Non-Committing Encryption
with Constant Ciphertext Expansion
from Standard Assumptions

Yusuke Yoshida!, Fuyuki Kitagawa?, Keita Xagawa?, and Keisuke Tanaka!

1Tokyo Institute of Technology, Tokyo, Japan, yoshida.y.aw@m.titech.ac. jp,
keisuke@is.titech.ac. jp
2NTT Secure Platform Laboratories, Tokyo, Japan, fuyuki.kitagawa.yh@hco.ntt.co.jp,
keita.xagawa.zv@hco.ntt.co.jp

Abstract

Non-committing encryption (NCE) introduced by Canetti et al. (STOC ’96) is a central
tool to achieve multi-party computation protocols secure in the adaptive setting. Recently,
Yoshida et al. (ASTACRYPT ’19) proposed an NCE scheme based on the hardness of the
DDH problem, which has ciphertext expansion O(log \) and public-key expansion O(\?).

In this work, we improve their result and propose a methodology to construct an NCE
scheme that achieves constant ciphertext expansion. Our methodology can be instantiated
from the DDH assumption and the LWE assumption. When instantiated from the LWE
assumption, the public-key expansion is A - poly(log A). They are the first NCE schemes
satisfying constant ciphertext expansion without using iO or common reference strings.

Along the way, we define a weak notion of NCE, which satisfies only weak forms of
correctness and security. We show how to amplify such a weak NCE scheme into a full-
fledged one using wiretap codes with a new security property.
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1 Introduction

1.1 Background

In secure multi-party computation (MPC) protocols, a group of parties can compute some func-
tion of their private inputs by communicating with each other. Depending on when corrupted
parties are determined, two types of adversarial settings called static and adaptive have been
considered for MPC. In the static setting, an adversary is required to declare which parties it
corrupts before the protocol starts. On the other hand, in the adaptive setting, an adversary
can choose which parties to corrupt on the fly, and thus the corruption pattern can depend
on the messages exchanged during the protocol. Security guarantee in the adaptive setting is
more desirable than that in the static setting since the former naturally captures adversarial
behaviors in the real world while the latter is somewhat artificial.

Beaver and Haber [BH93| showed if honest parties are assumed to be able to erase sensitive
local information completely, then adaptively secure MPC can be obtained efficiently. However,
as discussed by Canetti et al. [CFGN96], such trusted erasure may be unrealistic in many
scenarios.

If private channels are provided between each pair of parties, information-theoretically secure
MPC protocols such as those proposed by Ben-Or et al. [BGWS88] and Chaum et al. [CCD88]
are secure against adaptive adversaries. ! In order to use those protocols in the actual usage
scenarios, we have to simulate private channels by using encryption primitives. For this aim,
non-committing encryption (NCE) was introduced by Canetti et al. [CFGN96]. Informally, an
encryption scheme is said to be non-committing if it can generate a dummy ciphertext that
is indistinguishable from real ones but can later be opened to any message by producing a
secret key and encryption randomness that “explain” the ciphertext as an encryption of the
message. Canetti et al. showed that the information-theoretically secure MPC protocols are
still adaptively secure if private channels are replaced by NCE over insecure channels (assumed
they are authenticated). Canetti, Lindell, Ostrovsky, and Sahai [CLOS02] also showed a slightly
augmented version of NCE is useful to achieve adaptive security in the universally composable
(UC) setting.

Prior Works on Non-Committing Encryption. The ability to open a dummy ciphertext
to any message is generally achieved at the price of efficiency. This is in contrast to the ordinary
public-key encryption for which we can easily obtain schemes the size of whose ciphertext is n+
poly(A) by using hybrid encryption methodology, where n is the length of an encrypted message
and A is the security parameter. Thus, many previous works have focused on constructing
efficient NCE schemes. Especially, they tried to improve ciphertext expansion which is the
ratio of ciphertext length and message length since ciphertext length dominates the online
communication complexity.

In literature, the term NCE was also used to indicate 3-round message transmission protocols
which have the non-committing property [Bea97, DN00]. In this work, we only focus on 2-round
schemes, that is, public-key encryption with the non-committing property.

Canetti et al. [CFGNO96] constructed the first NCE scheme, based on common-domain trap-
door permutations which can be instantiated from the computational Diffie-Hellman (CDH) or
RSA problem. Ciphertext expansion of their scheme is (9()\2).

Choi, Dachman-Soled, Malkin, and Wee [CDMWO09] constructed an NCE scheme with ci-
phertext expansion O(A) from trapdoor simulatable PKE. Their construction can be instan-

1On the other hand, for the MPC protocols relying on complexity assumption such as the one proposed by
Goldreich et al. [GMW8T], the security proof fails against an adaptive adversary as observed by Damgard and
Nielsen [DNOQ].



tiated under many computational problems including factoring problem, since many existing
(ordinary) PKE schemes satisfy trapdoor simulatability.

The first NCE scheme with sub-linear ciphertext expansion was proposed by Hemenway,
Ostrovsky, and Rosen [HOR15]. They proposed an NCE scheme with ciphertext expansion
O(logn) for n-bit messages based on the ®-hiding problem, which we can easily modify its
ciphertext expansion to O(log\) by dividing long messages to A-bit blocks. Hemenway, Os-
trovsky, Richelson, and Rosen [HORRI16] also showed constructions of NCE with ciphertext
expansion poly(log A) from the learning with errors (LWE) and Ring-LWE problems.

Canetti, Poburinnaya, and Raykova [CPR17] studied the construction of NCE in the com-
mon reference strings (CRS) model. They achieved optimal ciphertext expansion 1 + o (1)
assuming the existence of indistinguishability obfuscation (i0) and one-way function.

Recently, Yoshida, Kitagawa, and Tanaka [YKT19] constructed an NCE scheme with cipher-
text expansion O(log \) from a primitive called chameleon encryption (CE), which additionally
satisfies oblivious sampleability. They showed an instantiation of obliviously sampleable CE
based on the decisional Diffie-Hellman (DDH) problem.

Concurrent work Concurrently to this work, Brakerski, Branco, Déttling, Garg, and Mala-
volta [BBD*20] proposed NCE schemes with constant ciphertext expansion from the LWE,
DDH, and Quadratic Residuosity (QR) problems. They introduced a primitive called Packed
Encryption with Partial Equivocality (PEPE) as a building block to construct NCE. Their con-
struction basically follows the framework by Hemenway et al. [HORR16], whose origin further
backs to Choi et al. [CDMWO09].

1.2 Our Contribution

We propose the first NCE schemes with constant ciphertext expansion without the use of iO or
CRS.

We construct such an NCE scheme based on the construction paradigm using obliviously
sampleable CE proposed by Yoshida et al. [YKT19]. Yoshida et al. showed obliviously sam-
pleable CE can be instantiated based on the DDH problem. In this work, we also show that it
can be realized based on the LWE problem for super-polynomially large modulus. As a result,
we obtain constant ciphertext expansion NCE schemes based on the DDH problem and LWE
problem.

One of the disadvantage of the NCE scheme proposed in [YKT19] is its relatively large public-
key size. The size of public key for each message bit of their scheme is (9()\2). In addition to
the ciphertext expansion, our LWE based NCE scheme also improves public-key size compared
to [YKT19]. The size of the public key for each message bit of our LWE based scheme is
A-poly(log \). This is the same as that of NCE schemes proposed by Brakerski et al. [BBD*20]
or Hemenway et al. [HORR16], which are also based on the LWE problem for super-polynomially
large modulus. We provide a comparison between our NCE schemes and existing NCE schemes
in Table 1.

1.3 Overview

Weak Non-Committing Encryption. Our starting point is the observation that by adjust-
ing the parameters of an intermediate version of Yoshida et al. 's NCE scheme, its ciphertext
expansion can be reduced to a constant, at the cost of its perfect form of correctness and security.

Specifically, the scheme only satisfies weak correctness, which means that each bit of de-
crypted plaintext is flipped with constant probability. Moreover, the scheme only satisfies weak
security that only guarantees the secrecy of some part of encrypted plaintexts. In Section 3, we



CT Expansion | PK Expansion | Assumption

Canetti et al. [CFGN96] o(\?) 0(\?) Common-Domain TDP (CDH, RSA)

Choi et al. [CDMWO09] O(\) O(N) Trapdoor Simulatable PKE (DDH etc.)

