et al. [7], Chen et al. [9], Cheon et
al. [14] and Han and Ki [8], and propose a new scale-invariant, high-precision and
faster bootstrapping circuit with updated parameters which are 128-bit secure, even

2The general concept of hoisting [13] refers to the ability to take advantage of the
commutativity, distributivity and redundancy of some operations to factor them out
and reduce the number of times they need to be computed.

3

considering the most recent attacks on sparse keys [10], [11]. We detail our approach
for each step of the improved bootstrapping in Section 5.

Parameterization and Evaluation We discuss the parametrization of the CKKS
scheme and its bootstrapping circuit, and propose a procedure to choose and fine-tune
the parameters for a given use-case. Our contributions, as well as our bootstrapping, are
implemented in the open source library Lattigo: https://github.com/ldsec/lattigo.
To the best of our knowledge, this is the first public and open source implementation
of the bootstrapping for the full-RNS variant of the CKKS scheme.

2 Background and Related Work

We now recall the full-RNS variant of the CKKS encryption scheme and review its
previously proposed bootstrapping procedures.

2.1 The Full-RNS CKKS Scheme

We consider the CKKS encryption scheme [6] in its full-RNS variant [15], in which the
polynomial coefficients are always represented in the Residue Number System (RNS)
and Number Theoretic Transform (NTT) domains, enabling fast integer and polyno-
mial arithmetic. The conversion between the RNS and positional domain is costly due
to multi-precision arithmetic, but is only required during the encoding and decoding
of plaintext values. This yields an overall speedup across all operations of one order of
magnitude compared to the original scheme with equivalent parameters.

Notation For a fixed power-of-two N and L+ 1 distinct primes q0, . . . , qL, we define
QL =

∏L
i=0 qi and RQL = ZQL [X]/(XN + 1) the cyclotomic polynomial ring over

the integers. Unless otherwise stated, we consider elements of RQL as their unique
representative in the RNS domain: Rq0 × Rq1 × ... × RqL

∼= RQL . A polynomial in
RQL is therefore represented by a (L+ 1)×N matrix of coefficients. We denote single
elements (polynomials or numbers) in italic, e.g. a, and vectors of such elements in bold,
e.g. a, with a||b the concatenation of two vectors. We denote a(i) the i-th element of
the vector a or the degree-i coefficient of the polynomial a. We denote ||a|| the infinity
norm of the polynomial (or vector) a and hw(a) the hamming weight of the polynomial
(or vector) a. Unless otherwise stated, all logarithms are base 2.

We denote [x]Q as the reduction of x modulo Q and bxc, dxe, bxe as the rounding
of x to the next, the previous, and the closest integer, respectively (if x is a polynomial,
the operation is applied coefficient-wise).

Plaintext and Ciphertext Space A plaintext is a polynomial pt = m(Y) ∈
ZQL [Y]/(Y 2n + 1) with Y = XN/2n and n a power-of-two smaller than N . We define
the following packings: (i) The coefficient packing for which the message m ∈ R2n is
encoded as the coefficients of a polynomial in Y . (ii) The slots packing for which the
message m ∈ Cn is first subjected to a discrete Fourier transform and then taken as a
polynomial in Y , as in (i). A negacyclic convolution in the coefficient domain results
in a Hadamard product in the slot domain, which enables slot-wise arithmetic.

4

https://github.com/ldsec/lattigo

Plaintexts and ciphertexts are respectively represented by the tuples {pt, Q`,∆}
and {ct, Q`,∆}, where, for a secret s ∈ RQL , pt is a degree-zero polynomial in s, i.e.
of RQ` , and ct is a degree-one polynomial in s, i.e. of R2

Q`
. We define Q` =

∏`
i=0 qi as

the modulus at level ` and ∆ as a scaling factor. We denote L as the maximum level
(the default level of the keys) and use 0 ≤ ` ≤ L to represent an intermediate level
between the smallest level 0 and the highest level L. We refer to the depth of a circuit
as the number of levels required for the evaluation of the circuit.

Scheme RNS-CKKS – Basic Operations

• Setup(N,h, b, σ): For a power of two ring degree N , a secret distribution hamming-
weight h, standard deviation σ and a modulus bit-size b: Select the moduli chains
{q0, . . . , qL} and {p0, . . . , pα−1} composed of pairwise different NTT-friendly primes
close to powers of two such that log(

∏L
i=0 qi ×

∏α−1
j=0 pj) ≤ b. That is, primes of

the form qi = 2si + ki2N + 1 (hence, qi ≡ 1 mod 2N) for si a positive integer size
and ki a small integer such that qi is a prime. Set QL =

∏L
i=0 qi, P =

∏α−1
j=0 pj .

Define the following distributions over R: χkey where the coefficients are uniformly
distributed over {−1, 0, 1} and where exactly h coefficients are non-zero. χpkenc

where the coefficients are distributed over {−1, 0, 1} with respective probabilities
{1/4, 1/2, 1/4}. χerr where the coefficients are distributed according to a discrete
Gaussian distribution with standard deviation σ and truncated to b6σc.

• Encode (m, ∆, n, `) (coefficients→slots): For a message m ∈ Cn with 1 ≤ n < N ,
where n divides N , apply the canonical map Cn → Z[Y]/(Y 2n + 1) → RQ` with
Y = XN/2n. Compute m′ = b∆ · FFT−1

n (m)e and set m′0||m′1 ∈ Z2n, with
m′0 = 1

2
(m′ + m′) and m′1 = −i

2
(m′ −m′), as a polynomial in Y . Finally, ap-

ply the change of variable Y → X and return {pt, Q`,∆}.

• Decode({pt, Q`,∆}, n) (slots→coefficients): For 1 ≤ n < N , where n divides N ,
apply the inverse of the canonical map RQ` → Z[Y]/(Y 2n + 1) → Cn, with
Y = XN/2n. Map the input plaintext pt to the vector m′0||m′1 ∈ Z2n and re-
turn m = FFTn(∆−1 · (m′0 + i ·m′1)).

• SecKeyGen(·): Sample s← χkey and return the secret key s.

• SwitchKeyGen(s, s′,w = (w(0), . . . , w(β−1))): For w an integer decomposition ba-
sis of β elements, sample ai ∈ RQLP and ei ← χerr and return the switching key

swk(s→s′) = (swk
(0)

(s→s′), . . . , swk
(β−1)

(s→s′)), where swk
(i)

(s→s′) = (−ais′+sw(i)P+ei, ai).

• PubKeyGen(s): Set the public encryption key pk← SwitchKeyGen(0, s, (1)), the re-

linearization key rlk← SwitchKeyGen(s2, s,w), the rotation keys rotk ← SwitchKeyGen(s5
k

, s,w)
(a different key has to be generated for each different k), and the conjugation key
conj← SwitchKeyGen(s−1, s,w) and return: (pk, rlk, {rotk}k, conj).

• Enc({pt, Q`,∆}, s): Sample a ∈u RQ` and e ← χerr, set ct = (−as + e, a) + (pt, 0)
and return {ct, Q`,∆}.

• PubEnc({pt, Q`,∆}, pk): Sample u← χpkenc and e0, e1 ← χerr, set ct = SwitchKey(u, pk)+
(pt + e0, e1) and return {ct, Q`,∆}.

5

• SwitchKey(d, swks→s′): For d ∈ RQ` a polynomial3, decompose d base w such that

d =
∑
b
(i)
w w(i) and return (d0, d1) = bP−1 ·∑ b

(i)
w swk

(i)

s→s′e mod Q`, for P−1 ∈ R.

• Dec({ct, Q`,∆}, s): For ct = (c0, c1), return {pt = c0 + c1s,Q`,∆}.

Given the vectors m,a = f(m) and b = Decode(Decrypt(f(Encrypt(Encode(m))))) ∈
Cn, with f(·) a polynomial function, we denote log(1/ε) the precision of b relative to
a (the negative log of the average of their absolute difference), i.e. log(1/εreal) and
log(1/εimag) where ε = 1

n

∑n−1
i=0 |a(i) − b(i)|. Appendix A details the homomorphic op-

erations of CKKS.

2.2 CKKS Bootstrapping

Let ct = (c0, c1) be a ciphertext at level ` = 0, and s a secret key of Hamming
weight h, such that Decrypt(ct, s) = [c0 + c1s]Q0 = pt. The goal of the bootstrapping
operation is to compute a ciphertext ct′ at level L − k > 0 (where k is the depth of
the bootstrapping circuit) such that QL−k � Q0 and [c′0 + c′1s]QL−k ≈ pt. Note that
[c0 + c1s]QL = pt +Q0 · I, where I is an integer polynomial [7]; thus, bootstrapping is
equivalent to homomorphically reducing each coefficient of pt +Q0 · I modulo Q0.

Cheon et al. proposed the first procedure [7] to compute this modular reduction, by:
(i) homomorphically applying the encoding algorithm, to enable the parallel (slot-wise)
evaluation, (ii) computing a modular reduction approximated by a scaled sine function
on each slot and (iii) applying the decoding algorithm to retrieve a close approximation
of pt without the polynomial I:

FFT−1(pt +Q0 · I) = pt′︸ ︷︷ ︸
(i) Encode(pt+Q0·I)

⇒ Q0

2π
sin
(2πpt′

Q0

)
= pt′′︸ ︷︷ ︸

(ii) EvalSine(pt′)

⇒ FFT(pt′′) ≈ pt︸ ︷︷ ︸
(iii) Decode(pt′′)

.

The complexity of the resulting bootstrapping circuit is influenced by two parameters:
The first one is the secret-key hamming weight h, which directly impacts the depth of
the bootstrapping circuit. Indeed, Cheon et al. show that ||I|| ≤ O(

√
h) with very high

probability. A denser key will therefore require evaluating a larger-degree polynomial,
with a larger depth. The second parameter is the number of plaintext slots n, which
has a direct impact on the complexity of the circuit (but not on its depth). By scaling
down the values to compress them closer to the origin, Cheon et al. are able to evaluate
the sine function using a low degree Taylor polynomial approximation of the complex
exponential, and then use repeated squaring (the double angle formula) to obtain the
correct result. This approach enables a fast evaluation, but it consumes a large number
of levels, so this step dominates the depth of the circuit. Also, the evaluation of the
encoding algorithms is low depth but requires a large amount of operations. In fact,
the linear transformations are the main bottleneck of the bootstrapping because the
number of operations grows linearly with the number of plaintext slots. For example,
bootstrapping a ciphertext that packs n = 215 plaintext slots would take more than a
day, with less than a minute devoted to the evaluation of the scaled sine function.

This issue was later addressed by Chen et al., who proposed an improved procedure
to compute the homomorphic evaluation of the encoding and decoding transformations

3SwitchKey does not act directly in a ciphertext; instead, we define it as a generalized
intermediate function used as a building block that takes a polynomial as input.

6

[9]. They observe that these transformations are direct/inverse discrete Fourier trans-
forms (DFTs) that can be efficiently computed by using the Cooley-Tukey algorithm.
Chen et al. show that the corresponding homomorphic circuit has depth log(n), i.e.
the number of iterations in the Cooley-Tukey algorithm, because each iteration of the
algorithm has a multiplicative depth of one, with only two key-switch operations (see
Section 5.3). Chen et al. merge several layers of the Cooley-Tukey algorithm to reduce
the number of iterations (and the circuit depth) at the cost of additional complexity
per iteration, and they discuss the introduced trade-off. In a concurrent work, Cheon
et al. [14] explored techniques to efficiently evaluate DFTs on ciphertexts. They show
how to factorize the encoding matrices into a series of logr(n) sparse matrices where r
is a power-of-two radix. The contributions in [9] and [14], that we review in Section 5.3,
enabled a speed up in the homomorphic evaluation of the encoding algorithms by two
orders of magnitude. Additionally, Chen et al. [9] improved the approximation of the
scaled sine function with a near optimal depth method using a Chebyshev interpolant.

In a more recent work, Han and Ki ported the bootstrapping procedure to the full-
RNS variant of CKKS and proposed several improvements to the bootstrapping circuit
and to the CKKS scheme [8]. They propose a generalization of its key-switch procedure,
by using an intermediate RNS decomposition that enables a finer-grained selection
of the scheme parameters and trade-offs between the complexity of the key-switch
and the homomorphic capacity of a fresh ciphertext. They also provide an alternative
way of computing the scaled sine function of the bootstrapping circuit that takes the
magnitude of the underlying plaintext into account and uses the cosine function along
with the double angle formula. Their technique requires a smaller amount of non-scalar
multiplications than Chen et al.’s [9]. They show that, combined, these changes lead
to a speedup factor of 2.5 to 3 compared to the work of Chen et al. [9].

On the implementation side, both [14] and [9] were implemented with HEAAN [16],
but only the code of the former was published. The work of [8] was implemented using
SEAL [17], but the code was not published.

2.3 Security of Sparse Keys

One commonality between all the aforementioned works is the use of a sparse secret-
keys with a hamming weight h = 64. A key with a small number of non-zero coefficients
is convenient, as it enables a low-depth bootstrapping circuit and is therefore essential
for its practicality. However, recent advances in the cryptanalysis of the R-LWE prob-
lem have demonstrated that hybrid attacks specifically targeting such sparse keys can
severely impact its security [10], [11]. Curtis and Player [12] discussed the practicality
and usability of sparse keys. In light of the most recent attacks, they estimate that for
a sparse key with h = 64 and a ring degree N = 216, a modulus of at most 990 bits is
needed to achieve a security of 128 bits. This is much smaller than the modulus size of
1450 bits previously deemed secure (according to Albrecht’s estimator [18]).

In their initial bootstrapping proposal, Cheon et al. [7] use the parameters {N =
216, log(Q) = 2480, h = 64, σ = 3.2} and estimated the security of these parameters
to 80 bits. Han and Ki [8] proposed new parameter sets, one of which had 128-bit
of security: {N = 216, log(Q) = 1450, h = 64, σ = 3.2}. However, these estimates
are based on results obtained using Albrecht’s estimator [18] which, at the time, did
not take the most recent attacks on sparse keys into account. In more recent work
from Son and Cheon, the security of the parameter set {N = 216, log(Q) = 1250,
h = 64, σ = 3.2} was estimated at 113 bits. This sets a loose upper bound to the

7

parameters proposed by Han and Ki, which have a 1450 bits modulus. Therefore, the
bootstrapping parameters must be updated to comply with the most recent security
recommendations, as none of the current works achieves a security of 128 bits.

3 Scale-Invariant Polynomial Evaluation

In theory, any function that can be approximated by a polynomial can also be evaluated
using the full-RNS CKKS scheme. In practice, however, managing the scale throughout
a polynomial evaluation in the scheme is not straightforward, and is typically left to
the scheme user. Addressing this issue in a generic and practical way is crucial for the
adoption of CKKS. As a significant step toward this goal, we introduce a homomorphic
polynomial evaluation algorithm that preserves the scale of a ciphertext.

Approximate Rescale The main disadvantage of the full-RNS variant of the CKKS
scheme stems from its rescale operation, which does not divide the scale by a power-of-
two, as in the original scheme, but by one of the moduli. Those moduli are chosen, for
efficiency purposes, as distinct NTT-friendly primes of the form 2s + k2N + 1 where s
is a positive integer, k a non-zero integer and N the ring degree. Under this constraint,
the power-of-two rescale of the original CKKS scheme can only be approximated. The
exact ciphertext scale needs to be tracked and the rescale treated as an exact division in
order to avoid introducing errors. Thus, ciphertexts at the same level can have slightly
different scales (depending on the previous homomorphic operations and the level at
which they were previously rescaled). The exact scale resulting from the homomorphic
sum between two ciphertexts at different scales is undefined, forcing the user to reconcile
these scales.

The Scale Reconciliation Problem Let ct1, ct2, ct3 be three ciphertexts with
respective scales ∆1 ≈ ∆2 ≈ ∆3 and at respective levels `1, `2, `3. When computing
the monomial ct1 · ct2 + ct3, there are three options to apply the rescale:

• Early rescale: Rescale the result of ct1 ·ct2, then add ct3. As the additions between
two ciphertexts of different scales is not defined, we choose to set the scale to the
maximum of the two different scales (assuming that their difference is less than
1). This option ensures an optimal level consumption, since the resulting level will
be min(min(`1, `2) − 1, `3). However, it introduces an error proportional to the
difference between the scale of rescale(ct1 · ct2) and ct3.

• Late rescale: Scale ct3 upward to (exactly) match the scale of ct1 · ct2, add ct3,
then rescale the result. This option results in no error, as the two scales match,
but it will not ensure an optimal level consumption, as the resulting level will be
min(min(`1, `2)− 1, `3 − 1).

• Dynamic rescale: Apply Early rescale if min(`1, `2) > `3, and apply Late rescale
otherwise. This option ensures an optimal level consumption while minimizing the
number of additions between ciphertexts at different scales.

The choice of the scale-matching strategy significantly impacts the output precision
and level-consumption when homomorphically evaluating a polynomial of large degree
with the baby-step-giant-step approach (described below). This is highly relevant for
our bootstrapping procedure, where relaxing the constraint on sparse keys requires a
polynomial evaluation of degree ≈ 450.

8

Algorithm 1: BSGS algorithm for degree-d polynomials in
Chebyshev basis

Input: p(u) =
∑d
i=0 ciTi(u), a degree-d polynomial and a point t.

Output: The evaluation of p(u) at the point t.
1 m← dlog(d+ 1)e
2 l← bm/2c
3 T0(t) = 1, T1(t) = t
4 Evaluate T2(t), T3(t), . . . , T2l(t) and T2l+1(t), . . . , T2m−1(t) using

Ti=a+b(t)← 2Ta(t)Tb(t)− T|a−b|(t).
5 Find q(u) and r(u) such that p(u) = q(u) · T2m−1(u) + r(u).
6 Recurse on step 5 by replacing p(u) by q(u) and r(u) and m by m− 1, until

the degree of q(u) and r(u) is smaller than 2l.
7 Evaluate q(u) and r(u) at the point t using T2i(t) for 0 ≤ i < l.
8 Evaluate p(u) at the point t using q(t), r(t) and T2m−1(t) according to the

chosen scale-matching strategy.
9 return p(t)

Baby Step Giant Step (BSGS) algorithm In their bootstrapping circuit,
Han and Ki [8] adapt a generic baby-step giant-step polynomial evaluation algorithm
to encrypted polynomials in Chebyshev basis, to minimize the number of ciphertext-
ciphertext multiplications. Algorithm 1 gives a high-level description of the procedure.

For a polynomial p(t) of degree d, with m = dlog(d+1)e and l = m/2, the algorithm

first decomposes p(t) into a linear combination of ui(t) =
∑2l−1
j=0 ci,jTj(t), with ci,j ∈

C and T0≤j≤2l a pre-computed power basis, such that p(t) =
∑bd/lc
i=0 ui(t)Ti·l(t). We

denote ubd/lc(t) as umax. The BSGS algorithm then recursively combines the monomials
u′i(t) = ui+1(t) · T (t) + ui(t) in a tree-like manner using a pre-computed power basis
T2l≤i≤m(t) to minimize the number of non-scalar multiplications. The algorithm requires
2l + m− l− 3 + d(d+ 1)/2le non-scalar products and has, in the best case, depth m.

Table 1 reports empirical results on the impact of the different rescale approaches
for the homomorphic evaluation of the function f(x) = cos(2π(x − 0.25)/2r) followed
by r evaluations of the double angle formula cos(2x) = 2 cos2(x)− 1 (each consuming
one level). This function plays a central role in the bootstrapping and is therefore an
ideal candidate to evaluate the impact of the proposed approaches (see Section 5.4). We
observe that the dynamic approach successfully guarantees optimal level consumption
and provides a close-optimal precision, but it cannot prevent a scale deviation of ≈ 2−30

(when normalized). This deviation is significant with respect to the output precision
of 2−37, and represents a loss of ≈ 7 bits in subsequent additions.

In Section 3.1, we show how to make this evaluation scale-invariant at no extra
cost. This achieves the two-fold effect of preventing error due to scale deviation and
making the polynomial evaluation easier to use as a black-box. We also observe that,
in practice, Algorithm 1 consumes more than m levels when d > 2m − 2l−1. In Section
3.2, we show how to achieve an optimal level consumption in this case.

3.1 Scale-Invariant Polynomial Evaluation

Our solution to the problem of the rescale error for the evaluation of a polynomial

p(t) is to scale each of the coefficients of the ui(t) =
∑j<2l

j=0 ci,jTj(t) terms of the

9

log(1/ε) for (K, d, r)
Rescale ∆ε (12, 34, 2) (15, 40, 2) (17, 44, 2) (21, 52, 2) (257, 250, 3)

Alg. 1 ([8])
Early 2−31.44 30.36 30.05 29.73 29.19 25.00
Late 2−28.48 37.52 37.80 37.40 37.05 29.41

Dynamic 2−28.84 37.52 37.75 36.24 31.06 29.43

Alg. 2 (ours)
Early 0 37.37 37.16 37.15 37.04 29.46

Dynamic 0 37.63 37.75 37.50 37.05 29.43

Table 1: Comparison of the homomorphic evaluation of a Chebyshev interpolant
of degree d of cos(2π(x − 0.25)/2r) in the interval (−K/2r,K/2r) followed by
r evaluations of cos(2x) = 2 cos2(x) − 1. The scheme parameters are N = 216,
n = 215 slots, h = 196, 55-bit moduli and an initial scale ∆ = 255 (similar to
the bootstrapping parameters). ∆ε is the normalized scale difference between
the input and output scales, i.e. |∆in −∆out| ·∆−1

in .

decomposed polynomial p(t) by some value ∆i,j such that, during all the steps of
the polynomial evaluation, the rescales are exact and the additions are done between
ciphertexts with matching scales. At a high level, this is achieved by starting from the
desired output scale, back-propagating it through each multiplication and addition in
the algorithm, and computing what scale each ciphertext should have during those
operations. Eventually, the back-propagation reaches the coefficients ci,j of the ui(t)
terms and we obtain the appropriate values by which they must be scaled. We exemplify
our approach with a toy example p(t) of degree d = 15 in Figure 1.

Algorithm 2 is our proposed algorithm for polynomial evaluation, that integrates
our scale-propagation for the computation of the coefficient scales. It recursively com-
putes the scale of q(t) to match the scale of r(t) after being multiplied by T2m-1 and
rescaled. Conversely, the scale of r(t) is also recursively computed, such that the final
scale of the ciphertext, after the polynomial evaluation, either remains unchanged or
matches a desired scale; this is the reason why we denote this method as scale-invariant.

Table 1 reports the empirical precision of Algorithm 2. We observe that our ap-
proach successfully prevents the scale discrepancies and achieves near-exact additions
between ciphertexts (up to the inherent and unavoidable rounding errors), achieving
an optimal depth, along with a scale-invariant evaluation that does not impact the
precision. For experimental purposes, we also evaluated a modification of Algorithm 2
using the early rescale strategy. There is no significant loss in precision, as Algorithm
2 prevents additions between ciphertexts of different scales.

3.2 Optimal Level Consumption

In practice, Algorithm 1 can consume more than m levels because of how the rescale
and level management work in the full-RNS variant of the CKKS scheme. In particular,
for a polynomial p(t) of degree d with m = dlog(d + 1)e and l = bm/2c, if d > 2m −
2l−1, the depth will increase to m + 1. Given p(t) =

∑bd/lc
i=0 ui(t)Ti·l(t) with ui(t) =∑2l−1

j=0 ci,jTj(t), the depth to evaluate p(t) is determined by the depth of umax(t)Tmax·l(t)
(umax = ubd/lc), which are evaluated sequentially as follows:

((((2l−1∑
j=0

cmax,jTj(t)

)
· T2l(t)

)
· T2l+1(t)

)
· · ·
)
· T2m-1(t).

10

Δ4,𝑗 ⋅ Δ𝑇𝑗(𝑡)

𝑞ℓ
= Δ4

Δ3,𝑗 ⋅ Δ𝑇𝑗(𝑡)

𝑞ℓ
= Δ3

Δ2,𝑗 ⋅ Δ𝑇𝑗(𝑡)

𝑞ℓ−2
= Δ2

Δ1,𝑗 ⋅ Δ𝑇𝑗(𝑡)

𝑞ℓ−2
= Δ1

Δ0,𝑗 ⋅ Δ𝑇𝑗(𝑡)

𝑞ℓ−2
= Δ0

Δ4 ⋅ Δ𝑇2 𝑡

𝑞ℓ−1
= Δ3 Δ3 ⋅ Δ𝑇4 𝑡

𝑞ℓ−2
= Δ2

Δ2 ⋅ Δ𝑇8 𝑡

𝑞ℓ−3
= Δ0

Δ1 ⋅ Δ𝑇4 𝑡

𝑞ℓ−3
= Δ0

Δ0𝑢3(𝑡)

𝑢2(𝑡)

𝑢1(𝑡)

𝑢0(𝑡)

Fig. 1: Scale propagation for the evaluation of p(t) = u0(t) + u1(t) · T4(t) +
(u2(t) + u3(t) · T4(t)) · T8(t). The coefficient scale factors ∆i,j of the ui(t) terms
are computed as ∆iq`i/∆Tj where j is the degree of ui(t). The evaluation of
u3(t) is different, to ensure an optimal depth consumption (see Section 3.2). The
symbol ⊕ denotes an addition between two (matching) scales.

Due to the multiplications with ci,j , the depth to evaluate umax(t) is l + 1, which
brings it one level below the first power-of-two basis T2l , i.e. one additional level is
consumed. However, as long as the multiplication with the successive power-of-two
basis T2i has at least one “gap” (one of the T2i is not used), this additional level can
be “absorbed by the gap” and the resulting depth remains m. This is however not the
case when d > 2m − 2l−1, because all the T2i are used, and the depth becomes m + 1.

Our solution to this problem is to optimally evaluate ubd/lc(t), i.e. its depth is at
most l. To do so, we recursively call again the algorithm on ubd/lc(t) if d ≤ 2m − 2l−1

and until l = 1. This ensures the lowest possible decomposition level: l = 1, for which
the case d ≤ 2m − 2l−1 does not happen. E.g., ax3 could be evaluated as a · x3, which
would consume 1+2 levels, but by decomposing it as (a · x) · x2 we instead consume
1+1 levels (the constant multiplication is absorbed). These additional recursions add
dlog(d−2m+2l−1+1)e non-scalar multiplications, but enable the systematic evaluation
of any polynomial using exactly m levels, as illustrated in the toy example of Figure 1.

3.3 Conclusions

For an extra cost of dlog(d−2m+2l−1+1)e ciphertext-ciphertext products, our algorithm
guarantees an optimal depth, thus an optimal level consumption. This extra cost is
negligible, compared to the base cost of Algorithm 1, which is 2l+m−l−3+d(d+1)/2le.

Also, our proposed algorithm offers the possibility to choose the output scale and to
guarantee that rescales and additions throughout the entire polynomial evaluation are
exact, hence preventing the precision loss related to the scale deviation, and making the
procedure easier to use. In Section 5, we show that these features are highly relevant for
an efficient bootstrapping procedure. As linear transforms and constant multiplications
can already be made scale-invariant, our scale-invariant polynomial evaluation is the
remaining building block to enable scale-invariant circuits of arbitrary depth.