Hemenway et al. [HOR15] O(log \) A -poly(logA) | ®-hiding

Hemenway et al. [HORR16] poly(log \) A-poly(logA) | LWE

Hemenway et al. [HORR16] poly(log \) poly(log \) Ring-LWE

Canetti et al. [CPR17] *) 1+0(1) 1+0(1) Indistinguishability Obfuscation

Yoshida et al. [YKT19] O(log \) 0(\?) Obliviously Sampleable CE (DDH)

Brakerski et al. [BBDT20] o) 0(\?) PEPE (DDH, QR)

Brakerski et al. [BBD20] o) A-poly(logA) | PEPE (LWE)

This work O(1) o(\?) Obliviously Sampleable CE (DDH)

This work o(1) A - poly(log A) | Obliviously Sampleable CE (LWE)
Table 1:  Comparison of existing (2-round) NCE schemes in terms of their ciphertext and

public-key expansion. The security parameter is denoted by A. *) This scheme uses common
reference strings.

formally define weak correctness and weak security for NCE and introduce the notion of weak
NCEFE as NCE satisfying only those weak correctness and weak security.

In Section 5, we give the description of the above scheme and its building block, obliviously
sampleable CE. Then we prove that the scheme is indeed a weak NCE scheme.

Amplification for Non-Committing Encryption. Next, we show that we can amplify a
weak NCE scheme into a full-fledged NCE scheme in Section 4. As a tool of amplification, we
use a coding scheme called wiretap codes. More specifically, we define a new security property,
conditional invertibility for wiretap codes. We show an instantiation of wiretap codes con-
structed from randomness extractor and linear error-correcting codes satisfies the conditional
invertibility.

This amplification increases the ciphertext expansion by only a constant factor. Thus, by
applying this transformation to the weak NCE scheme shown in Section 5, we obtain an NCE
scheme with a constant ciphertext expansion.

Lattice-Based Instantiation. We propose a lattice-based instantiation of obliviously sam-
pleable CE in Section 6. The construction is a natural composition of the lattice-based hash
encryption by Doéttling et al. [DGHM18| and the lattice-based chameleon hash functions by
Cash et al. [CHKP10].

One caveat of our construction is that we need the modulus of lattices to be super-polynomially
large for the correctness of it. This seems unavoidable since the chameleon encryption implies
non-interactive key exchange, which is considered difficult to be realized from lattice problems
for polynomially large modulus as discussed by Guo et al. [GKRS20].

1.4 Related Works on Amplification for Public-Key Encryption

Studies on security amplification have asked and answered the question: “How far can we
weaken a security definition so that schemes satisfying the definition can still be transformed
into those satisfying full-fledged security?” Dwork, Naor, and Reingold [DNRO04] first studied
the amplification of public-key encryption. They showed that a public-key encryption scheme
that satisfies weak forms of one-wayness and correctness can be transformed into one satisfies
the ordinary correctness and IND-CPA security. Holenstein and Renner [HR05] showed a more



efficient amplification method, starting from a scheme satisfying weak forms of IND-CPA se-
curity and correctness. Lin and Tessaro [LT13] provided an amplification method for schemes
with IND-CCA security. In this work, we show an amplification method for NCE, which can
be seen as one of this line of research.

2 Preliminaries

Notations. In this paper, PPT denotes probabilistic polynomial time. z < X denotes an
element z is sampled from uniform distribution over a set X. y < A(x;r) denotes A given input
x, using internal randomness r, outputs y. f(A) = negl(\) denotes function f is negligible, that
is, f(\) = 27«98} holds.

For an integer n, [n] denotes a set {1,...,n}. For a subset Z C [n] and a vector =
(xi)lgign S {0,1}", x7 denotes (l'i)iej;. For a matrix M = (mi)lgign S {0,1}k><n, My €
{0,1}* <IZI' denotes the matrix composed from column vectors m; of M for i € Z.

ha(-) denotes the binary entropy function, ha(p) = —plogp — (1 — p)log(1l — p). H(Y|X)
denotes the conditional entropy.

Lemma 2.1 (Chernoff Bound). Let X be a binomial random variable. If E[X] < p, then for
2
all § > 0, Pr[X > (14 8)u)] < e~ 25" holds.

Lemma 2.2 (Leftover hash lemma). Let H := {h : {0,1}" — {0,1}*} be a universal hash
family. If ¢ < Hoo(x) — w(log ), (h,h(x)) and (h,u) are statistically indistinguishable where
u < {0, 1}%.

Channel Model. When a sender transmits a message x € {0,1}" through a channel ChR,
the receiver gets a noisy version of the message & € {0, 1, L}". We define the procedure of such
channels as probabilistic functions, & <— ChR(x;rc,). We review two channel models, Binary
Erasure Channel (BEC) and Binary Symmetric Channel (BSC).

Let By be the n-bit Bernoulli distribution with parameter p. In other words, rep <= By is
an n-bit string where for each i € [n], Pr[rch; = 1] = p and Pr[ren; =0/ =1 —p.

Definition 2.1 (Binary Erasure Channel (BEC)). Through a binary erasure channel BEC,,
each bit of input x € {0,1}" is erased with probability p.

BEC,(x;rch) samples randomness rep <— B;,. Output of the channel is  where z; = L if
reh; = 1 and &; = x; if rep; = 0.

We also denote the output of BEC by 27 <— BEC,(z;7ch) where Z = {i € [n] | rcn; = 0} is
the set of non-erased indices.

Definition 2.2 (Binary Symmetric Channel (BSC)). Through a binary symmetric channel
BSC,, each bit of input = € {0,1}" is flipped with probability p.
BSC,, samples randomness r¢, <— By Output of the channel is T =z @ rep.

We denote by BEC<,, a binary symmetric channel with parameter p’ < p.

3 (Weak) Non-Committing Encryption

A non-committing encryption (NCE) scheme is a public-key encryption (PKE) scheme that has
efficient simulator algorithms (Sim, Open) satisfying the following properties. The simulator Sim
can generate a simulated public key pk and a simulated ciphertext C'T. Later Open can explain



the ciphertext C'T" as encryption of any message. Concretely, given a message m, Open can
output a pair of randomness for key generation rge, and encryption rgpc, as if pk was generated
by the key generation algorithm with the randomness rgen, and C'T is an encryption of m with
the randomness 7gqc.

Some previous works proposed NCE schemes that are three-round protocols[Bea97, DN0O].
In this work, we focus on NCE that needs only two rounds, which is also called non-committing
public-key encryption, and we use the term NCE to indicate it unless stated otherwise.

In this work, we abstract the intermediate construction of NCE by Yoshida et al. [YKT19]
and formalize it as weak NCE. Specifically, we introduce weak correctness and weak security
for NCE.

Syntax. Since an NCE scheme is public-key encryption, we recall its syntax.

Definition 3.1 (Public-Key Encryption). A PKE scheme consists of the following PPT algo-
rithms (Gen, Enc, Dec).

e Gen (1/\§TGen): Given the security parameter 1%, using a randomness rgen, it outputs a
public key pk and a secret key sk.

e Enc(pk,m;rgnc): Given a public key pk and a plaintext m € {0, 1}*, using a randomness
TEnc, it outputs a ciphertext CT.

e Dec(sk,CT): Given a secret key sk and a ciphertext CT, it outputs m or L.

Public-Key/Ciphertext Expansion. Public-key expansion and ciphertext expansion of a
public-key encryption scheme are defined by |pk|/|m| and |CT|/|m|, respectively, for |m| =

poly(A).

Correctness. Since the ordinary correctness can be seen as a special case of weak correctness,
we first introduce the notion of weak correctness and then define correctness. Informally, we say
that a PKE scheme is weakly correct if it has decryption error for each message bit as defined
below.

Definition 3.2 ((Weak) Correctness). We say that a PKE scheme NCE = (Gen, Enc, Dec) is
weakly correct if it has non-negligible decryption error for each plaintext bit. Specifically, we
say that NCE has e-decryption error if for all plaintext m € {0,1}* and i € [u],

Pr[m; # Dec (sk, Enc (pk,m;7gnc));] < €

holds, where (pk, sk) < Gen (1>‘; rGen) and the probability is taken over the choice of rge, and
TEnc. In other words, the procedure of encryption and decryption works as the binary symmetric
channel

Dec(sk, Enc(pk, - )) = BSC<(+).

Furthermore, we say that NCE satisfies correctness if € = negl(\).