11

Algorithm 2: EvalRecurse

Input: A target scale ∆, an upper-bound m, a stop factor l, a degree-d
polynomial p(t) = {c0, . . . , cd}, and a power basis
T = {T0, . . . , T2l , T2l+1 , . . . , T2m}, pre-computed for a ciphertext ct.

Output: A ciphertext encrypting the evaluation of p(ct).
1 if d < 2l then

2 if p(t) = umax(t) and l > 2m - 2l−1 and l > 1 then
3 m← dlog(d+ 1)e
4 l← bm/2c
5 return EvalRecurse(∆, p(t),m, l, T)

6 else
7 ct← bc0 ·∆ · qTde
8 for i = d; i > 0; i = i− 1 do
9 ct← Add(ct,MultConst(Ti, b(ci ·∆ · qTd)/∆Tie))

10 end
11 return Rescale(ct)

12 end

13 end
14 m← m− 1
15 Express p(t) as q(t) · T2m + r(t)
16 ct0 ← EvalRecurse((∆ · qTm−1)/∆Tm , q(t),m, l, T)
17 ct1 ← EvalRecurse(∆, r(t),m, l, T)
18 ct0 ← Mul(ct0, T2m)
19 if level(ct0) > level(ct1) then
20 ct0 ← Add(Rescale(ct0), ct1)
21 else
22 ct0 ← Rescale(Add(ct0, ct1))
23 end
24 return ct0

4 Key-switch and Improved Matrix-Vector Product

The key-switch procedure is the generic public-key operation in the CKKS scheme. By
generating specific public switching-keys derived from secret keys s′ and s, it is possi-
ble to enable public re-encryption of ciphertexts from key s′ to s. Beyond the public
encryption procedure (switching from s′ = 0 to s), key-switch is required by most ho-
momorphic operations to cancel the effect of encrypted arithmetic on the decryption
circuit, ensuring the compactness of the scheme. More specifically, homomorphic mul-
tiplication requires re-encryption from key s2 back to s, whereas slot-rotations require
re-encryption from the equivalent rotation of s back to s. The cost associated with the
key-switch dominates the cost of these operations by one to two orders of magnitude
(because it requires several NTTs and CRT reconstructions). Hence, optimizations of
the key-switch algorithm have a high impact on the overall efficiency of the scheme.

We propose an optimized switching-key format and associated key-switch algorithm
(Section 4.1). We then apply them to the specific case of rotation-keys, and further
improve the hoisted rotation technique (Section 4.2), as introduced by Halevi et al.
[13]. Finally, we propose a modified procedure for matrix-vector multiplications over

12

Algorithm 3: key-switch

Input: c ∈ RQ` , the switching key swks→s′ (both in the NTT domain).
Output: (a′, b′) ∈ R2

Q`
.

1 d← Decompose(c) (Algorithm 9 in Appendix D)

2 (a, b)←∑
d(i) · swkqαi // d(i) =

[
[c]qαi

]
Q`P

3 a′ ← ModDownNTT(a) (Algorithm 10 in Appendix D) // a′ = bP−1 · ae
4 b′ ← ModDownNTT(b) // b′ = bP−1 · be
5 return (a′, b′)

packed ciphertexts (Section 4.3) that features a new double-hoisting optimization. For
each procedure, we provide mathematical notes to enable an efficient implementation.

4.1 Improved Key-switch Keys and Procedure

Given a ciphertext modulus QL =
∏L
j=0 qj , we use a basis w composed of products

among the qi, as described by Han and Ki [8]. In addition, we include the entire
base w in the keys, as done by Bajard et al. and Halevi et al. [19], [20]; this saves
one constant multiplication during the key-switch and enables a simpler key-switch
keys generation. Hence, we propose a simpler and more efficient hybrid between these
previous approaches (an overview of which is given in Appendix B).

Specifically, our basis is w(i) = QL
qαi

[(QL
qαi

)−1]qαi with qαi =
∏min(α(β+1)−1,L)
j=αβ qj for

0 ≤ i ≤ β, β = d(L + 1)/αe and α a positive integer. Thus, the key-switch keys have
the following format:

swk0
qαi

= [−ais+ s′ · P · QL
qαi
· [(QL

qαi
)−1]qαi + ei]QLP ,

swk1
qαi

= [ai]QLP .

We set P =
∏α−1
j=0 pj , and the bit-size of P such that qαi ≤ P, ∀αi. As shown by

Han and Ki [8], this leads to a negligible error introduced by the key-switch operation.
Algorithm 3 describes the associated key-switch procedure. Since the decomposition
basis is already included in the key, there is no need to multiply it to each decom-
posed components as a part of the final ciphertext re-composition and no need to store
additional constants.

Remark 1. We note that the base-w RNS decomposition in the key-switch algorithm
is achieved by switching the polynomial out of the NTT domain, reducing the poly-
nomial modulo each qαi and switching it back to the NTT domain. We observe that
[[a]QL]qαi = [a]qαi if qαi divides QL. Thus, for all moduli shared between qαi and
QL, the vectors before and after the decomposition are unchanged. Hence, the NTT
representation of those vectors can be obtained at no cost, as they are directly given
by the polynomial to decompose. This observation saves up to α · d(L + 1)/αe NTTs
during the Decompose step. The complexity analysis is derived in Appendix C.1.

Remark 2. When qj does not divide qαi , then w(i) ≡ 0 mod qj ; otherwise, w(i) ≡ 1
mod qj . This enables a simpler implementation of the key-switch key generation and
no constants need to be computed or stored: In the case of qj dividing qαi , we can
replace w(i) by 1, and for all other qj and all factors of P we can replace w(i) by 0.

13

4.2 Improved Hoisted Rotations

The rotation operation in CKKS is defined by the automorphism φk : X → X5k (modXN+
1). Its effect is to rotate the message slots by k positions to the left4. Rotations are
extensively used by circuits such as matrix multiplications. After a rotation, the secret
under which the ciphertext is encrypted is changed from s to φk(s). Thus, a key-switch
φk(s)→ s must be applied to go back to the original key.

Halevi et al. [13] show that since φk is an automorphism, it distributes over addi-
tion and multiplication, hence it commutes with the power-of-two base decomposition.
Since φk acts individually on the coefficients by permuting them without changing
their norm (the modular reduction by XN + 1 will at most induce a sign change),
it also commutes with the special RNS decomposition (see Eq. (1) in Appendix B):
[φk(a)]qαi = φk([a]qαi). If we view a polynomial of RQL as an (L+ 1)×N matrix, the
effect of φk is to permute its columns; the coefficient-wise modular reduction (and RNS
basis extension) independently acts on each column, and both operations commute.

Hence, when several rotations have to be applied on the same ciphertext, [a]qαi
can be pre-computed an re-used for each subsequent rotation:

∑
φk([a]qαi) · rotk,qαi .

Whereas the procedure proposed by Halevi et al. requires the computation of the
automorphism for each of the aqαi , this technique significantly reduces the number of
NTTs and CRT reconstruction, and thus the overall complexity (see Appendix C.1).

We further exploit the properties of the automorphism to reduce its execution cost,
by observing that φ−1

k can be directly pre-applied on the rotation keys:

r̃ot
0
k,qαi

= [−aiφ−1
k (s) + s · P · QL

qαi
· [(QL

qαi
)−1]qαi + ei]QLP ,

r̃ot
1
k,qαi

= [ai]QLP .

Compared to a rotk,qαi , a traditional rotation key as defined in Section 2.1, the
required number of computed automorphisms per-rotation can be reduced to only one:∑

φk([a]qαi) · rotk,qαi = φk
(∑

[a]qαi · r̃otk,qαi

)
.

Our improved algorithm for hoisted rotations is detailed in Algorithm 4. We mini-
mize the number of evaluations of φ in Algorithm 4, making it constant regardless of
the ciphertext level or the basis decomposition.

Let r be the number of rotations, N the ring degree, ` the current level and β =
d(`+1)/αe, with α a positive integer. The total complexity of this algorithm in number
of integer multiplications (derived in Appendix C.2), that we denote #MulZp , is

#MulZp = N · log(N) ·
(

(`+ 1) · (β + 1 + 2r) + 2rα
)

+N · (`+ 1) ·
(
βα+ 2r · (α+ β + 1)

)
+N · α ·

(
β + 2r · (β + 1)

)
.

Figure 2 compares the complexity of regular and hoisted rotations for varying
number of rotations r and ciphertext level `. It shows that using hoisted rotations

4To give an intuition of this operation, we refer to the encoding matrix SFn in
Section 5.3. Raising each root of unity to the power of 5k is the same as shifting the
rows of the encoding matrix by k positions.

14

Algorithm 4: Optimized Hoisting Rotations

Input: ct = (c0, c1) ∈ R2
Q`

and a set of r rotation keys r̃otrk (both in the NTT
domain).

Output: v a list containing each kr rotation of ct.
1 d← Decompose(c1) (Algorithm 9 in Appendix D)
2 foreach rk do

3 (a, b)←∑
d(i) · r̃otrk,qαi

4 (a′, b′)← (ModDownNTT(a),ModDownNTT(b)) (Algorithm 10 in
Appendix D)

5 vrk ← {φrk (c0 + a′), φrk (b′)}
6 end
7 return v

0 5 10 15 20 25 30

0

2

4

6

8

·109

r

#
M
u
l Z

p

Hoisted

Normal

(a) Varying number of rotations r. Pa-
rameters: {N = 216, ` = 21, α = 4, β =
d(`+ 1)/αe}.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

·1010

`

#
M
u
l Z

p

Hoisted

Normal

(b) Varying input levels ` for r = 20 ro-
tations. Parameters: {N = 216, α = 4, β =
d(`+ 1)/αe}.

Fig. 2

scales significantly better for any r > 1 and any level `. This is especially the case
when ` is large, which is relevant for the bootstrapping, whose first step is a linear
transformation computed at the maximum ciphertext level.

4.3 Faster Matrix-Vector Operations

We now discuss the application of homomorphic slot-rotations to the computation
of matrix × vector products on packed ciphertexts. The ability to efficiently apply
generic linear transformations to encrypted vectors is pivotal for most applications.
In particular, the homomorphic computation of the CKKS encoding and decoding
procedures, which carried a prohibitive cost in the original bootstrapping procedure,
are linear transformations.

Halevi and Shoup proposed to express an n× n matrix M in diagonal form and to
use a baby-step giant-step (BSGS) algorithm to evaluate the matrix product in O(

√
n)

rotations [21], [22]. At the time of writing, all the existing bootstrapping procedures

15

are based on this approach. We now break down the cost of the BSGS algorithm,
analyze its components, and, based on our observations, present our improvements to
this approach.

Dominant Complexity of Rotations The dominant cost factor of the BSGS
algorithm of Halevi et al. is the number of rotations, as these require key-switch oper-
ations. These rotations comprise four steps:

1. Decompose: Decompose a polynomial of RQ` in base w and return the result in
RQ`P . This operation requires NTTs and CRT basis extensions.

2. MultSum: This is a sum of products of polynomials in RQ`P . This operation only
requires coefficient-wise additions and multiplications.

3. ModDown: Divide a polynomial of RQ`P by P and return the result in RQ` . This
operation requires NTTs and CRT basis extensions.

4. Permute: Apply the automorphism φk on a polynomial of RQ` . This operation is
only a permutation of the coefficients and has no impact on complexity.

Let n be the number of non zero diagonals of M , and two integers n1, n2 such that
n = n1n2, the complexity of the original BSGS algorithm (Algorithm 14 in Appendix
D) is n1 + n2 rotations, which is minimized when n1 ≈ n2 (because the n2 rotations
can be pre-computed and reused):

(n2 + n1) · (Decompose + MultSum + ModDown + Permute),

to which we must also add 2n2n1 multiplications and additions in RQ` (lines 8 and
9 of Algorithm 14). We denote inner loop and outer loop the loops that respectively
depend on the value n1 and n2.

Figure 3 shows the weight of each four steps within the total complexity of `
rotations (see Appendix C.2 for the underlying complexity analysis). The complexity
of the steps MultSum and Permute is close to negligible compared to Decompose and
ModDown, as products and additions are very cheap compared to NTTs and CRT basis
extensions. We base our optimizations on that observation.

Improved BSGS Algorithm We propose a new optimization that we refer to
as double-hoisting. This optimization reduces the complexity related to the inner-loop
rotations by an order of magnitude, and consists in two hoisting levels. The first level
applies to the inner-loop rotations (lines 7 to 10 of Algorithm 14), as proposed by
Halevi et al. [13]. This renders the computation dedicated to Decompose independent
of the value n1, so the complexity is reduced to

n2 · (Decompose + MultSum + ModDown + Permute)

+ n1 · (MultSum + ModDown + Permute) + Decompose.

The second level introduces an additional hoisting for the inner-loop rotations, by
observing that the ModDown step is a coefficient-wise operation. Thus, this operation
commutes with the Permute step and the ciphertext-plaintext multiplications (line 8
of Algorithm 14). We therefore apply it only once after the entire inner loop of n1

rotations is finished, reducing the number of key-switch operations from n1 + n2 to

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

0.2

0.4

0.6

0.8

1

`

#
M
u
l Z

p
o
p
./
#
M
u
l Z

p
to
t.

Decompose MultSum ModDown Permute

Fig. 3: Normalized complexity of each step (op.) of a rotation. The complexity
for each operation was computed with N = 216, 0 ≤ ` ≤ 23 and α = 4 using the
derivation of Appendix C.2.

n2 +1. Applying the same reasoning for the ModDown step of the outer-loop rotations,
the complexity is reduced to:

n2 · (Decompose + MultSum + ModDown + Permute)

+ n1 · (MultSum + Permute) + Decompose + ModDown.

Our double-hoisting BSGS matrix × vector is described in Algorithm 5.

Remark 3. In line 6 of Algorithm 5, the input c0 is given in RQ` and must be extended
to RQ`P . However, c0 is also multiplied by P , so all its coefficients in RP would be
zero. Hence, the expensive basis extension can be avoided.

Remark 4. Algorithm 5 is presented with M given in plaintext, but the adaptation
to an encrypted M is trivial and would not significantly impact the complexity (as
long as M does not need to be manipulated or modified). Indeed, hoisting can also be
applied to the relinearization of the ciphertext-ciphertext multiplications by summing
the results in R3

Q`P
in the inner loop and applying the relinearization R3

Q`
→ R2

Q`
step

only once per outer loop.

Discussion In addition to benefiting from our improved key-switch (Section 4.1) and
rotation (Section 4.2) procedures, Algorithm 5 introduces a trade-off: The ModDown
step in the inner loop is now dependent on the value n2, and the ModDown step of
the outer loop only has to be performed once. However, the 2n1n2 multiplications
and additions have to be performed in RQ`P instead of RQ` . Hence, the complexity

17

Algorithm 5: Double-hoisting BSGS matrix×vector algorithm

Input: ct = (c0, c1) ∈ R2
Q`

a ciphertext, Mdiag
i ∈ RQ`P the set of pre-rotated

and encoded diagonals of M a plaintext n× n matrix, n1n2 = n,
roti ∈ R2

Q`P
the set of necessary rotations keys.

Output: The evaluation of M× ct.
1 d← Decompose(c1) // Q` → Q`P
2 foreach kn1 do

3 akn1
← φkn1

(P · c0 +
∑
d(i) � r̃ot

(0)
kn1

,qαi
) // ∈ Q`P

4 bkn1
← φkn1

(
∑
d(i) � r̃ot

(1)
kn1 ,qαi

) // ∈ Q`P
5 end
6 r0, r1, r2 ← (0), (0), (0)
7 foreach kn2 do
8 u0, u1 ← (0), (0)
9 foreach kn1 do

10 u0 ← u0 + akn1
�Mdiag

kn1
// ∈ Q`P

11 u1 ← u1 + bkn1
�Mdiag

kn1
// ∈ Q`P

12 end
13 u0 ← ModDownNTT(u0) // Q`P → Q`
14 u1 ← ModDownNTT(u1) // Q`P → Q`
15 d← Decompose(u1) // Q` → Q`P

16 r0 ← r0 + φkn2
(
∑
d(i) � r̃ot

(0)
kn2

,qαi
) // ∈ Q`P

17 r1 ← r1 + φkn2
(
∑
d(i) � r̃ot

(1)
kn2 ,qαi

) // ∈ Q`P
18 r2 ← r2 + φkn2

(u0)

19 end
20 r0 ← ModDownNTT(r0) // Q`P → Q`
21 r1 ← ModDownNTT(r1) // Q`P → Q`
22 return (r0 + r2, r1)

dependency on the value n1 is significantly reduced at the cost of slightly increasing
the complexity dependency on n1n2.

Table 2 compares the complexity of a non-hoisted (for reference), single-hoisted
(Algorithm 14) and double-hoisted (Algorithm 5) BSGS, with the optimal ratio n1/n2

for each of the approaches. Our approach minimizes the complexity when 23 ≤ n1/n2 ≤
24. This shows that the strategy of the previously proposed bootstrapping procedures
[7]–[9], which target n1 ≈ n2 to minimize the number of rotations, is not optimal
anymore. The maximum gain happens when n (the number of non zero diagonals)
is around 128 and then falls again for smaller values. This behavior can be exploited
by factorizing the linear transforms used during the bootstrapping into several sparse
matrices (see Section 5.3).

It must be noted that, whereas Algorithm 5 reduces the overall complexity of
matrix × vector products, it also induces an increase in the number of used rotation
keys. Therefore, it introduces a time-memory trade-off.

18

Original 1-hoisted [13] 2-hoisted [Ours] Speed-
n n1/n2 log(#MulZp) n1/n2 log(#MulZp) n1/n2 log(#MulZp) up

32768 2 37.276 2 36.913 8 36.813 1.378×
16384 1 36.500 4 36.114 16 35.903 1.512×
8192 2 35.865 2 35.364 8 35.055 1.753×
4096 1 35.152 4 34.648 16 34.205 1.927×
2048 2 34.597 2 33.981 8 33.446 2.219×
1024 1 33.927 4 33.337 16 32.672 2.386×
512 2 33.422 2 32.732 8 32.014 2.653×
256 1 32.769 4 32.137 16 31.318 2.733×
128 2 32.282 2 31.568 8 30.753 2.886×
64 1 31.614 4 30.992 16 30.127 2.804×
32 2 31.112 2 30.430 8 29.637 2.779×
16 1 30.375 4 29.842 16 29.311 2.090×
8 2 29.792 2 29.248 2 29.116 1.596×

Table 2: Complexity comparison between the original Algorithm 14, Algorithm
14 with single hoisted rotations and Algorithm 14 with double hoisted rotations
(Algorithm 5). M is a 215 × 215 matrix with n = n1n2 non zero diagonals. The
used parameters are N = 216, 215 slots, ` = 18 and α = 4. The speed-up factor is
the ratio between the #MulZp of the original algorithm (1-hoisting was not used
in the bootstrapping procedures of [7]–[9]) and our double hoisted algorithm.

5 Bootstrapping for the Full-RNS CKKS Scheme

We present our improved bootstrapping procedure for the full-RNS variant of the CKKS
scheme. We follow the high level procedure of Cheon et al. [7] (Section 5.1) and adapt
each step, relying on the techniques proposed in Sections 3 and 4.

The purpose of the CKKS bootstrapping [7]–[9], in contrast with the BFV [23]
and BGV [24] bootstrapping, is not to reduce the error. Instead, it is meant to re-
set the ciphertext modulus to a higher level, in order to enable further homomorphic
multiplications. The approximate nature of the CKKS scheme, due to the plaintext
and ciphertext error being mixed together, implies that each homomorphic operation
decreases the output precision. Hence, all the currently proposed bootstrapping cir-
cuits only approximate the ideal bootstrapping operation, and their output precision
determines their practical utility.

5.1 Circuit Overview

Let {ct = (c0, c1), Q0,∆} be a ciphertext that encrypts an n-slot message under a
secret-key s with hamming weight h, such that Decrypt(ct, s) = c0+sc1 = b∆ ·m(Y)e+
e ∈ Z[Y]/(Y 2n+1), where Y = XN/2n. The bootstrapping operation outputs a cipher-
text {ct′ = (c′0, c

′
1), QL−k,∆} such that c′0 + sc′1 = b∆ ·m(Y)e+ e′ ∈ Z[Y]/(Y 2n + 1),

where k < L is the number of levels consumed by the bootstrapping and ||e′|| ≥ ||e|| is
the error that results from the combination of the initial error e, homomorphic opera-
tions, rounding during the rescale and encoding, and function approximations.

The bootstrapping circuit is divided into five steps that we detail below. For the
sake of conciseness, we describe the plaintext circuit and omit the error terms.

19

1. ModRaise: ct is raised to the modulus QL by applying the CRT map Rq0 → Rq0 ×
Rq1 × · · · ×RqL . This yields a ciphertext {ct, QL,∆} for which

[c0 + sc1]QL = Q0 · I(X) + b∆ ·m(Y)e = m′,

where Q0 · I(X) =
[
− [sc1]Q0 + sc1

]
QL

is an integer polynomial for which ||I(X)||
is O(

√
h) [7]. The next four steps are aimed at removing this unwanted Q0 · I(X)

polynomial by homomorphically evaluating an approximate modular reduction by
Q0.

2. SubSum: if 2n 6= N , then Y 6= X and I(X) is not a polynomial in Y . SubSum maps
Q0 · I(X) + b∆ ·m(Y)e to (N/2n) · (Q0 · Ĩ(Y) + b∆ ·m(Y)e), a polynomial in Y [7].

3. CoeffsToSlots: The message m′ = Q0 · Ĩ(Y) + b∆ · m(Y)e is in the coefficient
domain, i.e. m′ = ∆·b(Q0/∆)·Ĩ(Y)+m(Y)e, which prevents slot-wise evaluation of
the modular reduction. This step homomorphically evaluates the inverse discrete-
Fourier-transform (DFT) and produces a ciphertext encrypting Encode(m′) that
enables the slot-wise evaluation of the approximated modular reduction.
Remark : This step returns two ciphertexts, each encrypting 2n real values. If 4n ≤
N , these ciphertexts can be repacked into one. Otherwise, the next step is applied
separately on both ciphertexts.

4. EvalSine: The modular reduction f(x) = x mod 1 is homomorphically evaluated
on the ciphertext(s) encrypting Encode(m′). This function is approximated by
Q0

2π∆
· sin

(2π∆x

Q0

)
, which is tight when Q0/∆� ||m(Y)||. Because the range of x

is determined by ||Ĩ(Y)||, the approximation needs to account for the secret-key
density.

5. SlotsToCoeffs: This step homomorphically evaluates the DFT on the ciphertext(s)
encrypting f(Encode(m′)). It returns a ciphertext at level QL−k that encrypts
Decode(f(Encode(m′))) ≈ f(m′) ≈ b∆ ·m(Y)e, which is a close approximation of
the original message.

We now detail our approach for each step. We focus on CoeffsToSlots/SlotsToCoeffs
and EvalSine, because these steps are the most precision- and performance-critical, and
because the latter step requires particular attention when considering dense keys.

5.2 ModRaise and SubSum

We base the ModRaise and SubSum operations directly on the initial bootstrapping
of Cheon et al. [7] and provide their respective implementations in Algorithm 11 and
Algorithm 12 in Appendix D. The SubSum step multiplies the encrypted message by a
factorN/2n that needs to be subsequently cancelled. We take advantage of the following
CoeffsToSlot step, which is a linear transformation, to scale the corresponding matrices
by 2n/N . Since we also use this trick for grouping other constants, we elaborate more
on the matrices scaling in Appendix E.

5.3 CoeffsToSlots and SlotsToCoeffs

We show how to reduce the algorithmic complexity of the CoeffsToSlots and SlotsToCo-
effs operations by applying our matrix-vector multiplication procedure and the double
hoisting technique of Section 4.3 to the DFT-matrix×vector product.

20

Overview Let n be a power-of-two integer such that 1 ≤ n < N ; the following holds
for any two vectors m,m′ ∈ Cn due to the convolution property of the DFT

Decoden(Encoden(m)⊗ Encoden(m′)) ≈m�m′,

where ⊗ and � respectively denote the nega-cyclic convolution and Hadamard multipli-
cation. That is, the encoding and decoding algorithms define an isomorphism between
R[Y]/(Y 2n + 1) and Cn [6]. The goal of the CoeffsToSlots and SlotsToCoeffs steps is to
homomorphically evaluate this isomorphism on a ciphertext.

Let ψ = eiπ/n be a 2n-th primitive root of unity. Since 5 and −1 mod 2n span

Z2n, {ψ5k , ψ5k , 0 ≤ k < n} is the set of all 2n-th primitive roots of unity. Given
a polynomial m(Y) ∈ R[Y]/(Y 2n + 1) with Y = XN/2n, the decoding algorithm is
defined as the evaluation of this polynomial at each root of unity Decoden(m(Y)) =

(m(ψ),m(ψ5), . . . ,m(ψ52n−1

)). Let m be the vector (m0, . . . ,mn−1) ∈ Cn, then the
encoding algorithm is the inverse operation, which is the interpolation of the vector m

at the points (mi, ψ
5i) and (mi, ψ5i). Thus, the encoding isomorphism is completely

defined by the n× n special Fourier transform matrix

SFn =

1 ψ . . . ψn−2 ψn−1

1 ψ5 . . . ψ(n−2)·5 ψ(n−1)·5

1 ψ52 . . . ψ(n−2)·52 ψ(n−1)·52

...
...

. . .
...

...

1 ψ5n−3

. . . ψ(n−2)·5n−3

ψ(n−1)·5n−3

1 ψ5n−2

. . . ψ(n−2)·5n−2

ψ(n−1)·5n−2

1 ψ5n−1

. . . ψ(n−2)·5n−1

ψ(n−1)·5n−1

,

and its inverse SF−1
n = 1

n
SF

T
n [14], and their homomorphic evaluation can be expressed

in terms of plaintext matrix×vector products:

1. CoeffsToSlots(m) : t0 = 1
2

(
SF−1

n ×m+SF−1
n ×m

)
, t1 = − 1

2
i(SF−1

n ×m−SF−1
n ×m

)
2. SlotsToCoeffs(t0, t1) : m = SFn × (t0 + i · t1).

DFT Evaluation In their initial bootstrapping proposal, Cheon et al. in [7] homo-
morphically compute the DFT as a matrix-vector product, using a baby-step giant-step
(BSGS) approach: Given SFn represented in diagonal form and two integers n1 and n2

such that n = n1n2, Algorithm 14 (in Appendix D) evaluates SFn×m in n1+n2 ≈ 2
√
n

rotations and n plaintext multiplications and additions. This algorithm consumes only
one level and is much more efficient that the näıve one, which would require n rota-
tions. However, it still remains prohibitive for large n, as it involves a large number of
rotations.