Security. We first introduce the notion of weak security. We then recall the ordinary security
of NCE.

Weak security allows an adversary to learn some partial information of a plaintext Leak(m).
Still, it guarantees that other information of m remains hidden. Furthermore, in the security
experiment of weak security, the challenge message is fixed in advance independently of the
public key.



Definition 3.3 (Weak Security for NCE). For a PKE scheme NCE = (Gen, Enc,Dec) and a
probabilistic function Leak, consider the following PPT simulators (SimGen, SimEnc, Open):

e SimGen (1’\) Given the security parameter 1%, it outputs a simulated public key pk and
its internal state information stj.

e SimEnc(m < Leak(m;r),st1): Given a partial information of a plaintext m which is
computed by the probabilistic function Leak with randomness r, and a state st1, it outputs
a simulated ciphertext CT" and a state sts.

e Open(m,r,sty): Given a plaintext m, randomness r used by Leak, and a state sto, it
outputs randomness for key generation rge, and encryption rgnc.

For an adversary A and a message m, define two experiments as follows.

Expx\é%ak Real ‘ EXPRI/\é%ak Ideal
(pk, sk) < Gen (1%;7Gen) (pk, st1) < SimGen (1%)
CT «+ Enc(pk,m;renc) (CT, stg) < SimEnc(Leak(m;r), st1)

("“Gena TEnc) < Open(m, T, Stz)
out < A (pkv CT7 TGen, TEnc) out + A (pk, CT, TGen> rEnc)

We say that NCE is weakly secure with respect to Leak if there exist PPT simulators
(SimGen, SimEnc, Open) such that for any PPT adversary A and any message m,
Advxg%‘?i ‘Pr [out =1in Exp%%ak Real} Pr [out =1in Expl\{g%ak Ideal} ‘
=negl(\)
holds.

Weak security with respect to Leak = | in which the target message is chosen by the
adversary is exactly the same notion as the full-fledged security for NCE which we recall below.

Definition 3.4 (Security for NCE). For a PKE scheme NCE = (Gen, Enc, Dec), consider the
following PPT simulators (Sim, Open):

e Sim (1)‘): Given the security parameter 1%, it outputs a simulated public key pk, a simu-
lated ciphertext C'T" and its state st.

e Open(m, st): Given a message m and a state st, it outputs randomness for key generation
TGen and encryption rgpc.

For a stateful adversary A, we define two experiments as follows.
Ideal

EXPNR&»Si lA ‘ Expyce A
(pk, sk) < Gen (1’\;?"(;6”) (pk,CT, st) < Sim (1>‘)
m < A (pk) m < A (pk)

CT <+ Enc (pk, m;Tgnc) (Gens TEnc) < Open(m, st)
out < A (CT,rGen,TEnc) | out < A (CT, rGen, "Enc)

We say that NCE is secure if there exist PPT simulators (Sim,Open) such that for all PPT
adversary A,
Advyce 4 (A) = )Pr [out =1in Explf\,{g;u] — Pr [out =1in Exp%,%%f‘ﬂ ‘ = negl())

holds.

Definition 3.5 ((Weak) Non-Committing Encryption). Let NCE be a PKE scheme. NCE is said
to be NCE if it satisfies the above correctness and security for NCE. Also, NCE is said to be
weak NCE if it satisfies the above weak correctness and weak security for NCE.
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Figure 1: Wiretap channel model.

4  Amplification for Non-Committing Encryption

When weak NCE is used to communicate, roughly speaking, the receiver gets a noisy version
of the transmitted message x, and the adversary can see some partial information of . In fact,
such a situation is very natural and studied as physical layer security in the Information and
Coding (I&C) community since the wiretap channel model was proposed by Wyner [Wyn75].
Based on this observation, in this section, we show how to amplify a weak NCE scheme into a
full-fledged one by using wiretap codes. *

4.1 Wiretap Codes

As described in Figure 1, when the sender transmits a message x over the wiretap channel, on
one hand, the receiver gets the message affected by noise over receiver channel ChR(z). On
the other hand, an adversary can interrupt the transmission and gets a noisier version of the
message ChA(x).

In such a model, using the difference in the amount of noise the receiver and the adversary
are affected, wiretap codes WC enable us to transmit a message m correctly to the receiver while
keeping it information-theoretically secure against the adversary.

Wiretap codes have an encoding and a decoding algorithm similar to error-correcting codes.
Wiretap codes satisfy two properties. One is correctness, which ensures that the receiver can
decode codewords even if they are affected by some amount of noise. The other is security, which
guarantees that the adversary can get no information about the message given some part of the
codeword. It is known that the encoding algorithm must use randomness to satisfy security.

Originally in the 1&C community, the security of wiretap codes was defined by mutual
information. Bellare et al. [BTV12b, BT12, BTV12a] proposed several equivalent definitions
in a cryptographic manner. Among them, we recall one adopting the distinguishing style of
security below. Then we proposed a new security property, conditional invertibility for wiretap
codes, which we need in the security proof of our amplification for NCE.

Note that the following definition adopts the seeded version of wiretap codes also proposed
by Bellare et al. [BTV12b]. In the seeded wiretap channel, the sender, receiver, and an adversary
can see a public random seed. We adopt the seeded wiretap codes to give a simple construction of
the codes. The seed can be removed without increasing the rate of the codes by a transformation
shown in [BT12]. In this work, we put the seed into a part of the public key when constructing
NCE.

Definition 4.1 (Wiretap Codes). (Seeded) wiretap codes WC consist of the following PPT
algorithms (WC.Setup, WC.Encode, WC.Decode).

e WC.Setup(1*): Given the security parameter 1%, it samples a public seed p.

2In literature, wiretap codes sometimes appeared in the name of “encryption” or “one-way secret-key agree-
ment”. It can be also interpreted as a kind of secret sharing scheme.



e WC.Encode(p, m;s): It encodes a message m € {0, 1}* with a public seed p and random-
ness s < S, and outputs a codeword z € {0,1}".

e WC.Decode(p, x): On input a noisy codeword z € {0,1}" and a public seed p, it outputs
a message M.

Rate of Wiretap Codes. The rate of WC is the length of messages over the length of code-
words p/n € (0,1). The rate of WC is at most the secrecy capacity of the wiretap channel. The
secrecy capacity of wiretap channel, defined with symmetric channels ChR and ChA, is equal to
H(U|ChA(U)) — H(U|ChR(U)) for a uniformly random bit U [Leu77|, where H(Y|X) denotes
the conditional entropy.

Usually, wiretap codes are required to satisfy the following correctness and security.

As a security property, we present a definition of distinguishing security adopted for seeded
wiretap codes. This is a natural extension of the distinguishing security for seedless wiretap
codes proposed by Bellare et al. [BTV12b].

Correctness: WC is correct over the receiver’s channel ChR if for all message m € {0,1}* and
public seed p, we have

Pr[WC.Decode(p, ChR(WC.Encode(p, m))) # m] = negl(})

Security: WC is DS-secure against adversary’s channel ChA if for any unbounded stateful ad-
versary A, we have

p + WC.Setup(1), (mg, m1) = A(p),
b+ {0,1}, 2 + WC.Encode(p, my),
Z < ChA(z;reh),

vV =A%)

1
Pr|b=V -3 = negl(\)

Next, we introduce a new security property for wiretap codes, conditional invertibility.

Intuitively, this security notion states that after the adversary sees the partial information
% + ChA(x) resulted from the codeword z of a message m’, we can efficiently explain that Z has
resulted from another message m. The security definition involves a PPT inversion algorithm
WoC.Invert, which on inputs seed p, a condition Z, and a message m, outputs randomness s’ and
reh’ such that ChA(WC.Encode(p, m; s'); rep’) is equal to the condition .

Conditional invertibility implies the ordinary distinguishing security. It can be seen as non-
committing security for wiretap codes. Note that wiretap codes are inherently non-committing
in the sense that they usually required to statistically lose the information of messages. Thus, the
only point conditional invertibility additionally requires is that the inversion can be computed
efficiently.