To reduce the complexity of Algorithm 14, two recent works from Cheon et al. [14]
and Chen et al. [9] exploit the structure of the equivalent FFT algorithm by recursively
merging its iterations. In matrix form, both approaches aim at finding appropriate
factorizations of SFn (and its inverse)

SFn=⇒M0 × · · · ×Mρ−1︸ ︷︷ ︸
partially factorized

⇐=
[9], [14]

M0 × · · · ×Mlog(n)−1︸ ︷︷ ︸
fully factorized

21

−8−6−4−2 0 2 4 6 8
31

32

33

34

35

36

37

log(n1/n2)

lo
g
(#

M
u
l Z

p
)

(a)SF−1
n = M256×M256

−6−4−2 0 2 4 6
31

32

33

34

35

36

37

log(n1/n2)

(b)SF−1
n =M32×M64×M64

−6 −4 −2 0 2 4
31

32

33

34

35

36

37

log(n1/n2)

Original

1-Hoisted

2-Hoisted

(c)SF−1n =M16×M32×M32×M16

Fig. 4: Theoretical complexity of CoeffToSlots for different DFT factorizations
using Algorithm 14 with no hoisting (original), single hoisting and double hoist-
ing (Algorithm 5).

into ρ matrices. Decreasing ρ reduces the number of consumed levels, but it also results
in denser matrices and an increased number of rotations.

We use our variant of the BSGS matrix-vector multiplication approach (see Sec-
tion 4.3 and Algorithm 5) and combine it with level-merging [9], [14]. This is, we
pre-compute a factorization of SFn (and SF−1

n) into ρ sparse matrices. From the full
factorization into log(n) matrices, we first split the matrices into ρ groups of similar size
and then apply the FFT iteration-merging by multiplying among those groups. This
ensures that the total complexity is evenly distributed across all the final matrices.

Figure 4 shows the impact of our algorithm on the CoeffsToSlots step, compared
with the original BSGS algorithm, for different factorizations corresponding to ρ

SF−1
n

=

{2, 3, 4}. The complexity is computed as the number of elemental products, with pa-
rameters N = 216, a target ` = 17 (the level after CoeffsToSlots) and n = 215 slots.

It can be seen that each level of hoisting reduces the total complexity by a noticeable
amount. The first level of hoisted rotations, as proposed in Section 4.2, changes the
parameters n1, n2 for which the minimum complexity is achieved to n1 ≈ 22n2 instead
of n1 ≈ n2. Using a second level of hoisted rotations further shifts the minimum
complexity to n1 ≈ 24n2. On average, our method reduces the complexity of the linear
transformations in the bootstrapping by a factor of 2.8×. We will show that, for our
best performing parameters, we are able to reduce the run-time of the CoeffsToSlots
and SlotsToCoeffs down to that of the EvalSine (see Section 7).

Efficient Repacking of Sparse Plaintexts. The output of the CoeffsToSlots
is a ciphertext that encrypts a vector of Cn values; it cannot be directly fed to the
EvalSine, since it contains non-zero imaginary values. To solve this issue, we apply the
map Cn → R2n to the vector. The real values of Cn are put in the first n slots of the
vector in R2n, whereas the imaginary values of Cn are multiplied by −i and located in
the last n slots. During the decoding, the inverse mapping R2n → Cn is used. We have
to apply these operations in the encrypted domain before and after the EvalSine.

This map can be computed with simple operations, e.g. conjugation, multiplication
by −i and additions. It outputs two ciphertexts, each encrypting values in Rn. If the

22

original ciphertext is not fully packed (0 < n < N/2 slots), the resulting two ciphertexts
can be repacked back into one, requiring only one evaluation of EvalSine instead of two.

We observe that decoding a plaintext m ∈ Cn using the decoding algorithm for

a plaintext of C2kn slots (assuming that 2kn < N) outputs a vector comprising 2k

concatenated replicas of m:

Encoden(m) = Encode2kn(m| . . . |m︸ ︷︷ ︸
2k

).

Therefore, a ciphertext that encrypts m ∈ Cn can also be seen as a ciphertext
encrypting m′ ∈ C2n for m′ = m||m. This property can be used to save two levels
when operating the repacking and unpacking ciphertexts before and after the EvalSine.

Repacking Before the EvalSine (Cn → R2n): Repacking into one single ciphertext
is done by extending the domain of the plaintext vectors of the last matrix of the
CoeffsToSlots step from Cn to Cn||0n. Thus, the first n slots are set to zero and can be
used to store the imaginary part of the last n slots. The output is therefore a vector
of R2n, which is a valid input for the EvalSine. This repacking involves one additional
rotation, which is a small cost relative to the whole CoeffsToSlots step, and it does not
consume any additional level.

Unpacking After the EvalSine (R2n → Cn): For this operation, we evaluate the
following 2n× 2n matrix on the ciphertext[

In i · In
In i · In

]
,

where In is the n × n identity matrix. This matrix has only two non-zero diagonals,
and its effect is to homomorphically apply the map R2n → Cn||Cn. The first n slots of
the vector in R2n are put in the real part of the complex vector in Cn, whereas the last
n slots of the real vector in R2n are put in the imaginary part of the complex vector.
Finally, the vector in Cn is duplicated to form a vector in C2n = Cn||Cn, which is a
valid encoding of Cn due to the properties of the encoding algorithm. This additional
matrix (transformation) is combined with the first group of the SlotsToCoeffs matrices,
slightly increasing its density.

5.4 EvalSine

EvalSine implements the homomorphic modular reduction of the message∆m·b(Q0/∆m)·
Ĩ(Y) +m(Y)e modulo Q0. The modular reduction is approximated by the function

f(x) =
Q0

∆m

1

2π
sin
(
2πx

∆m

Q0

)
≈ Q0

∆m
·
(∆m

Q0
x mod 1

)
,

which scales the message down to ∆m·bĨ(Y)+(∆m/Q0)·m(Y)e, removes the Ĩ(Y) poly-
nomial by taking the message modulo 1, and scales the message up to ∆ · bm(Y)e. Be-
cause Ĩ(Y) mostly determines the range and degree of the approximation, the EvalSine
step is has to take the secret-key density h into account. More specifically, the range of
approximation (−K,K) is chosen as K = bc(δ) ·

√
he such that Pr[||Ĩ(Y)|| > K] ≤ 2−δ.

We elaborate more on how we choose K with respect to h and δ in Section 6.2.

23

Previous Work Chen et al. [9] directly approximate the function 1
2π
· sin(2πx)

using a standard Chebyshev interpolant of degree d = 119 in an interval of (−K,K) for
K = 12 (using a sparse key with h = 64), that they evaluate using a modified Paterson-
Stockmeyer algorithm. The multiplications by Q0/∆m and ∆m/Q0 are respectively
performed before and after the evaluation of the Chebyshev interpolant. Han and Ki [8]
choose to approximate cos(2π 1

2r
(x− 0.25)) followed by r iterations of the double angle

formula cos(2x) = 2 cos(x)2 − 1 to approximate sin(2πx), and then multiply the result
by 1/2π. The factor 1/2r reduces the range of the approximation to (−K/2r,K/2r),
enabling the use of a smaller-degree interpolant. They combine it with a specialized
Chebyshev interpolation that places the node around the expected intervals of the
input, further reducing the degree of the approximation. In their work, they use an
interpolant of degree 30 with a scaling factor r = 2 (they also use a sparse key with h =
64). This results in a much smaller Chebyshev interpolant degree that reduces the total
amount of steps to evaluate the polynomial and leads to a faster evaluation. However,
their interpolant has a minimum degree of 2K−1 and is not always numerically stable,
especially if r = 0.

Our Work Both methods have d = O(K), therefore doubling K requires at most
doubling d, and the evaluation will require at most one additional level since the Cheby-
shev interpolant can be evaluated in O(log(K)) levels. Hence, precision put aside, the
level consumption should not be a fundamental problem when evaluating the large
degree interpolant required by dense keys. However, the effects of the approximate
rescaling procedure (as described in Section 3), if not properly managed, would sig-
nificantly reduce the output precision. Our EvalSine makes use of our scale-invariant
polynomial evaluation technique (Section 3).

We propose a new modular reduction function f(x) = 1
2π
·sin(2πx) is approximated

by gr(x) a modified cosine approximation followed by r iteration of the double-angle
formula:

g0(x) =
1

2r√
2π

cos
(
2π 1

2r
(x− 0.25)

)
and gi+1 = 2g2i −

(
1

2r√
2π

)2i

.

Our technique includes the 1/(2π) factor directly in the function to approximate, even
when using the double angle formula, without consuming an additional level, impacting
the precision, or fundamentally changing its evaluation.

The ciphertext must be divided by Q0/∆m before the polynomial evaluation and
multiplied by Q0/∆m after. However, Q0 is an NTT-friendly prime and the value
Q0/∆m is not an integer (we assume that ∆m is a power of two). Hence, extra care
must be taken during those scalings to maximize the resulting precision after the boot-
strapping. We solve this problem in three steps. We first pre-multiply the ciphertext
by a correcting factor Q0/2

blog(Q0)e during the CoeffsToSlots step, then perform the
multiplication and division by bQ0/∆me by manipulating the scale during the EvalSine
step, and finally correct back the ciphertext with 2blog(Q0)e/Q0 during the SlotsToCoeffs
step (see Appendix E for further details). With this approach the division is exact and
the shape of Q0 can therefore be chosen to be small and with relatively loose bounds
as long as the ratio between Q0 and the message permits a good approximation of the
modular reduction by the sine function.

We also observed that, when considering dense keys, the specialized interpolation
method of Han and Ki leads to higher interpolant degree than the standard Chebyshev

24

Algorithm 6: EvalSine

Input: {ct, Q`,∆} a ciphertext, p(t) a Chebyshev interpolant of degree d of
f(x) = x mod 1, K the range of interpolation, r a scaling factor.

Output: The scale invariant evaluation ct′ = bQ0/∆me · p(bQ0/∆me−1 · ct).
1 ∆← ∆ · bQ0/∆me // Division by bQ0/∆me
2 T0 ← 1
3 T1 ← MultConst(ct, 2/(2r+1K)) // Change of variable and division by 2r

4 T1 ← AddConst(T1,−0.5/(2r+1K))
5 T1 ← Rescale(T1)
6 m← dlog(d+ 1)e
7 l← bm/2c
8 T ← {T0, T1, . . . , T2l , . . . , T2m−1} // Compute the power basis

9 for i = 0; i < r; i = i+ 1 do

10 ∆←
√
∆ · qL−CtS depth−EvalSine depth−r+i // Compute the appropriate ∆

11 end
12 ct′ ← EvalRecurse(∆,m, l, p(t), T) (Algorithm 2) // Scale invariant

13 θ ← (1/2π)1/2
r

14 for i = 0; i < r; i = i+ 1 do
15 θ ← θ2

16 ct′ ← Mul(ct′, ct′)
17 ct′ ← Add(ct′, ct′)
18 ct′ ← AddConst(ct′,−θ)
19 ct′ ← Rescale(ct′) // ∆← ∆2/qL−CtS depth−EvalSine Depth−i
20 end
21 ∆← ∆ · bQ0/∆me−1 // Multiplication by bQ0/∆me
22 return ct′

interpolation. When K is large, the minimum degree of Han and Ki’s interpolant
for a given precision grows slower than the minimum degree of 2K − 1 imposed by
their method, which is further amplified when using a scaling factor r. Hence, we use
the standard Chebyshev interpolation technique when d ≤ 2K − 1 and the modified
technique of Han and Ki otherwise.

Algorithm 6 details our implementation of the EvalSine procedure. Lines 3 and 5 can
be omitted if the multiplication by 2/(2r+1K) is performed during the CoeffsToSlots
step, therefore saving a level. The ∆ of the ciphertext after polynomial evaluation
(EvalRecurse) takes into account the subsequent evaluations of the double angle formula
such that it remains unchanged after the EvalSine step.

6 Parameter Selection

A proper parameterization is paramount to the security and correctness of the boot-
strapping procedure. Whereas security is based on traditional hardness assumptions,
setting the correctness-related parameters is mostly accomplished through experimen-
tal processes to find appropriate trade-offs between performance and the probability
of decryption errors. In Sections 6.1–6.2, we discuss various constraints and inter-
dependencies in the parameter selection. Then, we propose a generic procedure to find
appropriate parameter sets in Section 6.3.

25

h
log(QP) K

log(QP,N), λ = 128 N = 215 N = 216 K Pr[|xi| ≥ K] K/
√

(h)

64 0.015121N − 8.248756 496 982 12 2−38.8 1.500
96 0.018896N − 3.671642 619 1234 15 2−40.5 1.531
128 0.021370N − 3.601990 699 1396 17 2−39.4 1.502
192 0.023448N − 3.611940 767 1533 21 2−41.3 1.515
N/2 [12] 881 1782 257 2−40.1 1.42

Table 3: Modulus size log(QP) and Sine approximation interval size K for
different secret-key densities h (fixed λ = 128, and Pr[|xi| ≥ K] ≈ 2−40).

6.1 Security

Our security parameter selection is driven by the works of Curtis and Player [12], Cheon
et al. [11], and Son et al. [10]. Our goal is to select a modulus size for h = 128 and h =
196 giving us a security estimated to 128 bits. All three works suggest slightly different
parameters. Extrapolating the work of Cheon et al. [11], we deduce that the parameters
(N = 65536, log(Q) = 1010, h = 64) would achieve a security of about 128 bits. In a
more recent work, Son et al. [10] report that parameters (65536, 1250, 64) provide a
security estimated to 113 bits. Both works focus on showing that the parameters that
are currently commonly used for the bootstrapping do not meet the security standards,
but they do not propose, or show how to select, updated parameters. Conversely, the
work of Curtis and Player takes a more general approach and proposes a systematic
way to extrapolate the security for large rings while taking the key density into account.
We base the choice of the maximum modulus size for 128-bit security on their work.
These values are shown in Table 3 for several choices of h. These are slightly more
conservative for h = 64 than those of Cheon et al. [11] and Son et al. [10].

6.2 Choosing K for EvalSine

The previous works on bootstrapping [7]–[9], [14] use a sparse key with h = 64 and
K = 12. This value K = 12 was experimentally determined by Cheon et al. using the
heuristic assumption that ||Ĩ(Y)|| ≈ O(

√
h) [7]. In practice, this value works well as

the coefficients of Ĩ(Y) hardly ever go above 10. However, this is no longer true for
other values of h, for which new heuristic bounds must be found. For this purpose, we
conducted the following experiment: For each h ∈ [64, 96, 128, 192, 16384] we sampled

105 encryptions of zero in ZQ0 [X]/(X216 + 1), each encrypted with a freshly sampled
secret key; we then decrypted the result in QL > h · Q2

0 and finally recorded the
distribution of Ĩ(Y).

Using a quadratic polynomial approximation we extrapolated the probability dis-
tribution obtained by this experiment in Table 3. Our extrapolation shows that for
h = 64 and K = 12 the overflow probability per plaintext coefficient is approximately
2−38.8. Using the same technique as for (h = 64,K = 12), we validated other values
(h,K) that give a similar probability of decryption failure. We observe that taking
K ≈ b1.5

√
he is a good approximation for a probability of decryption failure of about

2−40 per plaintext coefficient.

26

Algorithm 7: Heuristic Parameter Selection

Input: λ a security parameter.
Output: The parameters (N,n, h,Q, P, α, d, r, ρ

SF−1
n
, ρSFn).

1 Select n, N and h and derive log(QP) according to λ.
2 Select ∆m the plaintext scale, δ the bootstrapping output precision and Q0

such that Q0 � ∆m.
3 Compute K from h and find d and r such that the polynomial of the EvalSine

step in the interval (−K/2r,K/2r) and degree d gives a precision of about
log(Q0/∆m) + δ bits.

4 Select ρ
SF−1
n

and ρSFn (the depth of the CoeffsToSlots and SlotsToCoeffs steps).

5 Allocate the qj of the CoeffsToSlots, EvalSine and SlotsToCoeffs steps, with the
maximum possible bit-size for all qj .

6 Select α and allocate P =
∏α−1
j=0 pj , ensuring that P ≈ β||qαi ||.

7 Run the bootstrapping and find the minimum bit-size for the qj of the EvalSine
such that the output reaches the desired precision or until it plateaus.

8 Run the bootstrapping and find the minimum bit-size for the qj of the
CoeffsToSlots such that the output precision is not affected.

9 Run the bootstrapping and find the minimum bit-size for the qj of the
SlotsToCoeffs such that the output precision is not affected.

10 Allocate the rest of the moduli of Q such that log(QP) ensures a security of λ
and check again line 6.

11 If additional residual homomorphic capacity is needed or the security λ cannot
be achieved:
1. Reduce α, ρ

SF−1
n

and/or ρSFn and check again line 6.

2. Increase h to increase log(QP) and restart at line 1.
3. Increase N to increase log(QP) and restart at line 1.

return (N,n, h,Q, P, α, d, r, ρ
SF−1
n
, ρSFn)

6.3 Finding parameters

In this section we describe a general heuristic procedure to select and fine tune boot-
strapping parameters. Each operation of the bootstrapping requires a different scaling
and a different precision, therefore different moduli. Choosing each modulus optimally
for each operation not only leads to a better performance and a better final precision,
but also optimizes the bit consumption of each operation and increases the remain-
ing homomorphic capacity after the bootstrapping. We describe our procedure to find
suitable parameters for the bootstrapping in Algorithm 7.

Selected Parameters We propose four reference parameter sets, each resulting
from following Algorithm 7. The parameter sets were selected for their performance
and similarity with the ones in previous works, allowing for an easier comparison.
For each set, Table 4 shows the parameters related to the CKKS scheme and to the
bootstrapping circuit.

27

Parameters

Set
CKKS Bootstrapping

h N ∆ log(QP) L
log(qi) log(pj)

StC & StC Sine
q0≤i≤(L−k) StC Sine CtS ρ

SF−1
n

ρSFn K d r

I 192
216

245 1521 24 55 + 10 · 45 56 + 28 8 · 55 4 · 53 5 · 56 4 3 21 52 2
II 192 230 1553 21 55 + 7.5 · 60 1.5 · 60 8 · 55 4 · 53 5 · 61 4 3 21 52 2
III 32768 245 1782 25 55 + 9 · 45 56 + 28 11 · 60 4 · 53 6 · 61 4 3 257 250 3

IV 192 215 225 768 14 35 + 50 + 25 60 8 · 50 2 · 49 2 · 50 2 2 21 52 2

Table 4: The sets of parameters of the full-RNS variant of CKKS used to
evaluate the performance of our bootstrapping implementation.

7 Evaluation

We implemented the improved algorithm of Sections 3 and 4, along with the boot-
strapping procedure of Section 5 in the Lattigo library [25] and evaluated it using the
parameters of Section 6.3. Lattigo is an open-source library that implements the RNS
variants of the BFV [20], [23] and CKKS schemes in Golang [26]. All experiments were
conducted single threaded on an i5-6600k at 3.5 GHz with 32 GB of RAM running
Windows 10 (Go version 1.14.2, GOARCH=amd64, GOOS=windows).

The Bootstrapping Utility Metric While CPU costs are one important aspect
when evaluating a bootstrapping procedure, these factors have to be considered to-
gether with other performance-related metrics such as the size of the output plaintext
space, its precision and the remaining multiplicative depth. In order to evaluate our
bootstrapping procedure against the existing ones, we will use the bootstrapping utility
metric, as introduced by Han and Ki [9] for the same purpose. It is defined as

bootstrapping utility =
n× log(1/ε)× log(QL−k)

complexity
,

where n is the number of plaintext slots, log(1/ε) is the precision, log(QL−k) is the
size of the remaining coefficient modulus after the bootstrapping (remaining homomor-
phic capacity) and complexity measures the computational cost (in CPU time). The
bootstrapping utility can also be interpreted as bootstrapping throughput in bits/sec.

Note that we chose to express the remaining homomorphic capacity in terms of
the modulus size instead of the number of levels, because QL−k can be re-allocated
differently at each bootstrapping call, e.g., a small number of moduli with a large
plaintext scale or a large number of moduli with a small plaintext scale.

7.1 Results

We run our benchmarks and compute the bootstrapping utility for each parameter set
of Table 4 (Section 6.1) and compare them with the previous works of Chen et al. [9]
and Han and Ki [8]. Unfortunately, the implementations of these works have not been
publicly released, so we were not able to reproduce their results on our own hardware for
a totally fair comparison5. The results are summarized in Table 5. Appendix G reports

5Chen et al. [8] use an i9-9820X @ 3.3GHz, single-threaded (∼5-10% more instruc-
tions per cycle than our bench). Han and Ki [9] use an i7 @ 2.8 GHz, single-threaded.

28

Bootstrapping Performance

Set h N n
Timings (sec) Data (GB)

log(QL−k) log (1/ε) log (bits/sec)
MU SS CtS StC Sine Total Keys DFT

[9] 64
216 214 119.8 38.5 158.3 - - 172 18.6 18.33

[9] 64 212 127.5 40.4 167.9 - - 301 20.9 17.22

[8] 64
216 214 - - - - - 52.8 - - 370 10.8 20.24

[8] 64 210 - - - - - 37.6 - - 370 15.3 17.23

I 192
216

215 0.07 0 7.0 3.5 11.5 21.9 15.9 2.8 550 19.8 23.95
I 192 214 0.07 0.4 7.0 3.8 5.8 16.0 14.9 2.6 550 20.2 23.43
I 192 210 0.07 2.1 4.8 2.3 5.8 14.9 6.9 1.1 550 23.2 19.74

II 192
216

215 0.07 0 5.5 2.4 9.3 17.3 14.3 2.5 505 19.2 24.13
II 192 214 0.07 0.4 5.5 2.6 4.7 13.1 13.4 2.2 505 19.2 23.53
II 192 210 0.07 1.8 4.2 1.5 4.7 12.3 6.22 1.0 505 21.3 19.77

III 32768
216

215 0.08 0 8.0 3.2 29.7 41.0 17.5 2.9 460 14.9 22.39
III 32768 214 0.08 0.5 7.7 3.2 14.8 26.3 16.4 2.7 460 15.2 22.05
III 32768 210 0.08 2.4 5.7 1.9 14.8 25.0 7.6 1.2 460 18.0 18.37

[9] 64
215 210 28.8 9.5 38.3 - - 150 6.9 14.75

[9] 64 28 16.9 9.2 26.0 - - 75 10.03 12.85

[8] 64
215 22 - - - - - 7.5 - - 185 15.0 10.53

[8] 64 21 - - - - - 7.0 - - 185 16.8 9.79

IV 192
215 214 0.02 0 3.7 0.7 2.6 7.1 7.7 2.1 110 15.1 21.87

IV 192 210 0.02 0.4 1.6 0.4 1.3 3.9 5.1 0.6 110 16.6 18.87

Table 5: Performance comparison of prior bootstrapping in [8], [9] and our pro-
posed bootstrapping for the full-RNS variant of CKKS with parameter sets I, II,
III, IV. MU, SS, CtS, StC designate ModUp, SubSum, SlotstoCoeffs, CoeffstoSlots
respectively.

on several experiments demonstrating the numerical stability of our bootstrapping
procedure.

We observe that, for our best performing parameter set (Set V) we get a bootstrap-
ping throughput 15× larger than the best result reported in the work of Han and Ki,
which was implemented using the SEAL library [17] and conducted on similar hard-
ware. Set V also provides a throughput 55.9× larger than the best result reported in the
work of Chen et al. [9] which was implemented using the library HEAAN [16]. HEAAN
does not implement the full-RNS variant of CKKS, so this second comparison shows
the significant performance gains that can be achieved by combining optimized algo-
rithms with a full-RNS implementation. Figure 5 plots our best performing instances
against those of the previous works.

We observe that the best results of our bootstrapping consistently happen when
the number of slots is set to the maximum (fully-packed plaintexts). The reason is that
using 215 slots requires the evaluation of two EvalSine compared to 214 slots, but the
complexity of the linear transformations stays nearly the same because no repacking
involving a matrix multiplication is needed. Hence, at a computational cost that is only
slightly larger than an additional EvalSine and without impacting the precision, we are
able to bootstrap twice the number of slots. Moreover, if we look at Set II or Set V, we
observe that there is no significant difference for the computational time of the linear
transformation across all the different slot values.

29

10 12 14 16 18 20 22 24

0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106

214 212
214

210

215

214

214

215

214

210

log(1/ε)
Precision

T
h
ro
u
g
h
p
u
t

n
×

lo
g
(Q

L
−
k
)/
(C

P
U

ti
m
e)

Best of [8] (h = 64)

Best of [9] (h = 64)

Set II (h = 192)

Set III (h = 32768)

Fig. 5: Bootstrapping utility comparison. We plot the results for our best per-
forming parameter set against the state of the art. Nodes are labeled with n, the
number of plaintext slots.

8 Conclusion

In this work, we introduced a practical bootstrapping procedure for the full-RNS CKKS
scheme that does not require the use of sparse secret-keys. To the best of our knowledge,
this is the first instance of a 128-bit secure bootstrapping.

To achieve this, we proposed a generic algorithm for the homomorphic evaluation of
polynomials that is both scale-invariant and optimal in level consumption. In addition
to the increase in precision and efficiency, this also improves the usability of the full-
RNS variant of CKKS (for which managing a changing scale in large circuits is known to
be a difficult task). We also proposed improved key-switch procedures and applied them
to the homomorphic matrix×vector multiplication. Our novel double-hoisted algorithm
reduces the evaluation time of the CoeffsToSlots and SlotsToCoeffs by roughly a factor of
2 compared to the previous works. The performance of these procedures makes them
also appealing for applications where the conversion between coefficients and slots
domains will enable much more efficient homomorphic circuits (e.g., in the training of
convolutional neural networks).

The measured utility of our bootstrapping procedure with “dense” secret-keys (h =
N/2) is up to 4× larger than the best state-of-the-art results with sparse keys (h = 64).
When considering the sparse-keys-adjusted parameters of Curtis and Player [12] for
h = 192 and 128-bits of security, our procedure has a 15× larger utility than the
previous works using a sparse key with h = 64.

We implement these contributions in the Lattigo library (https://github.com/
ldsec/lattigo); this is, to the best of our knowledge, the first open-source implemen-
tation of a bootstrapping procedure for the Full-RNS variant of the CKKS scheme.

30

https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo

References

[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
2009, pp. 169–178.

[2] O. Masters, H. Hunt, E. Steffinlongo, J. Crawford, F. Bergamaschi, M. E. D.
Rosa, C. C. Quini, C. T. Alves, F. de Souza, and D. G. Ferreira, “Towards a
homomorphic machine learning big data pipeline for the financial services
sector,” IACR Cryptol. ePrint Arch., vol. 2019, p. 1113, 2019.

[3] M. Kim, A. Harmanci, J.-P. Bossuat, S. Carpov, J. H. Cheon, I. Chillotti,
W. Cho, D. Froelicher, N. Gama, M. Georgieva, et al., “Ultra-fast homo-
morphic encryption models enable secure outsourcing of genotype impu-
tation,” bioRxiv, 2020. doi: 10.1101/2020.07.02.183459.