Definition 4.2 (Conditional Invertibility). For an unbounded stateful adversary A and a PPT
algorithm WC.Invert, define two experiments as follows:

Bl Bl
p < WC.Setup(1?) p < WC.Setup(1?)
(m,m’) = A(p) (m,m’) = A(p)
x < WC.Encode(p, m; s) | x «+ WC.Encode(p, m'; s)
T < ChA(z;7eh) T < ChA(z;7en)
(s',ren’) + WC.Invert(p, &, m)
out = A(Z,s,rch) out = A(Z, s, re)

10



We say that WC is invertible conditioned on ChA if there exists a PPT inverter WC.Invert such
that for any unbounded adversary A,

‘Pr [out =1in Exp%}c‘ﬁ} —Pr [out =1in Exp%,%‘ﬂ} ‘ = negl(\)

holds.

4.2 Instantiation of Wiretap Codes

Overview. We recall a modular construction of wiretap codes proposed by Bellare et al. [BTV12b]
called Invert-then-Encode construction. The building blocks are error-correcting codes and in-
vertible extractors. This idea of composing error-correcting codes and extractors can be found
also in the construction of a linear secret sharing scheme proposed by Cramer et al. [CDD*15].

Consider an seeded extractor Ext : {0,1}¥ — {0,1}* which on inputs X € {0,1}* and a
seed p, outputs m € {0,1}*. The extractor is invertible if there is an efficient inverter Inv,
which on inputs m € {0,1}* and seed p, samples a preimage X € {0,1}* using randomness
s. The Invert-then-Encode construction takes input m with seed p, first inverts the extractor
X < Inv(m, p; s), then encodes X by the error-correcting code as x = Encode(X).

For a concrete instantiation, Bellare et al. suggested to use the polar codes [Ari09] as error-
correcting codes to achieve the optimal rate. Note that we can compute the encoding of input m
by mG where G is a generator matrix of the linear error-correcting code. Invertible extractors
can be instantiated using multiplication over GF(2¥). Concretely, the extractor takes inputs €
{0,1}* and seed p € GF(2¥), and outputs the first u bit of z®p, where ® denotes multiplication

over GF(2¥). The inverter Inv for this extractor is obtained by Inv(m,p;s) = (m||s) © p~'.

Construction. We describe the construction of wiretap codes for y = O(\) bit messages. For
a longer message, we can encode it by first dividing it into blocks of p bit and then encoding
each block by the following codes (see [BT12]).

Let p,k,n = O(N). Let G € {0,1}**" be a generator matrix of a linear error-correcting
code, and ECC.Decode a corresponding decoding algorithm. Choose a constant ¢ > 0 such
that the error-correcting code can be correct over ChR = BSC<.. We construct wiretap codes
which is correct over ChR = BSC<, and invertible conditioned on ChA = BECy 5. Thus, in this
construction, the wiretap decoding algorithm takes as input 2/ + BSC.(z), and the wiretap
inverter algorithm takes as input xz < BECq5(x;7en) where Z € [n] is the set of non-erased
indices determined by a uniformly random n-bit string r¢,.

e WC.Setup(1*): Sample and output p < GF(2¥) \ {0}.

e WC.Encode(p, m; s): For input m € {0,1}*, sample s « {0, 1}*~#, output = = ((m||s) ®
p)G € {0,1}™.

e WC.Decode(p, 2'): Output the first u bits of ECC.Decode(z’) ® p~!.

e WC.Invert(p, xz,m): On input a condition z7 <+ BECy5(x;7re), sample and output s’
which satisfies 7 = ((m]|s") © p)Gz.
Concretely, let 3. zici + co (¢; € {0,1}%,2; € {0,1}) be the general solution of linear
equation x7 = yGz. Then, uniformly sample a solution {z;}; of linear equation m =
izl ©p N,y + (co®p ), - Finally, output &' =3, zi(c; © p™ ) g1, py +
(co ®p71){u+17...,k}-
It also outputs randomness for the channel r¢,’ = 7, which is a uniformly random n-bit
string representing the non-erased indices Z.
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Rate of the Scheme. The rate u/n of the scheme can be set to a constant smaller than

(% — 1). If the rate k/n of the error-correcting codes is close to its capacity 1 — ho(e), the rate

of WC can be close to its secrecy capacity 1/2— ha(€), which is the optimal rate of wiretap codes.

Correctness. The correctness of the wiretap codes directly follows from the correctness of
the underlying error-correcting codes.

Conditional Invertibility. To show the invertibility conditioned on BECg 5, we need to show
that distributions of (Z, s, r¢h) are statistically indistinguishable in the real and ideal experiments
of the definition. We introduce the hybrid experiment defined as follows:

Erol By el
p < WC.Setup(1?) p < WC.Setup(1?) p < WC.Setup(1?)
(m,m’) = A(p) (m,m’) = A(p) (m,m’) = A(p)
x < WC.Encode(p, m; s) | © + WC.Encode(p, m; s’) x < WC.Encode(p, m/; s)
T < ChA(z;7reh) Z < ChA(z;7en) T < ChA(z;7eh)
(s',ren’) < WC.Invert(p, Z,m) | (s',re’) < WC.Invert(p, Z, m)
out = A(Z,s,7ch) out = A(Z, s, ren’) out = A(Z, s, ren’)

Claim 4.1. The distribution of output in the real and hybrid experiments are same.

Proof. In general, for a function f: X — ),

{(z,y) |z X,y=f(@)}={(2/,y) |z X,y = fz),2 + [ (y)}

holds, where f~!(y) denotes the set of pre-images of .

By applying the above fact to fp (s, 7ch) = ChA(WC.Encode(p, m; s); 7ch), what we need to
show is that WC.Invert implements sampling (s, ren’) < f5 1, (Z).

Since we consider ChA = BEC5, WC.Invert can uniquely determine 7o’ = ren from the
representation of & = x7. Recall that WC.Invert samples s satisfying 7 = ((m]|s’) ® p)Gz =
BEC.5(WC.Encode(p, m; s’); ren) uniformly at random. Hence, the claim follows. O

Claim 4.2. The hybrid and ideal experiments are statistically close if the wiretap codes are
secure in the ordinarily sense.

Proof. Consider the adversary A that distinguished the two experiments. We can construct an-
other adversary A’ against the security of the wiretap codes as follows: Given p, run A’ on p and
obtain m,m’; send them to its challenger and receive Z; compute (s,7¢)  WC.Invert(p, &, m);
run A’ on I, s, 7¢p and receive out; output out. The claim is proven, since the simulation by A
is perfect. O

Claim 4.3. The wiretap codes are secure in the ordinarily sense.

Bellare et al. [BTV12b] show a detailed security proof of the wiretap codes for general ChA.
Below, we show a specific security proof for ChA = BECg 5.

Proof. Recall that the parameter is selected to satisfy u/n < (k/n —1/2). Let 26 := ((k —
w)/n—1/2) > 0 be a constant.

Since ChA = BECy 5, the input for the adversary is 7 = ((m||s) ® p)Gz. By the Chernoff
bound, |Z| < (3 + §)n holds except negligible probability.

Let us decompose the submatrix of the generator Gz = PDQ, where P € {0,1}*** and
Q € {0,1}FXIZ are invertible. Furthermore D = (d;;) € {0,1}**Z| satisfies d;; = 1 for
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1 <i <r:=Rank(Gz) and d; ; = 0 for other elements. We interpret the multiplication by D
as getting the first r bits and concatenating 0Z1=". Thus z7 = ((((m||s) ® p) P )] 0ZI=MQ.

For input m/||s and seed p, hy(m||s) := ((m|s ® p)P)j;) forms a universal hash family. Note
that the input has min-entropy Hy, (m||s) = k — p.

Since r < |Z| < (3 +0)n < k — p— 6n < Hoo(m||s) — w(log A) holds, by the left over hash
lemma, (p, hy(m||s)) is statistically indistinguishable from (p,u) where u < {0,1}". Therefore
x7 is statistically indistinguishable from (u|/0%!=")@Q, which is independent of m. Thus, the
claim is proven. 0

By combining the above three claims, conditional invertibility of the wiretap codes follows.

4.3 Full-Fledged NCE from Weak NCE

In this section, we amplify a weak NCE scheme into a full-fledged one using conditionally
invertible wiretap codes.

Construction. Let NCE = (Gen, Enc, Dec) be a weak NCE scheme which has e-decryption error
and weak security with respect to BECy 5, and wiretap codes WC = (WC.Setup, WC.Encode, WC.Decode)
which is correct over receiver channel BSC<. and conditionally invertible against the adversary
channel BEC( 5. We construct a full-fledged NCE scheme NCE' = (Gen’, Enc’, Dec’) as follows.
Gen'(1):

e Sample a public seed of the wiretap codes p < WC.Setup(1?).

e Generate a key pair of weak NCE (pk, sk) < Gen (1>‘; rGen).

e Output (pk’, sk) := ((p, pk), sk).