[4] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat,
J. S. Sousa, and J.-P. Hubaux, “Poseidon: Privacy-preserving federated
neural network learning,” arXiv preprint arXiv:2009.00349, 2020.

[5] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D.
Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homomorphic en-
cryption security standard,” HomomorphicEncryption.org, Toronto, Canada,
Tech. Rep., Nov. 2018.

[6] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in International Conference on the
Theory and Application of Cryptology and Information Security, Springer,
2017, pp. 409–437.

[7] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for ap-
proximate homomorphic encryption,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Springer,
2018, pp. 360–384.

[8] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Cryptographers’ Track at the RSA Conference, Springer,
2020, pp. 364–390.

[9] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for approx-
imate homomorphic encryption,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Springer, 2019,
pp. 34–54.

[10] Y. Son and J. H. Cheon, “Revisiting the hybrid attack on sparse and
ternary secret LWE,” IACR Cryptol. ePrint Arch., vol. 2019, p. 1019,
2019.

[11] J. H. Cheon, M. Hhan, S. Hong, and Y. Son, “A hybrid of dual and meet-
in-the-middle attack on sparse and ternary secret LWE,” IEEE Access,
vol. 7, pp. 89 497–89 506, 2019.

[12] B. R. Curtis and R. Player, “On the feasibility and impact of standar-
dising sparse-secret LWE parameter sets for homomorphic encryption,”
Proceedings of the 7th Workshop on Encrypted Computing and Applied
Homomorphic Cryptography, 2019.

31

https://doi.org/10.1101/2020.07.02.183459

[13] S. Halevi and V. Shoup, “Faster homomorphic linear transformations in
HElib,” in Annual International Cryptology Conference, Springer, 2018,
pp. 93–120.

[14] J. H. Cheon, K. Han, and M. Hhan, “Faster homomorphic discrete fourier
transforms and improved FHE bootstrapping,” IACR Cryptol. ePrint Arch.,
vol. 2018, p. 1073, 2018.

[15] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant
of approximate homomorphic encryption,” in International Conference on
Selected Areas in Cryptography, Springer, 2018, pp. 347–368.

[16] HEAAN, Online:https://github.com/snucrypto/HEAAN.
[17] Microsoft SEAL (release 3.5), Online: https://github.com/Microsoft/

SEAL, Microsoft Research, Redmond, WA., Apr. 2020.
[18] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of

learning with errors,” Journal of Mathematical Cryptology, vol. 9, no. 3,
pp. 169–203, 2015.

[19] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of the
BFV homomorphic encryption scheme,” in Cryptographers’ Track at the
RSA Conference, Springer, 2019, pp. 83–105.

[20] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full RNS variant
of FV like somewhat homomorphic encryption schemes,” in International
Conference on Selected Areas in Cryptography, Springer, 2016, pp. 423–
442.

[21] S. Halevi and V. Shoup, “Algorithms in HELib,” in Annual Cryptology
Conference, Springer, 2014, pp. 554–571.

[22] S. Halevi and V. Shoup, “Bootstrapping for HELib,” in Annual Inter-
national conference on the theory and applications of cryptographic tech-
niques, Springer, 2015, pp. 641–670.

[23] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic en-
cryption.,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Transactions on Com-
putation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[25] Lattigo 2.0.0, Online: https://github.com/ldsec/lattigo, EPFL-LDS,
2020.

[26] The Go programming language, Online: https://golang.org/, 2020.

32

https://github.com/snucrypto/HEAAN
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/ldsec/lattigo
https://golang.org/

A CKKS Homomorphic Operations

This section introduces the available homomorphic operation of the CKKS scheme.
Whenever homomorphic operations involve ciphertexts and/or plaintexts whose respec-
tive modulus Q` differ, the operations are carried on with the moduli shared between
both operands (i.e. the smallest modulus) and the other moduli are discarded.

• Add({ct, Q`,∆}, {ct′, Q`′ ,∆
′}) : Scale ct and ct’ to max(∆,∆′) and return {ct+ct′,

min(Q`, Q`′), max(∆,∆′)}.

• AddPlain({ct, Q`,∆}, {pt, Q`′ ,∆
′}) : Scale ct and pt to max(∆,∆′) and return

{ct + (pt, 0), min(Q`, Q`′), max(∆,∆′)}.

• AddConst({ct, Q`,∆}, a+ bi ∈ C): Return {ct + (b∆ · (a+ b ·XN/2)e, 0), Q`, ∆}.

• Multi({ct, Q`,∆}): Returns {ct · XN/2, Q`,∆}, the homomorphic product by the
imaginary unit.

• MultConst({ct, Q`,∆}, a+bi ∈ C,∆′): Return {b∆′ae·ct+b∆′be·ct·XN/2, Q`,∆∆
′}.

• Mul({ct, Q`,∆}, {ct′, Q`′ ,∆
′}): For ct = (c0, c1) and ct’ = (c′0, c

′
1), compute (d0, d1, d2) =

(c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1), and return {ctmul = (d0, d1) + SwitchKey(d2, rlk), min(Q`,

Q`′),∆∆
′}.

• MulPlain({ct, Q`,∆}, {pt, Q`′ ,∆
′}): For ct = (c0, c1), return {(c0·pt, c1·pt), min(Q`,

Q`′),∆∆
′}.

• Rescale({ct, Q`,∆}): Return {bq−1
` · cte, Q`−1,∆/q`}, for q−1

` ∈ R.

• DropLevel({ct, Q`,∆}, k): Return {ct, Q`−k,∆}.

• Rotate({ct, Q`,∆}, k): For ct = (c0, c1), return {ctrotk = (c5
k

0 , 0)+SwitchKey(c5
k

1 , rotk), Q`,∆}.

• Conjugate({ct, Q`,∆}): For ct = (c0, c1), return {ctconj = (c−1
0 , 0)+SwitchKey(c−1

1 , conj), Q`,∆}.

B Key-switch : Current Approaches

In this section we review the current approaches taken by the state of the art for the
key-switch. Given a ciphertext (c0, c1) = (−as′ +m+ e, a) that decrypts under s′, the
most efficient approach to switch it to s would be to generate public key-switch keys
of the form swk = (−bs+ s′ + e′, b), and perform re-encryption from s′ to s as

(c0, 0) + c1 · swk = (−abs+ ae′ +m+ e, ab).

However, the term ae′ would introduce too much error for the ciphertext to be correctly
decrypted. Fan and Vercauteren [23] propose two switching-keys types to control this
error term:

33

I. Use swk(i) = (−bis+w(i)s′ + e′i, bi) for a base w with the reconstruction formula

x =
∑
x
(i)
w w(i), decompose c1 under base w and compute (c0, 0)+

∑
c
(i)
w,1swk(i) =

(−a′s+
∑
a
(i)
w e′i +m+ e, a′). This solution is highly inefficient if the target is to

make
∑
a
(i)
w e′i small because it will increases the number of keys, and therefore

the number of operations, by an amount proportional to Q/||w||.
II. Use swk = (−bs + P · s′ + e′, b), for P a large integer, and compute (c0, 0) +
bP−1 · c1 · swke = (−a′s + bP−1 · ae′e+ m + e, a′). If P ≈ ||ae′|| then the added
error is negligible. This solution is more efficient than the type I, but the modulus
of the keys is multiplied by P , so the size of the ring degree must be increased
or the ciphertext modulus reduced to compensate for the security loss, thus also
affecting the overall performances or the homomorphic capacity.

Han and Ki [8] propose a hybrid version that combines both approaches and uses keys
of the form swk(i) = (−bis+w(i) ·P ·s′+e′i, bi). Similarly to the type II, if ||w|| ≈ P , it
results in a negligible added error. Moreover, it allows the user to balance the trade-off
between the complexity of the first approach and the modulus increase of the second
approach. This hybrid solution is well suited for large parameters, as it can greatly
reduce the size of the key-switch keys and the complexity of the key-switch operation
without impacting much the homomorphic capacity.

While the above high-level description of the key-switch is agnostic of the repre-
sentation of the coefficients, the base w must be chosen to be compatible with the
latter: When dealing with integers represented in the positional domain, a decompo-

sition with a power of two basis w(i) = 2b
i

(i.e., a bit-wise decomposition basis where
elements of the decomposed basis are of size at most b bits) is straightforward and ef-
ficient to implement using bit-wise arithmetic. Such a decomposition, however, cannot
directly be used when dealing with coefficients in the RNS representation, due to its
non-linearity. Instead, an alternate base w, derived from the RNS reconstruction, can
be used. Similarly to the reconstruction from a power basis: a =

∑
a
(i)
w w(i), the RNS

reconstruction is also a linear operation over a vector, i.e. a sum of products:

a ≡
∑

[a]qi
Q

qi

[(Q
qi

)−1]
qi

mod Q. (1)

Hence, it can also be used as a decomposition basis and is especially well-suited for
dealing with integers represented in the RNS domain, as shown in [19], [20]. On top
of this, it is possible to apply an additional power-basis decomposition for each of the
elements [a]qi , to further reduce the size of the noise terms, if needed.

C Complexity Analysis

This section contains the complexities derivations of the algorithms used in our work
for the Key-switch and hoisted rotation.

C.1 Key-Switch

In this section, we analyse the the complexity of a homomorphic multiplication with
a key-switch using our Algorithm 3 (Section ?? in term of its number of modular
multiplication in Z and compare it with the results reported in [8].

34

We assume that the inputs and outputs of the procedure are both in the NTT
domain. We set α = #pj and β = d(`+ 1)/αe, ct = (c0, c1) and ct′ = (c′0, c

′
1) mod Q`.

Step 1 : Tensoring. We compute the tensor product of the ciphertexts (of degree 1) :
(ĉ0, ĉ1, ĉ2)← (c0c

′
0, c0c

′
1+c1c

′
0, c1c

′
1) mod Q`. In theory the optimal way would be to use

a Karatsuba approach to trade multiplications with additions. However we observed
that, due to our Montgomery arithmetic, it was more efficient in our implementation
to do 4 multiplications and 1 addition rather than 3 multiplications and 4 additions.
The total complexity is therefor 4 ·N · (`+ 1).

Step 2 : NTT. We switch ĉ2 = d ∈ RQ` out of the NTT domain has complexity
N · log(N) · (`+ 1).

Step 3 : MultSum. We decompose d′ base qαi , multiply it with evk and sum. So for
0 < i < β :

1. We apply Decompose to d′ ∈ RQ` : we are given an input vector of `+ 1 elements
that we take modulo qαi , reducing its size to α elements. This first operation is free
since qαi |Q`. Using the ModUp algorithm we then extend this vector to a vector
of size (`+ 1) +α, but for which we already know α elements, so the complexity is
α · (`+ 1 +α−α) = α · (`+ 1). We also have to run α pre-computations on the fly.
Since we have to run this for N values, the total complexity is N · (α+α · (`+ 1)).

2. We switch d′qαi ∈ RQ`P back to the NTT domain : we need to compute (`+ 1) +α
NTT, but we already have α of those NTT vectors available from d ∈ RQ` , so the
total number of NTT is reduced to `+1, therefor the complexity is N ·log(N)·(`+1).

3. We multiply dqαi ∈ RQ`P with evkjqαi for j ∈ 0, 1. The complexity is 2·N ·(`+1+α).

The total complexity of Step 2 is β ·N · ((`+ 1) · (α+ log(N) + 2) + 3 · α).

Step 4 : ModDown. For i ∈ 0, 1 :

1. We switch the P basis of di ∈ RQ`P out of the NTT domain. The complexity is
N · log(N) · α.

2. We ModUp di ∈ RP to change its basis from P to Q` : we are given a vector of
size α and want to extend it to a vector of size `+ 1, but which do not share any
moduli with the initial vector. Therefor, and similarly to Decompose in Step 2, the
complexity is N · (α+ α · (`+ 1)).

3. We switch di ∈ RQ` back to the NTT domain : N · log(N) · (`+ 1).

4. The last step of ModDown is a subtraction followed by a multiplication with P−1

: N · (`+ 1).

The total complexity of Step 4 is 2 ·N · ((`+1) · (α+log(N)+1)+α · (log(N)+1)).

Step 5. We add the polynomials di ∈ RQ` for i ∈ 0, 1 to the ciphertext, there is no
multiplication : ctmul = (d0 + ĉ0, d1 + ĉ1) mod Q`.

Hence the total complexity of our homomorphic multiplication in term of modular
multiplications is

N ·
(

(`+ 1) ·
(

log(N) · (3 + β) + β · (α+ 2) + 2α+ 6
)

+ α · (2 · log(N) + 2 + 3β)
)
.

35

Remark 5. The complexity of the key-switch itself can be obtained by setting subtract-
ing 4 ·N(`+ 1) to the homomorphic multiplication complexity.

whereas in [8] they report a complexity of :

N ·
(

(`+ 1)2 + (`+ 1) · (α+ 2β + 6) + 3 + log(N) ·
(
(`+ 1) · (α+ β + 5) + 3

))
,

Table 6 compares both complexities using the same parameters as the original table
of [8] with ` = 23 and a variable #pj = α. The size of the moduli of Q and P is of
45 bits and q0 is 55 bits. Our tweaked algorithm has the same asymptotic complexity
but it introduces a change in the constants which is enough to induces a non negligible
difference. The number of NTT, which is the dominant term, is (`+ 1) · (α+β+ 5) + 3
in [8] while it is (`+1) · (β+3) +2α in our work. The number of NTT in our algorithm
decreases much faster for larger α than the ones of Han and Ki, e.g. for α = 6 it already
shows a factor of two difference. Since the number of NTT is the dominant term of the
key-switch, this translates into a non-negligible difference in the final complexities.

log(#Mul in Zp)
α log(QP) Work in [8] Our work

1 1136 29.70 29.59
2 1181 29.08 28.83
3 1227 28.84 28.46
4 1272 28.75 28.25
6 1363 28.74 28.02
8 1454 28.82 27.92
12 1635 29.04 27.88
24 2180 29.65 28.08

Table 6: Comparison of the homomorphic multiplication complexity in log.