The randomness for key generation rgen’ iS 7Gen-

Enc'(pk’,m):

Sample a key for one-time pad k < {0,1}#.3
Encode the key as x + WC.Encode(p, k; s) € {0,1}".
Compute CT <« Enc(pk, z;TEnc)-

e Output ciphertext CT' = (CT,m @ k).

The randomness for encryption rgnc’ is (Tgnc, k, S).
Dec(sk/,CT’):
e Parse CT" as (c1,c2).

e Compute k = WC.Decode(p, Dec(sk, c1)).
e Output m =co @ k.

Ciphertext Expansion. The ciphertext expansion of NCE is
ciphertext expansion of NCE

rate of WC 1 (1)

Since the rate of the wiretap codes is constant, this amplification increases ciphertext ex-

pansion only by a constant factor. Combining the ciphertext expansion given in Section 5, we
will estimate its concrete value for our scheme in Section 7.

3Note that weak security of NCE requires the challenge message to be independent of the public key. To
address this issue, we use one-time pad in this amplification.
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Correctness. Due to the decryption error of NCE, each bit of the decrypted codeword x is
flipped with probability at most €. The wiretap codes correct this error as shown below.

Theorem 4.4 (Correctness). If NCE has e-decryption error, and WC is correct over BSC<,, then
NCE' is correct.

Proof. The probability of NCE' fails to decrypt is evaluated as

Pr[k # WC.Decode(p, Dec(sk, Enc(pk, x)))]
= Pr[k # WC.Decode(p, BSC<.(WC.Encode(p, k; 5)))]
= negl(A).

Thus NCE’ is correct. O

Security. We now show the security of NCE'.

Theorem 4.5 (Security). If NCE is weakly secure with respect to BECq 5, and WC is invertible
conditioned on BECj 5, then NCE' is secure.

Proof. We first construct a simulator of NCE' (Sim’, Open’) from the simulator (SimGen, SimEnc, Open)
of NCE, and the inverter WC.Invert of WC.
Sim/(14) :
e Sample p < WC.Setup(1*).
e Generate (pk, st1) « SimGen (1%).
e Sample k < {0, 1}/,
e Compute Z <+ BECy 5(WC.Encode(p, 0%; s'); ren’).
e Compute (CT, sta) < SimEnc(z, st1).
e Set pk' = (p,pk),CT' = (CT, k), st’ = (sto,p, k,T).
e Output (pk/,CT’, st').
Open’(m, st') :
e Parse st’ as (sta,p, k, ).
o (s,7ch) « WC.Invert(p, z,m @ k).
® (7Gen, TEnc) < Open(WC.Encode(p,m @ k; s), rch, sta).

L4 OUtpUt (TGenly TEnc/) = (TGena (TEnu m &® k7 3))
Let A be an adversary against the security of NCE'. We then define the following experiments:

Exp 0 : This experiment is the same as Expf,{CeS,IA. Specifically,

Sample p + WC.Setup(1*).

Generate the key pair (pk, sk) < Gen (1’\; rGen).

Run the adversary to output plaintext m < A(p, pk).

Sample k < {0,1}* and encoded it as x + WC.Encode(p, k; s).
Encrypt the codeword as CT' < Enc(pk, x; rgnc).

ANl o A

Output this experiment is out < A((CT,m @ k) , 7Gen, (TEnc, k, 5)).
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Exp 1 : In this experiment, we use the simulator (SimGen, SimEnc, Open) for NCE. The cipher-
text CT is simulated by SimEnc only given partial information of the message Z + Leak(x),
where Leak = BECy 5 and = <— WC.Encode(p, k; s) now. Specifically,

NS ot W=

8.

Sample p + WC.Setup(1%).

Simulate the public key as (pk, st1) <— SimGen (1)‘).

Run the adversary to output plaintext m <« A(p, pk).

Sample k < {0,1}* and encoded it as = < WC.Encode(p, k; s).
Compute partial information & <— BECy 5(z;7ch).

Simulate the ciphertext as (CT), sta) < SimEnc(z, st1).

Explain the randomness for key generation and encryption as
(TGem 7"Enc) A Open(WC.Encode(p, k; 3)7 T'ch, 3t2)'

Output of this experiment is out <— A((CT,m @ k), 7Gen, (FEnc, k, S))-

Exp 2 : In this experiment, we completely eliminate the information of k from the input of
SimEnc to simulate the ciphertext. Later WC.Invert determines the randomness s used in
the encode. Specifically,

S B A A

9.

Sample p < WC.Setup(1%).

Simulate the public key as (pk, st1) < SimGen (1’\).

Run the adversary to output plaintext m < A(p, pk).

Sample k < {0,1}*, but the codeword is = +— WC.Encode(p, 0#; s').
Compute partial information & < BECq 5(x;ren’).

Simulate the ciphertext as (CT), sta) < SimEnc(z, st1).

Invert the randomness for encode as (s, 7ch) — WC.Invert(p, Z, k).

Explain the randomness for key generation and encryption as
(rGens TEnc) <— Open(WC.Encode(p, k; ), rch, sta).

Output of this experiment is out < A((CT,m @& k), 7Gen, (FEnc; k, S))-

Exp 3 : In this experiment, we completely eliminate m from the ciphertext by switching k to
m @ k. Specifically,

S BN A o A

9.

Sample p < WC.Setup(1*).

Simulate the public key as (pk, st1) < SimGen (1’\).

Run the adversary to output plaintext m < A(p, pk).

Sample k < {0, 1}*, but the codeword is z +— WC.Encode(p, 0#; s').
Compute partial information & < BECq 5(x;ren’).

Simulate the ciphertext as (CT), sta) < SimEnc(z, st1).

Invert the randomness for encoding as (s,7cn)  WC.Invert(p, Z, m @ k).

Explain the randomness for key generation and encryption as
(rGen, TEnc) < Open(WC.Encode(p, m @ k; s), rch, Sta).

Output of this experiment is out «<— A((CT, k), TGen, (TEnc, m D k, 8)).

Tdeal

Note that the last experiment Exp 3 is identical to Expyegs 4-
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We show the difference between each experiments are negligible.

Lemma 4.6. If NCE is weakly secure with respect to BEC 5, the difference of Prjout = 1] in
Exp 0 and Exp 1 is negligible.

This lemma directly follows from the weak security of NCE. Note that the message encrypted
by NCE is the key of one-time pad k, which is independent of the public key.

Lemma 4.7. If WC is invertible conditioned on BECy 5, the difference of Prlout = 1] in Exp 1
and Exp 2 is negligible.

By the conditional invertibility of WC, the following items are statistically indistinguishable.
e (BEC)5(WC.Encode(p, k;s);7rch), (S,7ch))

o (BECo.5(WC.Encode(p, 0#;5);7en’), (8, 7ch))
where (s,rq,) is output of WC.Invert(p, BECy 5(WC.Encode(p, 0#; s'); ren’), k)

The lemma follows because (CT”,7¢.,, "Enc), and hence out in Exp 1 are computed from the
former item, while those in Exp 2 are computed from the latter item.

Lemma 4.8. Prlout = 1] is identical in Exp 2 and Exp 3.

This lemma holds unconditionally, because (k,m @ k) and (m @ k, k) distribute identically
when k is sampled uniformly at random.
Combining the above lemmas, we complete the proof of Theorem 4.5. O

5 Construction of Weak NCE

In this section, we show an intermediate version of the NCE scheme in Yoshida et al. [YKT19]
is a weak NCE scheme. Their scheme is constructed from obliviously sampleable CE. We first
recall the definition of obliviously sampleable CE. We then describe the construction of weak
NCE, show that it has 1/ 2t+1_decryption error, where ¢ is a constant which appears in the
chameleon encryption, and prove its weak security with respect to BECp5. The ciphertext
expansion of the resulting weak NCE is 2¢ + o(1).

5.1 Obliviously Sampleable Chameleon Encryption

Chameleon encryption (CE) was proposed by Déttling and Garg [DG17]. We recall its oblivi-
ously sampleable variant, introduced by Yoshida et al. [YKT19] as a building block of their NCE
scheme. They showed an instantiation of obliviously sampleable CE from the DDH problem.
We also show an instantiation from the LWE problem in Section 6.

Definition 5.1 (Obliviously Sampleable Chameleon Encryption). An obliviously sampleable
chameleon encryption scheme CE consists of PPT algorithms for hash functionality (G7 H, H_l),
those for encryption functionality (E;, Ez, D), and those for oblivious sampling (G, E) We first
introduce algorithms for the first two functionality. Below, we let Ry (and Rg, resp.) be the
randomness space of H (and that of E; and Ej, resp.). We let {0, 1} be the key space.

e G (1A, 1”): Given the security parameter 1* and the length of inputs to the hash function
1™ it outputs a hash key hk and a trapdoor td.

e H(hk,z;r): Given a hash key hk and an input = € {0,1}", using randomness r € Ry, it
outputs a hash value y.
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e H1(td, (z,7),2'): Given a trapdoor td, an input to the hash function z, randomness for
the hash function r, and another input to the hash function 2/, it outputs randomness r’.

o E; (hk,(i,b);p): Given a hash key hk, an index i € [n],b € {0,1}, using randomness

p € Rg, it outputs a ciphertext ct.

e E; (hk, (i,b),y;p): Given a hash key hk, an index ¢ € [n],b € {0,1}, and a hash value y,
using randomness p € RE, it outputs K € {0,1}%.

e D (hk,(x,r),ct): Given a hash key hk, a pre-image of the hash function (z,r), and a

ciphertext ct, it outputs K € {0,1}%.

We then introduce algorithms for oblivious sampling.

e G (1>‘, 1”): Given the security parameter 1%, it outputs only a hash key hk without using

any randomness other than hk itself.

e E; (EK, (1, b)): Given a hash key hk, an index i € [n], and b € {0, 1}, it outputs a ciphertext

ct without using any randomness except ct itself.

An obliviously sampleable CE scheme satisfies the following trapdoor collision property, cor-
rectness, oblivious sampleability of hash keys, and security with oblivious sampleability.

Trapdoor Collision: For a chameleon encryption scheme and a stateful adversary A, we define

two experiments as follows.

EXpReal

EXpIdeal

(hk, td) < G (1*,17)
(z,2") = A(hk)
y < H(hk, ;)

out = A(y,r)

(hk, td) « G (1*,17)
(x,2") = A(hk)

y < H(hk,z;r")

r+ H7l(td, (2/,7"), x)
out = A(y,r)

We say the chameleon encryption scheme satisfies trapdoor collision if for any unbounded

stateful adversary A,

holds.

Pr [out =1in Epreal} — Pr [out =1in Explde‘ﬂ ’ = negl(\)

Correctness: For all x € {0,1}",r € Ry, € [n], hk output by either G (1>‘, 1”) or G (1/\, 1”),

we have

Pr[Ex(hk, (7, 2;),y; p) = D (hk, (z,7),ct)] = 1 — negl(})

where p < Rg, y < H (hk,z;7), ct + Ei(hk, (4, 2;); p), and x; denotes the i-th bit of x.

Oblivious Sampleability of Hash Keys: hk + G (1)‘, 1”) and hk « G (1>‘, 1") are compu-

tationally indistinguishable.

Security with Oblivious Sampleability: For any = € {0,1}", r € Ry, 7 € [n], and PPT
adversary A, define two experiments as follows.
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Expgay | Exp&ia

(hk, td) « G (1*,17) (hk,td) + G (1*,17)
ct « Eq(hk, (i,1 — ;); p) ct « Eq(hk, (i, 1 — z;))
K « E(hk, (i,1 — x;), H(hk, z;7); p) K(—{O,l}é

out < A (hk,ct, K) out < A (hk,ct, K)

Then, we have

Advcg 4 (N) =

Pr [out =1in Expé%?ﬂ —Prfout=11in ExpgaA] ‘ = negl(\) .

Remark 1. In the original definition of Yoshida et al. [YKT19], security of an obliviously
sampleable CE scheme and its oblivious sampleability of ciphertexts are defined separately. In
the above definition, we combine them into a single notion, security with oblivious sampleability.
This yields a clean and simple security proof of obliviously sampleable CE based on the LWE

assumption and that of NCE scheme based on obliviously sampleable CE.

5.2 Construction

We show a construction of weak NCE scheme NCE for message space {0, 1}" based on an oblivi-
ously sampleable CE scheme CE below. NCE has constant ciphertext expansion and e-decryption
error, and satisfies weak security with respect to Leak = BECg 5. We can set € to be arbitrar-
ily small constant by appropriately selecting the constant parameter ¢ of CE; we require that

€ > 271 4 negl(N).
Gen (1)‘; TGen)i
e Generate hk < G (1’\, 1”), and sample z < {0,1}".

e For all i € [n], sample p; < Rg.
e For all i € [n] and b € {0, 1}, compute

Ex (R, (.0):pi) (i b= 20)
Ctip < § — )~ .
E1 ( hk, (¢, b)) (otherwise)

e Output

pk = <HR (Ctl’o’ e ’Ct"’0>> and sk := (z,(p1,...,pn))-

ct1,1,..-,Cty1

The key generation randomness 7gen, 1S (ﬂ, z, {Pi}z‘e[np {Cti,l—zz-}ie[n})

Enc(pk,z € {0,1}"™;rgnc):

e Parse public key pk as the equation 2.
e Sample randomness r < Ry and compute y H(HE, x;T).
e For all i € [n] and b € {0, 1}, compute

Kip D (@, (x,r), cti,b) (if b = )
{0,1}* (otherwise) .
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e Output

The encryption randomness rg,c is (r, {Ki,l—zi}ie[n]).
Dec (sk,CT):

e Parse sk and CT as the equations 2 and 3, respectively.

e For all i € [n], compute

N {Zz (if K. =E (ﬁk, (i,Zi),y;pi»

1— 2 (otherwise)
e Output z.

Ciphertext Expansion. Ciphertext length of this scheme is |CT| = |y| 4+ 2n¢, where length
of the output of the chameleon hash |y| does not depend on n. Therefore ciphertext expansion
of this scheme is

|CT| /n =20+ o(1).

Next, we show that NCE is weak NCE. More concretely, we show that NCE has e-decryption
error and satisfies weak security with respect to BECy 5.

Theorem 5.1 (Weak Correctness). Let ¢ be a constant noticeably larger than log(1/e) — 1. If
CE satisfies correctness, then NCE has e-decryption error.

Proof. Let x € {0,1}" be a message encrypted by NCE and z € {0,1}" a random string sampled
when generating a key pair of NCE.

We fail to decrypt z; if the underlying chameleon encryption causes correctness error when
2 = x;, or K;1_,. < {0,1}¢ accidentally coincides with Ep (hk, (i, 2;),y; p;) when z; # x;. The
probability of the former is negligible since CE is correct, and that of the later is 1/2¢. Notice
that correctness of CE holds for obliviously sampled hash key hk. Thus, the probability of failure
to decrypt z; is evaluated as

Pr[z; # (Dec (sk,CT));]
<Zi =x; N D(ﬂv (937 7“), Cti,xi) 7é E2 (@7 (Z) Zi)7 Y; pl))
% (Zi FxiNKij1_p = E2 (HR (2, 2i), Y Pz))

1 1
=3 <neg|()\) + 2€> <e.

=Pr

O]

Theorem 5.2 (Weak Security). If CE is an obliviously sampleable CE scheme, then NCE is
weakly secure with respect to Leak = BECg 5.

Proof. We construct a tuple of simulators as follows.

SimGen (1’\):
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e Generate (hk,td) < G (1*,1").
e For all i € [n] and b € {0,1}, compute ct; , <— E1 (hk, (i,b); p;ip).