C.2 (Hoisted) Rotations

In this section we analyse the complexity of hoisted rotations in term of its number of
modular multiplication in Z.
Step 1 : NTT. We switch c1 out of the NTT domain : N · log(N) · (`+ 1).

Step 2 : Decompose + NTT. We decompose c′1 mod each qαi , extend the RNS basis from
Q` toQ`P and switch back the result in the NTT domain : β·N ·(α+(`+1)·(log(N)+α)).

Step 3 : MultSum. For each k rotation we multiply dki with rotk,qαi and sum : 2kβ ·N ·
(`+ 1 + α).

Step 4 : ModDown. For each k rotation we rescale a and b by P and reduce the RNS
basis from Q`P back to Q`: 2k ·N · ((`+ 1) · (α+ log(N) + 1) + α · (log(N) + 1)).

36

Step 5 : Permute. For each k rotation we apply the automorphism φk on c0 + a and b
: there is no multiplication.

Hence the total complexity for k hoisted rotations is :

N ·log(N)·
(

(`+1)·(β+1+2k)+2kα
)

+N ·(`+1)·
(
βα+2k·(α+β+1)

)
+N ·α·

(
β+2k·(β+1)

)
.

Remark : the complexity of a single non hoisted rotation can be obtained by setting
k = 1.

D Algorithms

This section contains the extra algorithms that are referred to but not presented in the
main body of this work.

Exact base conversion using floating point arithmetic from Halevi et al. [19]:

Conv
exact
Q→P ([a]Q) =

(
`−1∑
j=0

[a · q̂−1
j]qj · q̂j − v ·Q (mod pi)

)
0≤i<k

with q̂j = Q/qj and where v can be computed with

v =

⌈
`−1∑
j=0

[a · q̂−1
j]qj
qj

⌋
.

Algorithm 8: ModUp

Input: [a]Q` a polynomial with N coefficients, P .
Output: [a]P .

1 for 0 ≤ i < N do

2 [a(i)]P = ConvexactQ`→P ([a(i)]Q`)
3 end

4 return [a(i)]P

37

Algorithm 9: Decompose

Input: a ∈ RQ` in the NTT domain, Q` =
∏`
j=0 qj , qαi =

∏min(α(β+1)−1,`)
i=αβ qj

for 0 ≤ i ≤ β, beta = d(`+ 1)/αe and P =
∏α−1
j=0 pj .

Output: d ∈ RβQ`P in the NTT domain.

1 a′ ← NTT−1(a)
2 foreach qαi do

3 d(i) ← ModUpqαi→Q`P
([a′]qαi)

4 foreach qj do
5 if qj |qαi then
6 [d(i)]qj ← [a]qj
7 else

8 [d(i)]qj ← NTT([d(i)]qj)
9 end

10 end
11 foreach pj do

12 [d(i)]pj ← NTT([d(i)]pj)
13 end

14 end
15 return d

Algorithm 10: ModDownNTT

Input: a ∈ RQ`P in the NTT domain
Output: bP−1 · ae ∈ RQ` in the NTT domain

1 [b]P ← NTT−1([a]P)
2 [b]Q` ← ModUpP→Q`([b]P + bQ`/2c)− bQ`/2c
3 c← NTT([b]Q`)
4 [a]Q` ← [a]Q` − [c]Q`
5 return [P−1]Q` · [a]Q`

38

Algorithm 11: ModRaise

Input: p a polynomial of N coefficients in basis Q0 = q0.
Output: p the same polynomial in basis Q` =

∏`
i=0 qi, with p[j][i] the i-th

coefficient of the basis qj .
1 p← NTT−1(p)
2 for 0 ≤ i < N do
3 x← p[0][i]
4 for 1 ≤ j ≤ ` do
5 if x ≥ bq0/2c then
6 p[j][i] = qj − (q0 − x) mod qj
7 else
8 p[j][i] = x mod qj
9 end

10 end

11 end
12 p← NTT(p)
13 return p

Algorithm 12: SubSum

Input: ct a ciphertext, n the number of slots of the encoded in the plaintext,
N the degree of the ring.

1 for log(n) ≤ i < log(N)− 1 do
2 tmp← Rotate2i(ct)
3 ct← Add(ct, tmp)

4 end
5 return

39

Algorithm 13: FFT Algorithm For Evaluating SF−1
n

Input: w ∈ Cn, n > 1 a power of 2 integer, Ψ a pre-computed table of 4n-th
roots of unity such that Ψ (j) = eiπj/2n for 0 ≤ j ≤ 2n.

Output: SF−1
n ·w.

1 for m = n;m ≥ 2;m = m/2 do
2 for i = 0; i < n; i = i+m do
3 for j = 0; j < m/2; j = j + 1 do
4 k = 4m− (5j mod 4m) · (n/m)

5 u = w(i+j) + w(i+j+m/2)

6 v = w(i+j) − w(i+j+m/2)

7 w(i+j) = u

8 w(i+j+m/2) = v · Ψ (k)

9 end

10 end

11 end
12 bitReverse(w, n)
13 for i = 0; i < n; i = i+ 1 do

14 w(i) = n−1 · w(i)

15 end
16 return w

Algorithm 14: BSGS Algorithm For Matrix × Vector Multiplication

Input: ct a ciphertext encrypting m ∈ Cn, Mdiag the diagonal rows of M a
n× n matrix with n = n1n2.

Output: The evaluation ct′ = M× ct.
1 foreach i = 0; i < n1; i = i+ 1 do
2 cti ← Rotatei(ct)
3 end
4 ct′ ← (0, 0)
5 foreach j = 0; j < n2; j = j + 1 do
6 r← (0, 0)
7 foreach i = 0; i < n1; i = i+ 1 do

8 u← Mul(cti,Rotate−n1·j(M
(n1·j+i)
diag))

9 r← Add(r,u)

10 end
11 ct′ ← Add(ct′,Rotaten1·j(r))

12 end
13 ct′ ← Rescale(ct′)
14 return ct′

40

E Further Optimizations: Details

We recall all the values by which the ciphertext is multiplied before entering the Eval-
Sine step:

• During the SubSum and CoeffsToSlots steps, the ciphertext is multiplied respec-
tively by N/2n and 2n such that it is, regardless of the number of slots, always
multiplied by N , which must be canceled by a 1/N constant multiplication.

• We operate the change of variable on the ciphertext to prepare it for the Chebyshev
polynomial evaluation, so the ciphertext must be multiplied by 2/(b− a).

• We divide the ciphertext by 2r, where r is the number of iterations of the double
angle formula during the EvalSine.

• We multiply the ciphertext by Q0/2
dlog(Q0)e to compensate for the error introduced

by the approximate division by Q0/∆ ≈ 210.

We merge all the previous constants into one variable called µCtS and scale the
CoeffsToSlots matrices appropriately to include this multiplication during this step.
One could apply this scaling on only one of the matrices, however this will cause
precision problems because of how small this scaling factor is. Indeed, if we merge all
scaling factors into one, depending on the parameters, we can get values as small as
2−21. In such a case, to retain the same precision as the other matrices, the precision
of the scaled matrix, must be increased by 21 bits. This is not always doable because
the required scale might become larger than 264 and will prevent an efficient use of the
moduli during the rescale. To avoid this problem, we evenly spread µCtS across the all
matrices resulting from the factorization of SF−1

n , and therefor ensure that each matrix
is scaled by a small and equivalent amount :

µCtS =

(
2

(b− a) ·N · 2r ·
Q0

2blog(Q0)e

) 1

ρ
SF−1
n

where ρ
SF−1
n

is the degree of factorization of SF−1
n .

We use the same approach for the multiplication that must occur after the EvalSine
step. In this case we need to :

• Multiply the ciphertext by 2dlog(q0)e/q0 to compensate for the error introduced by
the approximate multiplication by q0/∆ ≈ 210.

• Multiply the ciphertext by ∆/δ where ∆ is the scale of the ciphertext after the
EvalSine step and δ is the desired ciphertext output scale.

Therefore, the matrices resulting from the factorization of SFn (for the SlotsToCoeffs
step) must each be multiplied by:

µStC =

(
∆

δ
· 2blog(Q0)e

Q0

) 1

ρSFn
,

where ρSFn is the degree of factorization of SFn.

Remark 6. To save space and computation, we also pre-rotate the diagonals of the
matrices and encode them only at the level they will be used, which reduces the memory
footprint. By encoding the matrices with a scale equal to the moduli by which the
ciphertext will be rescaled, we ensure that the rescale process will be exact:

Rescale(Mul({ct, Q`,∆}, {pt, Q`, q`})) = Rescale({ct′, Q`,∆ · q`}) = {ct′, Q`−1,∆}

41

F Basic Operations Performances

lvls α Encpk Encsk Dec Add Mulpt Mulct φ KeySwitch Rescale

29 1 228 128 8 3 9 16 11 1378 71
28 2 227 122 8 3 9 16 10 816 69
27 3 233 120 7 3 9 15 10 596 66
25 5 232 113 6 3 8 15 9 414 62
24 6 237 108 6 3 7 14 8 388 60
20 10 238 93 5 2 6 11 6 294 49
15 15 239 72 4 2 4 8 3 229 36

Table 7: Performance in ms of Lattigo for the basic operations for N = 216

and different values of lvls = #qi and α = #pj with lvls + α = 30 (so that λ
isn’t changed when α varies). The timings for the ct×ct multiplication are given
without the relinearization (keyswitching). The benchmarks were conducted sin-
gle threaded on an i5-6600k at 3.5 GHz with 32Gb of RAM running Windows
10 and Go 1.14.2, GOARCH=amd64, GOOS=windows.

G Bootstrapping Stability Experiments

We carried out several experiments to validate the stability of our bootstrapping pro-
cedure. Appendix G reports on the following checks: The mean precision across all the
slots against the number of slots (Appendix G.1), the probability of each slot to fall
under some given precision (Appendix G.2), and the mean precision across all the slots
after each bootstrapping for 50 successive bootstrapping (Appendix G.3).

G.1 Precision vs. Slots

In this section we plot the mean precision across all the slots against the number of
slots for the different parameters presented in Section 6.1. The plaintext values that
were bootstrapped where of the form a + bi for a, b random reals between −1 and
1. Note that the comparison is made against an unencoded plaintext vector and that
those results therefore also include the inherent error of the encoding algorithms which
might be much greater than the actual precision of the bootstrapping circuit.

42

4 6 8 10 12 14 16
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

log(n)

lo
g
(1
/
ε)

Real

Imag

(a) Set I

4 6 8 10 12 14 16
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

log(n)
lo
g
(1
/
ε)

Real

Imag

(b) Set II

4 6 8 10 12 14 16
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

log(slots)

lo
g
(1
/
ε)

Real

Imag

(a) Set III

4 6 8 10 12 14 16
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

log(slots)

lo
g
(1
/
ε)

Real

Imag

(b) Set IV

43

G.2 Precision distribution

In this section we plot the probability of each slot to fall under some given precision
for the different parameters presented in Section 6.1. The goal is to show that while
we have a good mean precision, the overall distribution also behaves well and is not
scattered. The plaintext values that were bootstrapped where of the form a+bi for a, b
a random float between −1 and 1. The shape of all the plots show that the distribution
is smooth across all the different parameters sets and that very few elements are below
or above some threshold that is close to the mean. Note that the comparison is made
against an unencoded plaintext vector and that those results therefore also include the
inherent error of the encoding algorithms which might be much greater than the actual
precision of the bootstrapping circuit.

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(a) Set I - 214

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(b) Set I - 215

44

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(a) Set II - 214

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)
P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(b) Set II - 215

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(a) Set III - 214

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(b) Set III - 215

45

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(a) Set IV - 213

10 20 30
0

0.2

0.4

0.6

0.8

1

log(1/ε)

P
r[
lo
g
(1
/
ε i
)
<
x
]

Real

Imag

(b) Set IV - 214

46

G.3 Successive Bootstrappings

In this section we plot the plaintext precision values after each bootstrapping with
50 iterations for the different parameters presented in Section 6.1. Each plaintext was
encoding N/2 values of the form a + bi for a, b a random float between −1 and 1.
The plots show the mean precision along with the absolute upper and lower precision
bound (no value had a larger of smaller precision). We observe a logarithmic decrease
in the precision that seems consistent with an error with a norm close to the initial
precision is added after each iteration. Note that the comparison is made against an
unencoded plaintext vector and that those results therefore also include the inherent
error of the encoding algorithms which might be much greater than the actual precision
of the bootstrapping circuit.

0 5 10 15 20 25 30 35 40 45 50
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Iteration

lo
g
(1
/
ε)

Real

Imag

Fig. 12: Set I - 215 slots

47

0 5 10 15 20 25 30 35 40 45 50
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Iteration

lo
g
(1
/
ε)

Real

Imag

Fig. 13: Set II - 215 slots

0 5 10 15 20 25 30 35 40 45 50
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Iteration

lo
g
(1
/
ε)

Real

Imag

Fig. 14: Set III - 215 slots

48

0 5 10 15 20 25 30 35 40 45 50
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Iteration

lo
g
(1
/
ε)

Real

Imag

Fig. 15: Set IV - 214 slots

49

	Secure and Efficient Bootstrapping for Approximate Homomorphic Encryption