. . t ...,Cct
e Output a simulated public key pk := { hk, “H,05- -5 Ctn0
cty1,.--,Ctyt

and state st; = (hk, td, {pi»b}ie[n]be{o,l})'

SimEnc(xz < BECy5(z;7ch), st1):

e Sample 1’ + Ry and compute y < H (hk, 0;77).
e For all i ¢ 7, compute Kjp < Ea(hk, (i,b),y;pip) for b € {0,1}. For all i € T,
compute

E> (hk, (2 3 Pi if b=w;
Ky 2 ( ) (Z?b)vyvpl,b) (1 b=ux )
{0, 1} (otherwise)

e Output a simulated ciphertext C'T := <y, <§1’0’ o ’g”’()))
L1 Bn

and state sto = (stq,1”, {Kivb}ie[n],be{o,l})'
Open(x, rep, sto):

e Sample 7 + H™ (td, (0,7'), z).
e Set Z:l'@ln@rch-

e Output the following simulated randomness

TGen := (hk, z, {pi:'zi}ie[n]7 {ctm,zi}ie[n}) and
TEnc i= (7”, {Ki,l—xi}ie[n]> :

Let A be a PPT adversary against weak security of NCE and = € {0,1}". We define the
following sequence of experiments.*

Exp 0: This experiment is exactly the same as ExpNRCealA. Specifically;

1. Generate hk « G (1*,17) and z « {0, 1}
2. For all i € [n], sample p; + RE.
3. For all i € [n] and b € {0, 1}, compute

Ex (hk, (3,0 pi) (i b= )
Ctip < § — )~ .
E; (hk, (i,b)) (otherwise)

4. Set

— (cti0,...,Cty —~
pk = (hk, < 1,0 ’0>) and TGen := <hka, {pi}ie[n]’{Ctivl_zi}ie[n]) .

ct1,1,-..,Cty 1

5. Sample r < Ry and compute y < H(@,w; T).

“The flow of the hybrids is slightly different from the proof given by Yoshida et al. [YKT19] as the security
definition of obliviously sampleable CE is reorganized.
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6. For all i € [n] and b € {0,1}, compute

Kip D (@, (z, 1), cti,b) (if b= x;)
{0,1}* (otherwise) .

7. Set
[ (K. Kng _ |
o= <y7 (K1,1, ... ,Kn,1>> and Teng 1= (r’ {Kz’l_“}iﬂno '

8. Output of this experiment is out < A(pk, CT, "Gen, TEnc)-

Exp 1: In this experiment, instead of sampling z < {0, 1}", we first compute 7 < BECq 5(x; rch)
and set z=xH 1" B rep.

Notice that z distributes uniformly at random over {0, 1}" also in Exp 1 since rep <— B 5. Thus,
Prjout = 1] in Exp 1 is identical to that in Exp 0. Also notice that i € Z iff z; # x; holds by the
setting of z.

Exp 2: In this experiment, we run (hk, td) < G (1>‘, 1”) instead of hk « G (1)‘, 1").

From the oblivious sampleability of hash keys of CE, the difference of Prlout = 1] between
Exp 1 and Exp 2 is negligible.
In subsequent experiments, we eliminate information of x; for ¢ ¢ Z from the ciphertext

CT = (y: {Kip}icpy pefo,1)-

Exp 3.j: This experiment is defined for j = 0,...,n. Exp 3.5 is the same experiment as Exp 2
except that we modify the procedures 3. and 6. as follows.

3. For all ¢ < j, compute ct;;, for b € {0,1} as ct;p « E1 (hk, (4,0); pip)-
For all 4 > j, compute them in the same way as Exp 2.

6. For all i < j,if i ¢ Z, compute K; o, Ki1 as K, < D (hk, (z,7),cti ) and K; 15, <
Eo (hk, (4,1 — 2;), y; pii—a,;)-
For all i < j, if ¢ € Z, compute them in the same way as Exp 2.

Also, for all ¢ > j, compute them in the same way as Exp 2 regardless of whether
1 € L or not.

Note that Exp 3.0 is exactly the same as Exp 2.

Lemma 5.3. If CE satisfies security with oblivious sampleability, the difference of Prlout = 1]
between Exp 3.(j — 1) and Exp 3.5 is negligible for every j € [n].

Proof. Using A, we construct a reduction algorithm A’ which attacks the security with oblivious
sampleability of CE with respect to x, r, and j.

What differ in Exp 3.(j — 1) and Exp 3.5 are ct;1-4,, Kju,, and Kj1 ;.

K., is the same in both experiments except negligible probability due to the correctness
of CE. We consider the following two cases.

Case 1. 2z = x;: ctj14; isoutput ofa (hk, (j,1 —x;)) or Eq (hk, (4,1 —zj); pj71_xj). Kj1-a,
is uniform random or output of Es (hk, Y; p@l_xj). In this case, the reduction algorithm
A', given (hk*, ct*, K*), embed ct; 14, = ct*, Kj1,; = K*.
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Case 2. z; # xj: ctj1_4, isoutput ofa (hk, (4,1 —x;)) or Eq (hk, (4,1 —xj); pj’l,zj). K1,
is uniform random in both experiments.

In this case, the reduction algorithm A’, given (hk*,ct*, K*), embed ct; 1, = ct*, set
Kj,lij < {0, 1}8.

In both cases, A’ returns output out < A(pk, CT, "Gen, TEnc)-

Depending on A’ playing in either Expé%fh, or Expgg 4, A’ perfectly simulates Exp%%?ﬁ Real
or Expl\\fg%f‘ﬁ Ideal oy cept correctness error on K j.z;» which occurs with negligible probability.

Hence assuming the CE satisfies security with oblivious sampleability, the difference of
Prjout = 1] in Exp 3.(j — 1) and Exp 3.5 is negligible.
O

Exp 4: This experiment is the same as Exp 3.n except that K; ., is generated by K., <
Ex (hk, (4, %;), y; pig,) instead of K 5, < D (hk, (z,r),ct; ;) for every i € [n].

From the correctness of CE, the difference of Pr[out = 1] between Exp 3.n and Exp 4 is
negligible.

Exp 5: In this experiment, we compute y as y < H(hk,0;7), where ' < Ry. Later, we
compute 7 as r + H™1(td, (0,7),z). Note that this experiment is exactly the same as
Expxg%?ﬁ Idealiiy which Leak = BSCg 5 is used. In detail, the experiment proceeds as follows.

1. Generate (hk,td) « G (1)‘, 1") and z < {0,1}".
For all i € [n],b € {0,1}, compute ct; , «— E1 (hk, (¢,b); pip). Set

pk — (hk, (Ctl,o, - ,Ctn70>) .
cti1,...,Ch1
Note that this pk does not depend on z.
2. Compute y < H (hk,0; "),
L Bz (hk,y50i5) (b= V 2; = 23)
ub {0, 1}4 (b 75 x; N\ zZ; 75 LUZ)

for all i € [n],b € {0,1}, and

Kig,...,Kuo >
CT := |y, e .
(y (K1,17---7Kn,1
Note that this C'T can be computed only from x7, where Z = {i € [n] | z; # =z;}.

Moreover, we can regard x7 < BECy5(x;7eh = 2@ 2@ 1"), since z + {0,1}™ has not
appeared elsewhere in this experiment.

3. Sample 7 + H™1 (td, (0,7') , z).
Set the randomness as

TEnc ‘=

reen = (K 2 (i Yie {tin = bie)
(

r, {Ki71—xi}i€[n]) '

4. out + A(pk, CT,7Gen, TEnc)
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Lemma 5.4. If the obliviously sampleable CE satisfies trapdoor collision, the difference of
Prlout = 1] in Exp 4 and Exp 5 is negligible.

From the above arguments, we see that NCE satisfies weak security with respect to Leak =
BSCy.5. This completes the proof of Theorem 5.2.
O

6 Obliviously Sampleable Chameleon Encryption from Lattices

We propose a lattice-based construction of obliviously sampleable CE. The ciphertext length of
the proposed scheme is A - poly(log A), which is smaller than (9()\2) of the construction from the
DDH problem [YKT19].

The construction is similar to the construction of hash encryption from LWE proposed by
Doéttling et al. [DGHM18]. However we need a super-polynomially large modulus Z, for the
scheme to satisfy correctness. Although security of the hash encryption is claimed to be proved
from a valiant of the LWE assumption, called extended-LWE, we prove the security directly
from the LWE assumption.

Before describing our construction, we recall preliminaries on lattices.

6.1 Preliminaries on Lattices

Notations Let A, B be matrices or vectors. [A|B] and [A; B] denotes concatenation of
columns and rows respectively. A,; denotes the matrix obtained by removing the i-th column
of A.

The n-dimensional Gaussian function with parameter s is defined as ps(x) := exp(—||z|?/s?).
For positive real s and countable set A, the discrete Gaussian distribution Dy ¢ is defined by

Das(®) = ps(x)/ _,ca ps(y). We note that, if s = w(logm),

Pr [|r] < sym]>1—2"m",
T‘(*Dzm“s

(See [MRO7].)
Parameters. We let n =\, m = O(nlogq) (e.g., m = 2nlogq), g = 2P°Y1°8N)  Let y be the
discrete Gaussian distribution over Z with parameter s = w(y/mlogn), that is, Dz ;. Rounding

function round : Z; — {0,1} is defined as round(v) = |2v/q]|. If input for round is a vector
v E Zg, the rounding is applied to each component. Let ¢ be a constant.

Definition 6.1 ((Decisional) Learning with Errors [Reg05]). The LWE assumption with respect
to n dimension, m samples, modulus ¢, and error distribution x over Z, states that for all PPT
adversary A, we have

|Pr[A(A,STA+ E) =1] — PrlA(A, B) = 1]| = negl(}),
nxm nxt mx£t mx£t
where A < Zy*™, S « Zy*", E < X", B < Z;"*".

Definition 6.2 (Lattice Trapdoor [GPV08, MP12]). There exists following PPT algorithms
TrapGen and Sample.

TrapGen(1) : Output a matrix Ay € Zy*™ together with its trapdoor T'.

Sample(A7, T, u, s) : Given a matrix Ar with its trapdoor T', a vector u € Zy, and a parameter
s, output a vector r € Z™.
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These algorithms satisfy the following two properties.
1. Ar is statistically close to uniform in Zj*™.
2. If s > w(yv/m -logn), then r € Z™ output by Sample(Ar, T, u, s) is statistically close to
Dym s conditioned on r € Ay (A7) :={r € Z™ | Apr =u (mod q)}.
6.2 Construction

We construct an obliviously sampleable CE scheme from the LWE problem for super-polynomially
large modulus.

G(1*,1M):
e Sample R« Z2*N and (Ap € Z2*™, T) < TrapGen(1*).
e Output
hk:= A =[R| Ar] and td := T
H (hk, z;7):

m

e Sample r € Z;" according to distribution Ry = x™.

e Output
y:=A-[x;7] mod q.

H™L (td, (x,7),2):

e Sety = R(x—x')+Arr mod g. Sample and output a short collision by the sampling
algorithm of the lattice trapdoor

r' < Sample(Ar, Ty, s).
Ex (hk, (i, b); p):

e Sample p = (S, E) where S + nge,E X (N+m),

e Output
ct:=STA; + E; € z*Wm=h),

E2(hk7 (Za b)a Y P):

e Compute v = ST(y —b-a;) +e; and output K := round(v), where a; and e; are the
i-th rows of A and E.

D (hk, (z,7),ct):
e Compute v’ = ct - [x\;; 7] and output K := round(v’).
G(1*, 1V):

e Sample and output
EE . ZZX(N+m).

E; (@ (4, b)):

e Sample and output
G« ng(N-i-m—l).
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Trapdoor Collision. For all x, ', H(hk, z;7) = H(hk, 2’; ') holds, because the lattice trap-
door samples r such that Arr’ = ¢’ (mod ¢q) where y' = R(xz — «’) + Arr mod q. Moreover,
if » < x™, Arr mod q is statistically close to uniform over Zi [GPVO08, Cor. 5.4], hence y'
is also statistically close to uniform. Thus, the distribution of 7’ is statistically close to x™
(conditioned on Rz’ + Arr’ = Rx + Apr (mod q)).

Correctness. Let A := ‘vj - v;-), where v; and v} are the j-th component of the inputs to

the rounding function in the computation of E; and D respectively.
A= ‘(sz(y — ;- @) +ei5) — (ctj - @y r])|
= [s; (A 7] — @i ai) +eig — (557 Ay +eyy) [z 7|
= [eis — eviglenir|
< llegl - [Ifees ]

< sVN+m- VN +s2m < s*(N +m),

holds with overwhelming probability. The probability of decryption error on j-th bit is bounded
by
Pr[round(v;) # round(v})] < 2A/q = negl(}),

which is negligible since the modulus ¢ is super-polynomially large. Thus, by taking the union
bound for all |v| = ¢ bits, the probability of decryption error is bounded by

Pr[round(v) # round(v’)] < 20A/q = negl()\).

Oblivious Sampleability of Hash Keys. R distributes uniformly at random. The distri-
bution of A7 output by TrapGen(1?) is also statistically close _to uniform. Thus, A output by
G (1)‘, 1") is statistically indistinguishable from the output of G (1)‘, 1").

Security with Oblivious Sampleability. Let A be an adversary that distinguishes exper-

iments Expé%%h and Expgg 4-

We construct a reduction algorithm A’ that breaks the LWE assumption with (N + m)
samples by using A as follows:

1. A’ receives (A =[R| Ar] € ZZX(Ner), B ¢ ZgX(Ner)), where B is either STA + E or

uniformly random.

2. A sets

a’ = (22, — 1) (ai — Ayi[zy; 7))

R :=fa1|---|ai-1|d |aiy1 ] -] an]
and set

hk := [R' | Ar],ct := B;, and K := round(b;).

3. Finally, A’ returns A(hk, ct, K).
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In the LWE case, that is, B= STA+ FE and b; = STa; + e;, A’ statistically simulates Expé%a:
(1) The distribution of hk = [R | Ar] is the uniform one and statistically close to the real
distribution of hk, in which A7 is one of output of TrapGen(1}); (2) The distribution of ct
is perfectly correct; (3) The distribution of K = round(b;) is also perfectly correct: By our
reduction algorithm, we have y = H(hk,x;7) = hk - [x;7] = A\;[®\;; 7] + 2;a’. Thus, in the
computation of K «+ Ex(hk, (i,1 — z;),y; p), we compute
v; = ST(y — (1 — .732) . a’) + €;

= ST(A\Z[:B\“ T‘] + $i(1,/ - (1 - x,) : a’) + e;

= ST (A [z 7] + (221 — 1)a’) + e

=87 (A\i[ar:\i; r]+ (2z; — 1)(22; — 1) (ai — A\Z»[a:\i; 'r])) + e;

=St (A\i[m\i§ ] + (ai — Ayilzy; T])) +e;

=S%a; +e; =0,
where we use the fact (2z; — 1)(2z; — 1) = 1 for x; € {0,1} to move forth line to fifth line.
Therefore, K = round(v;) = round(b;) has the correct distribution.

In the random case, A’ statistically simulates EXpee, a-
Therefore, assuming the LWE assumption, we obtain Advcg 4 () = negl(\).

Public-Key Size of the Resulting NCE. The ciphertext space of this chameleon encryp-
tion is ZgX(Ner), where ¢ = 2POWI08N) ¢y — O(1), N = O()\), m = O(nlogq) = X - poly(log \).
Thus the length of ciphertexts is

|ct] = poly(log A) - O(1) - (O(X) + A - poly(log X)) = X - poly(log \).
The length of the hash key is
Ihk| = poly(log A) - A - (O(A) + X - poly(log A)) = A2 - poly(log \).
The length of seed for the wiretap codes is |p| = O(A). Public key expansion of the resulting

NCE scheme is
Ip| + [hk| 4+ 2V |ct|

N

= X - poly(log \).

7 Conclusion

In this work, we constructed NCE schemes with constant ciphertext expansion from the DDH
or LWE problem.

Along the way, we defined weak NCE. Given that the full-fledged NCE is a tool to establish
private channels in adaptively secure MPC, weak NCE can be interpreted as a tool to establish
wiretap channels in adaptively secure MPC. Through wiretap channels, we can securely transmit
a message by encoding with wiretap codes that satisfy conditional invertibility.

We showed instantiation of weak NCE that has constant ciphertext expansion and amplified
it by using constant rate wiretap codes. Finally, we roughly estimate the ciphertext expansion
of the resulting NCE scheme. As we see in section 5, ciphertext expansion of our weak NCE
scheme is 2¢ asymptotically. Suppose the wiretap codes used in the amplification achieve the
secrecy rate 1/2 — ho(e) where € = 1/2¢1. Then, the ciphertext expansion in Equation 1 has
minimum value =~ 27 when ¢ = 5.

We also showed the public-key expansion of our NCE scheme can be reduced to A-poly(log )
if it is instantiated from the LWE problem. One may think that the use of the ring-LWE
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problem may further reduce public-key expansion similar to the LWE based NCE scheme by
Hemenway et al. [HORR16]. However, unfortunately, it seems that the ring-LWE problem is
not helpful to reduce the public-key size asymptotically. Constructing an NCE scheme with
constant ciphertext expansion and better public-key expansion is a natural future direction.
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